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Abstract
Physiological signals can contain abundant personalized information and indicate health status and disease deterioration. However, in
current medical practice, clinicians working in the general wards are usually lack of plentiful means and tools to continuously monitor
the physiological signals of the inpatients. To address this problem, we here presented a medical-grade wireless monitoring system
based on wearable and artificial intelligence technology. The system consists of a multi-sensor wearable device, database servers and
user interfaces. It canmonitor physiological signals such as electrocardiography and respiration and transmit datawirelessly.We highly
integrated the system with the existing hospital information system and explored a set of processes of physiological signal acquisition,
storage, analysis, and combination with electronic health records. Multi-scale information extracted from physiological signals and
related to the deterioration or abnormality of patients could be shown on the user interfaces, while a variety of reports could be provided
daily based on time-series signal processing technology andmachine learning to makemore information accessible to clinicians. Apart
from an initial attempt to implement the system in a realistic clinical environment, we also conducted a preliminary validation of the
core processes in the workflow. The heart rate veracity validation of 22 patient volunteers showed that the system had a great
consistency with ECG Holter, and bias for heart rate was 0.04 (95% confidence interval: −7.34 to 7.42) beats per minute. The
Bland-Altman analysis showed that 98.52% of the points were located between Mean ± 1.96SD. This system has been deployed in
the general wards of the Hyperbaric Oxygen Department and Respiratory Medicine Department and has collected more than 1000
cases from the clinic. The whole system will continue to be updated based on clinical feedback. It has been demonstrated that this
system can provide reliable physiological monitoring for patients in general wards and has the potential to generate more personalized
pathophysiological information related to disease diagnosis and treatment from the continuously monitored physiological data.

Keywords Wearable technology . Physiological signals . Wireless monitoring system . Electronic health records . Machine
learning applications
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Introduction

Physiological signals contain abundant personalized informa-
tion. Studies have shown that vital signs can help to detect
early deterioration in a general ward. In current medical prac-
tice, vital signs of patients at general wards are often measured
at an interval of more than 8 h [1, 2], only 2–4 times per day.
According to some studies, 75% of the preventable adverse
events occurred in patients who were not monitored outside
the ICU, and 84% of them showed signs of deterioration in the
first eight hours of an adverse event such as cardiopulmonary
arrest [3]. As a result of non-continuous monitoring of phys-
iological signals and low frequency of vital sign collection,
many detailed early signs of deterioration may be missed,
especially at night [4]. However, the medical resources of
the general ward are difficult to achieve full-time and light-
weight monitoring, which is a risk for patients [5, 6].

With the development of wearable technology, wearable
devices have the capability to monitor different physiological
signals and are more suited to be deployed at general wards
because of their advantages of low-cost, remote and real-time
monitoring [7–10]. In addition, artificial intelligence (AI)
technology has become a hot-spot in recent years. Wearable
technologies based on AI have led to numerous novel func-
tions so that many research findings of medicine based on
machine learning have become available. The changes in
wearable devices brought about by AI technology are summa-
rized as follows: First, the methods of monitoring and health
management have been diversified. Many wearable devices
gather physiological signals via ambient wireless technolo-
gies, such as 3G/4G/5G, Bluetooth, or Wi-Fi, and users can
see the results and receive advice on a smartphone wherever
they are [11–14]. These functions might help make users ca-
pable of basic self-management. Second, medical decision
assistance can be provided with the diagnosis and prediction
algorithms. The development of different algorithms and
models makes some applications of diagnosis and prediction
more reliable and robust using wearable devices [15–18].
Third, the effectiveness of treatment and rehabilitation can
be assessed. Some patients need to have their physiological
signals monitored for a long time after interventions, or have
their daily state monitored in case of accidents.

