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Abstract

The widely used American Society of Anesthesiologists Physical Status (ASA PS) classification is 

subjective, requires manual clinician review to score, and has limited granularity. Our objective 

was to develop a system that automatically generates an ASA PS with finer granularity by creating 

a continuous ASA PS score. Supervised machine learning methods were used to create a model 

that predicts a patient’s ASA PS on a continuous scale using the patient’s home medications and 

comorbidities. Three different types of predictive models were trained: regression models, ordinal 

models, and classification models. The performance and agreement of each model to 

anesthesiologists were compared by calculating the mean squared error (MSE), rounded MSE and 

Cohen’s Kappa on a holdout set. To assess model performance on continuous ASA PS, model 

rankings were compared to two anesthesiologists on a subset of ASA PS 3 case pairs. The random 

forest regression model achieved the best MSE and rounded MSE. A model consisting of three 

random forest classifiers (split model) achieved the best Cohen’s Kappa. The model’s agreement 

with our anesthesiologists on the ASA PS 3 case pairs yielded fair to moderate Kappa values. The 

results suggest that the random forest split classification model can predict ASA PS with 

agreement similar to that of anesthesiologists reported in literature and produce a continuous score 

in which agreement in accurately judging granularity is fair to moderate.
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Introduction

Preoperative assessment is important in managing patient flow, allocating resources, 

reducing case cancellations and improving patient safety. The American Society of 

Anesthesiologists Physical Status (ASA PS) classification is the most widely used system 

for evaluating pre-operation surgical patients. The current system was adopted by the 

American Society of Anesthesiologists in 1962 [1] and ranges from 1 (healthy) to 5 
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(moribund) with a sixth class for declared brain dead patients. The ASA PS classification 

correlates with outcomes, operating time, hospital length of stay, postoperative infection 

rates, and morbidity rate following various types of surgery [2–7].

There is considerable variation in the application of the ASA PS classification [2]. It is a 

subjective scale with moderate inter-rater reliability; experiments with clinicians produce 

Cohen’s Kappa scores ranging from 0.40 to 0.64 [8–11]. Because determining ASA PS 

requires clinician assessment and review, automatically generating this value is a challenge. 

The ASA PS is interpretable because clinicians can determine factors for classification, and 

so it is feasible for machine learning methods to model their decisions and possibly provide 

transparency. If assigning ASA PS could be automated, the assessment process could be 

effectively scaled. With this in mind, we wanted to build a system with practical utility for 

practicing physicians by taking data that is available (i.e., diagnosis codes, medication lists) 

and translating it into a scale that is well recognized and understood (ASA PS).

An ASA PS prediction model could identify high and low risk patients for the purpose of 

identifying patients who require additional preoperative assessment. Moreover, a 

computational model can also extend the scores into a finer-grained scale than its current 

integer-labeled classes. This extension may help in assessing patients within the large 

clinical range covered by ASA PS 2 and ASA PS 3 classes, which we focus on. With a more 

granular scale, we can draw a finer line for triage into/out of the preoperative clinic. In 

addition, we can identify and investigate the higher acuity patients more easily.

Prior work in smaller patient populations has demonstrated that decision tree classifiers, 

multilayer perceptrons, Naïve Bayes classifiers, and support vector machines can produce 

accurate ASA PS classifications [12,13]. Karpagavalli et al. produce a model trained on 362 

cases that can predict ASA PS 1–3 with 97% accuracy. Lazouni et al. produce a model 

trained on 898 cases that predicts ASA PS 1–4 with 93% accuracy. While these studies’ 

models achieve high accuracy, they do not fully address class imbalance between ASA PS 

classes which can bias accuracy. These approaches have not been attempted with the breadth 

of data available in a large perioperative environment. Additionally, the prior efforts have 

attempted to reproduce the integer ASA PS classifications rather than extend them to a finer 

scale. With the amount of data available and machine learning methods, it’s possible not 

only to automate the process of ASA PS classification but extend and improve the score.

Our objective is to develop an automated, scalable system that uses preoperative data to 

provide useful information to practicing physicians on the familiar ASA PS scale. We 

investigate the potential of providing finer granularity to those scores and compare the 

predictions to assessments by anesthesiologists.

