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Abstract
Purpose To develop two deep learning-based systems for diagnosing and localizing pneumothorax on portable supine chest 
X-rays (SCXRs).
Methods For this retrospective study, images meeting the following inclusion criteria were included: (1) patient age ≥ 20 
years; (2) portable SCXR; (3) imaging obtained in the emergency department or intensive care unit. Included images were 
temporally split into training (1571 images, between January 2015 and December 2019) and testing (1071 images, between 
January 2020 to December 2020) datasets. All images were annotated using pixel-level labels. Object detection and image 
segmentation were adopted to develop separate systems. For the detection-based system, EfficientNet-B2, DneseNet-121, 
and Inception-v3 were the architecture for the classification model; Deformable DETR, TOOD, and VFNet were the archi-
tecture for the localization model. Both classification and localization models of the segmentation-based system shared the 
UNet architecture.
Results In diagnosing pneumothorax, performance was excellent for both detection-based (Area under receiver operating 
characteristics curve [AUC]: 0.940, 95% confidence interval [CI]: 0.907–0.967) and segmentation-based (AUC: 0.979, 95% 
CI: 0.963–0.991) systems. For images with both predicted and ground-truth pneumothorax, lesion localization was highly 
accurate (detection-based Dice coefficient: 0.758, 95% CI: 0.707–0.806; segmentation-based Dice coefficient: 0.681, 95% 
CI: 0.642–0.721). The performance of the two deep learning-based systems declined as pneumothorax size diminished. 
Nonetheless, both systems were similar or better than human readers in diagnosis or localization performance across all sizes 
of pneumothorax.
Conclusions Both deep learning-based systems excelled when tested in a temporally different dataset with differing patient 
or image characteristics, showing favourable potential for external generalizability.
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Introduction

A pneumothorax is an abnormal collection of air in the 
pleural space between the lung and the chest wall. The 
annual incidence rate of pneumothorax was approximately 
7.3 cases per 100,000 individuals [1]; among hospitalized 
patients, the incidence of pneumothorax was estimated at 
22.7 cases per 100,000 admissions every year [2].

Without prompt recognition and management, pneumo-
thorax may evolve into life-threatening tension pneumotho-
rax. Rapid and correct identification of pneumothorax can 
minimize the risk associated with tension pneumothorax [3] 
and thus improve patient outcomes.

Because of its advantage in mobility, the portable supine 
chest radiograph (SCXR) is one of the most common imag-
ing studies performed in the emergency department (ED) 
and intensive care unit (ICU) [4, 5]. However, the reported 
sensitivity of SCXR for detecting pneumothorax varied 
widely, ranging from 9 to 75% [6], indicating the high rate 
of misses at initial encounters.

Several factors may explain the heterogeneous sensitiv-
ity of SCXR in detecting pneumothorax [7–9]. First, the 
imaging quality may be reduced because of limitations in 
the patient’s positioning or body habitus. Second, the dis-
tribution of free air in the pleural space is variable and 
highly dependent on the intrathoracic anatomic structure 
and relevant pathology in the lung parenchyma and pleural 
space [10]. The subtle imaging findings of pneumothorax in 
SCXRs require expertise and cautious inspection to detect 
its presence.

In the current study, we hypothesized that artificial intel-
ligence-based approaches for interpreting portable SCXRs 
may facilitate physicians in detecting pneumothorax with 
greater efficiency and accuracy. We aimed to develop and 
validate deep learning (DL)-based computer-aided diagno-
sis (CAD) systems that enable more efficient and accurate 
pneumothorax detection and localization by portable SCXR.

Materials and Methods

Study Design and Setting

We conducted a retrospective study to develop and test our 
CAD systems in chronologically differing image datasets. 
Local portable SCXRs were retrieved from the Picture 
Archiving and Communication System (PACS) database 
of the National Taiwan University Hospital (NTUH). This 
study was approved by the Research Ethics Committee of 
NTUH (reference number: 202003106RINC) and granted 
a consent waiver. Our results are reported according to the 
Checklist for Artificial Intelligence in Medical Imaging 
(CLAIM) [11].

Image Acquisition and Dataset Designation

As shown in Fig. 1, a Radiology Information System served 
to identify candidate images used in the building of training 
(NTUH-1519) and testing (NTUH-20) datasets.