Even though there are already different kinds of wearable
devices and featured applications, most of the applications are
still home-grade. Things may become different when they are
related to clinical-grade practice, which demands better accu-
racy and stability. In a narrow sense, medical-grade devices
can be defined as devices that be approved by the Food and
DrugAdministration (FDA). However, some researchers have
pointed out that many wearable devices and their functions
lack sufficient validation in terms of clinical accuracy and
usability [19]. Furthermore, our opinion is that a medical-
grade wearable device should be validated in realistic clinical

environments against traditional accepted medical grade
equipment in order to prove its accuracy and feasibility. A
series of previous validation studies have shown that some
well-known wearable devices, such as SensiumVitals and
HealthPatch, can measure physiological signals accurately
when patients are in bed [4]. However, patients at general
wards are not always in a relatively static state, thus throwing
doubt on the accuracy of the signals measured by wearable
devices. On the other hand, the high-value information hidden
in physiological signals remains to be discovered. Although
researchers have developed a large number of methods such
as heart rate variability (HRV) analysis [20, 21]/multiscale
entropy (MSE) [22]/Poincare plot [23, 24] to mine hidden
information in the signals, the analysis and utilization of
time-series physiological signals remain in its infancy.
Rather than providing a bunch of data and increasing the bur-
den of clinicians, researchers need to process what the wear-
able devices measure and show more further analysis results
or conclusions based on evidence. Moreover, Dinh-Le et al.
[9] suggested that time-series physiological signals collected
by wearable devices have the potential to be combined with
electronic health records (EHRs) for analysis. It is also a re-
minder that the analysis of physiological signals separately
may be difficult and the conclusion is not reliable, so integra-
tion with EHRs may be the key to finding a way out of the
dilemma facing physiological signal analysis. Demographics,
lab tests, and anamnesis in EHRs can increase the dimension
of information significantly and help us make better use of
physiological signals measured by wearable devices.

In this paper, we presented a medical-grade wireless mon-
itoring system that was intended to facilitate the adoption of
wearable technologies in the healthcare system, which in-
cludes a multi-sensor wearable device, and a set of software
and related applications by leveraging machine learning algo-
rithms. On the basis of the system, we explored a set of con-
tinuous physiological signal acquisition, storage, analysis, and
EHR combination process. The system has been deployed in
the general wards in the Hyperbaric Oxygen (HBO)
Department and the Respiratory Medicine Department at
Chinese PLA General Hospital (PLAGH) since April 2018
and has been collecting data from patient volunteers. To our
knowledge, this system is one of the earliest attempts to im-
plement the physiological signal monitoring system in the
clinic in China.

Methods

System architecture

Figure 1 is the block diagram of the system architecture. The
left block exhibits the patient side of the system, which is
always at general wards. The system utilizes wearable devices
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to obtain patients’ vital physiological signals and transmit the
data to servers via Wi-Fi. The middle block shows the servers
that we include in our system. The server for data is used for
storage while the algorithm server can analyze the signals
online based on machine learning algorithms, and we can
make full use of the physiological signals in combination with
the EHR information in the existing Hospital Information
System (HIS) of the hospital. The right block is the user side
of our system. There are many AI-based functions displayed
on different terminals, including the central monitoring sta-
tion, workstation for doctors/nurses, and PAD. Clinicians
use their own account and password to log into the system.
Information is only available to pre-registered users.

Wearable sensors

The key component of our system is the multi-sensor smart
vest, SensEcho [25, 26], which has received clearance
from the China FDA (Standard Number: YY 0885–2013
and GB 9706.1–2007). Sensors embedded in the vest pro-
vide ECG, respiratory and triaxial acceleration monitoring
while the vest enables communication with other third-
party wearable devices via the Bluetooth protocol. As a
result, information about blood pressure, temperature,
SpO2 can also be obtained. The vest is able to store data
in the 2-GB local flash memory and/or to transmit the data
to the server through Wi-Fi. Its battery supports continuous
monitoring for at least 24 h. Data generated by SensEcho
can be saved online and offline. SensEcho transmits the
data to servers via Wi-Fi in real-time and can store data
locally in the equipment before exporting it manually. To

protect patient privacy, we use a private encrypted trans-
port protocol. The data transmission between different
devices/databases is realized on the intranet of the depart-
ments, which means data leakage is unlikely. We use an
encryption method to save the local files and named as the
‘.CHE’ file format.