Materials and Methods

Study design

Approval for this study was obtained from the Vanderbilt University Human Research 

Protection Program with a waiver of informed consent. This allowed us to use retrospective 

anesthesiology case data and patient medical data. We had two main aims in this study: 1) to 

Zhang et al. Page 2

J Med Syst. Author manuscript; available in PMC 2020 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



build a model that predicts ASA PS as well as an anesthesiologist, and 2) to provide 

additional information to the anesthesiologists through a more granular ASA PS score. A 

binary classification model was trained to predict ASA PS and used to select the best 

features, which were then used to train subsequent regression models that predict a 

continuous ASA PS for surgical patients.

Data collection

The data used to train and test our classifiers came from Vanderbilt’s Perioperative Data 

Warehouse. We identified all anesthetic cases with an ASA PS 1–5 available prior to the 

implementation of International Classification of Diseases, Tenth Revision, Clinical 

Modification (ICD-10-CM) in October 2015, resulting in 419,321 cases. Case classifications 

are assigned preoperatively by an anesthesiologist after evaluating the patient in person, 

including their medical history, surgical history, preoperative medications, physical exam, 

and entire medical record. The ASA PS is a preoperative assessment, so the model should 

only have access to data available at that time.

We extracted ASA PS, age, body mass index (BMI), prior surgeries, surgical service, 

preoperative medications, and comorbidity diagnoses derived from inpatient International 

Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) discharge 

records that were coded as diagnosed on or before the day of surgery. Additionally, ICD-9-

CM diagnoses assigned in the outpatient setting before the day of surgery were extracted 

from our Enterprise Data Warehouse, a data warehouse of patient data. For all patients, we 

would have age, BMI and surgical service, as part of scheduling surgery. If the patient had 

no records of medications or ICD-9-CM codes, they were still included in the model, as it is 

possible to have patients that didn’t need medications or didn’t have previous ICD-9-CM 

history.

The ASA PS assigned by the attending anesthesiologist on the day of surgery was used as 

the label, or gold standard (Figure 1). A 10% holdout dataset was set aside to evaluate the 

final classifiers, ensuring no bias in evaluation.

Feature analysis and selection

Classes (or categories) of features were chosen based on anesthesiologists’ input and 

preliminary data analysis (Appendix A). We summarize the data by calculating the median 

and interquartile range of age and BMI, as well as the mean number of inpatient ICD-9-CM 

diagnoses codes, outpatient ICD-9-CM diagnosis codes, and medications per patient (Table 

1).

In the preliminary data analysis, data were normalized by the frequency of ICD-9-CM 

chapter (top level category in the hierarchy of ICD-9-CM codes) and ASA PS, and used to 

calculate the pointwise mutual information (PMI) of inpatient and outpatient ICD-9-CM 

chapters with ASA PS. PMI quantifies the strength of pairwise associations, and gives 

insight into the selection features that are predictive of ASA PS.

Different structures for the medication and ICD-9-CM features incorporating temporality 

and hierarchy were tested. Different combinations of feature classes were evaluated to 
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determine a final combined classifier, or classifier using a combination of the different 

feature classes (Appendix A). The combined classifier was compared to classifiers using a 

single feature class (such as age alone) to aid in analyzing prediction involvement. 

Performance was measured with 5-fold cross validation and the average area under the 

receiver operating characteristic curve (ROC AUC), and used to select the features for the 

final combined classifier.

Classification model

Python’s scikit-learn [14] and lasagna [15] packages were used to develop the classifiers for 

predicting ASA PS. We tuned the model hyper-parameters using hyperopt [16].

Initially, we separated the scores into two classes: ASA PS 1&2, and ASA PS 3&4&5, 

simplifying our problem into a binary classification problem. We do this because the most 

difficult distinction is between the ASA PS classes 2 and 3, and that cut point is one in 

which some healthcare systems use to decide anesthesia involvement. We used this 

simplified problem (which uses fewer computational resources) to select the feature classes 

most likely to be informative for the ASA PS prediction. The set of best feature classes in 

the simplified problem is only an approximation to the best set in the full problem, but we 

believe the accuracy loss is likely to be minimal, given that the vast majority of instances are 

either ASA PS 2 or 3, and that we are selecting full feature classes rather than individual 

features.