Inclusion criteria for the candidate positive group of 
NTUH-1519 were as follows: (1) text report with clinical 
finding of pneumothorax; (2) patient age ≥ 20 years; (3) 
portable SCXR; (4) imaging obtained in ED or ICU; and 
(5) exam performed between January 1, 2015 and Decem-
ber 31, 2019. We only selected the first study as the repre-
sentative image for each patient in the analysis. Inclusion 
criteria for the candidate negative group were the same as 
those above, except for text reports devoid of pneumotho-
rax. We randomly selected qualifying images from negative 
candidates, populating positive and negative groups at an 
approximate ratio of 1:2. The tentative candidate list was 
then further scrutinized to avoid overlap of patients.

Image acquisition for NTUH-20 differed in the time 
frame (January 1, 2020 to December 31, 2020) but was oth-
erwise the same. In addition, the candidate negative group 

Fig. 1 Flow chart of image inclusion process and dataset designation. SCXR, supine chest X-ray; ED, emergency department; ICU, intensive care 
unit; NTUH, National Taiwan University Hospital; PACS, Picture Archiving and Communication System
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included only images obtained in EDs, and the image ratio 
for positive and negative groups was approximately 1:10.

We exported all eligible de-identified images in Digital 
Imaging and Communications in Medicine (DICOM) for-
mat, including corresponding text reports for analysis. The 
radiological reports were generated by various board-certi-
fied radiologists for clinical purposes.

Image Annotation, Ground Truth, and CXR Report 
Extraction

Each image was first split into 10 × 10 grids of equal size. 
Bounding boxes were then used to cover the pneumothorax 
visible in each grid, utilizing the least area. Each image was 
randomly assigned to two emergency physicians, blinded 
to each other’s efforts, for image annotation. A total of six 
board-certified and four board-eligible emergency physi-
cians were involved, each with at least 4 years of clinical 
experience. All images were ultimately reviewed by an 
experienced (10 years) board-certified pulmonologist and 
intensivist who adjusted annotations as necessary. The 
reviewed annotations served as ground truth in model train-
ing and testing. Any images harbouring thoracic drainage 
tubes were picked up and excluded from further analysis. 
CXR findings and diagnoses [12, 13] were extracted manu-
ally by research assistants blinded to annotations according 
to the radiology reports.

Development of Algorithm

We designed two separate CAD systems (Fig. 2), each 
including a classification model and a localization model 
and jointly yielding the following variables: (1) diagnosis 
output, indicating the presence or absence of pneumotho-
rax, and (2) localization output, indicating the pneumo-
thorax lesion site. Our CAD systems were designated as 
detection- or segmentation-based systems according to the 
localization method applied (i.e., object detection or image 
segmentation).

Supplemental Figs. 1 and 2 show the training pipelines 
in detail. In brief, NTUH-1519 was first split into differ-
ent subsets to train the CAD systems. This partition pro-
cess ensured similar proportions of images (with vs. without 
pneumothoraces) and eliminated patient overlap across all 
subsets. All images underwent preprocessing before analy-
sis. The annotated bounding boxes were transformed into 
segmentation masks for the segmentation-based system. 
The segmentation masks would also be replaced with one or 
several larger bounding boxes, covering all adjoining masks 
at minimal area and serving as input for the detection-based 
system.

For the detection-based system, EfficientNet-B2 [14], 
DneseNet-121 [15], and Inception-v3 [16] were selected 
as the architecture for the classification model; Deformable 
DETR [17], TOOD [18], and VFNet [19] were selected as 
the architecture for the localization model. Both classifi-
cation and localization models of the segmentation-based 

Fig. 2 Structures of (A) detection-based and (B) segmentation-based 
CAD systems: Each system incorporates a classification model and a 
localization model, the major difference being the localization method 
(object detection vs. image segmentation). A CXR image (1) is first 
passed to the classification model (2) to derive the probability regard-
ing presence of pneumothorax. If the output probability exceeds the 
classification threshold (3), the image is passed to the localization 

model (4) to assess pneumothorax position. Once the largest pre-
dicted confidence score of the bounding boxes (detection-based CAD 
system) or predicted areas (segmentation-based CAD system) of the 
pneumothorax is above the localization threshold (5), the CAD system 
yields diagnosis (6) and localization (7) outputs. Red rectangles and 
purple areas denote pneumothorax locations. CAD, computer-aided 
diagnosis; CXR, chest X-ray
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Statistical Analysis

