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Abstract We address the problem of selecting probe station locations from where

probes can be sent to monitor all the nodes in the network. Probe station placement

involves instrumentation overhead. Hence, the number of probe stations should be

minimal to reduce the deployment cost. Also, probe station placement should be

such that the network can be monitored even in the presence of failures. We present

algorithms to select locations of probe stations so that the entire network can be

monitored for computing various performance metrics. We aim to find a minimal set

of probe station nodes so as to minimize the instrumentation overhead. The algo-

rithm presented provides robust monitoring in presence of node failures. We then

present algorithms to make the solution resilient to probe station failures, and to deal

with weakly connected nodes. We provide an experimental evaluation of the pro-

posed algorithms through simulation results.
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1 Introduction

With the increase in complex networks and new services that require QoS

guarantees, and the demand for sophisticated tools for monitoring performance of a

network has increased rapidly. Tools for monitoring the network and detecting

faults are critical for numerous important network management tasks, e.g., QoS

guarantees to end applications, traffic engineering, ensuring SLA (Service Level

Agreement) compliance, fault and congestion detection, and identifying perfor-

mance bottlenecks.

Various approaches have been proposed in the past for monitoring an IP network

in order to measure different performance metrics. Broadly the approaches can be

classified into two groups, namely, the passive monitoring tools and the probing

tools.

• Passive monitoring tools monitor the network by deploying monitoring agents

on the networking devices using SNMP/RMON [1] or the Cisco NetFlow tool

[2]. Stemm et al. [3] argue for use of passive monitoring because it does not send

additional traffic to perturb actual Internet traffic. e.g., Cisco’s NetFlow

measurement tool allows NetFlow enables routers to collect detailed traffic data

on packet flows between source-destination pairs. Key mechanism to enhancing

NetFlow volume manageability is careful planning of NetFlow deployment.

Although non-intrusive nature of passive monitoring is very appealing, it has

several limitations. These tools require deployment of monitoring agents on a

large number of devices. This might be an expensive operation and might not be

possible in all cases due to privacy and security considerations. The tools can

only measure regions of the Internet that application traffic has already

traversed. Current measurement methods based on SNMP only provide device

centric view of performance. They can not monitor end-to-end network

parameters, like end-to-end path latency, that involve several components.

Unlike end-to-end probes, neither of these methods can be used directly to

measure end-to-end delay, loss, and impact of these performance metrics on

service quality.

• Probing tools consist of connectivity, latency, and bandwidth measurement tools

such as pathchar [4], pathrate [5], PathChirp [6], and NetTimer [7]. These tools

measure end-to-end network performance metrics by sending probes in the

network. e.g., PathChirp [6] is an active probing tool for estimating available

bandwidth on a communication network path. Based on the concept of self-

induced congestion, PathChirp features an exponential flight pattern of probes,

called chirp. The end-to-end nature of probes allows measurement of end-to-end

performance metrics involving several components. These tools however send

network management traffic into the network. Thus care needs to be taken to

optimize the probes that are being sent out in the network, so that the network

functioning is not affected by the management traffic. One promising approach

to optimize the probes is active probing [8, 9]. Active probing is an interactive

probing approach, where probes to send are selected at run time based on

previous probe results. In this scheme, probes get sent only to the points of
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interest where there is a possibility of potential bottleneck or failure. Probing

tools do not require special instrumentation of each node. Instead probes are sent

from a small set of nodes, called probe stations, to the rest of the network. A

probe station is able to monitor a limited set of nodes and links. Thus probe

stations need to be deployed at few strategic points so as to maximize network

coverage while minimizing infrastructure and maintenance costs.

In this paper we address the problem of selecting suitable node locations for

probe station deployment. Instantiating probe stations at right locations is important

for effective active probing solution. Improper probe station deployment can lead to

higher non-optimized probe traffic. It can also reduce the diagnostic capability of

the probing tool. Moreover a large number of probe stations would increase cost and

incur instrumentation overhead. We present algorithms to find minimal set of probe

stations for effective probing and propose various extensions to it.

1.1 Related Work

Network probing with low overhead has prompted development of new monitoring

approaches. Various approaches have been presented in the past regarding the

placement of probe stations. [10, 11, 12] propose intelligent distribution of probe

stations at various traffic points in the network. Approaches presented in [4, 13, 14,

7] place probe stations at end-points of end-to-end path whose characteristics are of

interest. Reference [15] proposes a single, predefined point in the network to be

deployed as probe station. Below we describe the design rational of these

approaches and then present our approach to probe station placement.

IDMaps project [10, 11] produces latency maps of Internet using special

measurement servers called tracers that are distributed around the Internet so that

any node is relatively close to one or more tracers. These tracers continuously probe

each other to determine their latency which is used to approximate the latency of

arbitrary network paths. The paper discusses different approaches of deploying

tracers. IDMaps measurements may not be too accurate due to relatively small

number of paths being monitored.

References [15, 16] use explicitly routed probes to reduce the number of

monitoring stations required. Breitbart et al. [15] propose to use a single predefined

point in the network as a monitoring station, called Network Operations Center, to

perform all the required measurements. However in today’s ISP and Enterprise

environment, approaches based on explicitly routing of packets might not be

feasible. Many routers frequently disable the source routing option. Authors in [17]

and [18] propose placement of monitoring stations that is robust to route changes.