The supervised machine learning techniques that we tested include logistic classification, k-

nearest neighbors, random forest, deep neural networks (DNN) and a hybrid network 

consisting of both deep and convolutional neural networks (Appendix B).

We evaluated the performance of the binary classifiers by measuring the mean AUC from 5-

fold cross validation and calculating the AUC on the holdout dataset.

Continuous model

We used the features from our best classification model to develop models that output ASA 

PS on a continuous scale. We can develop this continuous score from data with ordinal 

labels because machine learning models predict values on a continuous/probability scale. 

These predicted values capture the model’s uncertainty in the predicted label, and we can 

use this to develop a continuous ASA PS scale.

For these models, we removed the ASA PS 5 cases because we observed that those cases are 

relatively unpredictable with retrospective data. In addition, these cases are not hard to 

determine and account for a small percentage of all ASA PS cases. We tested linear, random 

forest and deep neural network regression models, the ordinal regression model, and a model 

consisting of three binary classifiers (split classification model). This split classification 

model first classifies the cases into 1&2 vs 3&4, then uses two more binary classifiers to 

classify cases into 1 vs 2 or 3 vs 4.

The linear, random forest and DNN regression models output a continuous score, but the 

ordinal regression and split classification models output ordinal scores. To construct a 
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continuous score for the ordinal model, we used the underlying ridge model outputs. To 

construct a continuous score for the split classification model, we linearly mapped the 

probabilistic outputs (range of 0 to 1) of the final 1 vs 2 and 3 vs 4 classifiers onto the ranges 

[0.5, 2.5] and [2.5, 4.5] to correspond to the appropriate ASA PS. For these models, we 

oversampled the data to ensure that ASA PS classes 1 and 4 have an equal impact to ASA 

PS classes 2 and 3.

For comparison, we also developed models with the original dataset as the training set (not 

oversampled). We did this because we found that while the models with the oversampled 

training set produce an even probability distribution over the ASA PS, the mean squared 

error (MSE) increases as a result of the class imbalance in the holdout set.

We evaluated the performance of the continuous models by measuring the MSE of both the 

continuous and ordinal outputs on the 5-fold cross validated training set and on the holdout 

dataset. The ordinal MSE scores are calculated using the already existing ordinal results or 

the rounded continuous score (for the regression models). Mean squared error is the 

traditional method to evaluate continuous outputs, but because the models were developed 

with ordinal labels, we calculated the ordinal MSE as well.

The models trained on the original dataset are also evaluated on the holdout set by 

calculating the MSE of the continuous and mapped ordinal outputs.

Cohen’s Kappa

The Cohen’s Kappa statistic has been historically used for comparing inter-rater ASA PS 

[8–11] It is a statistic that measures agreement beyond that expected by chance. In order to 

analyze the effect of the variability between raters, we calculated the Cohen’s Kappa with 

scikit-learn for inter-rater agreement between our model and the raw scores. We use the 

unweighted Kappa measure in order to compare values to literature, which typically uses the 

unweighted Kappa. We treated our model as one rater and the raw scores as the other rater. 

Anesthesiologists have moderate agreement for ASA PS under the unweighted Kappa [7–9], 

so moderate agreement of our model with the raw scores is comparable to human 

performance under this measure.

However, Cohen’s Kappa is a problematic measure of agreement in this scenario because 

small differences in the thresholds at which raters divide their continuous mental models of 

patient acuity into the discrete categories of ASA PS may cause large changes in the statistic 

[17]. To allow for historical comparison while minimizing this problem, we adjusted the 

thresholds of our model (e.g. adjust ASA PS 1 to 1.2) using grid search to optimize the 

statistic when comparing to clinician raters.

