
Vol.:(0123456789)

Journal of Medical Systems           (2024) 48:29  
https://doi.org/10.1007/s10916-024-02048-0

ORIGINAL PAPER

Quantum Machine‑Based Decision Support System for the Detection 
of Schizophrenia from EEG Records

Gamzepelin Aksoy1 · Grégoire Cattan2 · Subrata Chakraborty3,4,5 · Murat Karabatak1

Received: 14 December 2023 / Accepted: 18 February 2024 
© The Author(s) 2024

Abstract
Schizophrenia is a serious chronic mental disorder that significantly affects daily life. Electroencephalography (EEG), a method 
used to measure mental activities in the brain, is among the techniques employed in the diagnosis of schizophrenia. The symptoms 
of the disease typically begin in childhood and become more pronounced as one grows older. However, it can be managed with 
specific treatments. Computer-aided methods can be used to achieve an early diagnosis of this illness. In this study, various machine 
learning algorithms and the emerging technology of quantum-based machine learning algorithm were used to detect schizophrenia 
using EEG signals. The principal component analysis (PCA) method was applied to process the obtained data in quantum systems. 
The data, which were reduced in dimensionality, were transformed into qubit form using various feature maps and provided as 
input to the Quantum Support Vector Machine (QSVM) algorithm. Thus, the QSVM algorithm was applied using different qubit 
numbers and different circuits in addition to classical machine learning algorithms. All analyses were conducted in the simula-
tor environment of the IBM Quantum Platform. In the classification of this EEG dataset, it is evident that the QSVM algorithm 
demonstrated superior performance with a 100% success rate when using Pauli X and Pauli Z feature maps. This study serves as 
proof that quantum machine learning algorithms can be effectively utilized in the field of healthcare.

Keywords Electroencephalography (EEG) · Machine Learning (ML) · Feature map · Quantum Support Vector Machine 
(QSVM)

Introduction

Schizophrenia is an exceptionally severe neuropsychologi-
cal disorder characterized by symptoms such as hallucina-
tions, communication and thought disturbances, abnormal 
motor behavior, delusions, and disruptions in daily activities. 

While the precise cause remains unknown, factors like 
genetic inheritance and environmental influences (migration, 
childhood traumas, infectious diseases, drug use, nutrition, 
toxins, urbanization, etc.) play a role in the development of 
the illness [1, 2]. The incidence of the disease, which typi-
cally begins in young adulthood, is similar in most countries. 
This condition, affecting approximately 1% of the world's 
population, is more commonly observed in men than women 
[3]. If schizophrenia is left untreated, the incidence of vari-
ous complications such as depression, associability, inability 
to control behavior, tendency to violence, anxiety disorders, 
and suicide increase. Compared to the general population, 
people with schizophrenia live 10–25 years less [4]. 4.9% 
of individuals with the disease choose death by suicide. 
The cost of the disease is significantly higher compared to 
other illnesses due to the required healthcare services, social 
needs, and decreased employment [5]. In these diseases that 
require lifelong treatment, early diagnosis allows symptoms 
to be kept under control.

The rapid advancements in technology have led to the 
emergence of a range of medical imaging techniques that 
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facilitate early diagnosis of diseases. Methods such as Elec-
troencephalography (EEG), Electrocardiography (ECG), 
Computed Tomography (CT), and Magnetic Resonance 
Imaging (MRI) have contributed significantly to advance-
ments in the healthcare sector. Among these imaging tech-
niques, Magnetic Resonance Imaging (MRI) and Elec-
troencephalography (EEG) stand out as effective tools, 
particularly in facilitating the diagnosis process of schizo-
phrenia. EEG records the electrical signal that enables the 
transmission of information generated by the pyramidal cells 
through electrodes placed on the scalp [6]. The electrical 
activity of the brain exhibits complex behaviors character-
ized by strong non-linear and dynamic properties. There-
fore, it is difficult to extract information from EEG signals 
through observation alone. Various machine learning meth-
ods are employed in the data collection process of these 
signals to extract meaningful information [7].

Quantum-based machine learning algorithms adopt 
a complex and innovative approach. Going beyond the 
boundaries of classical algorithms, these methods tackle 
problems by harnessing the parallel processing, superposi-
tion, entanglement, and interference capabilities of quantum 
computers. The synergy between deep learning's capacity to 
analyze large datasets and the advent of quantum computing 
has accelerated technological advancements in the field of 
data science [8]. Presently, applications of machine learning 
techniques and deep learning models are frequently encoun-
tered in the healthcare sector.

In this study, the goal was to use EEG signals for schizo-
phrenia diagnosis by employing both classical machine 
learning algorithms and quantum machine learning algo-
rithms. For this purpose, four channels were selected from 
EEG data obtained from 16 channels, representing differ-
ent regions. These signals underwent specific preprocess-
ing steps. Principal component analysis was used to reduce 
the dimensionality of the dataset to 3–15 features. Classical 
machine learning methods and a quantum support vector 
machine with different feature maps were applied, and their 
performances were evaluated.

The contributions of this study to the field can be sum-
marized as follows:

• To the authors' knowledge, this study is the first to use 
QSVM on EEG datasets for schizophrenia detection.

• The selection of channels that produce the best results 
from EEG channels has been provided.

• Detailed results of different numbers of qubits generated using 
the PCA method have been provided for the QSVM algorithm.

• The main feature maps used in quantum machine learn-
ing have been compared for their effects on classifica-
tion. The results suggest that first-order Pauli Map, such 
as X and Z feature maps provide the best accuracy with 
EEG data.

• The performance of the QSVM algorithm has been com-
pared with classical machine learning methods.

• This research paper has yielded promising results regard-
ing the use of quantum machine learning in the field of 
healthcare. Indeed, quantum classifiers are not only able 
to generalize on EEG data, but they also achieve similar, 
or slightly better results than the state of the art with a 
limited number of components.

• The current work suggests that quantum classifiers can be 
used as a complementary approach to classical technics 
and help with the diagnosis of schizophrenia.