Horton and Lopez-Ortiz [17] propose a strategy to use high arity nodes for beacon

placement to test for connectivity on all relevant edges of the network. However the

beacon set size could be quite large for real ISP topologies [18]. Kumar and Kaur

[18] propose an approach for beacon placement by identifying edge sets that can be

monitored by a beacon under all possible route configurations. Reddy et al. [19]

propose to have each receiver monitor only a portion of path between itself and the

source. On the other hand, in our approach only the probe stations nodes perform the
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task of sending probes and monitoring the network. Adler et al. [20] propose an

approach to find minimum cost multicast trees that cover links of interest in the

network.

Above approaches do not take network failures into account. The problem of

probe station selection becomes harder when network components failure is taken

into consideration. In this paper we propose a probe station placement strategy, to

monitor the network while minimizing the probe traffic and probe station

deployment overhead. We propose a monitoring scheme that is robust against

failures in the network. A related work in probe station selection has been done by

[21], where they propose algorithms to compute locations of a minimal set of

monitoring stations such that all links are covered, even in the presence of link

failures. However there are some significant differences. Bejerano and Rajeev

Rastogi [21] focus on monitoring link delays and faults, while we consider node

performance and node failures. A node specific perspective brings up various

different node specific issues and optimization possibilities like dealing with weakly

connected nodes, special treatment for neighboring nodes, node failures etc. As

probe station itself is a node, we also address the case of failure of a probe station

itself. We propose a probe station placement that is resilient to probe station

failures.

1.2 Our Contributions

We present algorithms to select locations of probe stations so that the entire network

can be monitored for computing various performance metrics. We aim to find a

minimal set of probe station nodes so as to minimize the deployment cost. The

algorithm presented provides robust monitoring in presence of node failures. We

then present extensions to the algorithm to make the solution resilient to probe

station failures, and to deal with weakly connected nodes. The failures assumed are

permanent node failures. We assume static routing in the presented work.

Considering route changes is part of our ongoing research.

2 Proposed Approach for Probe Station Selection

Given a set of nodes in the network, the probe station placement should be such that

the probe stations are able to send enough probes to all the nodes to localize the

fault. The number of probe station should be less to reduce the deployment

overhead. It is possible to arrive at an optimal probe station placement by doing an

exhaustive search, but this combinatorial approach is computationally too expensive

to be deployed practically, unless the network is quite small. We propose a heuristic

based approach that incrementally selects nodes which provide suitable locations to

instantiate probe stations. The proposed algorithm involves much fewer computa-

tions than the combinatorial approach. These algorithms attempt to find the minimal

probe station set but are not guaranteed to do so. We later show through simulation

results that these algorithms give results that are close to optimal.
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2.1 Design Issues in Deploying Probe Stations

The decision of probe station selection is based on nature of routes, nature of

targeted failures, availability of dependency information etc. Below we discuss

various such factors that contribute to the overall decision making of probe station

selection:

• Nature of targeted failures: Probe station selection depends on the nature of

faults that need to be diagnosed. Assuming a connected network, to detect a

single node failure, a single probe station can be sufficient. However in the same

network, to detect a link failure, we might need more than one probe station

because, while the probe paths from a single probe station may be able to reach

all other nodes, they might not cover all the edges. In this paper, we are targeting

node failures.

• Maximum number of failures: The assumption of maximum number of faults

that need to be localized in a network is an important factor in selecting the

probe stations. In a connected network, a single node failure can be detected by

just one probe station. However a single probe station might not be sufficient to

detect two node failures, if both failures occur on the same probe path.

Considering the extreme case where all nodes’ failure needs to be diagnosed, the

probe stations then need to be placed at the vertex cover of the graph formed

from the network topology. We propose a k-fault resilient algorithm, assuming a

limit of occurrence of at most k failures in the network at a time.

• Probe station failure: The problem becomes even more challenging when the

probe station failure is taken into consideration. In case of probe station failure,

probe stations must be chosen to provide the ability to detect such failures and

make another probe station perform the job of the failed probe station. In the

proposed algorithm, we consider probe station failures while deploying the

probe stations.

• Topological constraints: Another important criterion involved in probe station

selection is the topological constraint. The nodes with less connectivity need

special treatment. For example, a probe station needs to be deployed at

neighboring node of the leaf nodes, because otherwise if the leaf node’s

neighbor fails, the leaf node becomes unreachable by any probe station. Special

topology structures like chains and rings also demand specific probe station

placement requirements.

• Static versus dynamic probe station instantiations: The probe station selection

criteria differ if a probe station location can be selected actively based on current

diagnosis requirements. As opposed to static probe station selection, this

approach provides more flexibility, but deploying probe stations dynamically

might not be possible at all places in the network. In current work, we assume

static instantiation of probe stations.

• Nature of routes: Probe station selection is also affected by the nature of routes

taken by probes. Considering source routing, a node can probe another node

through multiple routes which enhances its probing capacity. The symmetric or

asymmetric nature of routes also provides additional information of the probing
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capacity of the probes. Special care needs to be taken in the presence of loops. If

the routes dynamically change, due to load-balancers, source routing, mobility,

etc., the probe station might not be able to detect the same faults in the changed

routing conditions. We make an assumption of static routes and a consistent

routing model, as explained in next section. Considering the case of route

changes is part of our ongoing research.

• Dependency information: The amount of routing information available for

decision making poses some other practical problems in probe station selection.

