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Human ldentification Using Compressed ECG Signals 

Carmen Camara1 • Pedro Peris-Lopez1 • Juan E. Tapiador1 

Abstract As a result of the increased demand for improved 
life styles and the increment of senior citizens over the 
age of 65, new home care services are demanded. Simul­
taneously, the medica! sector is increasingly becoming the 
new target of cybercrirninals due the potential value of 
users' medica! information. Toe use of biometrics seems 
an effective tool as a deterrent for many of such attacks. 
In this paper, we propase the use of electrocardiograms 
(ECGs) for the identification of individuals. For instance, 
for a telecare service, a user could be authenticated using 
the information extracted from her ECG signa!. Toe major­
ity of ECG-based biometrics systems extract information 
(fiducial features) from the characteristics points of an ECG 
wave. In this article, we propose the use of non-fiducial fea­
tures vía the Hadamard Transform (HT). We show how the 
use of highly compressed signals (only 24 coefficients of 
HT) is enough to unequiivocally identify individuals with a 
high performance (classiification accuracy of 0.97 and with
identification system errors in the order of 10-2). 
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Introduction 

According to [3], the medica! sector is the area that has 
suffered the major number of hacking incidents over the 
last two year�3 % of the data breaches in US. Medica! 
companies and hospitals have begun to introduce biometric 
solutions to rnitigate attacks and reduce costs. Further­
more, the proper identification of patients when they walk 
through the door is a major issue nowadays for all the 
hospitals around the world. Errors in medica} records, or 
even incorrect treatrnents, are very costly for the medica! 
centres and harmful for the patient. To avoid this, novel 
solutions propose to maintain a link between the patient's 
data biometrics and her medica} record. Thus, the bio­
metric signature (monomodal or multimodal) is used as an 
index to recover the patient's medica! record in the standard 
way: the system compares the master template with the one 
read locally and, if they match, the associ­ated medica! 
record is retrieved. This process is entirely done locally but 
may be also done remotely, i.e., the user would provide her 
biometrics data remotely. In this sense, biometrics could 
accelerate the transition towards home health care [25). 

Home health care allows the treatrnent of a disease at 
home. On the other hand it is usually as effective as care at 
the hospital but less expensive and more convenient for the 
patient. A wide variety of health care services can be 
offered (e.g., check your vital signs like temperature or 
blood pressure remotely or have a video conference with a 
medica} staft). Demographic changes (ageing population), 
social changes (small farnily units or mobility across coun­
tries), and developments in science and technology are 
sorne indicators that help to forecast, in a near future, a 
spread-use of home health care services [32). The correct 
and secure identification of each individual is a key-point 
for the proper 
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operation of these systems. We propose the use of a bio­

metric solution for that purpose. For completeness, we next 

provide a brief introduction to biometrics. 

Biometrics refers to the automatic identification of users 

based on features derived from their physiological and/or 

behavioural characteristics. The use of such features for 

identification (authentication) or verification purposes has 

been thoroughly explored in the last 30 years. In verifica­

tion, an identity is provided by the user, which is used to 

retrieve a master template. Toe master template is then com­

pared with the verification template ( l-to-1 comparison) 

and a matching score is returned by the classifier. Contrar­

ily, in identification systems like the one proposed in this 

article, the identity of a user rests entirely solely on her bio­

metric information-the classifier performs one-to-many 

comparisons. 

There is a substantial body of knowledge on 

recogniz­ing subjects by their fingerprint, face, voice, gait, 

keystroke dynamics, hand, iris, or retina [11]. Depending 

on the appli­cation and operational context, each one of 

these features can be used separately [6, 9] or combined in 

a multi­biometrics setting [33]. The accuracy, measured 

both as the probability of identifying a correct subject and 

rejecting a false individual, is possibly the single most 

important fea­ture of a biometric system. However, in 

practice there are other properties that can severely limit 

the use of a particular identification technique [21]. The 

biometric characteristic must be also universal, stable, and 

unique. lts acquisition has to be easy and without 

objections by the users. Finally bio­metrics systems should 

detect the use of an artefact or sub­stitute. All the 

mentioned characteristics have been assessed against our 

proposed system in section "Discussion". 