ECG signal The vest provides a single-lead ECG signal at a
200 Hz sample rate with three fabric electrode patches embed-
ded in the vest so that the patients only need to wear the vest
that will collect the ECG signal continuously.

Respiratory signals Respiratory Inductive Plethysmography
(RIP) is the core technology we used to obtain the chest &
abdominal respiratory signals, which are sampled at 25 Hz.
The vest measures chest and abdomen respiratory movement,
and the output is a two-channel respiratory waveform.

Triaxial acceleration signals The signals are sampled at
25 Hz and the ultra-low-power sensors (ADXL345) are em-
bedded in the vest also. Three channels of signals were mea-
sured, which stand for the movement of the patients in differ-
ent directions. We can work out the posture or activity level of
the patients according to these signals.

Blood pressure, temperature, SpO2 signals These signals
are obtained by third-party wearable devices like wrist oxim-
eter or wearable blood pressure monitors. This information is
alternative. For example, patients are always asked to wear a
wrist oximeter at night to measure SpO2 during sleep for the
sake of sleep monitoring.
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Data storage

The physiological signals measured by wearable devices at a
high sample rate pose a challenge to current data storage
methods in a hospital, which means a new type of “Big
Data”. As our system is designed and implemented in a data
integration approach, it is capable of dealing with heteroge-
neous clinical data as well as operational data. Heterogeneous
data refers to data integration by various data types. In our
system, the major heterogeneous data types are: 1) the time-
series physiological signals and vital signs captured by wear-
able devices; 2) the structured EHRs generated from daily
clinical practice, such as the patient’s personal information,
admission records, and laboratory tests; 3) the unstructured
clinical records, such as the medical images report and dis-
charge summary.

We thus adopted a mixed database structure design, which
has three different logical databases co-existing in the system,
tackling the three corresponding data types aforementioned.
The information across different databases is linked by
‘patientID’, ‘admissionID’ and ‘deviceID’, to guarantee the
integrity of data. These three databases are elaborated on as
follows.

Time-series database for physiological signals In our sys-
tem, we leveraged InfluxDB (v1.7) as our time-series data-
base. InfluxDB exploits the Time Structured Merge Tree
(TSM Tree) data structure, and demonstrates superior perfor-
mance in writing, querying data compression as well as scal-
ability and usability.

Relational database for structured EHRs We adopted
MariaDB as our relational database solution for the structured
EHR data. The EHRs are synchronized from the HIS through
RESTful application programming interface (RESTful API).
The operational data, such as application’s operation records,
is stored in the customized schema as well.

Document-oriented database for unstructured data For the
data that is not described in a relational manner, the document-
oriented database,MongoDB, is used. Aside from the unstruc-
tured clinical notes, the JavaScript Object Notation formatted
computation results returned from the customized applications
or interfaces are stored into MongoDB as well.

Functions and applications

Functions and applications of the system are data-driven,
which reflect our efforts to make the diagnosis and treatment
processes more scientific. The workflow of data analysis is
shown in Fig. 2. As is designed, different physiological sig-
nals, such as ECG and respiratory waves, are measured by
wearable devices. In this process, preliminary analysis

precedes the retrieval of information, which is relatively prim-
itive results that can reflect much valuable information.
Furthermore, features can be extracted to build some machine
learning models. Limited by the analysis capabilities of cur-
rent complex time-series data and sophistication of machine
learning, the purpose ofmodeling at present is to provide more
valuable information in order to support decision-making. To
improve the performance of models, such EHR information as
lab test results and treatment should be included in the models.
Reports can be generated based on all the information avail-
able from the wearable devices. Each step in the data process
can be expanded according to actually needed.