The accuracy and confidence in the information is expressed through the

dependency model. Based on the information available, this model could be

deterministic or probabilistic. It can be complete or incomplete. Moreover based

on the nature of the network, the model might change with time. Changes can

occur due to route changes or because of availability of more precise

information.

2.2 Definitions

While presenting our research objectives and results, we use the general concepts

that are defined in this section.

We represent a network by an undirected graph G = (V,E), where V = {v1, v2, . . .}

is the set of vertices that represent the network nodes, and E = {e1, e2, . . .} is the set of

edges that represent the network links. An edge ek is identified by an unordered pair

(vi, vj) of vertices, where vi and vj are called the end vertices of ek. A node vi is said to be

a neighbor of node vj if (vi, vj) 2 E. We will denote the number of nodes in the graph,

i.e. |V|, by N.

A path from node u to node v is a finite sequence of nodes through which a

message passes to reach from node u to node v. An edge exists between each pair of

consecutive nodes in the sequence and no vertex appears more than once. There can

be many paths in a network between nodes u and v. However by the above definition

of path, by Path(u,v) we refer to the specific path that is used for packet

transmission in the network from node u to node v. The number of nodes in a path is

called the length of the path. We represent a path P from node u to node v as

P = Path(u,v) = (u, u1, u2, . . ., v). Node u is called the source and node v is called

the destination of path P. The node that precedes a node ui in the sequence of nodes

defined by path P is called the predecessor of ui and is denoted by Predecessor(P,

ui). The predecessor of the first node in the sequence is undefined. The node that

succeeds a node ui in the sequence of nodes defined by path P is called the successor

of ui and is denoted by Successor(P, ui). The successor of the last node in the

sequence is undefined. Two paths P = Path(u,v) = (u, u1, u2, . . ., v) and

Q = Path(w,v) = (w, w1, w2, . . ., v) to the same destination node v but from

different sources u and w, are called independent paths if there does not exist any

node in path P that is also present in path Q, except node v.

A probe is a test transaction sent from a probe station u to a node v such that the

success or failure of the probe depends on the success or failure of the nodes on

Path(u,v). A successful probe on Path(u,v) indicates good health of all nodes on
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Path(u,v). A failed probe on Path(u,v) indicates poor health or failure of one or

more nodes on Path(u,v).

Given a set of probe stations and the possibility of maximum k node failures, a

non-probe station node is called a shadow node if there exists a scenario of k failures

which makes the node unreachable from all probe stations. Shadow nodes hold the

property that their health cannot be localized by any probe station in a certain

scenario of k failures. Thus to determine health of all nodes in the network, the

probe stations should be selected such that there do not exist any shadow nodes

under the assumption of maximum k failures in the network.

2.3 Assumptions

We assume the availability of dependency information between the probes and

network nodes. This information is stored in the form of a dependency model that

represents which nodes are probed by a probe. We assume consistent IP routing

such that packets to a particular destination are always forwarded to the same next

hop by a forwarding node irrespective of the packet source. We discuss this routing

model in Sect. 2.3.1. We place a limit on the maximum number of failures that can

occur in the network and that need to be diagnosed. We also place a limit on the

maximum number of probe stations that can be deployed. We consider only node

failures for the following discussion. To simplify the problem we initially assume

that probe station nodes do not fail. Later we relax this assumption by allowing

probe station failures. We also deal with topology constraints that require special

treatment for weakly connected nodes.

2.3.1 Consistent Routing Model

For the ongoing discussion, we assume static single-path routing. Thus packets

between a particular source-destination pair always follow a single path that does

not change with time. We also assume a traditional IP routing model in which a

forwarding node, on receiving packets for a destination node, sends the packets to

the next hop listed in its forwarding table for that destination. Under this

assumption, a forwarding node will always forward packets for a particular

destination to the same next hop, irrespective of the source of the packets. We also

assume that all routes in the network are free of loops. In what follows, we refer to

this set of assumptions as the consistent IP routing model.

The following theorems hold for the consistent IP routing model. We have not

presented proofs for all theorems, due to lack of space.

Theorem 2.1 In the consistent IP routing model, if probe paths from two different
probe stations to the same destination have one node in common, then all
subsequent nodes following the common node on the two probe paths will be the
same.

Theorem 2.2 Probe paths P1 and P2 to a destination node d are independent if
and only if Predecessor(P1,d) is different from Predecessor(P2,d).
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2.4 Design Rationale

The consistent routing model provides an efficient test for determining whether or

not two paths to a destination node d are independent. Instead of comparing the

entire sequences of the two paths, it is sufficient to compare the predecessors of

node d on the two paths. If the predecessors are the same, the paths are not

independent. We now show with Theorem 2.3 that with the consistent routing

assumption, localization of k failures requires the existence of k independent probe

paths from the probe stations to every node.

Theorem 2.3 Assuming a consistent IP routing model with at most k failures in
the network, a set of probe stations can localize any k non-probe-station node
failures in the network if and only if there exist k independent probe paths to each
non-probe-station node that is not a neighbor of any probe station.

Proof Assume a consistent IP routing model with at most k non-probe-station node

failures in the network.

Case 1 If there exist k independent probe paths from a set of probe stations P to all

non-probe-station nodes that are not neighbors of any probe station, then P can

localize any k non-probe-station node failures in the network.