Continuous variables were expressed as means with stan-
dard deviations while categorical variables as counts and 
proportions. Continuous variables were compared with Stu-
dent’s t-test, and categorical variables were compared with 
the Chi-squared test. All statistics were determined as point 
estimates, with 95% confidence intervals (CIs), through a 
bootstrap technique at 1,000 repetitions. Prediction-ground 
truth and inter-annotator TP-Dice coefficients were com-
pared by paired t-test. Subgroup analysis was performed to 
explore the influence of the pneumothorax size on the model 
performance. The pneumothorax was categorized into 
large, medium, and small sizes based on the 33rd and 66th 
percentiles of areas of segmentation masks. A two-tailed 
p-value < 0.05 was considered statistically significant. All 
computations were driven by open-source freeware (SciPy 
v1.8.1) [23].

Results

As shown in Figs. 1 and 2642 images were acquired from 
the PACS database, (training, 1571; testing, 1071). Signifi-
cant differences between NTUH-1519 and NTUH-20 datas-
ets are shown in Table 1, with 490 (31.2%) and 126 (11.8%) 
patients, respectively annotated as pneumothorax. Aside 
from pneumothorax, other patient characteristics and image 
findings were numerically similar for images annotated for 
presence or absence of pneumothorax in NTUH-1519 and 
NTUH-20 datasets (Supplemental Tables 3 and 4).

Table 2 indicates that pneumothorax was accurately 
diagnosed by detection-based (AUC: 0.940, 95% CI: 
0.907–0.967) and segmentation-based (AUC: 0.979, 95% 
CI: 0.963–0.991) systems, both achieving levels similar to 
those of radiology reports. Figure 3 demonstrates four rep-
resentative imaging sets. The overlain predicted bounding 
boxes or segmentation masks served to assist clinicians in 
verifying the diagnosis and position of pneumothorax. As 
shown in Table 3, prediction-ground truth TP-Dice coeffi-
cients for detection- and segmentation-based systems were 
0.758 (95% CI: 0.707–0.806) and 0.681 (95% CI: 0.642–
0.721), respectively, both values significantly surpassing 
inter-annotator TP-Dice values. Supplemental Table 5 lists 
the required computational resources for both systems.

Subgroup analysis showed that in diagnosing pneumo-
thorax, performances of both systems declined according 
to the size (large to small) of pneumothorax, consistent 
with the trend for radiology reports (Table 2). In terms of 
pneumothorax localization, diminishing pneumothorax size 
(large to small) corresponded with similar declines in pre-
diction-ground truth TP-Dice coefficients for both systems, 

system shared the UNet [20] architecture, using RegNetY 
[21] as encoder.

Evaluation Metrics of Algorithm

Diagnosis output performance was determined by the area 
under receiver operating characteristics curve (AUC), area 
under precision-recall curve, sensitivity, specificity, positive 
predictive value, and negative predictive value. Youden’s 
index [22] acquired from the training (NTUH-1519) dataset 
indicated the optimal threshold for testing.

Localization output performance was measured by Dice 
coefficient, calculated as twice the area of overlap divided 
by total pixel count in predicted and ground-truth masks. 
Dice coefficients were only computed in images positive 
for both predicted and ground-truth pneumothoraces (i.e., 
images classified as true positives), referred to as predic-
tion-ground truth TP-Dice. TP-Dice coefficients were also 
calculated to evaluate the consistency shown by two annota-
tors (inter-annotator TP-Dice).

Table 1 Comparison of training (NTUH-1519) and testing (NTUH-20) 
datasets
Variables NTUH-1519 

