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Abstract This paper presents an ensemble based classifica-
tion proposal for predicting neurological outcome of severely
traumatized patients. The study comprises both the whole
group of patients and a subgroup containing those patients
suffering traumatic brain injury (TBI). Data was gathered
from patients hospitalized in the Intensive Care Unit (ICU)
of the University Hospital in Salamanca. Predictive models
were induced from both epidemiologic and clinical variables
taken at the emergency room and along the stay in the ICU.
The large number of variables leads to a low accuracy in the
classifiers even when feature selection methods are used. In
addition, the presence of a much larger number of instances of
one of the classes in the subgroup of TBI patients produces a
significantly lesser precision for the minority class. Usual
ways of dealing with the last problem is to use undersampling
and oversampling strategies, which can lead to the loss of
valuable data and overfitting problems respectively. Our pro-
posal for dealing with these problems is based in the use of
ensemble multiclassifiers as well as in the use of an ensemble

playing the role of base classifier in multiclassifiers. The pro-
posed strategy gave the best values of the selected quality
measures (accuracy, precision, sensitivity, specificity, F-
measure and area under the Receiver Operator Characteristic
curve) as well as the closest values of precision for the two
classes under study in the case of the classification from im-
balanced data.
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Introduction

The care of polytraumatized patients represents a challenge for
health professionals aiming at decreasing its negative social
and economic impact, which is much greater than other pa-
thologies. Severe trauma is the primary cause of mortality of
young adults in the world and the most influential as regards
the years of potential life lost (YPLL). On the other hand,
severe trauma has an important economic impact due to the
high cost of the traumatic injury treatment [14]. For instance,
in the United States this cost is greater than cancer and cardio-
vascular diseases treatment [22].

Survival estimation of critical patients has been traditional-
ly made from scoring systems as APACHE II (Acute
Physiology and Chronic Health Evaluation II) and other se-
verity classifications, however, some studies have proved that
these scores are not suitable for individual clinical outcome
prediction [8]. Scoring systems specifically developed for
trauma and injury severity evaluation also present some draw-
backs, especially for polytraumatized patients since popular
systems such as Trauma and Injury Severity Score (TRISS)
do not provide reliable results for patients with a large number
of injuries [26].
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Nowadays, new estimation models based on data mining
techniques are being developed given that current technology
affords the possibility of storing huge amounts of medical
data. However, a drawback for the treatment of this informa-
tion is the diversity and quantity of involved variables regard-
ing the number of available records of patients. In this context
of high dimensionality and not too much data instances, the
behavior of predictive models is not good. Other important
problem is the imbalance of the data that takes place when
there is a big difference between the number of instances of
every class under study. In these situations the precision for
the minority class is usually significantly lesser than the pre-
cision for the majority class; therefore, predictive models are
not valid even when they present an acceptable accuracy.
Thus, in this work the way of dealing with these problems
has been addressed. The final goal is to build reliable models
that allow to predict the outcome of severely traumatized pa-
tients who require ICU hospitalization, taking into account
epidemiological and clinical variables as well as those related
to the healthcare management. The study is carried out to
determine mortality or poor neurological outcome of patients
of all trauma patients, on the one hand, and just the patients
suffering TBI, on the other hand.

Related work

Several studies have been reported in the literature about fac-
tors influencing the evolution of critical patients. They have
derived in the proposals of different prognostic and mortality
scales described in [5]. One of the most important is based in
APACHE II, however, there are few works about
polytraumatized patients where APACHE II is studied as a
factor of seriousness and some of them are contradictory
[10]. TRISS (Trauma and Injury Severity Score) is a scoring
method that allows to predict the survival probability of in-
jured patients [2], but this method does not give accurate re-
sults for polytraumatized patients. Glasgow Coma Scale
(GCS) is other prognostic indicator in most of the scales.
Some studies confirm that GCS is the factor most correlated
with the neurological component [20] and its association with
pupil alteration is an indicator of mortality [15].