Over the last few years, sorne works have explored the 

biometric use of signals that, for different reasons, have 

traditionally received little attention by the security 

community. Biosignals-i.e., electrical or chemical signals 

measuring sorne activity or parameter of the human body­

constitute an important class of such signals, including 

elec­trocardiograms (ECGs), electroencephalograms (EEGs 

), and electromyograms (EMGs). These signals have been 

thoroughly studied for medica! applications, on the 

hypothe­sis that they convey information about different 

pathologies and, consequently, can be used as a valuable 

diagnostic tool. For example, automatic classification of 

ECG signals assists cardiologists to diagnose arrhythmias 

(i.e., tachycar­dia, bradycardia or atrial fibrillation) [13]. 

In the last years, severa! works have demonstrated that 

many vital signals also contain features unique to the indi­

vidual and can be used for security purposes. This branch 

of the biometrics is increasingly referred to as lntrinsic or 

Hidden Biometrics [17]. For instance, the electrical activity 

produced by skeletal muscles can be used for biomet­rics. 

EMG is the technique used for measurement and the 

obtained record is called electromyogram. In [30], Suresh 

et al. proposed the use of electromyograms to generate a 

signature for human identification. For that, impulsional 

electrical stimulation is produced over the muscle and its 

response constitutes the signature. This proposal has been 

successfully tested over a population of ten individual. 

ECG and EEG signals are by far the most commonly 

studied signals for Hidden Biometrics. EEG records the 

electrical activity in the brain through a set of electrodes 

mounted on the scalp. Existing proposals can be grouped 

according to the classification algorithm used. Linear dis­

criminant classifiers with auto-regressive feature extraction 

are demonstrated in [20]. In [2], an LVQ neuronal net­work 

with FFT feature extraction is described, while the work in 

[29] reports results using a neuronal network with energy 

feature extraction. On the other hand, EEG records the 

electrical activity of the heart. Toe algorithms can be 

classified according to the features extracted from the ECG 

signa!. Fiducial-based methods extract information from the 

characteristics points of an ECG wave (e.g., amplitude [7], 

temporal duration [10]). Non-fiducial methods do not use 

the characteristics points to extracil features. lnstead, other 

features like autocorrelation [ l], Fourier [23] or Wavelet 

coefficients [4] are used. Other solutions (hybrid) 

combined both methods like in [34] or in [26]. Toe reader 

is urged to consult for an exhaustive survey of ECG-based 

biometrics proposals [ 18]. 

The rest of the paper is organized as follows. In section 

"Methods" the general archltecture of the biometric 

identification system is presented. After that, we review 

and explain each of its forming components. Toe results 

are pre­sented in section "Results". Toen, in section 

"Discussion", we evaluate the main properties of the 

proposed system. Finally, in section Conclusions and 

Implications", we pro­vide reasoning about the implications 

of our proposal and extract sorne conclusions. 

Methods 

In Fig. 1 we show the general architecture of a biomet­

ric identification system. The first step consists of the data 

acquisition-one or severa! signals take part depending on 

whether the system is mono-modal or multi-modal, respec­

tively. Usually a set of sensors are placed over the subject 

(e.g., chest or head) to read the biosignals. Once acquired, 

the raw data must be prepared for its analysis. Techniques 

such as normalization, re-sampling or smoothing are com­

monly used procedures during the pre-processing step. After 

that, the more relevant information of the signa! is repre­

sented by a set of numerical o nominal parameters. This 

step is usually known as feature extraction and is crucial 

for the success of the whole process. The generated dataset 
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Fig. J General structure of a 
biometric identificatioo system Pre-processing 

Sensors 

consists of a number of instances, each one fonned by a set 

of features and a !abe! corresponding to an individual. The 

aforementioned dataset is split into two subsets for train­

ing and testing, respectively. Toe training set is employed 

to build the model and the unseen samples (testing set) are 

used to evaluate the model. That is, for each instance the 

model outputs a label that is compared to the ground truth. 

Depending on its success, the classification accuracy will be 

higher or lower. In the following, each one of these building 
blocks are explained in more detail taking into consideration 

the particular procedure used in this article. 

Raw Data aod Pre-processing 

The electrocardiogram (abbreviated as ECG and sometimes 

EKG) consists of a measurement over the skin surface to 

record the electrical activity of the heart. The conduction of 

ions through the rnyocardium (heart rnuscle) change with 
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each heart beat. Toe ECG represents the sum of the action 

potentials of millions of cardiomyocyte (heart cells). 