(n = 1571)
NTUH-20 
(n = 1071)

p-value

Age, year 65.1 (16.1) 58.6 (19.9) < 0.001
Male, n 946 (60.2) 580 (54.2) 0.002
Qualitative findings in radi-
ology reports, n
 Atelectasis 38 (2.4) 26 (2.4) 0.99
 Cardiomegaly 656 (41.8) 286 (26.7) < 0.001
 Consolidation 331 (21.1) 77 (7.2) < 0.001
 Emphysema 6 (0.4) 4 (0.4) 0.97
 Endotracheal intubation 558 (35.5) 135 (12.6) < 0.001
 Haziness 192 (12.2) 72 (6.7) < 0.001
 Infiltration 255 (16.2) 204 (19.0) 0.06
 Nodularity 55 (3.5) 46 (4.3) 0.30
 Opacification 587 (37.4) 379 (35.4) 0.30
 Pleural effusion 418 (26.6) 200 (18.7) < 0.001
 Pneumothorax 484 (30.8) 124 (11.6) < 0.001
Annotation, n
 Pneumothorax 490 (31.2) 126 (11.8) < 0.001
 Large pneumothorax 164 (10.4) 44 (4.1) < 0.001
 Medium pneumothorax 162 (10.3) 35 (3.3) < 0.001
 Small pneumothorax 164 (10.4) 47 (4.4) < 0.001
Manufacturer, n < 0.001
 Agfa 1405 (89.4) 113 (10.6)
 Canon 128 (8.1) 30 (2.8)
 Carestream 12 (0.8) 0 (0)
 Philips 5 (0.3) 0 (0)
 Samsung 21 (1.3) 928 (86.6)
Image pixels 8055937.4 

(2898803.0)
7538921.0 
(2337194.0)

< 0.001

Data expressed as mean (standard deviation) values or as counts (pro-
portions)
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only about 60% [28], which may lead to poor model gener-
alizability [29].

On the other hand, pixel-based annotation may effec-
tively facilitate the development of pneumothorax-detect-
ing algorithms [30]. For standing CXR, the pneumothorax 
lesion could usually be delineated [31, 32] by the visceral 
pleural line in the apicolateral space [33]. Nonetheless, 
when patients are in the supine position, the spaces where 
the air is trapped differ from those in the standing position 
[34]. Adopting segmentation masks to delineate the pneu-
mothorax lesion on SCXR might raise a concern that only 
those images with clear pleural lines were annotated, lead-
ing to selection bias.

Consequently, we used bounding boxes for annotation, 
allowing for localization of pneumothoraces without dis-
tinct pleural lines. Nevertheless, in some lesions, such as 
those spanning lung apices and basal aspects, the use of 
bounding boxes might encompass nearly an entire unilat-
eral lung region. This problem was overcome by dividing 
images into 10 × 10 grids, permitting bounding boxes to 
accommodate lesions of varying shapes.

again aligned with the observed trend for inter-annotator 
TP-Dice values (Table 3).

Discussion

Main Findings

Both detection- and segmentation-based systems achieved 
excellent performance, which was comparable to radiol-
ogy reports or human annotators. Like human readers, the 
diagnosis and localization performance of the CAD systems 
might be influenced by the size of the pneumothorax.

Annotation of Pneumothorax on SCXR

Most public datasets [24, 25] rely on chest X-rays with 
image-level labels of common thoracic diseases that are 
text-mined from radiology reports and are inherently inac-
curate [26, 27]. For example, for ChestX-ray14, a study 
suggested the agreement regarding pneumothorax diagnosis 
between the image-level label and radiologist review was 

Table 2 Diagnostic performances of computer-aided diagnosis (CAD) systems and radiology reports
Readers AUC AUPRC Sensitivity Specificity PPV NPV
Diagnosing pneumothorax
 Detection-based CAD system 0.940 

(0.907–0.967)
0.833 
(0.775–0.884)

0.687 
(0.598–0.776)

0.991 
(0.984–0.996)

0.892 
(0.823–0.954)

0.966 
(0.955–0.977)

 Segmentation-based CAD system 0.979 
(0.963–0.991)

0.910 
(0.863–0.948)

0.926 
(0.874–0.972)

0.926 
(0.909–0.942)

0.584 
(0.510–0.657)

0.991 
(0.985–0.997)

 Radiology reports 0.953 
(0.927–0.976)

0.866 
(0.802–0.923)

0.914 
(0.862–0.961)

0.992 
(0.986–0.997)

0.936 
(0.889–0.976)

0.989 
(0.981–0.995)

Diagnosing large pneumothorax
 Detection-based CAD system 0.997 

(0.993-1.000)
0.950 
(0.895–0.987)

0.946 
(0.861-1.000)

0.991 
(0.984–0.996)

0.788 
(0.659–0.903)

0.998 
(0.995-1.000)

 Segmentation-based CAD system 0.999 
(0.998-1.000)