Related works

Classical machine learning techniques 
for schizophrenia

In the field of schizophrenia, both statistical and deep 
machine learning models are popular. Statistical machine 
learning model include Decision Trees (DT), Support Vec-
tor Machines (SVM), Logistic Regression (LR), k-Nearest 
Neighbors (kNN) or ensemble methods such as Random 
Forest (RF), XGboost or Ensemble Bagged Tree (EBT) 
[9–18].

For example, in a study involving EEG signals obtained 
from 256 channels, signals from 8 different regions were 
processed using a 6th-level wavelet transform. A total of 480 
features were extracted, with 12 statistical features applied 
to each frequency band and region. Classification was con-
ducted on this dataset using the kernel-SVM algorithm, 
resulting in an accuracy rate of 78.9% [16]. The suitability 
of kernel-SVM algorithm for the diagnosis of schizophre-
nia was further confirmed by Sharma et al. [14]. Sharma 
et al. used 19-channel EEG signals in a study involving 32 
healthy individuals and 49 individuals with schizophrenia. 
Eight machine learning technics, including DT, SVM, RF, 
and XGBoost were evaluated. According to the study results, 
it was stated that the SVM algorithm can be used in the diag-
nosis of schizophrenia with a 100% success rate.

Deep learning model are based mostly on CNN and 
LSTM, which are popular neural network architectures in 
the domain of time series analysis [16, 19–25].

For example, A study involving raw EEG data from 101 
subjects with 64 channels applied deep learning models, 
CNN (75.9%), and CNN-LSTM (71.5%). Researchers noted 
that in terms of classification performance, the T8 and C3 
channels, as well as the delta and gamma frequency bands, 
had a significant impact [23].

In another study where raw EEG data was used in the 
diagnosis of Alzheimer’s disease and schizophrenia, AC, 
Grad-CAM, and Saliency Map, which are among the 



Journal of Medical Systems           (2024) 48:29  Page 3 of 18    29 

methods of the CNN model, were preferred. A 98% success 
rate has been achieved using these methods [25]. Deep learn-
ing models and hybrid approaches, when provided with suf-
ficient data and proper training, can yield impressive results.

Quantum machine learning techniques applied 
to healthcare or EEG

Quantum-based machine learning methods are beginning 
to find applications in the healthcare sector. However, there 
are currently no specific studies in the literature focused on 
schizophrenia diagnosis in the field of quantum machine 
learning. Nevertheless, access to experimental studies con-
ducted for the diagnosis and treatment of various diseases 
is possible.

For instance, Yu used the Variational Quantum Classifier 
(VQC) in PennyLane (Xanadu, Toronto, Canada), a cross-
platform Python library, for the analysis of SARS-CoV-2 
diseases. The method employed was emphasized as poten-
tially beneficial for early disease diagnosis [26].

In another study, the Quantum Distance Classifier (qDS) 
and quantum enhanced SVM methods were employed on 
three different clinical datasets (heart failure, Wisconsin 
breast cancer, and pediatric bone marrow transplantation). In 
this study, it was found that the quantum SVM, implemented 
with only 16 qubits on IBMQ Melbourne, exhibited higher 
performance [27]. The excellence of the quantum SVM was 
also confirmed for the classification of diabetes [28] and 
heart diseases [29].

Kumar et al. conducted a study in which they utilized a 
quantum version of the kNN and Bayesian classifiers such 
as DT or RF. They stated that quantum-based methods out-
performed traditional methods, with the highest performance 
achieved by the quantum RF, reaching an accuracy rate of 
89% [30].

Shahwar et al. conducted a study presenting a hybrid 
classical-quantum machine learning model for the detection 
of Alzheimer's disease. In this study, the complexity and 
dimension of the data were addressed using hybrid classical-
quantum transfer learning. Features extracted by classical 
neural networks were integrated with a quantum processor. 
Features were extracted from images using ResNet 34, and 
feature vectors were generated with QVC. The model was 
verified using various quantum simulators and achieved a 
classification accuracy of 97.2% [31].

Padma and Sahoo applied the QKNN, QSVM, and VQC 
methods to the SWELL KW dataset to examine the effects 
of stress on mental health. They performed dimensionality 
reduction by applying Principal Component Analysis (PCA) 
and Quantum Principal Component Analysis (QPCA) to 
the data obtained from 25 participants. As a result of the 

research, they noted that the highest accuracy value was 
obtained from the QSVM algorithm [32].

At the inverse, in a study aimed at developing a Brain-
Computer interface Andreev et al. [33] compared the perfor-
mance of QSVM with Linear Discriminant Analysis (LDA) 
in classifying EEG data. This data set, which includes EEG 
data of 25 people, was obtained using 16 channels in an 
experiment carried out in the GIPSA laboratory [34]. The 
experiment was based on the oddball paradigm, which is a 
common experimental setup for the classification of event-
related brain potentials. Brain-Computer interfaces may rely 
on different experimental paradigms, such as steady-state-
visually-evoked potentials or motor imagination (e.g., [35]). 
These paradigms offer different trade-off between signal-
to-noise ration and user comfort. Andreev et al. prepared 
the data for EEG analysis using the Riemannian Geometry 
framework and noted that the quantum classifier generalizes 
well on the EEG data—although the accuracy was lower 
compared to the analyses conducted with LDA.

When examining these studies, it can be seen that the 
data sets used and the preprocessing and classifiers applied 
to these data sets are different. For this reason, performance 
differences arising from signal-to-noise ratios are observed 
in all studies. Despite these changes, it is noteworthy that 
most of the machine learning studies are effective in the 
field of health – in the sense that they can all generalize 
from the data and achieve similar or better results than the 
state of the art.

