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Abstract Conventionally, network migration models study competition be-
tween emerging and incumbent technologies by considering the resulting in-
crease in revenue and associated cost of migration. We propose to advance the
science in the existing network migration models by considering additional
critical factors, including (i) synergistic relationships across multiple technolo-
gies, (ii) reduction in operational expenditures (OpEx) as a reason to migrate,
and, (iii) implications of local network effects on migration decisions. To this
end, we propose a novel agent-based migration model considering these fac-
tors. Based on the model, we analyze the case study of network migration to
two emerging networking paradigms, i.e., IETF Path Computation Element
(PCE) and Software-Defined Networking (SDN). We validate our model us-
ing extensive simulations. Our results demonstrate the synergistic effects of
migration to multiple complementary technologies, and show that a technol-
ogy migration may be eased by the joint migration to multiple technologies.
In particular, we find that migration to SDN can be eased by joint migra-
tion to PCE, and that the benefits derived from SDN are best exploited in
combination with PCE, than by itself.
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1 Introduction

Technical novelties in conjunction with economic factors decide the fate of an
emergent technology, protocol, standard or product in present-day communi-
cation networks. Networks are constantly migrating to new technologies and
services, not only driven by the growth of subscribers base and application de-
mand, but also new technological advances. The migration is typically a grad-
ual transition over time, requiring the interoperability and integration of differ-
ent network applications, technologies and protocols. For instance, though the
first IPv6 specification was released in 1998 [1], the migration process is still
ongoing with only 0.2% of current Internet traffic being IPv6-compliant [2].
On the other hand, IP backbones today migrate to router interfaces of a higher
capacity at a much faster pace. A typical carrier IP network is re-planned and
increased capacity every 12-18 months, so that maximum utilization at peak
traffic loads is never higher than approximately 30%-40% [3]. Thus, there is
no doubt that understanding the strategy and the investments for network
migrations, as well as the expected revenue, network operation expense and
user growth are at the heart of every network migration decision.

Technology adoption has been significantly investigated in the literature us-
ing various migration models. However, a few increasingly important factors
have not received enough attention. First, the majority of previous studies
model technology migration in isolation, disregarding the effect of co-existing
technologies in the market. Such studies, thus, do not account for the syner-
gistic relationships that may exist across technologies, which as a result, may
either facilitate or impede the adoption of a new technology. For instance, an
offering of VPN services with guaranteed QoS may result in a higher revenue,
when combined with automated network management systems. Second, the
majority of migration models are based on the capital expenditures (CapEx)
required to purchase the new technology. However, technology migration of-
ten results in tangible reduction of operational expenditures (OpEx) that is
gained over time, which is typically neglected in the current models. Finally,
human decisions are subject to influence of the social and behavioral factors
involved in the process of migration. For example, although herd mentality (or
network effects) plays a significant role in the adoption of a technology, over
and beyond its technological merits, it is rarely captured in migration models.

In this paper, we propose a generic agent-based model to explore network
migration to multiple new complementary technologies – technologies whose
simultaneous migration is expected to provide greater rewards than the sum
of the rewards derived from their isolated migrations. In addition to CapEx,
our model also incorporates the difference in the OpEx incurred pre- and
post-migration, which significantly affects an agent’s decision to migrate. In
the proposed model, an agent also incorporates its estimates of its neighbor’s
decision to migrate, in its own migration decision. We accomplish this by means
of both deterministic and probabilistic heuristics. Our results confirm that a
technology migration may be eased by the joint migration of a complementary
technology that is more likely to be adopted.
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To validate our proposed model, we analyze the case study of optimal path
computation with joint migration to two emerging networking paradigms, i.e.,
IETF Path Computation Element (PCE [4]) and Software-Defined Networking
(SDN [5]), respectively. The assumed network is a typical multi-vendor and
multi-administration network, where separate network islands of routing sys-
tems need to cooperate to provision an end-to-end connection, and are subject
to migration decision pertaining to PCE, SDN, or both. PCE enables optimal
path computation across network islands, an improved price/performance ra-
tio, while, at the same time simplifying path computation operations [6]. All
these benefits added together attract considerably more users (and in turn traf-
fic) to the network. Exchanges between PCE and network elements, though
standardized, are limited to PCEP messages, and thus a PCE cannot setup
the computed paths itself. To overcome this limitation, the network opera-
tor may decide to migrate to another technology, say, SDN, which facilitates
configuration of all the network elements, and thereby helps in setting up the
computed paths. Moreover, combining a stateful PCE with OpenFlow pro-
vides an efficient solution for operating transport networks [7]. Thus, there is
an implicit correlation between the deployment of PCE and SDN in a network,
which make these two technologies an interesting and practically relevant case
study.