Granularity evaluation

To evaluate the finer granularity provided by the continuous score, we randomly selected 50 

pairs of ASA PS 3 cases and had two anesthesiologists (JWE, JPW) determine which case 

had higher acuity, i.e., closer to ASA PS class 4. We predicted the continuous ASA PS score 

for each case using our model and determined which case in each pair had higher acuity. We 

then compared the results of our model on these cases to the anesthesiologists by calculating 
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the fraction of correct rankings and the Kappa measure. We used ASA PS 3 cases because it 

is one of the classes with higher variability within the class.

Sensitivity analysis

To test the sensitivity of the model’s use of ICD-9-CM diagnoses on the day of surgery, we 

train and test the model with the best Kappa (random forest split classification model) on the 

set of data excluding the diagnoses made on the surgery day. We perform this analysis 

because of possible inclusion of diagnoses present during the encounter (which can be coded 

on the day of surgery).

Results and discussion

In this study, we designed a system that predicted a continuous ASA PS. Our goal was to 

develop a model that performs similarly to an anesthesiologist, while providing additional 

granularity to aid in identifying high risk patients. The final model predicts ASA PS with 

agreement similar to anesthesiologists and fair agreement on a more granular scale.

Preliminary data analysis

The preliminary data analysis showed that different ICD-9-CM chapters have differing 

correlations of various strengths with the ASA PS classes (Figure 2). For example, diseases 

of the blood and blood-forming organs have a negative correlation with ASA PS 1 and 2 and 

a positive correlation with ASA PS 4 and 5. The analysis indicated that the ICD-9-CM codes 

were likely to be strong predictors of ASA PS.

Classification model

The goal of the binary classification models was to predict ASA PS 1&2 vs ASA PS 3&4. 

The best combination of feature classes was: age, BMI, surgical service, top-level 

medications, inpatient ICD-9-CM hierarchy, and outpatient ICD-9-CM chapters. The best 

combination of feature classes resulted in the highest AUCs for each combined classifier at 

0.860 for logistic classification, 0.817 for k-nearest neighbors and 0.881 for random forests 

(Appendix C). The ICD-9-CM chapter counts, ICD-9-CM hierarchy, and temporal ICD-9-

CM chapter counts outperformed the other structures for ICD-9-CM codes significantly.

We found that the individual medication and ICD-9-CM code features did not improve 

performance, while top level categories in the hierarchy for both performed the best (i.e. 

using the “Blood” medication category instead of clopidogrel (Plavix), or the “Circulatory 

System” chapter instead of ICD-9-CM 394.0 (Mitral Stenosis)). In fact, we observed that 

more detailed categories (for example, each ICD-9-CM code as a feature compared to the 

ICD-9-CM chapters) caused overfitting in the models and produced a lower AUC. Adding 

temporality to the ICD-9-CM features did not increase the performance of any of the models 

significantly. This implies that either occurrence is more important than temporality, or 

temporality could not be sufficiently represented. This may be why the hybrid deep and 

convolutional neural network (which uses temporal patterns) did not perform better than the 

fully-connected deep neural network (which does not).
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We found that medications did not have as high of an impact on prediction as expected. We 

speculate that this is due to overlapping information content between preoperative 

medications and ICD-9-CM diagnoses. For example, knowing that the patient uses long-

acting bronchodilators and inhaled corticosteroids may carry almost the same predictive 

information as knowing that the patient has a diagnosis code for chronic obstructive 

pulmonary disease.

The best machine learning classifier was the random forest, which achieved an AUC of 

0.884 on the holdout dataset (Table 2). The best deep neural network performs as well as the 

best hybrid deep/convolutional neural network with an AUC of 0.879. In addition, logistic 

classification performs well with an AUC of 0.840.

Logistic regression performed well, implying that there are strong simple, linear 

relationships between features and the ASA PS. The trend of random forests producing the 

best models persisted when we trained continuous models.

Continuous model

We evaluated model performance by calculating mean MSE using 5-fold cross validation on 

the training set and MSE on the holdout set. With 5-fold cross validation on the oversampled 

training set, random forest regression performs the best with a continuous MSE of 0.240 and 

random forest split classification performs the best with an ordinal MSE of 0.279 (Table 3).