For our experimentation, we have chosen a well-known 

dataset. In particular, the MIT-BIH Normal Sinus Rhythm 

Database is used [8]. It includes long-tenn recordings of 18 

subjects treated at Boston's Beth Israel Hospital. Toe deci­

sion of using this dataset was motivated for the fact that no 

significant arrhythmias were detected in the subjects. There­

fore, the subjects do not present any bias that could help in 

the identification task. 

The heart rate of a person at resting varies frorn 60 to 

100 beats per minute. In order to pre-process the signa!, at 

the fist step the DC cornponents are elirninated. After that, 

each ECG signa! is filtered using a passband filter. Toe pass­

band range is often governed by the intended application: 

for instance, [0.05Hz - 150Hz ] for diagnostic and [0.67Hz 

- 40Hz] for patient monitoring. In our cause, we use pass­

band filter with passband rage between 0.67 and 45 Hz. The
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lower cut-off frequency is set 0.67 to elirninate the noise 
introduced by the respiration of the subject. Toe upper cut­
off frequency is set to 45 Hz to keep as much information as 
possible and to eliminate the power line noise. 

Once the signa! is filtered, we split the signa! in chunks 
without overlapping. Toe chunk size is set to 2 seconds, 
which means that each chunk consists on 2-3 heart beats. 
We have chosen this size inspired by the fact that algorithms 
based on fiducial features often use two beats as chunk 
length. We attempt to obtain similar information by using 
a compressed version of the signa!. The non-fiducial fea­
tures used in our experirnentation are explained in the next 
subsection. 

Feature Extraction 

Features derived from biosignals are effective in the design 
of human identification systems [14, 16]. ECG signals are 
one of the most used for this purpose [12]. Generally, 
exist­ing algorithms can be classified into two main groups 
[18]. On the hand hand, the algorithms based on fiducial 
fea­tures use characteristic points (e.g. PQRST peaks) from 
a ECG trace to extract a set of features (e.g., time intervals 
between peaks or angles). In Fig. 2 we show the main char­
acteristic points together with the most common features of 
an ECG wave. Contrarily, algorithms based on non-fiducial 

features do not employ characteristic points for generating 
the feature set. 

In this article, we propose the use of a non-fiducial 
based algorithm. In particular, the Hadamard Transform 
(HT) is used to extract the featrues of an ECG wave. Figure 
3 shows the ECG signa! in the time domain and in the 
Hadamard domain, respectively. In the same way as the 
Fourier Transform (Ff) consists of a projec­tion onto a set 
of orthogonal sinusoidal waveforms, the Hadamard 
Transform (HT) lies in a projection onto a set of square 
waves called Walsh functions. In fact, the Hadamard 
transform is often called Walsh-Hadamard trans­form, 
since the base of the transformation consists of Walsh 
functions. 

Toe Discrete Walsh-Hadamard Transform (DWT) of a 
data sequence x(n) and n = {l · · · N} is given by: 

N-1 M-1

Xw (k) = ¿ x(n) n (-l)"iKM-n-i, k = O, 1, . . .  , N -1
11=0 i=O 

(1) 

where N is the number of samples of the data and restricted 
to be a power-of-2, and M = log2 N. Therefore, in a sirn­
ply way, the transform (Xw) consists on the product of the 
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sequence (x) of length 1 x N by the Walsh matrix (H) with 
length N X N:

Xw = Hx (2) 

The inverse of the transform can be easily calculated 
with the next analogous expression that only differs in the 
constant divisor: 

N-1 M-1 

x(n) = ! L Xw(K) n (-1rKM-t-i,
k=O i=O 

n = O, 1, · · ·, N -1 (3) 

One advantage of using this transform is that it is com­
putationally more efficient than others, such as the Fourier 
Transform or the Wavelet Transform. This is important in 
constrained devices with limited computational capabilities. 
On the other hand, the usage of this transform facilita tes that 
a compressed version of the signa! could be stored, while 
this compressed signa! preserves all the informational of the 
ECG signa! and allows the reconstruction of the signa! in 
the time domain. 