Proof by Way of Contradiction Assume that there exist k independent paths from

a set of probe stations to all non-probe-station nodes that are not neighbors of any

probe station. Also assume that at most k non-probe-station nodes can fail but k non-

probe-station node failures cannot be localized. Without loss of generality, assume

that there exists one non-probe station node u whose failure cannot be localized in

the given scenario. Node u can belong to one of the following cases:

1. Node u is a neighbor of some probe station node. A direct probe can be sent

from neighboring probe station to node u to localize the failure.

2. Node u is not a neighbor of any probe-station. As assumed, there can be at most

k non-probe-station node failures in the network and failure of node u leaves the

possibility of at most (k - 1) other non-probe-station node failures. Since all of

the k probe paths probing node u are independent, at most (k - 1) probes can

fail due to the (k - 1) faults in the network. Thus there must exist one probe

path through which a probe can be sent to probe node u and localize its failure.

Hence our assumption is wrong. This proves Case 1.

Case 2 If a set of probe stations can localize any k non-probe-station node failures,

then there exist k independent probe paths to each non-probe-station node that is not

a neighbor of any probe station.

Proof by Way of Contradiction Assume that there exists a set of probe stations

that can localize any k non-probe-station node failures and there do not exist k
independent probe paths to each non-probe-station node that is not a neighbor of any

probe station. Consider a failed non-probe-station node u that has (k - 1)

independent probe paths. As node u is one of the failed nodes, with the assumption

of at most k non-probe-station node failures, there can be at most (k - 1) other
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failures. Consider a scenario, where these (k - 1) failures occur on the (k - 1)

independent probe paths to node u, such that one node fails on each—*of the

(k - 1) probe paths to node u. This makes node u unreachable to any probe station,

such that no probe station is able to localize the failure of node u. Hence our

assumption is wrong. This proves the statement in Case 2.

Both directions of ‘‘if and only if’’ have been proved separately, therefore their

conjunction is also true. Hence the theorem is proved.

Consider the example shown in Fig. 1a. This figure shows how the availability of

three independent paths to node 8 from probe station nodes 1, 4, and 6, help to

diagnose a scenario of 3 node failures (nodes 2, 7, and 8). Failure of nodes 2 and 7

prevent probe stations 1 and 6 respectively from diagnosing the health of node 8.

However, with the assumption of detecting at most 3 faults, and the availability of 3

independent paths, there is one probe path to node 8 (path from 4 to 8) with no

intermediate failed nodes. Thus probe station node 4 can detect the failure of node 8.

An incorrect probe station placement can make some nodes unreachable in a certain

failure scenario. We use the term shadow nodes to represent such nodes. Figure 1b

shows how an incorrect probe station placement at nodes 2 and 6 can lead to

inadequate diagnostic power to detect failure of nodes 4 and 5. This figure shows

paths from nodes 2 and 6 to reach node 5. It can be seen that the failure of node 4

makes node 5 unreachable from both the probe stations, making node 5 a shadow

node.

The neighbor nodes of a probe station do not need k independent paths as they

can be uniquely diagnosed through direct probes from the probe stations irrespective

of the faults present in the network. Thus all non-probe-station nodes that are not

neighbors of probe stations and that do not have k independent paths from the probe

stations belong to the shadow node set. And the objective of probe station placement

algorithms is to minimize the shadow node set. The heuristic used is to select a node

as a probe station that minimizes the shadow node set.

Fig. 1 a Three independent paths to node 8 from probe station nodes 1, 6, and 4, to detect failure of node
8 in a scenario of failure of three nodes (nodes 2, 7, and 8); b A scenario of failure of nodes 4 and 5, where
inappropriate probe station placement (at nodes 2 and 6) makes node 5 a shadow node; c Example
showing node 3 as a weakly connected node
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2.5 Algorithms for Probe Station Selection

Given the assumptions made in Sect. 2.3, the objective of the algorithms

presented in this section is to compute a smallest set of nodes to deploy probe

stations such that each node that is not a neighbor of a probe station can be

probed by k independent probe paths from these probe stations. As explained in

Sect. 2.4, such a set of probe stations can monitor the health of all nodes to

diagnose k node failures in the network. We first present an algorithm for

optimal probe station placement based on exhaustive search by evaluating all

possible node combinations. But this combinatorial approach is too expensive

to be deployed practically for large networks. Hence, we propose a heuristic-

based approach that incrementally selects nodes which provide suitable node

positions to instantiate probe stations. The proposed algorithms involve much

fewer computations than the combinatorial approach. These algorithms attempt

to find the minimal probe station set but are not guaranteed to do so. We later

show through simulation results that these algorithms give results close to

optimal.

While presenting our algorithms, we use certain notations that are defined in the

following sub-section.

(1) Algorithmic notations: We use the following notation for the algorithms

presented in this section:

Graph G = (V,E): represents the managed network where V represents the

network nodes and E represents the network links.

N: the total number of nodes in the network. Thus N = |V|.

Neighbor(u): the set of nodes that are neighbors of node u in the network.

ST(u): A spanning tree that represents the routes used to send probes from node u

to all other nodes in the network. We assume the availability of spanning trees

rooted at each node.

ST(u).parent(v): returns the parent node of node v in the spanning tree rooted at

node u.

We use the following notation in the algorithms to represent specific data

structures:

PS: the set of selected probe stations

SN: the set of shadow nodes

Parents(x): the set of parent nodes of node x in spanning trees rooted at all of the

selected probe stations.

MAXFAULTS: the maximum number of faults that can occur in the network. We

mostly refer to this value as k, but for clarity we use the term MAXFAULTS in

the algorithms.