On the holdout set, the best continuous model was the random forest regression model, 

which achieved a 0.337 continuous MSE and 0.437 ordinal MSE when trained on 

oversampled data (Table 4).

The trend of the best-performing model is matched in the models trained on the original 

data, which has lower MSEs because the model takes class imbalance into account 

(Appendix D). Our efforts to balance the dataset by oversampling the minority classes, 

which often improves performance, turned out to weaken the performance on this problem; 

models built using the original, unadjusted data performed better.

The Cohen’s Kappa of the random forest split classification model compared to the raw 

scores was 0.456. This Kappa (K) score is comparable to scores found in literature (0.40 to 

0.64) [8–11]. These results indicate that the model has moderate inter-rater reliability with 

the anesthesiologists in the data set, comparable to historical human performance.

Distribution of continuous scores

The distribution of predicted scores for our continuous models trained on oversampled data 

(Figure 3) and the density of the distribution of those predicted ASA PS separated by their 

“true” ASA PS class (Figure 4) show different patterns between the various models. The 

distribution of the linear regression, ordinal regression, and DNN regression models follow a 

bell-shaped curve. The random forest regression and split classification models have a more 

evenly spread distribution, with some peaks. The random forest and DNN split classification 

models appear to have a divide at ASA PS 2.5.
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The density plots of the models help visualize the patterns seen in the distributions. The 

random forest regression model has a large density towards the extreme for ASA PS classes 

1 and 4. The DNN regression model’s ASA PS classes seem to be more concentrated 

towards a center point. The split between the ASA PS classes 1&2 and 3&4 are clear in the 

random forest and DNN split classification models.

The density plots give insight into how the different models predict ASA PS. The split 

classification models have a definitive split between ASA PS 2 and 3, likely due to the fact 

that the classifiers first predict ASA PS 1&2 vs 3&4 and then 1 vs 2 or 3 vs 4. We 

hypothesize that since a majority of ASA PS fall into 2 and 3, this classifier performs the 

best because it focuses on that distinction first.

Granularity evaluation

The granularity evaluation shows moderate agreement between the two anesthesiologists and 

fair to moderate agreement between the model and anesthesiologists (Table 5).

The anesthesiologists’ agreement with each other was 42/50 = 0.84, 95% CI [0.72, 0.92] and 

K = 0.653. The model agreement was 32/50 = 0.64 [0.50, 0.76], K = 0.280 for 

anesthesiologist 1 and 36/50 = 0.72 [0.58, 0.83], K = 0.440 for anesthesiologist 2.

The more granular ASA PS inference produced scores with fair to moderate agreement with 

two anesthesiologists in the task of identifying the higher-acuity patient in pairs where both 

were originally evaluated as ASA PS 3. This is an encouraging result given the difficult 

learning problem of inferring a continuous score from discrete ASA PS 1, 2, 3, 4 labels 

alone. From this we’ve demonstrated that the model can learn factors that differentiate the 

severity of cases within the same ASA PS class in some similar alignment to 

anesthesiologists. With a more granular ASA PS score, clinicians can triage patients more 

easily prior to surgery. In addition, it also permits easier identification of higher risk patients 

for further investigation.

Sensitivity analysis

The random forest split classification model trained without ICD-9-CM data from the day of 

surgery achieves an AUC of 0.869 for distinguishing ASA PS 1&2 against 3&4, compared 

to the original AUC of 0.884. It performs worse than the model using diagnoses from the 

day of surgery, with K = 0.426 and MSE = 0.473 compared to K = 0.456 and MSE = 0.387.

The sensitivity analysis indicates that if no ICD-9-CM data is given from the day of the 

surgery, the model performs worse. The new model however achieves K=0.43, which falls 

into the same range of moderate agreement. While the model loses some discriminative 

ability, it still performs as well as another anesthesiologist.