Real-time monitoring

The system can continuously monitor the physiological sig-
nals such as heart rate (HR), respiratory rate (RR), SpO2,
blood pressure, posture/activities. Once a patient is admitted
to the department, a nurse will scan the Quick Response (QR)
code on the device and link it with the patient’s information.
Monitoring will begin after the nurse helps him/her put the
vest on. As is shown in Fig. 3a, the real-time monitored HR,
RR, SpO2 and blood pressure are shown on the screen.
Physiological parameters out of normal range will be
displayed as red to raise the attention of doctors. Anomalies
such as falls and arrhythmias can be detected in real-time and
displayed on a warning list. As is shown in Fig. 3b, this page
displays some more specific time-series information of pa-
tients. Postures, activity states, early warning score (EWS)
can be calculated and displayed on the screen in real-time.

AI-based application

To facilitate machine learning technology in the system, we
designed several featured AI-based applications such as sleep
stage classification, sleep apnea detection, abnormal ECG sig-
nal recognition and classification and atrial fibrillation detec-
tion. These algorithms can deeply mine the hidden informa-
tion in physiological signals for clinical diagnosis and treat-
ment. We take the sleep stage classification algorithm as an
example to elaborate on the data utilization when it comes to
AI-based applications.

Sleep stage classification algorithm Inspired by previous
studies [27, 28], we trained a deep learning model on the third
party dataset then finetuned the model on our in-house dataset.
We set a non-overlapping observation window for 30 s to
extract the features, which were fed into 16-unit Bi-directional
Long Short-Term Memory (BLSTM) layers and one fully-
connected layer with 4-unit outputs corresponds to the four
sleep stage classes (wake, light sleep, deep sleep and rapid eye
movement (REM)). The structure of the BLSTM is shown in
Fig. 4. An open-access sleep database, sleep heart health study
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(SHHS) [29], was used for model training because the volume
of the in-house dataset is not big enough for the establishment
of a model (about 30 labeled cases right now). The SHHS
database consists of the PSG monitoring of 6600 patients in
the U.S. The six-class sleep stage data for each subject man-
ually determined by clinical experts in the database was con-
verted into four-class (wake, light sleep (Non-rapid eye move-
ment (NREM)-1 and NREM-2), deep sleep (NREM-3 and
NREM-4), REM). Due to the limitation of the data informa-
tion dimension of the training set, we only used the R-R in-
terval and respiratory signal to extract features, the EHR in-
formation such as demographics, lab tests, drug, and anamne-
sis information has not been included as well. We finally
extracted 152 features from R-R intervals and respiratory sig-
nals to build and train the model [30–32]. Five-fold cross-
validation was performed to test the model in the training
phase, and the best model was selected to further validate
the performance and we finetuned the model on the continu-
ously collected and collated in-house dataset.

Daily reports

Based on the signal process technology and machine learning
algorithms implemented in the algorithm server, we can gen-
erate a series of reports to doctors, nurses and patients daily.
The types and functions of the reports are summarized as
below.

Sleep quality and sleep disorder screening report Sleep
quality is essential to human being’s health, sleep disorder,
sleep structure and sleep apnea are highly correlated with car-
diovascular health [33, 34]. Total sleep time, lasting time of

the four sleep stage classes, frequency and type of sleep ap-
neas and some other information are summarized in this re-
port, which reflects the sleep quality of the patient.

HRV analysis report It is widely accepted that heart rate
fluctuates all the time, while HRV measures the variation in
beat-to-beat intervals in heart rate and is considered important
for cardiac health [35]. HRV variables can be divided into
three broad categories: time-domain variables, frequency do-
main variables and non-linear variables [36]. The HRV vari-
ables, as well as Poincare plot and detrended fluctuation anal-
ysis are summarized in this report.

Daily activity/posture analysis report Total activity time,
total bedtime and energy expenditure are summarized in this
report. The HR, RR and energy expenditure at each time point
throughout the day can be seen in the report also. Doctors can
leave recommendations below based on the report.

Other reports There are some other daily analysis reports
derived from the continuous monitored physiological data
(usually 24 h), such as CPC analysis and breathing pattern
analysis, mental stress analysis, multiple-scale analysis on
heart rate and breathing rate, which are still under clinical
validation and will put into clinical use when they are quali-
fied for diagnosis and treatment purpose.