MAXPSFAULTS: the maximum number of probe station failures that can occur

in the network.

MAXPSSIZE: the maximum size of the probe station set.
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2.6 Combinatorial Algorithm

This algorithm takes a naive approach by evaluating all possible combinations of

nodes to obtain a set of probe stations for localizing k faults. To localize k faults, we

know from Theorem 2.3 that each non-probe station node should either be a

neighbor of one of the probe station nodes or should have k independent probe paths

to it. As the goal is to find a minimum set of probe station nodes which can localize

k faults, the search starts by examining all singleton sets of one node and then

continues exploring combinations of successive larger sizes until the desired set is

found.

This algorithm explores all possible probe station combinations starting from

combinations of smallest size, and then incrementally increasing the set size to a

maximum limit of MAXPSSETSIZE. For each combination of probe station nodes,

the shadow node set is computed. As defined in Sect. 2.2, shadow nodes for a

network consist of the set of nodes whose health cannot be diagnosed by any probe

station in a certain failure scenario. In the scenario of maximum k failures, the

shadow nodes consist of all non-probe-station nodes which are not neighbors of

probe station nodes and which do not have k independent probe paths from the

probe stations.

The search can be improved by sorting the nodes in decreasing order of network

degree and exploring nodes or adding nodes to an existing set in this order to try

different combinations.

This algorithm performs
PMAXPSSETSIZE

i¼1

�
iMAXPSSETSIZE

�
:i:N ¼ O

�
NMAXPSSETSIZE

�

operations. If MAXPSSETSIZE is set to N, the number of nodes in the network,

then the algorithm’s computational complexity becomes exponential in N. In larger

networks the number of probe station nodes is likely to be large. In such networks,

the exhaustive algorithm can be computationally too expensive to be practically

deployed.

We use this algorithm as a reference algorithm to compare with the heuristic

algorithms of the next section, because it finds the optimal solution which provides

minimum number of probe stations for localizing k faults.

2.7 Heuristic-Based Algorithm to Localize Node Failures Assuming no Probe

Station Failures

For clarity, we first do not take probe station failures into consideration. We assume

a limit k on the maximum number of faults that need to be diagnosed in the network.

Initially the selected probe station set is empty and all nodes belong to the shadow

node set. As explained in Sect. 2.4, the heuristic used is to choose a node that

minimizes the shadow node set. The first probe station is selected based on the node

degree. The node with the largest number of neighboring nodes can remove

maximum number of nodes from the shadow node set during the first probe station

selection and hence is a good candidate to be selected as the first probe station.

However in scenarios where some pre-placement of probe stations already exists,

this step of first probe station selection can be avoided.

J Netw Syst Manage (2008) 16:351–374 361

123



When only one probe station has been selected, all nodes that are not neighbors

of the selected probe station belong to the set of shadow nodes. All the nodes that do

not belong to the selected probe station set are candidates for the next probe station

selection. For each candidate probe station, the algorithm determines how the

shadow node set would change if the candidate was selected as a probe station. This

shadow node set will consist of (i) nodes that are not neighbors of selected probe

stations, and (ii) nodes that do not have k unique paths from the selected probe

stations. Of all the candidate probe station nodes, the node that produces the

smallest set of shadow nodes is selected as the next probe station node. Note that

the independence of paths can be verified simply by comparing the predecessors of

the destination node on the two probe paths as explained in Sect. 2.4. The algorithm

iteratively adds a new node to the probe station set till the desired capacity of

diagnosing k faults is achieved. The algorithm terminates when no shadow nodes

are present or the probe station set size reaches the maximum limit.

This approach is presented in Algorithm SNR. In this algorithm, probe stations

are first selected to find any two faults in the network. Then new nodes are added to

localize any three faults in the network. In other words, in the first iteration, probe

stations are added such that each non probe station node is either a neighbor of a

probe station or has two independent probe paths. In the next iteration, more probe

stations are selected such that each non probe station node that is not a probe station

neighbor has three independent probe paths. The nodes are added in this fashion by

incrementally increasing the overall diagnostic capability, till k faults in the network

can be localized.

In Algorithm SNR, we use a data structure Parents(x) representing the set of

nodes that are parents of node x on probe paths from all nodes in the selected probe

station set to node x. Thus |Parents(x)| gives the total number of disjoint probe paths

available through the selected probe station set. Lines 6 to 15 run a loop to find an

independent probe path to each shadow node. In line 16, function ResetShadow-

Nodes() is called to reset the shadow node set to all nodes that are not probe stations,

are not probe station neighbors, and have less than k independent probe paths to

them. Lines 6 to 15 when repeated, find another set of probe stations such that each

shadow node has one additional independent path. This increases the diagnostic

capability of the probe station set to localize one more fault in the network. Also

note that nodes with degree less than k can not have k independent paths. Probe

stations are selected so that such nodes are always neighbors of probe stations.