Limitations

One limitation of this work is that our reference standards, the ASA PS labels, were each 

designated by a single physician, and different physicians provided those labels for different 

cases. Greater performance could be achieved by using multiple assessments per case and 

using the disagreement between them as a signal of the ambiguity of that case. The fact that 
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physicians agree only to a moderate degree on what those scores should be places an upper 

bound on the accuracy achievable using this data. Additionally, the wide range of cases that 

ASA PS classes 2 and 3 cover and the difficulty in distinguishing them leads us to suggest 

that the scale may have better agreement if those classes had higher granularity. Another 

limitation is that the data were from a single institution, and there is likely to be meaningful 

inter-institutional variability on the assignment of ASA PS scores. An additional limitation 

is that there may be missing information for ASA determination in the form of gauging 

disease severity and its impact, which may be beyond the scope of the available structured 

data. This missing information could be added by pulling from unstructured data.

Conclusion

We have developed a model that can predict ASA PS with agreement similar to 

anesthesiologists and provide granularity with a continuous score. This study demonstrates 

that we can use data-driven approaches to automatically help define or assign additional 

granularity to this existing scale. Use of the continuous score may be able to aid 

anesthesiologists in identifying high risk patients who could benefit from additional 

preoperative assessment.

Acknowledgements

The authors acknowledge the Vanderbilt Anesthesiology and Perioperative Informatics Research division for their 
assistance with data access.

Funding: This work was supported by the NIH/NIBIB Grant R01EB020666 and the NLM Training Grant 4T15LM 
7450-15 from the National Institutes of Health located in Bethesda, MD.

Appendix A.: Feature classes

The feature classes were:

Age (integer): Age of the patient.

BMI (continuous decimal): Body mass index of the patient.

Surgery service (binary): The primary surgical service performing the procedure (70 

total).

Previous surgery (binary): A value indicating whether the patient has previously had 

any surgery at our institution.

Preoperative medications (count): Each medication is encoded into the 21-category 

top-level hierarchy from the First Databank (FDB) Enhanced Therapeutic 

Classification [18]. For example, clopidogrel (Plavix) would be represented in the 

“Blood” category.

Inpatient ICD-9-CM codes (count): ICD-9-CM codes received while in the hospital. 

In creating these features, we tested numerical counts for: raw codes, parent codes, 

ICD-9-CM chapters, PheWAS (Phenome-Wide Association Study classification) 

codes [19], ICD-9-CM hierarchy information and temporally structured ICD-9-CM 

chapters. Details for ICD-9-CM feature structure are described below.
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Outpatient ICD-9-CM codes (count): ICD-9-CM codes received while not admitted 

to the hospital. In creating these features, we tested numerical counts for: raw codes, 

parent codes, ICD-9-CM chapters, PheWAS codes, ICD-9-CM hierarchy and 

temporally structured ICD-9-CM chapters.

We tested different combinations of feature classes by making every possible combination of 

the feature classes and running the model using 5-fold cross validation. We then evaluated 

the resulting model by calculating the mean receiver operating characteristic curve (ROC 

AUC) and compared it to other combinations.

For the features from ICD-9-CM codes, we tested: raw codes, parent codes, ICD-9-CM 

chapters, PheWAS codes, and ICD-9-CM hierarchy and temporally structured ICD-9-CM 

chapters. The raw ICD-9-CM codes resulted in approximately 4,000 features, while both the 

parent codes and PheWAS codes resulted in approximately 1,000 features. The ICD-9-CM 

chapters result in 20 features, the ICD-9-CM hierarchy results in 20 features, and the 

temporally structured ICD-9-CM chapters result in 240 features (20 chapters * 12 months).

Incorporating specific ICD hierarchy information can sometimes improve prediction quality 

by leveraging the relationships between correlated ICD codes and their parents [20]. We 

tested these hierarchy-based variables as potential predictors.

Additionally, temporal ICD features were constructed by dividing the year before surgery 

into month-long windows for each ICD chapter, where the value of a month’s window is the 

number of each of the ICD-9-CM chapter codes occurring in that month.

Appendix B.: Neural network description, architecture, and optimization

Deep Learning for Temporal Data

In the past decade, neural networks have become very popular. A standard neural network 

consists of a number of simple, connected processors called neurons, each of which 

performs a simple regression. The regression weights of all neurons are iteratively adjusted 

during model training to maximize the accuracy of prediction. Deep neural networks have 

many layers, and the output of neurons in one layer provide the input to the neurons in the 

next layer [21]. Deep learning models scale well to large data sets but require a large training 

data set.