To show the effectiveness of the HT with ECG sig­
nals, we have studied the effect of compressing the sig­
na!. To illustrate this, an ECG wave of 256 samples has 
been used. The HT is computed over this signa! and 256 
coefficients are obtained. After that, we have taken frac­
tions of these coefficients (i.e., {Xw(O), · · · Xw(P)} and 
P = {256, 128, 32, 16, 8}) and calculated the inverse of the 
transform to reconstruct the signa!. The results of the recon­
structed signals are shown in Fig. 4, which illustrate how 

·�� !' ; ·500
0 so 100 

·�� !' ; ·500
0 so 100 

the signa! can be highly compressed while preserving the 
signa!' s main characteristics. 

In Fig. 5 we sketch the feature extraction procedure. As 
shown, the features used in our proposed ECG-system are 
mainly based on the coefficients of the HT. In particular, 
the 24 lower sequencing coefficients has been used-see 
section "Results" for details. Furthermore two additional 
features have been computed over the whole set of HT coef­
ficients. Shannon entropy (EsH) and Log-Energy entropy 
(ELE) are the two features chosen iin our experimentation­
other features like statistical metrics were tested but finally 
discarded. Let x a signa! and X (n) the coefficients of x in a 
orthogonal base, both entropies can be calculated as follows: 

(4) 
n 

ELE = - ¿log(X(n)2) (5) 
n 

Classifier 

lnductive machine learning uses the concept of learning by 
example. A system infers a set of rules from a set of input 
instances (training set). Once the model is generated, the 
built model can be used to classify iUllseen instances (testing 
set). There is a wide range of classification algorithms and 
the choice of one or another is determined by the nature of 
the problem, the dataset characteristics and the application 
where it will be used. Taking into consideration is function 
or form, classifiers can be categorized in numerous types, 
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Fig. 5 Feature extraction

procedure 

including decision tree learning algorithms, kernel methods, 
lazy leaming algorithms, etc. 

In this article we use a K-NN algorithm, which fits within 
the category of non-parametric lazy leaming algorithms. 
Non-parametric refers to the fact that they avoid making 
assumptions about the data distribution. Lazy meaos that 
the training instance are not used to do a generalization, so 
the training is minimal. The K-NN algorithm makes sev­
era! assumptions: 1) the instances are in a metric space (i.e., 
scalars or multidimensional vectors) and distance metrics 
can be computed between two instances; 2) each instance 
in the training set is composed of a vector (set features) 
and a label; and 3) the parameter K determines how many 
neighbours are considered for classification. 

Toe testing and trainiing phases for the K-NN algorithm 
are as follows. In the training phase, features vectors with its 
corresponding class are stored. In the classification phase, 
let y¡ an unseen instance and {xo, · · · xk} the K nearest 
training instances. The label of y¡ is determined by majority 
voting among the labels of its K neighbours. 

K-NN has been chosen since it is simple but effective.
We have tested severa! values of the K parameter and finally 
it has been set to 1. In fact, using higher values for K

(i.e., K = {3, 5, 9} we do not observe any improvement 
in the performance while the cost in terms of computa­
tional load is significant. Regarding the distance metrics, 
Euclidean distance (dE) and Manhattan distance (dM) have 
been evaluated. Let two vectors x = [x( l )  · · · x(N))] and 
y= [y( l )  · · · y(N))], both metrics are defined as follows: 

N 

dE = I: [x<i) - y(i) J2 
(6) 

i=l 

N 

dM = ¿lx(i) - y(i)I (7) 

i=l 

Results 

The algorithm proposed in this article fits within the algo­
rithms based on non-fiducial features. The main difference 
in comparison with its predecessors is that the algorithm 
works with a compressed version of the original signal via 
the Hadamard transform. Furthermore, only a small 
fraction 

tlllftdamard 
;rransrorm 

[X,.{n) · · · X.,(N)J 

Lower Sequencing 
coe6cients of HT 

(Xw(l)," • X,.(P)I 
aodP 5 N 

Entropy 
values 

IEsu,E,sl 

Estimaled Features 
(X,.(n) · · · X.,(P), Eslf , Bu;) 

of ali the coefficients are necessary for human identifica­
tion. Since the number of used coefficients-24 coefficients 
for each ECG chunk-is effective for identification but 
insufficient to recover the original signa! and to preserve 
its characteristic points, the proposed system is privacy 
preserving for the user. 