Statistical techniques are the usual tools used in these
works since they allow identifying key indicators of neurolog-
ical outcome while data mining techniques are used to a lesser
extent. Some classical data mining methods, such as Bayesian
Networks (BN), Support Vector Machines (SVM) or Artificial
Neural Network (ANN) have been applied for diagnostic de-
cision support in several medical fields [1, 7, 27]. In the con-
text of traumatized patients these classical methods are also
used. Studies addressed to predict survival of this kind of
patients is given in [17, 26] where trauma data are treated by
means of Neural Networks and Bayesian Decision Trees

respectively. The last study proved that this method provides
better accuracy than the TRISS system.

Ensemble multiclassifiers are less extended than classical
machine learning techniques in the medical field, although
several papers can be found in the literature, especially orient-
ed to diagnosis. A sample of this kind of works is summarized
next. Random Forest is used to improve cardiac arrhythmia
diagnosis in [23]. In [6] a predictive model for diagnostics of
diabetes mellitus is induced by means of the Bagging algo-
rithm. Several ensemble multiclassifiers have been applied for
predicting success/failure of noninvasive mechanical ventila-
tion in [21]. Feature selection techniques were used in this
work for reducing the number of attributes and improving
prediction reliability. Early detection of multidrug-resistant
tuberculosis risk was the target of a work in which Bagging
and Boosting algorithms were used. [19]. The problem of
building classifiers from imbalanced data is addressed in the
work making use of sampling strategies.

In this work, it was necessary to tackle high dimensionality
and imbalanced data problems. Given that in our experiments
feature selectionmethods did not work as expected, we applied
several ensemble multiclassifiers and we studied their behavior
against single classifiers. On the other hand, taking into ac-
count the problems of sampling strategies, we have proposed
an alternative approach also based in the use of ensembles.

Data mining study

The study includes data from 497 patients diagnosed with
severe trauma and polytrauma who were hospitalized in the
Intensive Care Unit (ICU) of the University Hospital in
Salamanca. The analysis was carried out taking into account
the variables described in Online Resource 1. Given that the
objective is to make an early prediction of neurological out-
come, we used only 120 variables whose values can be ob-
tained along the first 24 hours of stay in ICU.

In this study several classification algorithms were ap-
plied to induce models that would allow the class of un-
classified patients to be predicted from other attributes of
these patients. Two kinds of algorithms were used for in-
ducing both single classifiers and multiclassifiers, specifi-
cally, ensemble multiclassifiers.

As commented before single classifiers sometimes do
not achieve an acceptable accuracy with some training sets
as the one managed in this work, which contain many at-
tributes and the imbalance between negative and positive
instances is very high.

The usual way to deal with high dimensionality problem is
the application of feature selection methods in order to select
the most influential attributes (features) for the classification
and obtain more reliable models. We used two types of algo-
rithms, on the one hand, some variants of the methods based
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only on the information gain provided by the attributes in an
individual way and, on the other hand, the CFS (Correlation-
based Feature Subset Selection) [13] algorithm, which also
considers the correlation between attributes. CFS evaluates
the significance of a subset of features taking into account
the individual predictive ability of each feature and the degree
of redundancy between them. This method selects the subsets
of attributes that are highly correlated with the class while
having low inter-correlation between them.

In most of the cases better accuracy is achieved when the
classifiers are induced from the selected attributes, however,
in the application domain of this work such objective was not
achieved since accuracy, instead of improving, was worse in
some cases.

The other problem to be addressed was the treatment of
imbalanced data. Oversampling of theminority class instances
or undersampling of the majority class ones are two common
approaches to deal with imbalanced datasets, but they have
important drawbacks. Undersampling may discard potentially
valuable data, while oversampling artificially increases the
size of the data set and, as a result, the computational cost of
inducing the models. In addition, the replication of existing
examples in the minority class causes overfitting problems
[16]. The special characteristics of multiclassifiers make them
suitable methods to potentially solve both important draw-
backs we have to deal with.

The description of the algorithms used in the comparative
study is provided in the next subsections.

Single classifiers

Firstly two tree induction algorithms were employed in the
study, J48 and REPTree. J48 is an advanced version of C4.5
[25], one of the algorithms most used and well known. J48
is an information gain-based method with pruning proce-
dures that use rules. REPTree is a fast decision tree learning
algorithm, also based on information gain, which uses
reduced-error pruning with back-fitting. As a single classifier
we also applied a Bayesian network algorithm that provides
a graph relating variables and including distributions of con-
ditional probabilities associated with these variables. The
learning process for a dataset lies in finding, from among
all possible graphs, the one that best represents the set of
dependences/independences between data. The problem
does not have an exact solution and it is necessary to resort
to heuristic search methods. In this study, the K2 search
algorithm [9] was applied.