Our paper is organized as follows. Section 2 discusses the related litera-
tures and puts our contributions into perspective, while Section 3 provides an
overview of the technologies that we study, namely PCE and SDN. Section
4 defines our generic multi-technology migration model and its application to
the case study of PCE/SDN. Section 5 discusses the simulation framework to
evaluate our network migration model, and highlights its various aspects using
the empirical results, while, Section 6 presents some concluding remarks.

2 Related Work and Our Contribution

In this section, we summarize the previous research in the domain of our work,
and highlight our contributions in this paper.

2.1 System Dynamics v/s Agent-based Models

Network migrations are typically studied using system-dynamics [8, 9] and
agent-based models [10,11]. The former approach is based on aggregate system-
wide properties, while, in the latter approach, simple rules of mutual interac-
tion between agents govern the evolution of the system. In the system dynamics
approach, the migration problem is treated as a dynamic system in [8,9], where
the rate of migration depends on the existing number of migrated agents in
the system, according to the traditional diffusion theory of innovation [12]. On
the other hand, in an agent-based approach [10,11], the system consists of an
ensemble of agents, each trying to increase its own utility. For example, in [13],
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the migration to secure BGP is studied as a series of decisions by each domain
to adopt the technology, based on the inter-domain routing and the deploy-
ment of secure BGP in other domains. Both approaches demonstrate that the
cumulative number of migrations increase over time assuming a ‘S ’-shaped (or
sigmoidal) curve, implying that a majority of migrations is triggered in a short
time interval [14]. Despite comparable results, an agent-based approach is pre-
ferred over system dynamics, when the mutual interactions between agents in
the system is non-uniform, for example, when an agent does not interact uni-
formly with all other agents, but only with those in its local neighborhood.
Hence, we choose agent-based modeling over system dynamics approach for
our study in this paper.

2.2 Single v/s Multiple Migrations

The network migration problem has typically been studied for a single tech-
nology or protocol (e.g., IPv6 [15, 16] or secure BGP [13, 17]), where it is
assumed that an emerging protocol/technology replaces an incumbent pro-
tocol/technology. For example, in case of IPv6, the models assume that the
domain operates either in IPv4 or migrates fully to IPv6, at which point it
operates only with IPv6. Even when multiple protocols are considered, such
as S-BGP and soBGP [17], there is only a single prevalent protocol, and a
decision is made by an agent to adapt to only one of the competing protocols.
Sohn et al. propose an economic evaluation model for a particular aspect of
migration, namely, joint development and standardization of correlated tech-
nologies [18]. Thus, although majority of the prior migration studies deal with
migration of a single technology, the novelty of our model is in considering
multi-technology migrations.

2.3 CapEx and OpEx considerations

An agent’s migration decision is often considered to be solely based on the
CapEx involved. OpEx was recently introduced in cost analysis of migration
research to precisely estimate the cost that the migration to a technology
requires and compare the alternatives [19]. However, the game-theoretic mod-
eling of migration have not yet considered it [8, 9, 13, 15–17]. In this paper,
we consider both CapEx and OpEx in an agent’s decision to migrate. In our
work, the OpEx reflects an assumption that the proposed new system will
include a level of automation into the network that alleviates human efforts,
resulting in its overall cost reduction. Our model is thus novel in considering
both revenue increase and OpEx reduction, resulting from migration, as the
factors affecting an agent’s decision to migrate.
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Fig. 1: Example of connection request setup in a multi-vendor network using
both PCE and SDN.

2.4 Our Approach and Contribution

This paper extends our previous work on agent-based modeling of network mi-
gration to new technologies [20]. In this paper, we improve our CapEx, OpEx
and revenue functions used in the network migration model. In particular, we
take into consideration that revenue of a network island follows economies of
scale, i.e., every subsequent unit of traffic incurs a lesser cost to the network
operator than the previous. In contrast to [20], we differentiate between the
OpEx functions in the unmigrated and migrated states. Unlike [20], where
only an agent’s immediate neighbors were considered to affect the migration
choices of the agent in question, we now extend this effect to include even
distant neighbors within an agent’s circle of influence (defined in Section 4.2).
The mutual effect of an agent’s migration choice on another is weighted by
the reciprocal of the distance between them, restricted to a threshold dis-
tance (beyond which the effect is considered negligible). We also introduce the
notion of coupling coefficient to effectively capture the degree to which two
complementary technologies couple with each other. We propose two novel
heuristics for an agent to estimate the strategies of its neighboring agents in
the immediate future, which, in turn, plays a significant role in the migration
decision of the agent in question. Another unique contribution is in definiton
of an agent’s payoff from a transition, which is based on its CapEx, OpEx
and revenue functions. An agent migrates only if such a transition results in
a positive payoff for itself.