0.977 
(0.933-1.000)

1.000 
(1.000–1.000)

0.926 
(0.909–0.942)

0.336 
(0.248–0.426)

1.000 
(1.000–1.000)

 Radiology reports 0.996 
(0.993–0.998)

0.820 
(0.697–0.927)

1.000 
(1.000–1.000)

0.992 
(0.985–0.997)

0.820 
(0.697–0.927)

1.000 
(1.000–1.000)

Diagnosing medium pneumothorax
 Detection-based CAD system 0.947 

(0.880–0.991)
0.779 
(0.630–0.907)

0.763 
(0.600-0.917)

0.991 
(0.984–0.996)

0.718 
(0.556–0.864)

0.993 
(0.987–0.998)

 Segmentation-based CAD system 0.976 
(0.925–0.999)

0.897 
(0.792–0.973)

0.967 
(0.889-1.000)

0.926 
(0.909–0.942)

0.290 
(0.203–0.381)

0.999 
(0.997-1.000)

 Radiology reports 0.996 
(0.993–0.998)

0.791 
(0.657–0.923)

1.000 
(1.000–1.000)

0.992 
(0.985–0.997)

0.791 
(0.657–0.923)

1.000 
(1.000–1.000)

Diagnosing small pneumothorax
 Detection-based CAD system 0.886 

(0.822–0.943)
0.478 
(0.326–0.637)

0.407 
(0.257–0.565)

0.991 
(0.985–0.996)

0.652 
(0.462–0.833)

0.975 
(0.965–0.985)

 Segmentation-based CAD system 0.964 
(0.942–0.981)

0.636 
(0.476–0.778)

0.833 
(0.711–0.941)

0.926 
(0.909–0.942)

0.330 
(0.242–0.420)

0.992 
(0.986–0.998)

 Radiology reports 0.984 
(0.955–0.998)

0.818 
(0.698–0.911)

0.975 
(0.917-1.000)

0.992 
(0.986–0.996)

0.837 
(0.723–0.923)

0.999 
(0.997-1.000)

Data expressed as point estimates (95% confidence intervals)
AUC, area under receiver operating characteristics curve; AUPRC, area under precision-recall curve; NPV, negative predictive value; PPV, 
positive predictive value
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towards learning features of a more common class (i.e., 
pneumothorax-negative images) and distort various evalu-
ation metrics [37]. Thus, we employed a case-controlled 
design [38, 39] to achieve greater balance in training and 
testing datasets. As shown in Table 1, the higher propor-
tion (31.2%) of images annotated as pneumothorax in the 

Dataset Selection for Training and Testing Models

Considering the low (0.5-3%) incidence of pneumothorax 
cited in epidemiologic data [35, 36], use of a consecutive 
random SCXR sampling for model development may result 
in class imbalance. Such imbalance may bias CAD systems 

Fig. 3 Sample images stratified by predicted results of diagnosis out-
puts, including (A) true-positive, (B) false-positive, (C) true-negative, 
and (D) false-negative results. The first column at left displays original 
images. In the second column from left, preprocessed bounding boxes 
(green rectangles) and segmentation masks (red areas) of detection- 

and segmentation-based CAD systems are shown. The third column 
from left demonstrates bounding boxes (red rectangles) predicted by 
detection-based CAD system, with segmentation masks (purple areas) 
predicted by segmentation-based CAD system appearing in the fourth 
column. CAD, computer-aided diagnosis
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systems delivered excellent performances (AUC val-
ues > 0.94) in pneumothorax detection. In our study, the 
architectures of the classification models differed between 
the two CAD systems as the UNet-based model [20] itself 
could output both classification results and localization 
information.

Routine portable SCXR exams are common practice in 
critical care [43, 44]. Such regular use of portable SCXR 
exams may partly account for the prolonged turnaround 
time from image acquisition to interpretation by a radiolo-
gist [45]. Our systems may help prioritize portable SCXRs 
within queues, flagging those to be checked upfront by a 
radiologist or earmarking treating clinicians for notifica-
tions. As shown in Table 1, there was a high percentage of 
patients receiving tracheal intubation. Early detection of 
pneumothorax may facilitate prompt life-saving procedures 
for these patients to prevent serious complications, such as 
tension pneumothorax.