The study includes also a support vector machine (SVM)
method, SMO (Sequential Minimal Optimization) algorithm
for training a support vector classifier [24]. SVM are linear
classifiers based on finding the hyperplane that gives the larg-
est minimum distance to the training examples.

Multiclassifiers

In order to address the referred peculiarities characteristic of
the datasets (high dimensionality and imbalanced distribution)
some multiclassifiers were applied. These methods combine
several individual classifiers induced with different basic
methods or obtained from different training datasets with the
aim of improving the accuracy of the predictions. Another
additional advantage of these techniques is the reduction of
the overfitting problem, which takes place when the learning
process finds a regularity in the data that is distinctive of the
training set but cannot be extended to other datasets [18].

The methods for building multiclassifiers can be divided in
two groups. The first, named ensemble methods, such as
Bagging [3], Boosting [11] and Random Forest [4], induce
models that merge classifiers with the same learning algo-
rithm, but introducing modifications in the training data set.
The second type of methods, named hybrids, such as Stacking
[28] and Cascading [12], create new hybrid learning tech-
niques from different base learning algorithms.

In this study the methods used were Random Forest,
Bagging, AdaBoost, a variant of the Boosting method, and
Random Committee.

Bagging is the acronym for Bootstrap AGGregatING. The
method induces a multiclassifier that consists on an ensemble
of classifiers built on bootstrap replicates of the training set.
Majority vote is used to choice the final prediction.

Boosting is a multiclassifier of the same kind of Bagging,
however, this method assigns weights to the outputs of the
induced single classifiers from different training sets (strate-
gies). In an iterative process, the weights are updated by in-
creasing the weight of strategies with the correct prediction
and reducing the weight of strategies with incorrect predic-
tions. In this way the multiclassifier is developed incremen-
tally, adding one classifier at a time. The classifier that joins
the ensemble at step k is trained on a data set selectively
sampled from the training data set Z. The sampling distribu-
tion starts from uniform, and progresses in each k step to-
wards increasing the likelihood of worst classified data points
at step k – 1. This algorithm is called AdaBoost which comes
from ADAptive BOOSTing. AdaBoost presents the advan-
tage of driving the ensemble training error to zero in very
little iteration [18].

Random Forest [4] can be considered a multiclassifier sim-
ilar to Bagging since it involves the induction of an ensemble
of tree classifiers, each of which produces its own output. The
induction of each tree is produced from a subset of the original
data set chosen independently (with replacement) and with the
same distribution for all trees in the forest. For classification
problems, the most popular class obtained by simple vote is
chosen as the final outcome.

Random Committee constructs an ensemble where each
base classifier is built using a different random number seed.
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The final prediction is a straight average of the predictions
generated by the individual base classifiers.

Validation of the classifiers

Ten-fold cross-validation was used in the validation of all
classifiers. Thus, the available data was divided into ten dis-
joint subsets with the same size. This method involves ten
trainings that are performed by taking into each of them a
different subset as test set and building the model with the
remainder subsets. The error rate is the average of the errors
obtained in the trainings performed.

The quality metrics computed were accuracy, precision,
sensitivity (recall), specificity, F-measure and area under the
ROC (Receiver Operator Characteristic) curve.

In many research works the validation of classifiers is
carried out only by examining their accuracy, that is, the
percentage of correctly classified instances. However, that
measure can be complemented with others that provide
additional error perspectives, especially when evaluating
binary decision problems. In these cases, the examples
are classified as either positive or negative and the output
of the classifier can belong to one of the following four
categories: True positives (TP) are positive instances cor-
rectly classified, false positives (FP) are negative instances
classified as positive, true negatives (TN) are negative in-
stances correctly classified and false negatives (FN) are
positive instances classified as negative. Given this infor-
mation, it is possible to define some validation metrics
such as precision, sensitivity, specificity, F-measure or
AUC (area under the ROC curve).