To validate our model, we consider a novel case study of multi-vendor enter-
prise network, considering the revenue of a network to vary with the volume of
traffic it transits for its customers. To this end, we consider simultaneous and
correlated deployment of an automated network management system for path
computation (PCE) as well as a programmable network configuration with
SDN controllers, such as based on OpenFlow [21]. We show that the proposed
model is applicable for scenarios, where competing network solutions (such
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as multi-vendor environments) collaborate and compete at the same time for
path setup, while aiming at maximum utilization in course of its operation. As
is well-known, inter-operablity of multi-vendor network islands remains a chal-
lenge, and a migration to standardized and programmable automated systems
is an ongoing open problem in carrier networks [22].

3 Case Study of PCE and SDN: Background and Reference
Architecture

In this section, we present an overview of the technologies, namely PCE and
SDN, which we later study using our network migration model. We compare
these two technologies on grounds of path computation and provisioning of a
connection request across multiple network islands in a multi-vendor enterprise
network based on emerging carrier-Ethernet (connection-oriented) networks.

3.1 Technology Overview

PCE is a network-wide centralized server that receives path computation re-
quests from Path Computation Clients (PCC), and computes optimal con-
strained end-to-end paths within a network island. The PCE can reduce the
computation overhead and optimize resource utilization by computing optimal
paths. A major advantage of the PCE architecture is its ability to compute
optimal paths across multiple network islands using the Backward Recursive
Path Computation (BRPC) mechanism [23]. In the BRPC mechanism, PCEs
in different islands along a pre-defined chain progressively compute a Virtual
Shortest Path Tree (VSPT) from the destination to the source, in order to
compute the optimal end-to-end path. In absence of PCE, network islands
use Interior Gateway Protocols (like Open-Shortest-Path-First and Routing-
Information-Protocol) and Exterior Gateway Protocols (like Border Gateway
Protocol) to compute paths by means of predefined routing table entries.

SDN is an emerging networking architecture that facilitates programma-
bility of the network control plane and its separation from the data plane [5].
It provides a centralized control interface to all the network elements that
support SDN protocols, such as Open Flow [21], which helps in quick experi-
mentation, reconfiguration, optimization, and monitoring of switching/routing
algorithms. SDN reduces the network OpEx by simplifying operations, opti-
mizing resource usage through centralized data/algorithms, and simplifying
network software upgrades. SDN also significantly cuts down a network oper-
ator’s CapEx, since a commercial-off-the-shelf (COTS) server with a high-end
CPU is much cheaper than a high-end router [6]. Further, SDN offers the
possibilities of dynamic network topologies and network virtualization, which
makes it currently a highly popular paradigm [24].
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3.2 Reference Architecture

Figure 1 illustrates an automated connection setup in a typical multi-vendor,
multi-technology network island setting. Two different network islands are
shown. The network island A consists of six different IP routers (C1-C6) from
vendor C (e.g. Cisco), whereas, the network island B consists of six IP routers
(J1-J6) from Vendor J (e.g. Juniper).

The choice of technology for network island A is PCE-only. A Path Compu-
tation Element (PCE-A) is used within the network to compute constrained-
based paths across intra- and inter-network island scenarios. The topology
discovery and distribution is handled via separate protocols, such as OSPF,
and the RSVP-TE protocol can be used for path setup. All protocols need
to be installed and configured separately on every router, with only limited
possibilities for functionality extensions and optimizations. Network island A
has the possibility to migrate to SDN in future. The migration to SDN would
benefit network island A by introducing a central intelligence that is capable
of automating processes, thus saving OpEx.

The choice of technology for network island B is PCE+SDN. In this net-
work, a central intelligence (SDN Controller B) is directly accessing every
router in the network, via a SDN router interface for flexible configuration
of router equipment. The SDN Controller B can choose from different net-
work functionalities, such as topology discovery, topology distribution, path
computation and path setup. All functionalities are software-defined modules,
that are programmed on top of the SDN Controller for on-the-fly functional-
ity extensions and optimizations. Network Island B already has the maximal
technology set of our case-study. All operations can be fully automated, thus
no manual intervention is necessary, resulting in significant OpEx savings.

Both network island are connected via two inter-network island connec-
tions. A path computation request from C1 to J6 is handled via the PCEP
protocol supported by both network islands. Router C1 sends a PCEP Re-
quest message to PCE-A (1). PCE-A tries to compute an end-to-end path to
J6, but does not have enough information to calculate this path. PCE-A knows
the existence of PCE-B (either through pre-configuration or discovery), and
issues a Backward-Recursive PCE-Based Computation. The PCE-B computes
the shortest path from J2 to J6 by accessing the SDN Controller B, that is
retrieving all necessary information from the Topology Discovery and Distri-
bution for optimal path computation within network island B. The optimal
path from the entry-router (J2) to the destination (J6) is returned to PCE-A
(4). PCE-A now has the optimal path from J2 to J6 and computes the best
path from C1 to J2 and returns the whole path to C1 (5). The resulting path
(C1-C2-C4-C6-J2-J3-J5-J6) is used to reach the destination.