As is shown in Fig. 5, users (clinicians and nurses) can
generate a report by using data in local files (also can generate
reports online). Some of the reports are still under validation.
The types of reports and capabilities of this function are
expanding with the feedback from the clinicians and imple-
mentation of new algorithms.
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Validation experiment

Several system performance validation experiments are un-
derway, including the physiological signal measurement ve-
racity and algorithm performance. In this paper, we conducted
a heart rate veracity validation study, in which we compared
the system with ECG Holter.

Heart rate veracity validation

Patients admitted to the HBO Department in PLAGH and
subjected to 24-h continuous ECG check were informed about
the objectives and risks of the experiment and inquired about
their willingness to participate in the study. Volunteers were
monitored on the first day of admission both by SensEcho and

a Administration & monitoring page

b Real-time monitoring page
Fig. 3 The real-time monitoring function of the system. a Administration & monitoring page b Real-time monitoring page
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Fig. 4 BLSTM based sleep stage classification algorithm framework

Fig. 5 Report generation page
(using local CHE files)
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ECG Holter (BI6812, Biomedical Instruments Company,
China. It’s a type of Holter commonly used in clinical practice
in PLAGH.) and they were allowed to move freely. The study
was approved by the ethics committee of PLAGH.

The raw data transmitted by SensEcho contained the
measurements and their timestamps while the raw ECG
data gathered by ECG Holter was retrieved in TXT for-
mat. We scanned the ECG data of the two devices with
the same algorithm in order to mark the R wave positions.
Afterward, the HR was calculated according to R-R inter-
vals. In order to reduce the impact of outliers in the sig-
nals, we set one rule that was applicable to both devices:
We scanned the signal according to the 3δ principle, the
time window we set was 60 s, we calculated the mean (x )
and standard deviation (δ) in the time window and
checking if the HR value of the middle point was within
x� 3δ, then we considered the points beyond the thresh-
old as outliers as well. Finally, we set all of the outlier
points in signals to null (NaN) which were not included in
the analysis. HR data was then resampled to once per
minute before subsequent analysis. We defined HR < 50
beats per minute (bpm) as bradycardia and HR > 100 bpm
as tachycardia according to the reference standard
[37–39].

To align the timeline, the offset was calculated by using the
best fit of a cross-correlation of the heart rate between the two
signals before the spare data was cut to make sure the exper-
iment started and ended at the same time point.

The series of observation pairs of HR measurements de-
rived from the SensEcho and ECG Holter were compared
using the Bland-Altman Method [40]. This method compared
the measurements from two devices by evaluating the rela-
tionship between the HR differences and the average at every
second of the records [41].

Results

HR veracity validation result

Twenty-seven patients were enrolled in this study between
March 2018 and August 2019. Data was lost for five pa-
tients due to technical issues. In addition, we expected the
monitoring to last 24-h or more for each patient. However,
the fact was that due to the demand for clinical practice,
some of the monitoring had to be suspended ahead of
time. As a result, the monitoring data obtained from the
22 patients lasted from 591 min to 1434 min. The median
(Q1 - Q3) monitoring time was 1411 (1338–1418) mi-
nutes. The basic information of the patients is shown in
Table 1. In this table, similar characteristics of the patients
in the HBO Department could be identified, who were

mostly overweight, middle-aged and elderly, and afflicted
with senile diseases.

Examples of patient measurements

Figure 6a shows 10-min ECG and HR signals SensEcho
and the Holter measured from patient NO.01, who was a
62-year-old female patient with extensive cardiac and vas-
cular comorbidities like hypertension, hyperlipemia, ar-
rhythmia. The red dots in the subplot 1&2 of Fig. 6a mark
the R peaks in the ECG signals. Figure 6b shows the same
periods of signals as in Fig. 6a, a respiratory wave is mea-
sured from the chest by SensEcho. From the respiratory
wave and triaxial acceleration signals, we can find that
the patient was quiet and the increase of HR was not
caused by movement. Afterward, the increase of HR was
recognized as tachycardia by a clinical expert that lasted
about 4-min and the following two spines in Fig. 6b were
two premature beats. The time tachycardia occurred was
about 5:30 am and such clinically abnormal events are
often ignored by clinicians or patients. The Fig. 6c shows
the entire HR signals of this patient monitored by
SensEcho and Holter respectively, which consist of
80,513 s of recording. It can be seen from Fig. 6 that the
two systems have good consistency in terms of ECG re-
cording and heart rate calculation.