Materials and methods

In this study, an EEG schizophrenia dataset was used to 
assess the performance of the quantum-based SVM algo-
rithm in detecting the disease [36]. The pattern recognition 
process is carried out in four stages, which include data 
acquisition, preprocessing steps, feature extraction, and clas-
sification. In the first stage, data acquisition involves discrete 
wavelet transforms, information measurement methods, 
and statistical techniques. Subsequently, dimension reduc-
tion methods like PCA are employed to prepare the data for 
analysis in different dimensions. Prepared data is subjected 
to classical classification algorithms in the IBM Quantum 
Lab environment. Reduced dimension data is transformed 
from bit format to qubit format using different feature maps, 
and quantum-based machine learning models are applied. 
The performances of classical and quantum-based models 
are analyzed in terms of accuracy and time, and their suit-
ability for EEG signals is examined. The block diagram of 
the conducted study is presented in Fig. 1.
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EEG dataset

This study utilized a dataset comprising EEG signals col-
lected from 39 healthy individuals and 45 adolescent males. 
The diagnosis of the affected individuals (childhood schizo-
phrenia, schizophrenic, and schizoaffective disorders) was 
determined by expert doctors working at the Mental Health 
Research Center (MHRC). The ages of individuals diag-
nosed with the disease ranged from 10 years 8 months to 
14 years, while the ages of healthy individuals ranged from 
11 to 13 years 9 months. The average age range for ado-
lescents in both the patient and control groups is 12 years 
and 3 months. EEG signals were obtained from 16 channels 
based on the 10–20 system for electrode placement (O1, 
O2, P3, P4, Pz, T5, T6, C3, C4, Cz, T3, T4, F3, F4, F7 and 
F8). It was indicated that individuals had their eyes closed, 
were awake, and were in a relaxed position during record-
ings. Artificial EEG segments were not used in this study, 
and the recordings were made at a sampling rate of 128 Hz. 
This dataset was obtained by recording 1-min segments from 
each channel for 84 adolescent individuals [37]. The chan-
nels from which the dataset was obtained and the EEG signal 
data from a patient are shown in Fig. 2.

Feature extraction

In the dataset containing EEG signals obtained from 16 
channels placed on the skulls of schizophrenic and healthy 
adolescent individuals, four channels from different regions 
were selected. These channels are F4 from the frontal region, 

T3 from the temporal region, O1 from the occipital region, 
and Cz from the central region. A discrete wavelet trans-
form was applied to these selected channels. Subsequently, 
various statistical methods were employed on the obtained 
signals to prepare the dataset for analysis.

Discrete wavelet transform

In biomedical signal processing studies, it is known that the 
frequency domain often provides more information com-
pared to the time domain. While Fourier transformations are 
commonly used for stationary signals, for signals like EEG, 
where phase changes over time, time–frequency methods that 
analyze the scale space effectively are more suitable. Wavelet 
transformations are preferred to accurately analyze EEG sub-
bands and information from the signal [38]. Figure 3 displays 
the schematic representation of the 4th-level Discrete Wave-
let Transform (DWT).

In the wavelet transform, detailed (D) and approximate 
(A) wavelet coefficients are obtained, and these coefficients 
are used in a linear combination to reconstruct the signal. 
The approximate coefficient comes from the Low-Pass Filter 
(LPF), while the detailed coefficient comes from the High-
Pass Filter (HPF) [39]. After calculating the coefficients, 
the approximate coefficient undergoes filtering again and is 
decomposed level by level until the target signal is reached. 
Figure 4 shows the result of applying the discrete wavelet 
transform to the EEG signal obtained from the Cz channel 
of a patient.

Fig. 1  Schematic representation of the method
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To obtain features from EEG data, the raw EEG signals 
were first normalized to bring the data within a specific 
range. After the normalization process, the signals were 
decomposed into subcomponents using the Daubechies 2 
wavelet, which is one of the basic mother wavelet mod-
els. The 4th level DWT was applied to the normalized 
data, resulting in the extraction of Delta (0.5–4 Hz), Theta 
(4–8 Hz), Alpha (8–15 Hz), Beta (14–30 Hz), and Gamma 
(30–60 Hz) waves [40].

Statistical methods

Following the Discrete Wavelet Transform process, mean, 
variance, standard deviation, Shannon entropy, and loga-
rithmic entropy methods were applied to the five different 

wavelet types obtained for each channel. The formulas for 
the methods used in this stage are provided in Table 1 [7].

After applying statistical methods, a dataset with 25 fea-
tures and one output vector was created for use in the study.

Dimension reduction

Principle Component Analysis (PCA) is a statistical tech-
nique used to reduce the dimensionality of data in large 
datasets by applying a linear transformation that alters the 
variables related to unrelated variables. Also known as 
the Karhunen–Loeve (KL) transformation, this method 
employs a projection onto an orthogonal subspace to both 
reduce data dimensionality and create new meaningful 
variables [41]. Input data is obtained from the principal 

Fig. 2  a Channels in the EEG dataset. b EEG records of a patient individual in the data set

Fig. 3  Discrete wavelet transform block diagram
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component with the highest variance. The covariance 
matrix, utilizing eigenvalues and eigenvectors, allows for 
the decomposition of brain signals into different com-
ponents. It reduces the complexity of the classification 
process but does not guarantee the selection of the most 
discriminative components [42]. The implementation of 
PCA is shown in Fig. 5.

Firstly, various preprocessing steps were applied to each 
EEG sub-band. The data dimension was reduced to values 
ranging from 3 to 15 using the widely used dimension 
reduction technique PCA. Feature maps were then applied 
to each dimension in order to utilize the QSVM algorithm 
for each dimension.

Classifiers

The feature vectors created through feature extraction and 
dimension reduction comprise various features representing 
the signals. Different machine learning algorithms were used 
to test their performance on the obtained dataset.

Classical machine learning

Machine learning methods are widely used in medical diag-
nosis systems, where data is mathematically represented and 
modeled. In these systems, models are trained with data col-
lections created from existing cases. The patterns obtained 

Fig. 4  The waves obtained by applying the Discrete wavelet transform to the EEG signal in the Cz channel

Table 1  Statistical methods 
used in the feature extraction 
stage

Statistical Method

Method Equation

Mean �ti = 1∕N
∑

j=iNMij

Variance
�ti
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∑

j=iN
�

Mi − �i

�2

Standart Deviation
�ti = (1∕N

∑
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�
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�2
)
1∕2

Logarithmic Energy Entropy HLogEn(x) = −
∑
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�

log
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Shanon Entropy HShanEn(x) = −
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�
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log
2

�

pi(x)
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from trained systems are then analyzed to make predictions 
based on relationships between data in future cases.