Figure 2 presents an example of how the probe station selection algorithm selects

probe stations to detect any two node failures in the network. Figure 2a shows a

network topology with nine nodes considering all nodes as shadow nodes. Figure 2b

shows node 4, being the node with largest degree, as the selected probe station

removing neighboring nodes 2, 6, 1, and 5 from the shadow node set. Figure 2c

shows node 6 as the next selected probe station, which removes neighboring nodes 9

and 7 from the shadow node set. Nodes 3 and 8 are not neighbors of any probe

station, but they have two independent probe paths from probe station 4 and 6 as

shown in the Fig. 2c. Thus both nodes 3 and 8 are also removed from the shadow

node set. Thus the probe station placement at nodes 4 and 6 can detect any two node

failures in the network.
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Algorithm SNR: shadow Node Reduction Algorithm (Probe station selection to localize any k faults in

the network)

input : MAXPSSETSIZE, MAXFAULTS

output : Probe station set

1 Define N, ST(n), ST(n), parent(m),PS, SN, PPath(p,n), Neghbor(n), Parents(n);

2 CreateDataStructures();

3 u/ SelectFirstProbeStation();

4 InitializeDataStructures(u);

5 repeat

6 repeat

7 foreach node c, where c 62 PS do

8 S(c) / ComputeShadowNodeset();

9 end

10 Select node c with smallest |S(c)| as next probe station;

11 UpdateDataStructures(c);

12 if|PS|/MAXPSSETSIZE then

13 return PS (Insufficient probe station set size);

14 end

15 until|SN|=0;

16 ResetShadowNodeSets();

17 until|SN|=0;

18 return PS as the probe station locations;

Procedure CreatedataStructures

begin

PS/NULL;

SN/V

foreach node w [ V do

parents(w)/NULL;

end

end

Procedure SelectFirstProbeStation

Select node u with highest node degree as first probe station :

return u :

Procedure InitializeDataStructures (node u)

Add u to PS:

Remove node u from SN :

Remove each node v [ Neighbor(u) from SN :

foreach node w 62 PS do

Parents(w)/ST(u).Parent(w) :

end
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Algorithm SNR: continued

Procedure ComputeShadowNodeSet (node c)

S(c)/Null :

foreach node x [ V do

if((x = c) & (x 62 Neighbor(c)) & (x [ SN) & (ST(c) parent(x) [ parents(x))) then

Add x to S(c) :

end

end

return S(c)

Procedure UpdateDataStructures (node c)

Add c to PS :

SN/ S(c):

foreach node y 62 PS do

Parents(y)/Parents(y) [ ST(c).Parents(y)

end

Procedure ResetShadowNodeSets

SN/NULL:

foreach node z do

if((z 62 PS) & (z 62 {V(p[PS) Neighbor(p)}) & (|Parents(z)| \MAXFAULTS)) then

Add z to SN

end

end

2.8 Algorithm to Localize Probe Station Failures Along with Non-probe Station

Node Failures

Algorithm SNR builds the probe station set assuming that probe stations do

not fail. Thus no provision is made to localize a probe station failure.

Fig. 2 a Original network topology with all nodes as shadow nodes; b Probe station placement at node 4
removing neighboring nodes from shadow node set; c Probe station placement at node 6 removing all
nodes from shadow node set

364 J Netw Syst Manage (2008) 16:351–374

123



However in a real network, these probe stations are also subject to failure, and

thus probe stations should be selected such that a probe station node failure

can be localized by the other probe stations. To find a probe station set that

has the capability to localize probe station failures, there are three main points

to note:

1. In Algorithm SNR, probe paths from a probe station to other probe station

nodes were not considered. To localize a probe station failure, each probe

station should also be probed by k independent probe paths.

2. In Algorithm SNR, all neighboring nodes to a probe station were assumed to be

uniquely diagnosable and thus k independent paths were not found for such

nodes. However, in a scenario where probe stations can fail, this assumption

can not be made for neighboring nodes of the probe stations. Such nodes should

also have k independent probe paths.

3. Till now, node failures could be localized for nodes with any degree. Nodes

with degree less than k were made probe station neighbors as such nodes cannot

have k independent probe paths. However when probe stations can also fail, this

approach can not be used. Thus there may exist scenarios of k failures in which

the failure of a node with degree less than k cannot be localized. One way to

deal with nodes with smaller degree, can be to include a node with degree d \ k
in the shadow nodes formed by a probe station only till d unique paths are found

for such a node.

We present Algorithm SNR-PSF that deals with probe station failures and

small degree nodes by modifying some of the functions of Algorithm SNR. The

algorithm still incrementally finds independent paths for each node. However,

unlike the previous algorithm, independent paths are searched for probe station

nodes and their neighbors as well. This is done by including probe station and

their neighbors in the shadow node set. Nodes with degree d \ k, are included in

the shadow node set till d unique probe paths are found for such nodes. To

implement this functionality Algorithm SNR-PSF makes following modifications

to Algorithm SNR.

Function InitializeDataStructurs() does not remove the first probe station and

its neighbors from the shadow node set. Also the set Parents is computed for

probe station nodes as well. Function ComputeShadowNodeSet() considers

probe station c and its neighbors while building the shadow node set. Node with

degree d \ k is included in shadow node set computation till number of parents

for that node is less than d. While updating data-structures, set Parents is

updated for probe station nodes as well. While resetting the shadow node set for

next iteration, probe stations and probe station neighbors are also considered.

Node with degree d \ k is included only if less than d parents exist in the

node’s parent set.
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Algorithm SNR-PSF: Shadow Node Reduction with Probe Station Failures

Probe station selection to localize any k faults in the network limited probe station failures;

The algorithm is same as Algorithm SNR. However,some of the procedures used are implemented

differently, as explained below in the function definitions;

Procedure CreateDataStructures

This procedure is the same as one used by Algorithm SNR.