HR comparison

For analysis, 468.98-h of HR data from 22 patients was
available and the measurement pairs were 28,374. The
mean bias (Holter minus SensEcho) in HR was
0.04 bpm with a 95% confidence interval (CI) of −7.34
to 7.42 bpm. Figure 7 is a box plot to show the HR
measurement distribution of every patient. From Fig. 7,
we can find that most of the patient volunteers showed
similar performance between the two methods while the

Table 1 Basic information of patient volunteers

Gender MALE (n = 14) FEMALE (n = 8)

Demographic (mean ± std)

Age 51.00 ± 9.90 56.00 ± 9.90

Height (cm) 170.33 ± 9.29 162.00 ± 3.46

Weight (kg) 76.00 ± 11.27 65.67 ± 8.96

BMI 25.87 ± 2.72 23.87 ± 2.04

Basic Diagnosis (n (%))

Coronary Heart Disease 12(85.71%) 6(75.00%)

Diabetes 6(42.86%) 2(25.00%)

Hypertension 7(50.00%) 5(62.50%)

Hyperlipemia 7(50.00%) 5(62.50%)
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a 10-min scope of signals Holter and SensEcho measured of patient NO.01

b HR, respiration and triaxial acceleration SensEcho measured

c The entire HR signals of this patient SensEcho and Holter monitored

Fig. 6 An example of signals
monitored by SensEcho and
Holter in the validation study. a
10-min scope of signals Holter
and SensEcho measured of
patient NO.01. b HR, respiration
and triaxial acceleration
SensEcho measured. c The entire
HR signals of this patient
SensEcho and Holter monitored
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difference that may have been caused by the wearable
vests that were not the right size rigorously. Figure 8a is
the Bland-Altman plot of the whole dataset. The analysis
showed that 98.52% of the points were located between
Mean ± 1.96SD. From Fig. 8b we can find that the Bland-
Altman plot shows great agreement between the two mea-
surement methods, but the SensEcho is more likely to
produce measurements that are too high or too low com-
pared to the Holter. However, these measurements are
quite unlikely, for there are only very few points located
outside Mean ± 1.96SD. We can still consider the HR
measurement capacity of SensEcho reliable. In addition,
unbalanced measurements may be caused by the differ-
ence in hardware passbands between the two devices.

During the long-term and high-frequency sample rate
of the monitoring of the high-risk patients, as we defined
before, tachycardia (HR > 100 bpm) was 1.27% and
1.23% while bradycardia (HR < 50 bpm) was 0.49% and
0.54% of all HR measurements for Holter and SensEcho
respectively. The sensitivity, specificity, positive predic-
tive value, and negative predictive value were calculated
and are shown in Table 2.

The Bland-Altman analysis quantitatively showed that
there was great consistency between SensEcho and the
ECG Holter at HR measurement. The difference was rela-
tively small and understandable. One major reason for the
difference between the two devices was outliers. Although
we set filtering methods to detect the outliers and reduce
the impact of them, outliers were unavoidable in time se-
ries physiological signals. Furthermore, the difference be-
tween the two devices may be due to the hardware clock

limitations, where 1 s on one device might correspond to
0.98 s from the other device for example [41].