A couple of comments are worth noting. First, although each PCE sees only
its own network topology, BRPC enables an optimized (i.e., best QoS) end-
to-end path. Second, despite the fact that each SDN controller can implement
its own path computation algorithm, the assumption here is that they often
tend to be highly proprietary in nature. Thus, lack of standards makes it
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hard for SDNs to interoperate in a multi-vendor setting — that is where the
IETF-standardized approach with PCE comes in as an effective solution for
interoperability.

3.3 Interplay involved in joint migration to PCE and SDN

As can be seen, the interplay involved in joint migration to PCE and SDN
can lead to interesting, non-trivial network behavior, which we now discuss in
further detail.

In our analysis, we assume a typical control plane with management net-
work control environment. A network operator has an advantage in migrating
to SDN over PCE, as a PCE can only compute paths, while a SDN controller
can as well provision the computed paths in a highly programmable fashion.
However, as previously mentioned, in a typical multi-vendor setting, a PCE
has advantages over SDN. This is because PCE (being standardized) can com-
municate with neighboring PCEs, whereas, SDNs (being non-standardized)
cannot. Thus, larger the diversity of network equipment in the same network,
greater is the incentive for the network operator to migrate to PCE than SDN,
on account of interoperability considerations.

Within a network island, a SDN controller is likely to be able to provi-
sion a path, even when a PCE may not. A typical SDN controller, based on
OpenFlow, is in fact expected to access and configure network elements at the
operator’s liking, including the handling of lower layers of the network, such
as optical circuits. Not only can a SDN controller find paths that a PCE is
requesting, but it can potentially even reconfigure the whole network such that
a totally new path is configured to provision a connection request. Thus, SDN
can potentially create paths with a better QoS unlike PCE, which only com-
putes paths based on requests. Hence, the end-user benefits more if its network
provider migrates to SDN, than PCE. On the other hand, as the PCE protocol
is reactive in nature, unlike SDN (which is proactive), end-users stand to gain
more from PCE than from SDN.

Whereas a SDN controller is triggered by the NMS/OSS in the network,
PCE can be triggered by the end-user. Both SDN and PCE benefit the net-
work operator through OpEx reduction; whereas, PCE, in addition, benefits
the end-user by providing improved QoS for end-to-end connections involving
multiple vendors. Although a network does not attract any additional traffic
by migrating to PCE/SDN, it benefits significantly by reducing its OpEx after
migration.

As SDN offers more functionalities than PCE (such as path provisioning,
topology discovery and topology distribution), both the CapEx required to
migrate to SDN and the resulting OpEx is more than that required to migrate
to PCE. In addition, unlike PCE, the non-standardized nature of SDN adds
to its OpEx. Further, the CapEx involved in simultaneous migration of a
network island to PCE and SDN is less than the sum of the CapEx involved in
separate migrations to PCE and SDN. This is because, in case of simultaneous
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migrations, the PCE can be incorporated within the SDN controller, thus
providing an integrated platform at a reduced cost.

In summary, network islands that migrate to PCE can compute optimal
paths (i.e., with QoS), which can be provisioned using automated network
management frameworks, such as SDN. Thus, it is clear that SDN controllers,
with its reach limited to a network island, ideally complement the PCEs
that can communicate across networks, thereby, enabling optimal end-to-end,
multi-vendor, multi-domain path computation and provisioning under QoS
constraints.

4 Multi-Technology Network Migration Model

In this Section, we present our generic agent-based model for studying network
migration to complementary technologies. As a case study, we apply our model
to study the dynamics of joint migration to multi-vendor path computation
and provisioning, namely PCE and SDN, respectively.

4.1 Generic Model

Our model captures the collaborative and competitive business relationships
between the agents and also the inter-dependencies involved in their decision-
making process. The time is discretized, and thus the model progresses in
time-steps. The agents are considered to be myopic (in time) in their decision-
making and are assumed to act under complete information. The former as-
sumption entails each agent optimizing their strategy choices locally (in time),
while the latter means that each agent is aware of the complete network topol-
ogy as well as the past strategy choices of all other agents.