Precision is the probability that an example will be positive
if the classifier classifies it as positive:

Precision ¼ TP= TPþ FPð Þ ð1Þ

Sensitivity or recall refers to the probability of a positive
example being classified as positive, which is the true positive
rate (TPR).

TPR ¼ TP= TPþ FNð Þ ð2Þ

Specificity however is referred to true negative rate (TNR).

TNR ¼ TN= TNþ FPð Þ ð3Þ

A good classifier will provide precision and recall values as
high as possible, but if this is not possible it must give the best
possible balance between the two metrics. A metric that com-
bines precision and recall is the F-measure.

F−measure ¼ α* Precision* Recall
� �

=Precisionþ Recall
� ��

ð4Þ

The harmonic mean of precision and recall is obtained for
α =2.

The ROC curve is the representation of the true positive
rate (TPR) compared to the false positive rate (FPR). Point
(0,0) of the ROC graph corresponds to a classifier that clas-
sifies all examples as negatives, and point (1,1) corresponds to
a classifier that classifies all examples as positive. The best
learning systemwill be the one that provides a set of classifiers
with a greater area under the ROC curve (AUC).

Proposed strategy

The methodological approach proposed in this work is based
in the use of multiclassifiers due to their special characteristics
that make them suitable models for dealing with high dimen-
sionality and imbalanced data drawbacks. For the last prob-
lem, the combination of two ensembles is proposed given that
the combined random sampling strategies provided by both
algorithms can help to balance the data without making use of
undersampling or oversampling procedures.

Several reasons were taken into account in the choice of
multiclassifiers to address the two problems found in our
study. Firstly, the fact that multiclassifiers extend the hy-
pothesis space with respect to single classifiers and achieve
a better management of large number of attributes. On the
other hand, multiclassifier algorithms reduce the
overfitting of the induced models. This fact is essential to
deal with imbalanced data problem.

In general, the key of the good behavior of classifiers en-
semble is the diversity provided by different training sets.

56%

44%

a

TRUE

FALSE

27%

73%

b
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FALSE

Class

Fig. 1 Percentage of instances of
the true and false classes. a: All
patients, b: Patients with TBI
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Significant improvements are achieved mainly when the base
classifier is unstable, that is, small changes in the training set
should lead to large changes in the classifier output [18]. This
is the scenario that takes place when working with imbalanced
data. In addition, majority vote properties assure the improve-
ment of the single classifiers results.

Results and discussion

The study was divided in two parts corresponding on one hand
to the whole group of patients and, on the other hand, to the
subgroup of 282 patients having traumatic brain injury (TBI).

The class attribute to be predicted is Bdeath or poor neuro-
logical outcome^, which can take the values true and false.
We considered a neurological outcome to be poor when the
GOSE was equal to or less than 3.

As stated previously, owing to the large number of variables to
be treated by the algorithms, several feature selection methods
were applied in the preprocessing step, but accuracy did not im-
prove. Consequently, we decided to use all attributes in the study.

An important aspect of the study is the distribution of ex-
amples belonging to each class (true and false) in the dataset
(Fig. 1). When we considered the complete group of patients
(Fig. 1-a) the proportion of instances of each class was similar,
however, when we consider the subgroup of TBI patients this
ratio was quite different. This unequal distribution can signif-
icantly influence the results of the data-mining algorithms,
since high accuracy can be obtained but the rate of correctly
classified instances of the minority class may be very low. In
these cases, analysis of the results have to be focused not only
on accuracy but also on the precision achieved for the two
classes. In addition, the capture of other measures such as
the F-measure and the ROC analysis can be useful.