An example of report

By utilization of the raw data measured from patients, proc-
essed information from preliminary analysis, AI-based appli-
cations and EHR information from HIS, we can generate var-
ious reports. Figure 9 shows an example sleep quality and
sleep disorder screening report of a patient. Figure 9a shows
the trend-charts where we can visually see the sleep stage clas-
sification, posture, the onset and duration of apnea/hypopnea
and physiological signals of the example patient. Figure 9b
shows a summary of the sleep monitoring results, which in-
cludes numerical statistics of different indicators. From the
example patient, we can find that the patient went to sleep at
about 11:30 pm. Time of total sleep and deep sleep was lower
than the reference values, the sleep structure of this patient was
not very good as well. SpO2 declined several times and lasted
for a while and sleep respiratory events occurred during sleep
monitoring. The longest sleep apnea lasted for 29.0 s while the
total sleep apnea lasted for 7 min and 21 s. 64.7% of sleep
respiratory events were classified as obstructive sleep apnea,
while 35.3% were classified as hypopnea. The apnea-
hypopnea index (AHI) of the patient this night was 2.7, which
is lower than the clinical diagnostic criteria of clinical sleep
apnea-hypopnea syndrome. Certainly, the information provid-
ed by the system is an expansion of the information available
to clinicians, which should be confirmed and can be modified
by clinicians in case the algorithms are misdiagnosed.

Fig. 7 Boxplot of the HR measurement distribution of the two methods for every patient
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a  Bland-Altman plot of the HR measured by the two methods

b Deviation of measurements of SensEcho against the ‘golden standard’, Holter

Fig. 8 Agreement analysis plots of the two methods. a Bland-Altman plot of the HR measured by the two methods. b Deviation of measurements of
SensEcho against the ‘golden standard’, Holter

Table 2 Diagnostic accuracy for bradycardia, tachycardia (a Positive Predictive Value; b Negative Predictive Value; c F1=2 * (Precision * Recall) /
(Precision + Recall))

Sensitivity (Recall) Specificity PPVa (Precision) NPVb F1c

Bradycardia (%) 92.86 99.92 85.53 99.96 0.89

Tachycardia (%) 81.44 99.80 84.24 99.76 0.83
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A case study

In order to further explain the value of the system applied in
the clinic, we illustrate a case of a patient monitored by the
SensEcho at the general ward of the HBO department, who
was 44 years old, male, 180 cm height, 85 kg weight when
admitted, and complained of chest pain for 2 years. He was
diagnosed with coronary heart disease, myocardial infarction,
hyperlipemia and hypertension risk level 3. Figure 10 shows a
section of the HR, RR and triaxial acceleration signals for his
first night of admission, when the patient experienced a dete-
rioration of his condition. Doctors gave first aid when the
system generated alarms at about 9:15 pm. Meanwhile, we
found that from 9:15 pm to 9:30 pm, the patient got two
episodes of atrial fibrillation. The first one was 10 min ahead
of the coming severe atrial fibrillation. A high frequency of
premature beats occurred before 9:00 pm also. From the tri-
axial acceleration signals, we can find that the patient was
relatively quiet before the atrial fibrillation occurred and he
changed his position before the first atrial fibrillation ended.
The second episode of atrial fibrillation was deadly and need-
ed intervention immediately. Fortunately, he survived. It is
believed that in this case the detailed information of disease
deterioration may be missed in the absence of monitoring by
the system.

Discussion

In this paper, we present a wireless physiological signal mon-
itoring system, which is intended to provide higher dimen-
sional information in order to realize patient health state mon-
itoring and clinical decision support. Potential users include

doctors, nurses and patients. For doctors, they receive various
daily reports which contain physiological signal monitoring
results, preliminary analysis results and AI-based decision
support suggestions. For nurses, the system can decrease their
workload. Some of the clinical practices are expected to be
replaced by the system as well. For patients, the system can
provide real-time multi-dimensional physiological signal
monitoring, leading to better care and early warning of clinical
deterioration. The system has been deployed in realistic clin-
ical practice. Our key contributions are summarized as
follows.

& SensEcho is a medical-grade wireless monitoring system,
which provides comprehensive information of patients for
clinicians based on signal processing technology and ma-
chine learning algorithms.

& We have deployed this system in a clinical environment
and constantly update it according to the clinical feedback.
The system is one of the earliest attempts to implement the
physiological signal monitoring system in the clinic in
China.

& The system is well integrated with the existing HIS and we
provide a practical way to combine the EHRs and physi-
ological signals.

& We explored a set of time series physiological signal ac-
quisition, storage, and analysis processes, facilitating the
follow-up research studies.