The procedure followed for the analysis of the ECG 
signal is the one explained in .section "Methods" and 
sketched in Fig. l . For our experimentation, we use the 
well-known MIT-BIH Normal Sinus Rhythm database. In 
particular, ECG signals for two electrodes are available and 
were pre-processed as explained in section "Raw Data and 
Pre-processing". Thereafter the same procedure is followed 
for each electrode signal. Toe signal is chopped in chunks 
of 256 samples and for each chunk the DWT is computed. 
Finally the feature extraction has been evaluated using two 
approaches: 

Hadamard Coefficients: Only a small fraction of the 
coefficients are necessary for the identification task. 
This number has been obtained through experimenta­
tion and using the classification accuracy as the met­
ric for comparison between the possible values. After 
conducting sorne experiments, we have set this value 
to 24, which represents less ithan l O % of the coef­
ficients. Therefore using these 24 lower sequencing 
coefficients (48 in total considering the two leads) the 
system can identify an individual with high accuracy. 
On the other hand, and considering the worst case in 
which an attacker would capture these coefficients, she 
could not reconstruct the original signa! as shown in the 
Fig. 6---only partial information might be retrieved. 
Entropy: Although the system offers a high perfor­
mance using Hadamard coefficients, we have studied 
whether additional features are useful for the system. 
In particular, we have calculated the Shannon and the 
Log-Energy entropy over the whole set of Hadamard 
coefficients (i.e., 256 values). [t is also worth mention­
ing that we aJso tested the inclusion of commonly used 
statistical metrics (e.g., mean, standard deviation, maxi­
mum, mínimum, and first derivative, etc.). Nevertheless 
its benefit over the performance of the system is negli­
gible and for this reason these features were not finally 
considered in our experimentation. 
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Fig. 6 ECG signal: original, transformed (via HT), reconstructed 

Once the features are extracted, we have trained and 

tested a 1-NN classifier. We have used 10-fold cross­

validation in order the classifier can accurately predict 

unknown data. Each instance consists of a set of features and 

a label corresponding to the subject (from 1 to 18). Regard­

ing the features employed we have tested two possible 

configurations: OP-1 only considers 24 lower sequencing 
coefficients of the HT-in total 48 features taking into 

consideration the two leads available; and OP-2 consid­

ers the same features as OP-1 plus the Shannon and the 

Log-Energy entropy (4 additional features considering the 

two leads). For each configuration, the 1-NN classifier has 

been evaluated using two distances metrics: Euclidean and 

Manhattan. 

The confusion matrix obtained for each configuration 

can be surnmarized through the true positives (T P) and 

false negative (F N) rates and its corresponding comple­

mentary values, false positive (F P) and true negative T N 

rates, respectively. The obtained values are surnmarized 

in Table 1. Using these values, the performance of the 

Table 1 Overall Performance: False Negative (FN), False Positive 

(FP), True Positive (TP) and True Negative (TN) rates 

Configuration FNR FPR TPR TNR 

OP-1 dE 0.0580 0.0582 0.9418 0.9420 

dM 0.0570 0.0566 0.9434 0.9430 

OP-2 dE 0.0390 0.0386 0.9614 0.9610 

dM 0.0340 0.0341 0.9659 0.9660 

proposed ECG-based human identification system can be 

assessed through a number of standard metrics: 

Classi.fication Accuracy. Measures the proportion of

correct outputs, both positive and negative: 

CA = 
___ T_P_+_T_N __ _ 
TP+FP+FN+TN 

(8) 

Sensitivity. It is simply the true positive rate, i.e., the

proportion of actual positives that are correctly identi­

fied as such: 

TP ST=---­
TP+FN (9) 

Speci.ficity. Also known as the false positive rate, mea­

sures the proportion of actual negatives that are cor­

rectly identified as such: 

TN 
SP

=FP+TN 
(lO) 

Positive Predictive Value. Also known as precision,

measures the proportion of positive outcomes that are 
actually positive: 

TP 
PPV =---­

TP+FP 
(11) 

Negative Predictive Value. Measures the proportion of

negative outcomes that are actually negative: 

TN NPV=---­
FN+TN

(12) 

In Table 2 the performance of the proposed system, in 

its four possible configurations, is surnmarized. In the next 
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Table 2 Performance metrics 

Configuration CA ST SP PPV NPV 

OP-1 dE 0.9419 0.9420 0.9418 0.9418 0.9420 

dM 0.9432 0.9430 0.9434 0.9434 0.9430 

OP-2 dE 0.9612 0.9610 0.9614 0.9614 0.9610 

dM 0.9659 0.9660 0.9659 0.9659 0.9660 

section we evaluate the proposed system from a biometric 

point of view and extract sorne conclusions about the per­

formance and what is the most recommended configuration. 