Notations: The agents in our model are denoted by N1, N2, · · · , Ni, · · · . An
agent’s strategy set is represented by a compatible combination of the available
strategies. We denote this universal set of strategies available for the agents to
choose from, by two sets of substitutive strategies, S = {Su, Sv}, where u and
v are the complementary technologies under consideration, which implies that
the payoff that an agent derives by adopting both of them simultaneously is
higher than the sum of its payoffs derived by adopting each of them separately
(while, no such relationship is assumed to exist between su,0 and sv,0). Here,
Su = {su,0, su,1} represents the strategy of non-adoption and adoption of
technology u, respectively. Similarly, Sv = {sv,0, sv,1} represents the strategy
of non-adoption and adoption of technology v, respectively. Further, su,0 (or
sv,0) and su,1 (or sv,1) are substitutive strategies, as an agent can adopt only
one of them at any given time. Thus, an agent’s strategy set for any given
time-step is denoted by a = {su,k1

, sv,k2
}, where, k1, k2 ∈ {0, 1}. The volume

of sales of agent Ni given its strategy set a is denoted by T i
a.

An agent’s revenue and OpEx depends on its amount of sales, while the
cost of changing its strategy set depends on the required CapEx. Considering
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this, we define the following notations.

Ci(a→ a′) , CapEx of Ni to migrate from a to a′

Ri(a) , Revenue of Ni with strategy set a

Oi(a) , OpEx of Ni with strategy set a

where, a denotes the current strategy set of agent Ni and a′ denotes the
strategy set to which Ni migrates in the subsequent time-step. We define the
payoff of an agent on migrating to a different strategy set by the return on
investment it derives from such a decision. The payoff derived by an agent on
migrating from a to a′ is thus given by the CapEx involved in the migration
and the corresponding change in revenue and OpEx as:

Pi(a→ a′) =
∆(Revenue)− [CapEx +∆(OpEx)]

CapEx

=
[Ri(a

′)−Ri(a)]− Ci(a→ a′)− [Oi(a
′)−Oi(a)]

Ci(a→ a′)
(1)

Each agent thus optimizes its strategy choices at every time-step based on
its payoff maximization in the immediate future. Note that each of the CapEx,
OpEx and revenue functions, in turn depend on the amount of sales of agent
Ni, namely, T i

a and T i
a′ . T i

a, viz. the current amount of sales of agent Ni, can
be deterministically computed by Ni from its system measurements, whereas,
T i
a′ , viz. the expected amount of sales of Ni on transitioning from strategy set
a to a′, is unknown. We next present two different approaches to estimate this
expected amount of sales, T i

a′ .

4.2 Estimation of T i
a′

The amount of sales of an agent primarily depends on the agent’s technology
choices, which in turn is significantly affected by the strategy choices of the
neighboring agents within its ‘circle of influence’. We define this novel concept
referred to as a circle of influence of an agent as its neighborhood comprising of
all agents, whose technology choices significantly affects the migration decision
of the agent under consideration. In other words, we capture the notion of local
network effects [25] using our concept of circle of influence. Thus, the circle of
influence of, say, agent Ni comprises of all agents whose distance from agent
Ni is bounded by a threshold distance (by the shortest path), say δi. We
call δi as the ‘relevant radius’ of Ni’s circle of influence. We also note that
the mutual effect of the strategy choices of two agents (within each others
circle of influence) is inversely proportional to the distance between them. To
capture this aspect, we define the effective migration coefficient of agent Ni,
as the weighted average of the strategy sets of all agents within Ni’s circle of
influence; the weights being the reciprocal of the distance of the corresponding
agent from Ni. The influence of the strategy choices of an agent, which does
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not fall within Ni’s circle of influence, on Ni’s migration decision is, hence,
considered negligible. Thus, for an agent to estimate its expected amount of
sales in the immediate future, it needs to estimate of the strategy choices of all
agents within its circle of influence, in the immediate future. This computation
of effective migration coefficient for agent Ni is further illustrated in Algorithm
1.

Algorithm 1 Effective migration coefficient of agent Ni

num← 0
den← 0
for all agents Nj do

if i 6= j then
dist← minumum number of hops between Ni and Nj

if dist < δi then

num← num+
Migration state of Nj

dist

den← den+
1

dist
end if

end if
end for
effective migration coefficient of Ni ←

num

den

Figure 2 shows a 12-node network to illustrate the above mentioned con-
cepts. In this topology, the relevant radius of agent N1, i.e. δ1, is considered
to be 2 hops, and N1’s circle of influence is marked by a dotted line. The
adjoinging tables in Figure 2 list the current migration state of all agents in
the network. Given this, the effective migration coefficient of N1 is thus given
by,

N2︷︸︸︷
1

1
+

N3︷︸︸︷
0

2
+

N4︷︸︸︷
0

1
+
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2
+
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+
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+
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1

1
+

1

2
+

1

2

=
2

5
= 0.4

We next present two heuristics for an agent to estimate its neighbor’s
strategy in the subsequent time-slot, based on probabilistic and deterministic
methods. The underlying rationale behind both these heuristics is that an
agent’s strategy choice is very likely to vary with that of the majority of the
agents in its circle of influence.