Currently, many studies on monitoring systems focus on
the early warning of the risk of disease deterioration and have
shown that the wearable devices have better performance than
EWS, which is a commonly used clinical score [4, 6, 37]. We
believe that wearable devices have the potential to provide

a Example patient's physiological signal trend-charts throughout the night b The checkup results of the patient. AHI: Apnea Hypopnea Index

Fig. 9 A part of an example sleep quality and sleep disorder screening report. a Example patient’s physiological signal trend-charts throughout the night.
b The checkup results of the patient. AHI: Apnea Hypopnea Index
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more valuable information as a clinical aid based on the anal-
ysis of physiological signals. There is a wealth of information
in the reports we provided, which can help clinicians make
better evaluation of patients or quantitatively evaluate the ther-
apeutic effect. Moreover, an important prerequisite for good
system operation is the guarantee of good data quality. We
designed a set of schemes to ensure data quality and model
performance, including training for nurses before implemen-
tation of the system, data cleaning standard operating proce-
dure and sufficient validation of the models. To achieve a
better capability and usability of the system, we need to de-
velop and explore effective methods to reduce the impact of
outliers, improve the measurement accuracy and accumulate
more data to improve the model performance.

Despite the application of this system in the HBO and the
Respiratory Medicine Department and its featured applica-
tions according to the clinical demands, it is believed that there
is still a long way to go before the system can be used widely
clinically. Furthermore, there are still some limitations to our
study. One major limitation is the unfinished validation of
several applications in the system. The validation study calls
for the cooperation between clinical experts and engineers,
which is a kind of cross-disciplinary cooperation that is often
difficult but important because we need to match the engineer-
ing results with clinical experience. Another limitation of the
study is the inadequate use of EHR information, although we
tried the combination of EHRs and continuous physiological
signals, only a fraction of EHR information has been included,
and a great deal of valuable information remains to be
integrated.

The future work of our study includes the further validation
of the system as well as keeping going on the data mining
work of the EHRs and time-series physiological signals. In

addition, to our knowledge, there are three extra meaningful
and interesting research focuses summarized as follows.

The first research focus is, at the time of writing, the whole
world is suffering from the Corona Virus Disease (COVID-
19), which has a much stronger infection capacity than the flu.
Patients infected with the COVID-19 are more likely to de-
velop symptoms such as fever and respiratory distress, with
their SpO2 decline severely. Clinicians are at high risk of
infection when having direct contact with patients although
they wear protective gear. Experience gained from the pan-
demic shows that little exposure to the virus can effectively
reduce the chance of infection. Clinicians especially nurses,
need to measure vital signs of patients several times daily, and
this procedure is expected to be replaced by the wireless mon-
itoring system. For patients, the system can monitor multi-
dimensional physiological signals that can be used to predict
and indicate the deterioration of the new coronavirus pneumo-
nia. In conclusion, we will expand the functions and applica-
tions of the system to be more suitable for infectious disease
hospitals.

The second research focus is that there are several phys-
iological signal databases for specific use worldwide.
However, we have not heard of any comprehensive data-
base that combines the EHR information and physiological
signals measured from wearable devices. Up to February
2020, we have already collected more than 1000 cases of
data from the realistic clinical environment. We will clean
the data and construct a comprehensive database, which
will include the physiological signals, information in
HIS, manually record tables from the doctors and nurses.
It is time-consuming because manually recorded informa-
tion is always subjective and prone to biases and errors.
Data cleaning is a necessary step, and we believe that it is

Fig. 10 Vital signals monitored by SensEcho of a patient with atrial fibrillation in HBO department
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worthwhile and this database will play an important role in
follow-up research.

The third research focus is that as individualized and accu-
rate medicine is an important development of modern medi-
cine, personalized information in physiological signals needs
to be mined deeply. Continuous monitoring of physiological
signals is a new type of ‘Big Data’ for individuals as well,
reflecting the health states at different stages. The variation
trend between physiological signals of one patient in different
periods should be further studied to develop an index that
quantitatively evaluates the health level of the patient, which
can be used as a solution to individualized and accurate
medicine.
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