Convolutional neural networks are deep neural networks that emphasize smaller local 

patterns that may show up in different locations in the data space. In this project, we sought 

data patterns that would capture information about short-range temporal proximity. In other 

words, the convolutional model identified patterns that are local to a small span of, say, two 

or three months, regardless of when in absolute time those months were positioned.

Hybrid Network Architecture

The hybrid neural network uses both the deep and convolutional networks to learn from the 

data. The deep neural network operates on the non-temporal data (age, BMI, etc) while the 

convolutional neural network takes temporal data as its input. To combine the two types of 
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data, we concatenated the output hidden units from the convolutional neural network with 

the hidden units from the last hidden layer of the deep neural network. The resulting layer is 

fed into an output layer, which uses a softmax as the activation function.

Binary Classification Optimized Parameters

The final parameters from hyperopt that we found were logistic classification with an elastic 

net penalty, k-nearest neighbors with k=4, random forests using 79 estimators and a depth of 

19, deep neural networks with 0.1 hidden drop, a depth of 3 and width of 400, and the 

hybrid network with the same deep network parameters plus convolutional network 

parameters with 20 filters and a window size of 3. The hybrid neural network architecture 

and final parameters can be seen in Table 6.

Table 6

Hybrid neural network architecture

Layer Layer Type Size Output Size

Input1 (112)

D1 Dense (400) (400)

D2 Dense (400) (400)

D3 Dense (400) (400)

Input2 (20, 12)

C1 Convolutional (20,3) (20, 1, 10)

D4 Dense (256) (256)

D3+D4 Concatenate 656 (656)

D5 Dense 512 (512)

Output (2)

Regression Optimized Parameters

The final parameters found from hyperopt for regression models were random forests using 

95 estimators and a depth of 19, deep neural networks with 0.2 hidden drop, a depth of 2 and 

width of 500 (Table 7). For linear regression and ordinal regression, we used an elastic net to 

evaluate the importance of the features, but found that removing features caused a decrease 

in MSE, and in the final models used all the features. For the split classifiers, we used the 

parameters from the binary classification models.

Table 7

Deep neural network regression model architecture

Layer Layer Type Size Output Size

Input (132)

D1 Dense (500) (500)

D2 Dense (500) (500)
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Layer Layer Type Size Output Size

Output (1)

Appendix C.: Individual feature class performance

Table 8

The mean area under the receiver operating characteristic curve (ROC AUC) scores for each 

individual feature class, and combined classifier measured using 5-fold cross validation.

Classifier Logistic regression K-nearest neighbors Random forest

Age 0.689 0.620 0.697

Body mass index 0.572 0.530 0.575

Service 0.693 0.635 0.693

Surgery 0.619 0.602 0.630

Medication (single) 0.600 0.554 0.619

Medication class 0.606 0.584 0.625

Medication hierarchy 0.608 0.579 0.622

Inpatient ICD-9-CM chapter 0.801 0.748 0.815

Inpatient ICD-9-CM PHEWAS 0.769 0.720 0.791

Inpatient ICD-9-CM parent 0.749 0.715 0.783

Inpatient ICD-9-CM code 0.715 0.704 0.769

Inpatient ICD-9-CM hierarchy 0.820 0.785 0.859

Temporal inpatient ICD-9-CM 0.800 0.754 0.817

Outpatient ICD-9-CM chapter 0.774 0.718 0.794

Outpatient ICD-9-CM PHEWAS 0.760 0.689 0.774

Outpatient ICD-9-CM parent 0.740 0.667 0.769

Outpatient ICD-9-CM code 0.689 0.627 0.728

Outpatient ICD-9-CM hierarchy 0.800 0.774 0.856

Temporal outpatient ICD-9-CM 0.791 0.753 0.815

ICD-9-CM = International classification of diseases and related health problems, ninth revision, clinical modification

Appendix D.: Model performance on original data

Table 9

Holdout mean squared error (MSE) for continuous models trained on original training data 

using linear, random forest, deep neural network (DNN) and ordinal regression, and random 

forest and DNN split classification.