Logistic regression is one of the preferred methods in 
medical research due to its ability to examine the effects of 
variables, observe relationships between variables, and ana-
lyze the results. Logistic regression analysis, which encom-
passes various types of variables, relies on past experimental 
and clinical research as well as statistical analysis methods 
to determine independent variables. Careful consideration 
is given to sample size to avoid overfitting. During model 
development, direct, hierarchical, and statistical approaches 
are commonly used. The results obtained after simultane-
ously determining the regression model along with inde-
pendent variables are interpreted in terms of model fit and 
individual variables [43].

The K-Nearest Neighbors (K-NN) algorithm is a method 
based on the similarity between new data and existing data, 
and it does not require the creation of any model [44]. K-NN 
is preferred in classification problems because it is easy to 
implement and resistant to noisy training data. However, 
achieving the best results with K-NN depends on parameters 
such as the number of neighbors (k) and the distance metric, 
making it unclear which distance metric and feature should 
be used.

A decision tree, also known as a tree-based learning 
model, is one of the supervised learning models used to 
solve classification and regression problems. It is used to 
repeatedly divide a dataset containing a large amount of data 
into smaller clusters to provide high information gain [45]. 
Decision tree systems are advantageous for their ability to 
elucidate complex relationships within data, making them 
particularly valuable in the medical field where handling 
incomplete data is common. However, interpreting models 
can be challenging, especially with small datasets, as overfit-
ting may occur [46].

Random forest algorithm is frequently used in supervised 
classification and regression problems due to its efficiency 
and interpretability. This system, in which different decision 

tree models are used by combining, shows high performance 
in problems where the number of variables is high [47]. Its 
fast algorithm and resilience against overfitting have popu-
larized its use for classification.

Naive Bayes classifiers are statistical classifiers that uti-
lize Bayes' theorem. This algorithm assesses the probabili-
ties of current events to predict the probabilities of future 
events [48].

SVM is a machine learning algorithm based on a super-
vised learning technique. It is a method based on statistical 
learning theory used to classify both non-linear and multi-
class data. In this method, data is separated by a hyperplane. 
Decision functions obtained as a result of training the data 
are used to label the test data [49].

Quantum support vector machine

Quantum technology enables the solution of problems that 
are difficult to solve on traditional computers by using the 
properties and events discovered in the field of quantum 
physics. Quantum machine learning is a versatile disci-
pline that brings together the fields of quantum physics and 
classical machine learning. In this field, quantum varia-
tions of machine learning algorithms are created by taking 
advantage of the power of quantum computing. Contrary 
to the binary system existing in traditional computers, 
in quantum systems data can be in more than one state 
(superposition) at the same time. This is represented by 
quantum bits called qubits, which are the basic unit of 
quantum computing. When qubits are in superposition, 
more than one situation can be evaluated at the same time, 
so the running times of the algorithms can be accelerated.

QSVM, is a type of classifier that uses the quantum state 
space as a feature space for the analysis of classically provided 
data. It is a transformed version of the SVM algorithm using 
quantum computing features [50]. For the algorithm to be 
used, classical data needs to be mapped to the quantum state 
in a nonlinear way. Mapping to quantum states is achieved by 

Fig. 5  A block diagram illustrating the application of PCA to the dataset
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encoding the features in qubit form. To perform this opera-
tion, quantum maps are applied to the initial state. As a result, 
a kernel quantum circuit is created using this method. This 
allows data to be classified in high-dimensional spaces. Each 
quantum map results in different kernels, thus affecting the 
classification performance. In the final step, a non-linear ker-
nel is used to create a hyperplane, and the data is classified. 
The feature maps used in the study, prepared with 3 qubits and 
a single repetition, are shown in Appendix 1.

At this stage, 13 different feature maps (as depicted in 
Appendix 1) were applied to convert classical data into 
quantum state. Among these maps, there is two instances 
of ZZ feature maps, respectively with linear a full entangle-
ment. FeatureMaps were used so that the number of repeti-
tions of the circuit was two.

In general, when examining the feature maps, it can be 
observed that in all maps, the Hadamard gate is applied to 
all qubits, initially putting the qubits in a superposition state. 
Superposition is defined as a qubit being in multiple states 
simultaneously. In ZZ feature maps, the option of whether the 
data will be circulated with the following qubits or with all the 
following qubits is determined using the linear or full feature. 
In all maps except Pauli X, Y, and Z feature maps, the CNOT 
gates are used, which perform an operation known as quantum 
entanglement, where the value of one qubit is created based on 
the value of another qubit. The P function present in all feature 
maps represents the interaction between qubits. The Rx gate 
rotates the qubit at a certain angle on the x-axis. The created 
feature maps serve as kernels in QSVM [51]. Each feature map 
is independent of each other and is created using different gates.

In the final stage, a quantum kernel transformation is used 
to create a nonlinear high-dimensional feature space, and a 
classification process is performed by creating a hyperplane 
to separate the labeled data used by a classical SVM [52].

In all analyses, the IBM Quantum Lab environment was 
used to produce results independent of computer hardware. 
QasmSimulator, which allows the use of 32 qubits, was pre-
ferred for the analysis of the QSVM algorithm.

Experimental results

In this section, analyses using EEG signals for the diagnosis 
of Schizophrenia are shared. The performances of the analy-
ses performed using classical machine learning algorithms 
and QSVM algorithms were examined according to speed 
and accuracy values. In this study, the data set used was 
divided according to 70% training and 30% testing ratios. 
While segmenting the data, the random sample selection 
method was used to ensure that reliable results could be 
obtained on the training and test data of the model.

In the study, different numbers of qubits and different fea-
ture maps were used for the quantum algorithm. EEG data 
were prepared for analysis by undergoing certain preprocess-
ing. Dimension reduction was performed on the prepared 
dataset. The algorithms used in the study were prepared 
with the Python programming language. To apply quantum 
machine learning methods, the Qiskit library and various 
libraries under the Qiskit library were used. Classical and 
quantum machine learning techniques were applied in the 
IBM Quantum Lab environment according to the number 
of each feature. All analyses performed in the study were 
run online, using the capability of IBM Quantum cloud for 
free users.