4.2.1 Deterministic Strategy Estimation

In the deterministic approach, an agent considers the strategy choices of its
neighboring agents to be the same as that of the majority of the agents in
their circle of influence. Thus, while agent Ni is estimating its future amount
of sales, if Nj is within Ni’s circle of influence, and if more than 50% of the
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Fig. 2: Circle of influence

agents in Nj ’s circle of influence employ strategy set a in the current time-step,
then Ni expects Nj to switch to strategy set a in the next time-step, under
this approach.

4.2.2 Probabilistic Strategy Estimation

In this estimation approach, an agent considers the probability of its neighbor’s
strategy choice in the subsequent time-slot to be a, as x, if x denotes the
fraction of agents with strategy set a, in this neighbor’s circle of influence, in
the current time-slot. Thus, in the process of agent Ni estimating its future
amount of sales, if Nj is within Ni’s circle of influence, and if, say, 30% of the
agents in Nj ’s circle of influence employ strategy set a in the current time-step,
then Ni assumes the probability of Nj switching its strategy set to a in the
subsequent time-step as 0.3, under this approach.

Note that it is due to our assumption of complete information that these
heuristics can be realized. Figure 3 plots the probability of migration of an
agent using deterministic and probabilistic estimation approaches, as a func-
tion of its effective migration coefficient.

An agent thus estimates the strategy sets of all agents within its circle of
influence in the immediate future, using one of the two strategy estimation
approaches, mentioned above. It thus disregards the future strategy choices
of agents outside its circle of influence, and assumes them to maintain the
same strategy set, in the subsequent time-step. Thereafter, the agent takes
note of its own set of possible transitions from its current state, i.e., a →
{a1, a2, . . .} (see Figure 4). It then computes the payoffs resulting from each
of its possible transitions, in sync with the strategy set estimations of the
agents within its circle of influence, i.e., {Pi(a → aj)},∀j, and accordingly
chooses its future strategy set as the one that maximizes its resulting payoff,
i.e., a′ = arg maxaj

{Pi(a→ aj)}, given its current strategy set a. In this way,
an agent optimizes its strategy set at each time-step.
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Fig. 3: Probability of Migration of an agent in deterministic and probabilistic
estimation approaches, as a function of its effective migration coefficient

4.3 Agent-based Model Applied

In this subsection, we customize our generic network migration to the partic-
ular scenario of migration to PCE and SDN.

Agent ←→ Network Island
Strategy ←→ Technology Choice

Amount of Sales ←→ Amount of Traffic
Technology u ←→ PCE
Technology v ←→ SDN

Table 1: Mapping generic migration model to PCE/SDN

Table 1 summarizes the mappings between the generic network migration
model and PCE/SDN scenario. In the context of PCE/SDN, agents translate
to network islands, strategies correspond to technology choices, amount of
sales relate to the amount of traffic that a network transits for its customers,
technology u maps to PCE, while, technology v maps to SDN.

Figure 4 shows all possible strategy set transitions for a network island,
under the assumption that an island that has once migrated to sPCE,1 or
sSDN,1 does not revert back to sPCE,0 or sSDN,0, respectively, in the future.
This assumption is justified because the functionalities provided by PCE and
SDN are beneficial to a network, irrespective of external factors, such as the
technology choices of other network islands, etc. For instance, a migrated node
definitely saves its OpEx, even if the resulting traffic does not increase post-
migration (see Figure 8).
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Fig. 4: Strategy set transitions in a network.

A network island incurs CapEx if it migrates to PCE or SDN. Secondly, the
CapEx of a network island is expected to follow economies of scale, i.e., every
subsequent unit of traffic incurs a lesser CapEx than the previous. We, hence,
assume the CapEx to vary with the square root of the network traffic. In ad-
dition, on account of the complementary relationship between PCE and SDN,
the CapEx incurred by a network island in migrating to both the technologies
simultaneously is less than the sum of the CapEx incurred by migrating to
each of them separately. This is because, although PCE and SDN are separate
components, if a network island migrates to both of them simultaneously, it
can integrate both the technologies into a single, integrated component, lead-
ing to a reduced CapEx, as compared to a PCE component, and a separate
SDN component. Considering both these aspects, the CapEx of network island
Ni from the generic model in equation (1) can be expressed, in this case, as