Localization Output Performance

Using standing chest X-rays, a model devised by Lee et al. 
[46] has achieved a Dice coefficient of 0.798 in pneumotho-
rax localization. Feng et al. [47] also derived a model able 
to localize the pneumothorax lesion (Dice coefficient: 0.69). 
Nevertheless, even though Feng et al. [47] included portable 
SCXRs in the analysis, the researchers excluded films with 
only supine signs of pneumothorax, e.g., deep sulcus sign. 
Another model by Zhou et al. [48], based on frontal chest 
X-rays alone (no portable SCXRs), could detect pneumo-
thorax with a Dice coefficient of 0.827.

The images of portable SCXR are generally deemed 
suboptimal for diagnosis. The patients are often unable to 
cooperate during image acquisition, leading to poor bodily 
orientation or inspiratory efforts. Compared with standing 
chest X-rays, they are also inferior in image quality, hin-
dering the diagnosis of pneumothorax due to lesser degrees 
of resolution and luminance [49]. Furthermore, classic find-
ings of pneumothorax on standing chest X-rays are often 
lacking on portable SCXRs. Given the more challenging 

NTUH-1519 dataset may enable our CAD systems to bet-
ter learn pneumothorax-related features; whereas the lower 
proportion (11.8%) in NTUH-20 fostered performance test-
ing on a plane approaching real-world prevalence [35, 36].

In a previous study [29], the accuracy of DL-based pneu-
mothorax detection was shown to significantly decline 
when testing the algorithm in an external dataset. Concerns 
over accuracy overestimation and limited generalizability of 
such algorithms may be mitigated by model evaluation in 
an independent dataset. However, no datasets dedicated to 
portable SCXRs were available for our purposes. Accord-
ing to the Transparent reporting of a multivariable predic-
tion model for individual prognosis or diagnosis (TRIPOD) 
statement [40], external validation may use data collected 
by the same researchers, using the same predictors and out-
come definitions and assessments, but typically sampled 
from a later period (temporal or narrow validation). In our 
study, the NTUH-20 dataset consisted of SCXRs taken dur-
ing 2020 at NTUH. Compared with NTUH-1519, NTUH-
20 was a chronologically different dataset (2015–2019 vs. 
2020), with significant differences (Table 1). According to 
the TRIPOD statement, the chronologically different testing 
dataset can be used to verify the external generalizability of 
the CAD system.

Diagnosis Output Performance

Niehues et al. [41] used portable SCXR to develop a CAD 
algorithm with excellent performance in identifying pneu-
mothorax (AUC: 0.92, 95% CI: 0.89–0.95). Nonetheless, 
the thoracic drains were concomitantly present in approxi-
mately half of the images with pneumothorax [41]. It is 
thus conceivable that these drains were misconstrued in the 
algorithm as a feature of pneumothorax [42]. Rueckel et al. 
[30] also collected 3062 SCXRs, including 760 images with 
pixel-level annotations of pneumothorax and thoracic drain. 
This model also performed well overall (AUC: 0.877) for 
unilateral pneumothorax detection.

For the present study, however, we excluded images with 
thoracic drains and used bounding boxes for pixel-level 
annotation. Both of detection- and segmentation-based 

Table 3 Localization performances of computer-aided diagnosis (CAD) systems and annotators
Annotations Detection-based CAD system Segmentation-based CAD system

Prediction-ground 
truth TP-Dice

Inter-annotator 
TP-Dice

p-value Prediction-ground 
truth TP-Dice

Inter-annotator 
TP-Dice

p-value

Pneumothorax 0.758 (0.707–0.806) 0.717 (0.665–0.766) < 0.001 0.681 (0.642–0.721) 0.669 (0.653–0.654) < 0.001
Large pneumothorax 0.883 (0.840–0.921) 0.767 (0.690–0.836) < 0.001 0.769 (0.715–0.823) 0.756 (0.739–0.741) < 0.001
Medium pneumothorax 0.708 (0.625–0.798) 0.677 (0.574–0.771) < 0.001 0.693 (0.628–0.757) 0.639 (0.651–0.653) < 0.001
Small pneumothorax 0.574 (0.446–0.701) 0.686 (0.596–0.771) > 0.99 0.558 (0.489–0.627) 0.616 (0.589–0.591) > 0.99
Data expressed as point estimates (95% confidence intervals)
Prediction-ground truth TP-Dice, coefficient indicating agreement between predicted and ground-truth results; inter-annotator TP-Dice, coef-
ficient indicating agreement between two annotators
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diagnosis results, the localization outputs of pneumothorax 
may pop up to facilitate verification of the results. We pres-
ent the requirements of computational resources for these 
two CAD systems (Supplemental Table 5), which can assist 
healthcare institutions in selecting the most suitable model 
for deployment. Moreover, in future studies, it is warranted 
to examine the feasibility of adapting these CAD systems 
for edge computing and their integration into portable chest 
X-ray machines, which holds the potential to broaden the 
CAD systems’ applicability.