Results obtained from classical machine learning 
algorithms

In the study, the data set prepared using EEG signals was 
converted into 12 different features using PCA. Random 
Forest, Logistic Regression, Decision Tree, K Nearest 
Neighbor, Naive Bayes, and Support Vector Machine Algo-
rithms were applied for each attribute value, starting from 
3 to 15 attributes. These operations were carried out for 
4 channels. Graphs showing the accuracy values obtained 
according to the different machine learning methods applied 
to each channel separately and the number of attributes are 
shown in Fig. 6.

When the graphs in Fig.  6 are examined, it can be 
observed that the best performance was obtained from the 
Central region's Cz and the temporal region's T3 channels. 
Therefore, Table 2 presents the performance values based 
on classical methods obtained from the number of features 
extracted from the Cz and T3 channels.

In the Cz channel, the highest accuracy rate, mostly at 
100% for feature counts between 6–15, was obtained from 
the Logistic Regression algorithm. In the T3 channel, the 
best performance, with 100% accuracy, was achieved for 
feature counts between 4–11 using the K Nearest Neigh-
bor algorithm. Overall, for the 4 channels, the Logistic 
Regression algorithm has shown higher performance com-
pared to other algorithms. In the SVM algorithm, it can be 
observed that accuracy decreases as the number of features 
increases. The results for classification performance met-
rics obtained for 5 features from Cz and T3 channels are 
presented in Table 3.

In both channels, RF and SVM methods generally exhibit 
high specificity values, while variability is observed in LR 
and DT methods. RF, SVM, and DT methods have high pre-
cision values. Overall, high sensitivity values are observed 
for all methods. High performance is evident for the kNN 
algorithm in this classification task.
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Results obtained from QSVM algorithm

A quantum-based machine learning algorithm, QSVM, 
was used in this study. To use this method, the bits were 
converted into qubits using feature maps. During this pro-
cess, 13 different feature maps were used with 2 repeti-
tions. The number of qubits varied between 3 and 15 while 
applying the feature maps. The transformation to qubit 
form was performed separately for each feature count. 
When classical machine learning algorithms were applied, 
the highest accuracy values were obtained from the Cz and 
T3 channels among the four channels. The accuracy values 

obtained from the QSVM algorithm for the Cz channel are 
provided in Table 4.

When examining the table, it can be observed that ZZ fea-
tures maps provide better accuracy when the entanglement 
is linear rather than full. Except for the Z and X feature map, 
the accuracy rate of QSVM is very low for 11–15 qubits. The 
best performance is achieved for 4 qubits. X feature map 
achieved 100% performance for all qubit values. From 5 
qubits onwards, a decline in performance is observed across 
various feature maps. Table 5 presents the values obtained 
for the Cz channel for 5 qubits, based on other classification 
performance metrics.

Fig. 6  The performance graph of classical machine learning algorithms for 4 channels
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When examining the performance values obtained for 
5 qubits in the Cz channel, it is observed that the 'X' and 
'Z' feature maps demonstrate excellent performance across 
various metrics, while the 'Y' feature map exhibits lower 
performance. Table 6 presents the results obtained from the 
utilization of different feature maps in the T3 channel, using 
the QSVM algorithm.

When looking at the results obtained from EEG signals 
taken from the T3 channel, it is observed that the best per-
formance was achieved for 2-repetition feature maps with Z 
and X feature maps. In the case of other feature maps, the 
accuracy rate decreases as the number of qubits increases. 
Table 7 provides the results of the performance metrics 
obtained for the T3 channel.

Below, the graphical representation of the results 
obtained from the channels used for Z and Pauli X feature 
map, which exhibited the best performance for both chan-
nels, is provided.

According to Fig. 7, it can be observed that the best per-
formance is achieved with Pauli X and Z feature maps using 
the Cz and T3 channels. In these feature maps, the number 
of qubits did not have any impact on the analysis results. 

However, for the O1 and F4 channels, changes in the number 
of qubits have affected the accuracy rate.

Discussion

In this study, various classical and quantum-based machine 
learning algorithms were applied to EEG data sets obtained 
from both schizophrenic patients and healthy individuals 
for the diagnosis of schizophrenia. According to the results 
obtained using classical machine learning methods, it was 
found that Logistic Regression performed best for the Cz 
channel, while k-Nearest Neighbors (kNN) was the top-per-
forming algorithm for the T3 channel. Logistic Regression 
achieved 100% accuracy for 6–15 features in the Cz channel, 
and kNN yielded the highest performance for 2–11 features 
in the T3 channel. As the number of features increased for 
all four channels, the performance of the Support Vector 
Machine (SVM) algorithm decreased. Considering that the 
Quantum Support Vector Machine (QSVM) algorithm is an 
adaptation of the SVM algorithm for quantum computers, 
this decline in performance is noteworthy. When compared 

Table 2  Accuracy rates 
obtained from the Cz and T3 
channels for classical classifiers

Cz Channel T3 Channel

Number of 
Attributes

Methods and Accuracy Values (%)

RF LR DT kNN NB SVM RF LR DT kNN NB SVM

3 100 92.31 100 96.15 96.15 100 92.31 80.77 96.15 96.15 96.15 96.15
4 96.15 92.31 100 96.15 96.15 100 96.15 84.62 96.15 100 96.15 96.15
5 96.15 92.31 96.15 92.31 96.15 100 96.15 84.62 96.15 100 92.30 96.15
6 96.15 100 100 100 92.30 100 96.15 100 96.15 100 96.15 96.15
7 96.15 100 96.15 100 92.30 100 96.15 96.15 96.15 100 96.15 92.31
8 96.15 100 96.15 100 92.30 96.15 96.15 96.15 96.15 100 96.15 88.46
9 96.15 100 96.15 100 92.30 92.31 96.15 96.15 96.15 100 88.46 88.46
10 97.06 100 85.29 100 92.30 88.46 96.15 96.15 96.15 100 92.30 80.77
11 96.15 100 96.15 100 92.30 88.46 96.15 96.15 96.15 100 92.30 80.77
12 96.15 100 96.15 96.15 96.15 88.46 96.15 96.15 96.15 96.15 92.30 80.77
13 100 100 100 96.15 96.15 80.77 96.15 96.15 96.15 96.15 92.30 84.62
14 96.15 100 92.31 96.15 96.15 73.08 96.15 96.15 96.15 100 92.30 76.92
15 96.15 100 92.31 100 96.15 69.23 96.15 96.15 96.15 92.31 92.30 69.23