Ci(a→ a′) = ci(a, a
′)
√
T i
a′ (2)

where, ci(a, a
′) ∈ [0, 1] is a coefficient given by,

ci(a, a
′) =


cPCE {sPCE,0, sSDN,k} → {sPCE,1, sSDN,k}
cSDN {sPCE,k, sSDN,0} → {sPCE,k, sSDN,1}(

cPCE + cSDN

η

)
{sPCE,0, sSDN,0} → {sPCE,1, sSDN,1}

(3)

where, k ∈ {0, 1}, cPCE, cSDN ∈ [0, 1] and η ∈ [1, 2] denotes the coupling coeffi-
cient — η = 1 implies fully independent technologies, such that, migrating to
both these technologies simultaneously is equivalent to migrating to each of
them separately, whereas, η = 2 implies fully substitutive technologies, such
that, migrating to both of them simultaneously is equivalent to migrating to
any one of them. In the context of PCE and SDN, we consider η = 1.5 in this
paper.

The revenue of a network island primarily depends on the amount of traffic
flowing through it, and does not vary with the set of technologies deployed by
the network operator. This is because the revenue comes from the customer,
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who is oblivious to the technology adopted by its network operator. The cus-
tomer, generally, pays to the network operator, solely based on the amount
of traffic that the operator transits for it. In addition, revenue of a network
island is expected to follow economies of scale. We, thus, consider the revenue
of a network island to vary as the square of the network traffic. And, given the
qualitative nature of our model, without loss of generality, we set,

Ri(a) = (T i
a)2 (4)

Similar to CapEx, the OpEx of PCE and SDN in a network island is
expected to follow economies of scale, i.e., every subsequent unit of traffic
incurs a lesser CapEx than the previous. Hence, we consider the OpEx of a
network island to vary with the square root of the network traffic. Thus,

Oi(a) = αi(a)
√
T i
a (5)

where, αi(a) is a coefficient given by,

αi(a) =


αPCE + αSDN a = {sPCE,0, sSDN,0}
αPCE + αSDN a = {sPCE,0, sSDN,1}
αPCE + αSDN a = {sPCE,1, sSDN,0}(
αPCE + αSDN

η

)
a = {sPCE,1, sSDN,1}

(6)

where, the overline operator (PCE and SDN) denotes the alternatives avail-
able (say, manual operations) to the corresponding technology, (i.e., PCE and
SDN, respectively) and αPCE, αSDN, αPCE, αSDN ∈ [0, 1]. Thus, αPCE is the
coefficient of the PCE component of OpEx in the presence of PCE, whereas,
αPCE denotes the corresponding coefficient in the absence of PCE. Similarly,
for αSDN and αSDN. The presence of η in equation (6) captures the comple-
mentary relationship between PCE and SDN, i.e., the OpEx incurred by a
network island on migrating to both the technologies simultaneously is less
than the sum of the OpEx incurred by migrating to each of them separately.

We also note that both PCE and SDN are significantly more efficient than
their alternative technologies (say, manual operations). Thus, a domain mi-
grating to either PCE or SDN is expected to result in a non-negative change
in OpEx, or in other words, in OpEx savings. To put it mathematically, the
corresponding OpEx coefficients of PCE and SDN, pre- and post-migration
must satisfy the following inequalities.

αPCE < αPCE

αSDN < αSDN

(7)

In all migration scenarios in general, and in migration to to PCE or SDN
in particular, the major investment is often in the CapEx involved, whereas,
the post-migration OpEx decreases, compared to pre-migration OpEx costs.
Moreover, the CapEx of migration generally supersedes the post-migration
OpEx costs by a significant margin. This, in conjunction with equations (3)
and (6), leads us to state,
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cPCE > max

{
αPCE + αSDN,

αPCE + αSDN

η

}
(8)

cSDN > max

{
αPCE + αSDN,

αPCE + αSDN

η

}
(9)

cPCE + cSDN

η
>
αPCE + αSDN

η
(10)

Equation (8) results from the fact that the CapEx of migrating from
{sPCE,0, sSDN,k} to {sPCE,1, sSDN,k} is greater than the post-migratin OpEx
costs in both cases (k = 0, 1). However, since the CapEx and OpEx functions
are similar in nature, this relationship also holds for the corresponding co-
efficients. Thus, the corresponding CapEx coefficient (cPCE) must be greater
than both the OpEx coefficients in the two scenarios (viz., αPCE + αSDN and
αPCE + αSDN

η
). Equations (9) and (10) result from similar arguments for mi-

grations from {sPCE,k, sSDN,0} to {sPCE,k, sSDN,1}, and from {sPCE,0, sSDN,0}
to {sPCE,1, sSDN,1}, respectively.