Study Limitations

First, because we only have de-identified images available 
for analysis, we did not know whether patients’ clinical 
comorbidities may influence the performance of the CAD 
system. Nonetheless, Table 1 shows there were diverse 
findings or diagnoses on SCXRs, which might somewhat 
mitigate this concern. Second, given the low prevalence for 
pneumothorax [35, 36], we used a case-controlled study 
design for image collection to ensure sufficient numbers 
of pneumothorax-positive patients. This design may result 
in an artificially elevated pneumothorax prevalence in our 
datasets, compared with real-world settings. We therefore 
relied on radiology reports or annotators as reader reference 
points by which to judge CAD system performance. Further 
prospective studies are warranted to better test performance 
with real-life pneumothorax prevalence by enrolling con-
secutive patients from EDs or ICUs on a manageable scale 
[54].

Conclusions

We developed two DL-based CAD systems to diagnose and 
localize pneumothoraces on portable SCXRs, using detec-
tion and segmentation methods, respectively. Performances 
of both systems proved excellent, comparable to those of 
radiologists or human annotators when tested in a dataset of 
differing time frame, with differing patient or image charac-
teristics. Hence, the potential for external generalizability 
seems favourable. Although each performed similar in test-
ing, the detection-based system may demand more in terms 
of computational resources.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s10916-
023-02023-1.
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interpretation of SCXRs, past models [46–48; 50] may not 
be suitable for pneumothorax localization on these images.

Both CAD systems we developed (based on object 
detection or image segmentation) performed excellently 
in pneumothorax localization, comparable to the level of 
annotators (Table 3). To the best of our knowledge, our 
CAD systems may be the first ones capable of localizing 
pneumothoraces on portable SCXRs. Although the detec-
tion- and segmentation-based systems performed similarly 
in testing, their required computational resources differed 
substantially (Supplemental Table 5). The detection-based 
system only outputs approximate positional information 
with several coordinates of bounding boxes. Logically, its 
computational demands should be less than those of the 
segmentation-based system, which provides accurate pixel-
wise lesion information. However, the detection-based sys-
tem must integrate several models for ensemble and thus is 
more demanding of resources by comparison. Users must 
take into account specific computational requirements when 
choosing a preference.

Influence of Pneumothorax Size

Previous studies [42, 51, 52] have demonstrated that model 
performance (as with human readings) may be influenced 
by extent of pneumothorax. A model that Taylor et al. [52] 
devised correctly identified 100% of large pneumothoraces 
but only 39% of small ones. Similarly, performance levels 
of our CAD systems declined as pneumothorax size dimin-
ished. This is not surprising, because inter-annotator TP- 
Dice coefficients also fell as pneumothorax size decreased, 
underscoring the problematic model learning of small-vol-
ume lesions. This phenomenon was more obvious for the 
detection-based CAD system as its lower prediction-ground 
truth TP-DICE than the inter-annotator TP-DICE (Table 3) 
may lead to the lower diagnostic performance for small 
pneumothorax than the radiology reports (Table 2).

Unlike large pneumothoraces, small pneumothorax is 
apt to be overlooked by clinicians, especially on portable 
SCXRs, necessitating assistance by CAD systems. Because 
most patients subjected to portable SCXRs are those suscep-
tible to complications caused by pneumothorax, especially 
those receiving mechanical ventilation, timely detection is 
critical to prevent a small pneumothorax from progressing 
into tension pneumothorax [53].

Future Applications

The CAD system can serve two primary functions: (1) pri-
oritizing the SCXRs and selecting those in question to be 
checked first by the radiologist or (2) issuing notifications 
to attending clinicians. When the clinicians examine the 
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