Table 2 Quality metrics of the
classifiers for the group of
patients with TBI

Algorithm Accuracy Sensitivity (recall) Specificity F-Measure AUC

Decision tree J48 79,79% 0,893 0,539 0,792 0,747

Decision tree REPTree 79,79% 0,922 0,461 0,784 0,747

Bayes Net 79,79% 0,854 0,645 0,799 0,821

SVM 80,85% 0,883 0,605 0,806 0,744

Random Forest 82,98% 0,966 0,461 0,812 0,834

Bagging - J48 79,79% 0,903 0,513 0,789 0,866

Bagging - REPTree 82,98% 0,971 0,447 0,810 0,826

Bagging - SVM 80,50% 0,893 0,566 0,800 0,823

AdaBoost - J48 79,43% 0,903 0,500 0,785 0,819

AdaBoost - REPTree 80,50% 0,908 0,526 0,797 0,815

AdaBoost - SVM 76,95% 0,825 0,618 0,773 0,767

Random Commitee - Random Tree 82,98% 0,947 0,513 0,817 0,810

Random Commitee - Random Forest 84,40% 0,976 0,487 0,827 0,863

Bold entries represent the best results obtained from the methods evaluated

Table 1 Quality metrics of the
classifiers for the group of
all patients

Algorithm Accuracy Sensitivity (recall) Specificity F-Measure AUC

Decision tree J48 86,32% 0,903 0,813 0,863 0,853

Decision tree REPTree 85,71% 0,827 0,895 0,858 0,878

Bayes Net 75,86% 0,781 0,731 0,759 0,834

SVM 84,10% 0,845 0,836 0,841 0,840

Random Forest 77,87% 0,835 0,708 0,777 0,867

Bagging - J48 86,92% 0,881 0,854 0,869 0,913

Bagging - REPTree 87,73% 0,860 0,909 0,878 0,915

Bagging - SVM 84,91% 0,860 0,836 0,849 0,899

AdaBoost - J48 83,90% 0,860 0,813 0,839 0,909

AdaBoost - REPTree 85,31% 0,863 0,840 0,853 0,902

AdaBoost - SVM 81,29% 0,831 0,790 0,813 0,867

Random Commitee - Random Tree 79,48% 0,853 0,721 0,793 0,874

Random Commitee - Random Forest 83,50% 0,853 0,813 0,835 0,903

Bold entries represent the best results obtained from the methods evaluated
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In order to do a comparative study about the performance
of multiclassifiers against classical methods, we applied four
simple classification algorithms, two decision trees, J48 and
REPTree, a Bayes Net, and a SVM. The multiclassifiers used
were Random Forest, Bagging, Adaboost and Random
Committee, using several base classifiers.

The validation results obtained considering all pa-
tients are shown in Table 1. Table 2 contains the results
of the subgroup of patients with TBI. In the first case
the best values of all the selected quality metrics were
provided by the Bagging algorithm using both J48 and
REPTree as base classifiers, although with REPTree the
results were slightly better. For the subgroup of patients
with TBI, where the problem of imbalanced data is
present, we proposed to apply Random Committee using
other ensemble, Random Forest, as base classifier and,

as expected, the best values of the main metrics were
provided by this combination.

The statistical significance of the results was evaluated by
performing T-Tests using the experimenter tool of Weka.
Tables 3 and 4 show a pair-wise comparison of the classifiers
that yielded the best results against the other ones. The nota-
tion used is (x y z) where x = 1 indicates that the classifier in
the column is significantly better than the one in the row, y = 1
means that both classifiers are similar and z = 1 indicates that
the classifier in the column is worst. The established level of
significance was 0.05.

For the dataset of all patients, T-Test results (Table 3) con-
firm that Bagging with J48 and Bagging with REPTree out-
perform the other classifiers and both have a similar behavior
regarding accuracy, which is the most important measure
when data are not imbalanced.

Table 4 Results of the
significance tests for Random
Committee with Random Forest
against the other classifiers for the
dataset of patients with TBI

Algorithm Random Committee - Random Forest

Accuracy Sensitivity (recall) Specificity F-Measure AUC

Decision tree J48 (1/0/0) (1/0/0) (0/0/1) (1/0/0) (1/0/0)

Decision tree REPTree (0/1/0) (1/0/0) (0/1/0) (1/0/0) (1/0/0)

Bayes Net (1/0/0) (1/0/0) (0/0/1) (1/0/0) (1/0/0)

SVM (1/0/0) (1/0/0) (0/0/1) (1/0/0) (1/0/0)

Random Forest (0/1/0) (0/1/0) (0/1/0) (1/0/0) (1/0/0)

Bagging - J48 (1/0/0) (1/0/0) (0/0/1) (1/0/0) (0/1/0)

Bagging - REPTree (1/0/0) (1/0/0) (0/0/1) (1/0/0) (1/0/0)

Bagging - SVM (1/0/0) (1/0/0) (0/0/1) (1/0/0) (1/0/0)