Procedure SelectFirstProbeStation

This procedure is the same as one used by Algorithm SNR.

Procedure InitializeDataStructures (node u)

Add u to PS

foreach node w in V do

Parents(w) / ST(u)Parent(w);

end

Procedure ComputeShadowNodeSet (node C)

S(c) / Null;

foreach node x e V do

if ((n [ SN) & ((|Parents(x)| \ degree(x)) & (ST(c) Parents(x) [ Parents(x))) then

Add x to S(c)

end

end

return S(c)

Procedure UpdateDataStructures (node C)

Add c to PS

SN / S(c);

foreach node y [ V do

Parents(y) / (parents(y) [ ST(c).Paernt(y);

end

Procedure ResetShadowNodeSets

Update SN as follows;

SN / NULL foreach node z do

if ((|Parents(z)| \ MAXFAULTS) & (\Parents(z)\ \ degree(z)) then

Add z to SN;

end

end
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2.9 Algorithm to Localize Both Probe Station and Non-probe Station Node

Failures with Different Node Failure-Limits

Algorithm SNR-PSF can be further modified by placing different limits on

failure of probe station nodes and non probe station nodes. It may be the case

that, once probe station nodes have been selected, extra resources can be

committed to make these nodes more robust against failures, so that probe

station nodes might have a lower probability of failure than non-probe-station

nodes. We can then set different limits for maximum number of failures for

probe stations and non-probe stations. We assume a limit l for probe station

failures, where l \ k, and k - l for non probe station failures. Thus each node

requires k independent probe paths. However, note that nodes whose l ? 1

neighbors are probe stations do not need k independent probe paths because, out

of l ? 1 probe station neighbors of the node, even if l probe station nodes fail,

there will exist one probe station that can diagnose health of the node by

sending a direct probe to it.

This in turn also allows nodes with degree less than k to be treated in a

different manner. A node with degree less than k can be completely diagnosed if

it has a degree [l, by having l ? 1 neighbors as probe stations. Even for nodes

with degree greater than k, if a node has l ? 1 neighbors as probe stations then it

does not need k independent probe paths and thus can be removed from the

shadow node set.

Consider the example network shown in Fig. 1c. Assume that for this network

k = 3 and l = 1, i.e., at most three nodes can fail such that maximum two non probe

station nodes and one probe station node can fail. Node 3 has a degree two which is

less than k. Thus node 3 can not have k independent probe paths. However if node 3

has l ? 1, i.e., 2 neighbors as probe station nodes, then health of node 3 can always

be determined.

The modified approach is presented in Algorithm SNR-CPSF by changing

some of the functions of Algorithm SNR. The algorithm now maintains a count

of neighboring probe stations for each node in the data structure Neighbor-

ingPSCount and excludes a node from the shadow node set when this count

exceeds l. Functions CreateDataStructures(), InitializeDataStructures(), and

UpdateDataStructures() would maintain the datastructure NeighboringPSCount

for each node along with other data structures.

In functions ComputeShadowNodeSet() and ResetShadowNodeSets(), a node

with degree degree(n) \= MAXPSFAULTS is included in the probe station

selection criterion only till |Parents(n)| \degree(n), i.e. till degree(n) unique probe

paths are found for them. Nodes with degree greater than MAXPSFAULTS are

included till enough probe paths and probe stations are selected such that they are

completely diagnosed.
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Algorithm SNR-CPSF: Shadow Node Reduction with Constrained Probe Station Failures

Probe station selection to localize any k faults in the network including limited probe station failures:

The algorithm is same as Algorithm SNR. However, some of the procedures used are implemented

differently, as explained below in the function definitions;

Procedure CreateDataStructures

begin

PS / NULL;

SN / V;

foreach node w [ V do

Parents(w) / NULL;

end

foreach node u [ V do

NeighboringPSCount(u) / 0;

end

end

Procedure SelectFirstProbeStation

This procedure is the same as one used by Algorithm SNR

Procedure InitializeDataStructures (node u)

Add u to PS;

foreach node w [ V do

Parents(w) / ST(u).Parent(w);

end

foreach node u [ V do

if n [ Neighbor(p) then

NeighboringPSCount(n)??;

end

end

Procedure ComputeShadowNodeSet (node c)

S(c) / Null;

foreach node x [ V do

if ((n [ SN) & ((|Parents(n)| \ degree(n)) & (degree(n) \= MAXPSFAULTS))| (degree(n)
[ MAXPSFAULTS)& (ST(c).parent(n) [ Parents(n)))

then

Add x to S(c) ;

end

end

return S(c)

Procedure UpdateDataStructures (node c)

Add c to PS;

SN / S(c);
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Algorithm SNR-CPSF: continued

foreach node y [ V do

Parents(y) / (Parents(y) [ ST(c).Parent(y);

end

foreach node u do

if u [ Neighbor(c) then

NeighboringPSCount(u)??;

end

end

Procedure ResetShadowNodeSets

SN / NULL ;

foreach node z do

if ((|Parents(u)| \ MAXFAULTS) & (|Parents(u)| \ degree(u)) & (NeighboringPSCount(n)
\= MAXPSFAULTS)) then

Add z to SN;

end

end

3 Simulation Results

In this section we present experimental evaluation of algorithms for probe station

selection introduced in this paper. We apply the algorithms to build a probe station

set that can localize at most k node failures, where the value of k is pre-defined for

each execution. We present results for two sets of experiments. In the first set of

experiments we assume that probe station nodes do not fail. We then perform

another set of experiments where we consider probe station failures along with non

probe station node failures. As the exhaustive search algorithm provides the smallest

probe station set that can localize at most k failures, we use its result as a benchmark

to compare size of the probe set built using the heuristic-based algorithm presented

in this paper. Because of its high computational complexity, we were not able to run

the exhaustive search algorithm for larger networks. For evaluation of the proposed

algorithm on larger networks, we compared the Algorithm 1 with the algorithm

where probes stations are selected at random locations in network till the desired

diagnostic power is not obtained. Thus the random algorithm selects a node location

as a probe station randomly and updates the shadow node set. The algorithm keeps

selecting probe stations in this fashion till it achieves a null shadow node set.