Table 3  Classification 
performance metric results 
obtained for 5 qubits from Cz 
and T3 channels

Cz Channel T3 Channel

Classification  
Performance 
Metrics

Methods

RF LR DT kNN NB SVM RF LR DT kNN NB SVM

Specificity 1.0 0.81 1.0 0.81 0.90 1.0 0.90 0.69 0.90 1.0 0.81 0.90
Precision 1.0 0.88 1.0 0.88 0.94 1.0 0.94 0.76 0.94 1.0 0.88 0.94
Sensitivity 0.94 1.0 0.94 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
F1-Score 0.96 0.93 0.97 0.93 0.96 1.0 0.96 0.86 0.96 1.0 0.93 0.96
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to classical machine learning methods, the QSVM algo-
rithm delivers similar, and sometimes slightly better results 
in cases where specific feature maps are used namely X and 
Z feature maps.

When examining the results obtained with the QSVM 
algorithm, it is evident that the feature maps have a sig-
nificant impact on the performance of quantum machine 
learning methods. According to the results obtained for 
each channel, the QSVM algorithm performs better for all 
feature maps when the number of qubits is low. Except for 
the Z and X feature maps, the other maps show a decrease 
in performance starting from 5 qubits, and a significant 
drop in accuracy is observed from 10 qubits onwards. The 
increase in the number of qubits and the use of CNOT and 
Rx gates contribute to the complexity of the circuits, lead-
ing to this outcome. When considering all the circuits, only 
the circuits that include Hadamard gates and the P func-
tion are not affected by the increase in the number of qubits 
in terms of performance. In cases where CNOT gates are 
used, the complexity of the circuit increases, the accuracy 
decreases, and the algorithm's execution time also increases 
since the state of one qubit affects the state of the target qubit 
in the circuit. When the number of qubits is increased, it has 

been observed that the ZZ feature map entanglement, when 
selected linearly, results in a smaller decrease in accuracy 
compared to when the full feature is selected. For the Y fea-
ture map, when the QSVM algorithm is run, it was observed 
that the results were quite poor for all qubits from 3 to 15. 
When the circuit repetition was increased for this feature 
map, it was found that the results improved. However, in 
this study, all the feature maps had their parameters fixed, so 
this aspect was not included in the analysis. It was concluded 
that running the Y feature map with 2 repetitions may not be 
suitable for this dataset.

The methods for classical and quantum machine learn-
ing were compared in terms of accuracy rates and algorithm 
execution times in the created model. All analyses were 
conducted in the IBM Quantum Lab environment, allow-
ing for the comparison of results. It was found that classi-
cal machine learning algorithms generally completed within 
0.01 s. However, the execution time of the QSVM algorithm 
varied depending on the used feature map. In general, when 
the number of qubits was low, the analyses were completed in 
less than 1 min. However, as the number of qubits increased, 
the complexity of the circuits resulted in significantly longer 
execution times. When comparing feature maps, Pauli X 

Table 4  Accuracy rates of QSVM when different FeatureMaps are applied to Cz channel EEG signals

Qubit 
Number

ZZ
FeatureMap

Pauli FeatureMap

Linear Full Z X Y XX XZ ZX YZ ZY Z, YY Z, XX Z, Y, ZZ

3 100 100 100 100 34.61 92.30 76.92 88.46 92.30 80.76 69.23 88.46 73.07
4 100 92.30 100 100 34.61 80.76 80.76 84.61 96.15 80.76 73.07 92.30 73.07
5 92.30 76.92 100 100 34.61 92.30 84.61 80.76 84.61 76.92 76.92 80.76 65.38
6 92.30 73.07 100 100 34.61 73.07 69.23 76.92 84.61 73.07 61.53 73.07 65.38
7 84.61 65.38 100 100 34.61 96.15 61.53 80.76 65.38 65.38 53.84 61.53 46.15
8 80.76 53.84 100 100 34.61 84.61 46.15 73.07 57.69 57.69 42.30 53.84 38.46
9 76.92 50.00 100 100 34.61 80.76 38.46 57.69 50.00 53.84 34.61 50.00 38.46
10 76.92 38.46 100 100 34.61 91.17 55.88 73.52 61.76 58.82 50.00 61.76 50.00
11 69.23 34.61 100 100 34.61 80.76 34.61 34.61 34.61 34.61 34.61 34.61 34.61
12 61.53 34.61 100 100 34.61 57.69 34.61 34.61 34.61 34.61 34.61 34.61 34.61
13 57.69 34.61 96.15 100 34.61 73.07 34.61 34.61 34.61 34.61 34.61 34.61 34.61
14 46.15 34.61 96.15 100 34.61 42.30 34.61 34.61 34.61 34.61 34.61 34.61 34.61
15 42.30 34.61 96.15 100 34.61 46.15 34.61 34.61 34.61 34.61 34.61 34.61 34.61

Table 5  The results of classification performance metrics obtained from the Cz channel for 5 qubits

Classification  
Performance 
Metrics

ZZ
FeatureMap

Pauli FeatureMap

Linear Full Z X Y XX XZ ZX YZ ZY Z, YY Z, XX Z, Y, ZZ

Specificity 0.81 0.61 1.0 1.0 0.34 0.81 0.72 0.64 0.72 0.61 0.63 0.64 0.50
Precision 0.88 0.70 1.0 1.0 0.0 0.88 0.82 0.70 0.82 0.70 0.76 0.70 0.52
Sensitivity 1.00 0.92 1.0 1.0 0.0 1.0 0.93 1.00 0.93 0.92 0.86 1.00 0.90
F1-Score 0.93 0.79 1.0 1.0 0.0 0.93 0.87 0.82 0.87 0.79 0.81 0.82 0.66
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Table 6  QSVM accuracy rates obtained when applying different FeatureMaps to T3 channel EEG signals