AdaBoost - J48 (1/0/0) (1/0/0) (0/0/1) (1/0/0) (1/0/0)

AdaBoost - REPTree (1/0/0) (1/0/0) (0/0/1) (1/0/0) (1/0/0)

AdaBoost - SVM (1/0/0) (1/0/0) (0/0/1) (1/0/0) (1/0/0)

Random Committee - Random Tree (1/0/0) (1/0/0) (0/1/0) (1/0/0) (1/0/0)

Bold entries represent the best results obtained from the methods evaluated

Table 3 Results of the
significance tests to compare
accuracy of Bagging with J48 and
Bagging with REPTree against
the other classifiers for the dataset
of all patients

Algorithm Bagging - J48 Bagging - REPTree

Decision tree J48 (1/0/0) (1/0/0)

Decision tree REPTree (0/1/0) (1/0/0)

Bayes Net (1/0/0) (1/0/0)

SVM (1/0/0) (1/0/0)

Random Forest (1/0/0) (1/0/0)

Bagging - J48 - (0/1/0)

Bagging - REPTree (0/1/0) -

Bagging - SVM (1/0/0) (1/0/0)

AdaBoost - J48 (1/0/0) (1/0/0)

AdaBoost - REPTree (1/0/0) (1/0/0)

AdaBoost - SVM (1/0/0) (1/0/0)

Random Committee - Random Tree (1/0/0) (1/0/0)

Random Committee - Random Forest (1/0/0) (1/0/0)

Bold entries represent the best results obtained from the methods evaluated
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T-tests also evidence that Random Committee with
Random Forest is the best classifier for the group of patients
with TBI where there is data imbalance, as can be seen in
Table 4. For all quality metrics, except specificity, this algo-
rithm is significantly better than the other analyzed methods.

In order to analyze the behavior of the classifiers regarding
both classes, true and false, we examined the precision of each
of them. Figures 2 and 3 show the values of accuracy, preci-
sion of the class true and precision of the class false for the
group of all patients and for the subgroup of patients with TBI
respectively. The difference between the precision of both
classes achieved by most of the classifiers is not very signif-
icant for the complete group (Fig. 2), nevertheless, this

difference for the TBI subgroup (Fig. 3), which has a minority
class, is very pronounced except for three ensembles: Random
Forest, Bagging with REPTree and the ensemble of two
multiclassifiers Random Committee with Random Forest.

Conclusions

This study addresses the problem of predicting death or a poor
neurological outcome in patients affected by severe trauma and
polytrauma, one of the pathologies with the greatest impact in
today’s society. Several data mining algorithmswere applied to
the data from 497 traumatized and polytraumatized patients
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Fig. 3 Results obtained for the
subgroup of patients with TBI
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Fig. 2 Results obtained for the
complete group of patients
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who required ICU hospitalization. The input variables to the
algorithms were both epidemiologic and clinical and were tak-
en at the emergency room and along the stay in the ICU.

The study was divided into two parts, corresponding to two
different groups of patients, the first one containing all patients
and the second one containing only the patients with TBI. In
the first case, the best behavior was seen for the Bagging
multiclassifier, achieving an accuracy of 86.92% when J48
was used as the base classifier and 87.73% when the base
classifier was REPTree. In the second part of the study we
detected the drawback of an imbalanced data distribution,
which usually affords greater precision for the majority class
than for the minority one. Accordingly, besides accuracy, it is
necessary to consider the precision for all the classes in the
study. In this situation, the best results were provided by
Random Committee with Random Forest, our proposal of
combining two multiclassifiers, which achieved an accuracy
of 84.40% and very close values of precision for the true and
false classes.

In general, the results point to the better behavior of
multiclassifiers as compared with simple classifiers in contexts
of high dimensionality and imbalanced datasets, without any
need to resort to oversampling and undersampling strategies.

The high performance of the models induced by these algo-
rithms from data obtained in the first hours of the stay in the
ICU allows a reliable initial prediction of patient outcome.
Therefore, the clinical repercussion of this study can be very
useful since it involves the identification of new tools and fac-
tors to be incorporated in future studies about prognostic scores,
which facilitate the early classification of patients according to
their severity and help in that way in the decision making about
the treatment levels that can be offered to such patients.
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