3.1 Simulation Model

Let MD represent the maximum node degree in the network, AD represent the

average node degree, and N represent the total number of nodes in the network.

Given these three parameters, we create a network of N nodes, randomly
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introducing N*AD links such that no node has a network degree greater than MD,

and also ensuring that the network is connected.

We conducted experiments on network size ranging from 20 to 100 with average

network degrees ranging from 6 to 9 and maximum node degree set to min (20,

network size). Each point plotted on the graph is an average of 20 runs. We

compared the probe station set size and execution time of the SNR, SNR-PSF, and

SNR-CPSF algorithms, with corresponding Exhaustive and Random placement

algorithms.

In the experiments presented in Figs. 3, 4 we present results for SNR, Exhaustive

and Random algorithm. We assume that probe station nodes do not fail, and set the

maximum number of non-probe-station node failures to 4. The graphs shown in

Figs. 5, 6 present the experiment results of the Algorithm SNR-PSF, Exhaustive and

Random algorithm assuming at most 4 node failures and also considering probe

station failures. The graphs shown in Figs. 7, 8 show the results of SNR-CPSF,

Exhaustive and Random algorithms where we place explicit limits for probe station

and non probe station node failures, making the placement resilient to at most 2

probe station failures and 2 non-probe-station node failures.

Figures 3, 5, 7 compare the performance of SNR, SNR-PSF, SNR-CPSF

algorithms with the corresponding Exhaustive search algorithms. The graphs show

that SNR algorithms results in probe station sets of sizes close to the optimal probe

station set sizes computed by the respective Exhaustive search algorithms.

Moreover the SNR algorithms run in significantly less time than the Exhaustive

search algorithm.

Figures 4, 6, 8 compare the SNR, SNR-PSF, and SNR-CPSF algorithms with the

corresponding Random placement algorithms. The results show that the probe

station set size computed by SNR algorithms is significantly smaller than the

Random placement algorithms, by taking a marginally longer time than the Random

placement algorithms. Comparing the results of Fig. 3 with Figs. 5, 7 and the results

of Fig. 4 with Figs. 6, 8, we can see that more probe stations are needed to make the

localization resilient to probe station failures, as compared to the case where probe

station failure is not considered.

Fig. 3 Comparison of Exhaustive and SNR algorithm assuming no probe station failures on various
networks with average node degree 6 and 9
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We compare SNR, SNR-PSF, and SNR-CPSF algorithms in Fig. 9. We can see

that probe station set size computed by Algorithm SNR is smaller than that

computed by Algorithm SNR-PSF, and Algorithm SNR-CPSF. This is because less

probe stations need to be deployed when probe station failures are not considered.

Algorithm SNR also takes advantage of probe station neighbor node property to

reduce the probe station set size. Algorithm SNR-CPSF forms larger probe station

set than SNR-PSF because Algorithm SNR-PSF does not ensure monitoring of

Fig. 4 Comparison of Random and SNR algorithm assuming no probe station failures on various
networks with average node degree 6 and 9

Fig. 5 Comparison of Exhaustive and SNR-PSF algorithm assuming probe station failures on various
networks with average node degree 6 and 9

Fig. 6 Comparison of Random and SNR-PSF algorithm assuming probe station failures on various
networks with average node degree 6 and 9
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nodes with degree less than 4. On the other hand, since Algorithm SNR-CPSF

assumes at most 2 probe station failures, it deals with nodes with degree less than 4

but greater than 1, by placing probe stations at the neighboring nodes of such

weakly connected nodes. Algorithm SNR-CPSF provides more exhaustive moni-

toring capacity but in turn increases the size of probe station set.

Fig. 7 Comparison of Exhaustive and SNR-CPSF algorithm assuming probe station failures on various
networks with average node degree 6 and 8

Fig. 8 Comparison of Random and SNR-CPSF algorithm assuming probe station failures on various
networks with average node degree 6 and 9

Fig. 9 Comparison of SNR, SNR-PSF and SNR-CPSF algorithms on various networks with average
node degree 6 and 9
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4 Conclusions

We have addressed the problem of selecting suitable locations for probe station

deployment to monitor the network even in presence of node failures. We discussed

the design issues in probe station selection. We proposed a heuristic based approach

of selecting node locations that minimize shadow nodes, and presented algorithm

based on it for minimal probe station placement. We also addressed the case of

probe station failure, and presented algorithms to make the probe station placement

resilient to probe station failures. We proposed different optimizations in dealing

with specific cases like weakly connected nodes, neighbor nodes, etc. We presented

an experimental analysis of the algorithms through simulation results, and discussed

the effectiveness and efficiency of different proposed algorithms.
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