Qubit 
Number

ZZ
FeatureMap

Pauli FeatureMap

Linear Full Z X Y XX XZ ZX YZ ZY Z, YY Z, XX Z, Y, ZZ

3 92.30 92.30 96.15 96.15 34.61 92.30 84.61 92.30 88.46 88.46 88.46 88.46 84.61
4 92.30 92.30 96.15 100 34.61 80.76 84.61 92.30 88.46 88.46 92.30 84.61 84.61
5 92.30 80.76 100 100 34.61 100 80.76 84.61 88.46 84.61 84.61 84.61 76.92
6 92.30 76.92 100 100 34.61 84.61 73.07 80.76 80.76 76.92 69.23 69.23 76.92
7 88.46 73.07 100 100 34.61 92.30 65.38 76.92 73.07 69.23 73.07 69.23 61.53
8 88.46 65.38 100 100 34.61 88.46 65.38 65.38 65.38 65.38 53.84 65.38 46.15
9 80.76 53.84 100 100 34.61 88.46 46.15 57.69 50.0 42.30 38.46 42.30 34.61
10 76.92 38.46 100 100 34.61 69.23 34.61 38.46 38.46 34.61 34.61 34.61 34.61
11 73.07 34.61 100 100 34.61 80.76 34.61 38.46 34.61 34.61 34.61 34.61 34.61
12 61.53 34.61 100 100 34.61 46.15 34.61 38.46 34.61 34.61 34.61 34.61 34.61
13 57.69 34.61 96.15 100 34.61 69.23 34.61 34.61 34.61 34.61 34.61 34.61 34.61
14 38.46 34.61 96.15 96.15 34.61 38.46 34.61 34.61 34.61 34.61 34.61 34.61 34.61
15 38.46 34.61 96.15 96.15 34.61 42.30 34.61 34.61 34.61 34.61 34.61 34.61 34.61

Table 7  The results of classification performance metrics obtained from the T3 channel for 5 qubits

Classification  
Performance 
Metrics

ZZ
FeatureMap

Pauli FeatureMap

Linear Full Z X Y XX XZ ZX YZ ZY Z, YY Z, XX Z, Y, ZZ

Specificity 0.81 0.64 1.0 1.0 0.34 1.0 0.70 0.69 0.75 0.69 0.69 0.69 0.60
Precision 0.88 0.70 1.0 1.0 0.0 1.0 0.82 0.76 0.82 0.76 0.76 0.76 0.64
Sensitivity 1.00 1.00 1.0 1.0 0.0 1.0 0.87 1.0 1.0 1.0 1.0 1.0 1.0
F1-Score 0.93 0.82 1.0 1.0 0.0 1.0 0.84 0.86 0.90 0.86 0.86 0.86 0.78

Fig. 7  The performance graph of the QSVM algorithm using Pauli X and Pauli Z Feature Maps for 4 channels
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and Z feature maps were found to have the shortest execu-
tion times for the QSVM algorithm. The use of a quantum 
simulator environment instead of a quantum computer had a 
negative impact on the study's execution time. The queuing 
of operations in quantum computers and the limitation, at the 

time of writing, of a maximum of 7 qubits in publicly acces-
sible quantum computers led to the preference for quantum 
simulators over real quantum computers for analyses.

Table 8 lists the studies conducted on the data set used in the 
article. The table presents the preprocessing and classification 

Table 8  Performance comparisons with some studies related to the dataset used in the article

Researchers Preprocessing Methods Accuracy (%) Sensitivity
(%)

Specificity
(%)

Piryatinska et al. (2017) [53] ϵ-complexity function SVM,
RF

89.38,
85.30

88.6 82.6

Naira and Alamo (2019) [54] Pearson Correlation Coefficient 
(PCC)

CNN 90.00 90.00 90.00

Bougou et al. (2019) [55] Butterworth filter
Connectivity Analysis

RF 82.36 - -

Phang et al. (2020) [56] Time-domain VAR coefficients,
Frequency-domain PDC,
Topological-based CN measures

MDC-CNN,
SVM

93.06
85.83

95.00
87.50

91.11
88.89

Singh et al. (2020) [57] Butterworth bandpass
Filter, Hjorth descriptors

CNN-SF,
LSTM

94.08
76.78

92.70
80.72

95.31
73.18

Phang et al. (2020) [58] VAR, PDC, CN SVM,
CNN,
RNN

90.37
91.69
77.50

91.11
91.11
86.67

89.64
92.50
66.79

Aslan and Akın (2020) [59] Short-time Fourier Transform 
(STFT)

CNN
(VGG-16)

95.00 95.00 95.00

Rajesh et al. (2021) [60] Symmetrically Weighted Local 
Binary Pattern: SLBP

Logitboost 91.66 89.74 93.33

Khodabakhsh et al. (2021) [61] Brain Functional Connectivity 
(FC)

MDC-CNN
FC-UNET

90.44
94.11

97.78
91.66

81.79
100.0

Supakar et al. (2022) [62] Random Projection  
(Dimensionality reduction)

RNN-
LSTM

98.00 98.00 98.00

Xin et al. (2022) [63] Normal and İmproved high-
order functional connectivity 
matrices,

Finite Impulse Response (FIR).

SVM 94.05 95.56 92.31

Sairamya et al. (2022) [64] Discrete wavelet transform,
Relaxed Local Neighbour Dif-

ference Pattern (RLNDiP).

YSA 100.0 100.0 100.0

Aslan and Akın M. (2022) [65] Hilbert Huang Transform 
(HHT),

Hilbert Spectrum (HS).

VGG16,
XCeption,
ResNet152,
InceptionV3.

96.00
95.00
95.00
87.50

96.00
95.50
95.50
88.50

96.00
97.50
94.50
92.00

Sobahi et al. (2022) [66] Daubechies 4th order wavelet 
function,

Local Binary Pattern (LBP).