Model Continuous MSE Ordinal MSE Cohen’s Kappa

Linear regression 0.285 0.356 0.413

Random forest regression 0.264 0.332 0.446

Deep neural network regression 0.326 0.408 0.409
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Model Continuous MSE Ordinal MSE Cohen’s Kappa

Ordinal regression 0.285 0.356 0.413

Random forest split classifiers 0.285 0.317 0.476

Deep neural network split classifiers 0.304 0.350 0.416
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Fig. 1. 
Distribution of ASA PS in the data. Cases with ASA PS 2 and 3 dominate the distribution
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Fig. 2. 
Pointwise mutual information of inpatient and outpatient ICD-9-CM chapters with ASA PS. 

Green indicates a positive correlation, while red indicates a negative correlation
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Fig. 3. 
Histograms of predicted ASA PS from the continuous model trained on oversampled data
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Fig. 4. 
Gaussian density of predicted ASA PS from the continuous model trained on oversampled 

data organized by true ASA PS class
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Table 1

Summary statistics for dataset separated by American Society of Anesthesiology Physical Status (ASA PS) 

class.

Class ASA PS 1 ASA PS 2 ASA PS 3 ASA PS 4 ASA PS 5

Number 22765 180251 184284 31409 612

Age median 23 41 56 59 53

Age interquartile range 26 32 26 23 31

BMI median 22.87 26.23 27.55 27.17 26.57

BMI interquartile range 8.03 9.11 10.41 10.01 9.70

Median inpatient diagnoses per patient 2 4 7 9 10

Inpatient diagnoses interquartile range 3 4 7 6 5

Median outpatient diagnoses per patient 4 5 8 9 9

Outpatient diagnoses interquartile range 4 6 7 6 5

Median medications per patient 2 3 5 6 6

Medications interquartile range 2 3 4 4 5
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Table 2

Classification area under the curve (AUC) for combined classifiers using logistic classification, k-nearest 

neighbors, random forests, deep neural network and combination deep and convolutional neural network.

Classifier 5-fold CV AUC Holdout AUC

Logistic regression 0.860+0.001 0.840

K-nearest neighbors 0.817+0.001 0.823

Random forest 0.881+0.001 0.884

Deep neural network 0.878+0.002 0.876

Hybrid deep/convolutional neural network 0.875+0.001 0.876
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Table 3

5-fold cross validation mean squared error (MSE) for continuous models trained on oversampled training data 

using linear, random forest, deep neural network (DNN) and ordinal regression, and random forest and DNN 

split classification.

Model Continuous MSE Ordinal MSE

Linear regression 0.450+0.002 0.541+0.002

Random forest regression 0.240+0.001 0.305+0.002

DNN regression 0.441+0.015 0.532+0.016

Ordinal regression 0.450+0.002 0.539+0.001

Random forest split classifiers 0.260+0.001 0.279+0.001

DNN split classifiers 0.541+0.021 0.574+0.024
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Table 4

Holdout mean squared error (MSE) for continuous models trained on oversampled training data using linear, 

random forest, deep neural network (DNN) and ordinal regression, and random forest and DNN split 

classification.

Model Continuous MSE Ordinal MSE Cohen’s Kappa

Linear regression 0.373 0.459 0.351

Random forest regression 0.337 0.437 0.412

DNN regression 0.374 0.471 0.420

Ordinal regression 0.373 0.458 0.352

Random forest split classifiers 0.387 0.440 0.456

DNN split classifiers 0.683 0.739 0.413
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Table 5

Results of granularity evaluation on American Society of Anesthesiology Physical Status class 3 case pairs 

with two anesthesiologists and our random forest regression model.

Comparison Accuracy 95% confidence interval Cohen’s Kappa

Anesthesiologist 1 and Anesthesiologist 2 0.84 [0.72,0.92] 0.653

Model and Anesthesiologist 1 0.64 [0.50, 0.76] 0.280

Model and Anesthesiologist 2 0.72 [0.58,0.83] 0.440
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