Discussion 

In the above section we have shown the results of our 

proposal regarding its performance. Seven characteristics 

(including performance) are commonly demanded to a bio­

metric system [21]: universality, uniqueness, permanence, 

collectability, acceptability, performance, and resistance to 

circumvention. In the following each of these 

characteristics is analyzed for our proposed system: 

Universality Toe biometric characteristic must be univer­

sally applicable. In our case, we use the ECG signa!, 

which can be collected from everyone who is alive. Nor­

mal values for a person at resting are in the rage of 60 to 

100 beats per minute. 

Uniqueness Toe biometric characteristic must be able to 

unequivocally identify the individuals within the target 

population. In this article we have proposed the use of 

the ECG. This signa! has already been proved to be 

effec­tive for biometrics purposes [5, 19]. In our case, 

we have checked whether features obtained from a 

compressed ECG signa! (via Hadamard transform) can 

be used to identify individuals. As shown in Table 1, the 

number of misclassified samples is alrnost zero for all 

the con­figurations evaluated. This is a clear indicator 

about the effectiveness of the Walsh coefficients (lower 

ones) for the human identification task. 

Permanence Toe biometric characteristic should be 

invariant over time. Nevertheless, physiological charac­

teristics are not totally invariant during the entire life of 

an individual. In our case, small variations appear in 

ECG signals after a five years period. This means that 

the clas­sifier model would have to be updated after five 

years since the model was generated. If we compare our 

sys­tem with other common solutions based on 

passwords [24], in which the user normally must update 

the pass­word once per year, our proposed solutions is 

five times less demanding in terms of updating 

requirements. 

Collectability The biometric characteristic should be 

quantitatively measurable. In our particular case, ECG 

signals can be easily gathered through a set of 

electrodes-3-lead or 12-lead system. Using these elec­

trodes, the electrical activity of the heart can be recorded. 

More precisely, the ECG represents the potential differ­

ences between electrodes. 

Acceptability It relates to how the user feels comfortable 

with the use of the biometric characteristic. We cannot 

do a strong presumption about this matter since we use a 

public dataset for our experimentation. Nevertheless, we 

can predict a high acceptability due to two main reasons: 

1) the ECG signa! is well-known to deal with heart dis­
eases; and 2) the signa! can be easily acquired-just three

leads are sufficient for non-medica} applications.

Performance Our proposed system offers a high accuracy 

level. The classification accuracy varies from 0.94 to 

0.97 for the two configurations evaluated. Furthermore, 

and not less important, the identification system errors 

(i.e., false positive and false negative identification rates) 

are very low values: of the order of 10-2. In relation 
with the distance metric, the Manhattan distance seems 

to offer slightly better results for the 1-NN classifier than 

the Euclidean distance. From the computational point of 

view, OP-1 is less demanding since only Hadamard coef­

ficients are necessary and the penalty in performance is 

small in comparison with OP-2. 

We can compare our system with other proposals with 

similar results (see Table 3). Most other ECG-based 

biometric solutions achieve similar performance. 

Never­theless, the main contribution of this article is the 

set of features used. Fiducial features has been proven to 

be effective but its calculation requires moderate 

computa­tional capabilities [34]. In our case we use non-

fiducial features trough the computation of the DWT. A 

matrix with ones and minus one values has to be stored in 

mem­ory, in what is called the Waslh matrix. Note that 

the matrix size is fixed since the length of the ECG 

chunks does not vary. In our particular case, we have set 

this parameter through experimentation aiming at 

optimizing 

Table 3 Biosignal-based authentication proposals 

Correctly Classified lnstances 

94 % (OP-1) - 97 % (OP-2) % 

86 % - 100 % (single day data acquisition) 

72 % - 80 % (4-40 individuals) 

97.9 % (linear boundary) 

88 %-100 % (small data set) 

System 

Our system 

ECG [18] 

EEG [28] 

EEG and ECG [22] 

Pulse-Response [21] 

Finger-vein [35] 98 % (70 individuals) 

Iris and Fingerprint [15] 96 % (small dataset) 