CNN 97.70 97.80 97.60

Alves et al. (2022) [67] Granger causality test,
Pearson’s correlation  

coefficient,
Spearman’s correlation  

measures.

CNN 52.00
57.00
62.00

73.00
100.0
100.0

-
-
-

Kumar et al. (2023) [68] Symmetrically Weighted-Local 
Binary Patterns (SLBP),

Histogram of Local Variance 
(HLV)

AdaBoost 92.85 97.80 87.20

Balasubramanyan et al. (2023) 
[69]

Butterworth band pass filter,
WICA,
Relief algorithm.

Hybrid Grey Wolf-Bat Algo-
rithm-

ANFIS

99.51 95.87 -

Proposed Method DWT, Statistical Methods QSVM (Pauli X, Pauli Z) 100.0 100.0 100.0
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algorithms used in these studies. They carried out their analysis 
using classical machine learning algorithms and deep learning 
models. Differences in the preprocessing stages and methods 
used in the literature cause the obtained performances to vary. 
In this study, in addition to the DWT method, various statistical 
techniques were applied to the data set during the pre-process-
ing stage and the data set was tried to be made most efficient. 
Unlike other studies in the literature, the analyses were carried 
out on a single channel. Due to the limited use of qubits offered 
by quantum platforms, the size of the data set was gradually 
reduced with the PCA algorithm. The new data set obtained by 
applying all these processes was subjected to an experimental 
process with QSVM and classical classification algorithms. 
When the analysis results were examined, it was determined 
by the authors that the performance of the proposed method 
was higher compared to the previous studies.

The main advantages of this study can be summarized as 
follows. To the best of the authors' knowledge, it is the first 
quantum machine learning study in the field of schizophrenia. 
The method demonstrates encouraging results, being able to 
generalize from the data, using only a limited number of com-
ponents. For this reason, it forms the basis for future studies in 
the field of neuroscience. Even if not all channels of the data set 
were used in the study, the method showed better performance 
compared to studies in the literature. Although there are vari-
ous experimental studies using the QSVM algorithm, no study 
has been found that investigated the impact of the feature maps 
on the EEG data, as it was implemented in this study. This 
analysis shows that quantum circuits and gates greatly affect the 
performance obtained from the QSVM algorithm. It has been 
proven that the performance of QSVM can be maximized with 
correctly selected feature maps.

In addition to the stated advantages of the study, the 
method we used has various limitations since quantum is a 
new and rapidly evolving field. The main limitations expe-
rienced in the study can be summarized as follows. The use 
of a quantum simulator environment instead of a real quan-
tum computer had a negative impact on the duration of the 
study. Real platforms could not be used due to the queuing 
of transactions in quantum computers and the qubit limita-
tions of quantum computers that everyone can access. One 
of the important contributions of the study is to demonstrate 
the impact of the number of qubits on classification perfor-
mance, which is why the number of qubits used in the study 
was set between 3 and 15. Operations carried out on 13 fea-
ture maps with a limited number of qubits did not involve 
the use of real machines for this reason. As a reminder, and 
at the time of writing, the number of available qubits on pub-
licly available real quantum computer is only seven qubits.

In the future, research will be conducted to examine the 
performances of different quantum machine learning algo-
rithms in the literature. It is planned to carry out studies to 
optimize and improve the parameters of existing methods 

(e.g., number of repetition) and to test on different simula-
tors, such as the ones based on density matrix and state vector, 
which are reputed to be quick and efficient. If access to real 
machines with a high number of qubits is provided, the studies 
to be carried out will be analyzed on real quantum computers.

Another question that naturally arise is whether quantum 
machine learning can provide an advantage over classical 
computing, by replacing or complement existing algorithms 
in the domain of healthcare. A first direction to answer this 
question, is to evaluate the performance of quantum machine 
learning in situation where classical computing fails. A sec-
ond research direction is to compare the predictions made 
by quantum and classical pipelines. A similar approach was 
investigated in [70] where the authors trained a meta-classifier 
on a subset of the data where the quantum and classical clas-
sifiers provided different predictions.

Conclusions

The main goal of this study is to investigate the effectiveness 
of machine learning algorithms in the early diagnosis and ini-
tiation of the treatment process for psychological disorders 
such as schizophrenia. To achieve this goal, four channels to 
be used in the model were initially determined. EEG signals 
were divided into 5 sub-bands by applying discrete wavelet 
transform to these four channels. A dataset for analysis was 
obtained by applying specific statistical techniques to each 
subband. PCA was applied to reduce the dimensionality of 
the data. To use the data in quantum systems, they were con-
verted to qubit form. For this purpose, the effects of various 
feature maps on the QSVM algorithm were examined. Classi-
cal machine-learning methods were also applied to the dataset. 
As a result of the analyses, despite being a newly emerging 
technology, it was observed that quantum machine learning 
achieved state-of-the-art and sometimes slightly better results. 
In the study, the best results were obtained using a limited 
number of qubits. Datasets with a higher signal-to-noise ratio 
might require more qubits. However, this is generally promis-
ing for EEG classification. Experimental study results indi-
cate the potential of quantum technologies for healthcare. In 
the domain of schizophrenia, our work suggests that quantum 
machine learning can help with the diagnosis of schizophrenia, 
while using a limited number of components as compared to 
the classical approaches. Additional work is required to evalu-
ate if quantum and classical approaches exploit different rela-
tionship between the data, and if there is an interest in using a 
hybrid method for the detection of schizophrenia. The results 
obtained for different repeat parameters of feature maps will be 
also evaluated in future studies. New studies will be conducted 
using real quantum computers and different simulator environ-
ments to explore the accuracy and execution times of various 
quantum-based algorithms.
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Appendix

Appendix 1. Quantum Feature Maps used in the study, 
obtained with Qiskit 0.44.3 (IBM, Armonk, NY, the US), 
a Python library for quantum computing. In the schema, 
PauliFeatureMap, ZZFeatureMap and ZFeatureMap  
refer to the Qiskit implementation of the feature maps
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