Face & Iris [27] 99 % (UBIRIS v.2 and ORL) 
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Handamard 
Transfonn 

[X.,(n) · · · Xw(N)I 

Data Compresion 
Lowcr Scqucncing 
coeficients of HT 

[Xw(l), · · · X.,(P)I 
andP = N/2ürN/4 

Biometric Signature 
Lower Sequencing 
coeficicntS of HT 

(Xw(l), ... Xw(R)I 
andR << N 

Fig. 7 Pacemaker with data compression and biometrics signature 
modules 

system perfonnance. The Walsh Hadamard coefficients 

are obtained just by multiplying a vector (an ECG chunk 

of 256 samples) by the Walsh matrix (a matrix of size 

256 x 256 with ones and minus ones). The complexity of 

this naive algorithm is O(N2) but this can be reduced to 

(N log N) using the Fast Walsh-Hadamard Transfonn. 
Resistance to Circumvention This property is vital for an 

r

identification system. The biometric characteristic should 

prevent an attacker fom impersonating an authorized 

user in the database. In our proposed system, this prop­

erty is satisfied since the ECG signal (the complete wave) 

is characteristic of each person. Note that two persons 

can have identical heart rates but their ECG waves will 

be different. Previous studies have confinned this matter 

and it is commonly assumed that the features of an 

ECG signa! are mainly resistant against counterfeiting 

[31]. 

lt is clear from all the above that the proposed system

satisfied the characteristics required of a biometric system. 

Therefore the use of compressed ECG signals via Hadamard 

Transfonn is robust, effective, and efficient for human iden­

tification. We next provide reasoning about the implications 

of our proposal and extract sorne conclusions. 

Conclusions and Implications 

The integration of smart homes and telecare services aims 

to improve quality life and the possibilities for independent 
living through the use of new technologies and services. 

Smart devices at home pursue to increase comfort, energy 

efficiency, and security. On the other hand telecare services 

allow people to stay in t!heir homes without prejudicing the 

quality of the health cace services they are getting. The 

proper identification of tibe users is crucial to secure the sys­

tems. This task can be cilone through the features extracted 

from vital signals. Since the ECG signa! is often moni­

tored for medica} purposes, we can take advantage of this 

and use also this vital signa} for security purposes (e.g., 

identification or key generation). In our proposal we show 

how compressed ECG signals are robust and effective to 

unequivocally identify individuals. 

In section Discussion we have evaluated the seven char­
acteristics commonly demanded to biometrics systems. 

Apart from this, we would Iike to stress several additional 

characteristics of the proposed system. On the one hand, 

the use of compressed signals saves memory space, which 

could be critica} in constrained devices Iike an implantable 

medica} device such as a pacemaker or a holter monitor. 

Regarding the computational load, the penalty is very small 

since a matrix multiplication is only required to obtain the 

Hadamard coefficients. Furthennore no additional compu­

tations are required to extract the signa! features--contrary 

to what occurs in systems based on fiducial features. On 

the other hand, since only a small fraction of the coeffi­

cients (the lower ones) are employed, even if the attacker 

would acquired these coefficients, she could not reconstruct 

the original signal. In conclusion, the proposed system is 

privacy preserving and works with a highly compressed 

version of the signal. As illustration of how the proposed 

system rnight be integrated in implantable medical devices 

is sketched in Fig. 7, showing how our proposal could con­

tribute to the design of more secure medica} applications 

and devices. For instance, a patient holding this sort of pace­

maker could be remotely monitored once she is identified 

in a secure way using features extracted from her own heart 

signa!. 

As a future work, there are severa! research lines to 

continue with the ideas presented in this article. The pro­

posal has been only tested with a database (MIT-BIH Nor­

mal Sinus Rhythm Database) of healthy individuals. Other 

databases, which include patients with a heart disease ( e.g., 

MIT-BIH Arrhythrnia Database or MIT-BIH Long-Tenn ST 

Database) or patients under stress conditions (e.g., MIT-BIH 

ST Change Database), could be employed to assess the use 

of compressed ECG signals. In line with this, in our pro­
posal the Hadamard Transfonn is the core of our system 

for human identification. lt would be interesting to perfonn 

a comparative study using a wide set of transfonns ( e.g., 

Fourier, Wavelet, Hadamard, etc.). Last but not least, the 

proposal could be extended to other vital signals like EEG 

or EMG. 
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