Eliminating αSDN between equations (7) and (8), we have,

cPCE > αPCE + αSDN (11)

Similarly, eliminating αPCE between equations (7) and (9), we have,

cSDN > αPCE + αSDN (12)

With the above definitions of CapEx (equation (2)), OpEx (equation (5))
and revenue (equation (4)), as applicable for the joint migration to PCE and
SDN, and subject to the associated contraints amongst the various coefficients
(equations (7)-(12)), the payoff function in equation (1), reduces to,

Pi(a→ a′) =
[(T i

a′)2 − (T i
a)2]− [ci(a, a

′) + αi(a
′)]
√
T i
a′ + αi(a)

√
T i
a

ci(a, a′)
√
T i
a′

(13)

5 Numerical Results

In this section, we present our simulation framework and the empirical results
to evaluate various aspects of our proposed network migration model.
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5.1 Simulation Model

For our simulation, we consider a scale-free network of 100 interconnected net-
work islands, comprising of 39 “transit” islands and 61 “stub” islands. Akin to
the terminology used in global Internetworks, a network island that is not a
provider for any other island is called a stub island, while all other islands are
called as transit islands [26]. Stub islands represent the end-users, and hence,
the choice of migration rests only with the transit islands. Our topology was
generated using Barabási and Albert’s topology generation algorithm [27],
where the seed network comprised of 16 fully inter-connected network islands,
referred to as seed islands due to their higher resulting connectivity. In our
topology, a node represents a network island and a link represents an inter-
island connection. To comply with policy-aware routing, each edge is marked
as either Customer-to-Provider (C2P) or Peer-to-Peer (P2P). We employ No-
Valley-Prefer-Customer (NVPC) routing to provision connection requests be-
tween two network islands, which comprises of the following two rules [28]:

– Paths learned from providers or peers are never advertised to other providers
or peers.

– Paths learned from customers are preferred to the paths learned from peers
and providers, and paths learned from peers are preferred to the paths
learned from providers, regardless of path length.

Our simulation concerns with migration to technologies such as PCE, which
are beneficial to a connection request, only when all domains on its path from
source to destination, have migrated to the technology in question. This reflects
in our routing algorithm, such as, while provisioning a connection request,
amongst various equi-cost paths, the source domain prefers a path in which
all domains have migrated to PCE. And if multiple equi-cost, shortest paths
exist, the traffic is uniformly distributed across all such paths, or randomly over
one of these paths, depending on the user preference. We model the incoming
connection requests for each source-destination stub domain pairs as Poisson
arrivals. The connection requests once provisioned are assumed to stay the
same till the end of simulation. Link capacity is assumed to be unlimited,
since for a given increment in incoming traffic (which translates to revenue for
the host network island), the host network operator can easily increment the
link bandwidth, with minimal effort. This is especially true since our study
is not based on infinitesimal timescales, but of the order of weeks or months,
wherein a domain has the flexibility to increase its link capacity, subject to
incoming requests. All stub-to-stub paths had traffic since the beginning of
the simulation.

As a new connection request arrives in a network island, the network pro-
visions the request and reconsiders its migration choices based on its payoff
function, as defined in Section 4. This, in turn, leads to its neighbors recon-
sidering their respective migration choices, which thus cascades throughout
the network. Finally, on registering a change in the migration decision of any
domain in the network, each domain revises the routes of its provisioned con-
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nections. All the presented results plot average values across 50 traffic profiles
(each Poisson distributed), with each traffic profile replicated 5 times to elimi-
nate any statistical variations. Paths were precomputed and stored, instead of
on-the-fly path computations, as it significantly improved the simulation run
time. The two primary input preferences to our simulation are (1) equi-cost
routing — when multiple equi-cost paths exist to provision a given connection
request, we consider both possibilities of assigning it to a single random node
amongst them (single-path routing), as well as, that of uniformly distributing
the traffic over all such paths (multipath routing), and, (2) strategy estimation
approach — the approach used by domain to estimate the future technology
deployment in neighboring domains in the process of optimizing its own migra-
tion decision; we consider two approaches for the same, namely, deterministic
and probabilistic approaches, as defined in section 4.2.

We next present our simulation results from various experiments studying a
variety of factors affecting the network migration profile. By ‘migration profile’,
we mean the progress of the network-wide migration captured by monitoring
the number of migrated nodes throughout the simulation. Unless otherwise
stated, the parameter values assumed in our simulation are η = 1.5, cPCE =
0.3, cSDN = 0.4, αPCE = 0.1, αSDN = 0.2, αPCE = 0.5 and αSDN = 0.8 (though
other parameters combinations were also found to result in similar plots). The
relevant radius for each domain (as defined in section 4.2) was set to 5 hops.
As can be intuitively expected, the number of migrants should increase during
the simulation, perhaps rapidly in the beginning, and saturating gradually.
This is observed in almost all our case studies. Further, it is important to note
that although the nature of the plots looks similar across the case studies,
what is important to note is the difference in the migration profiles subject to
variation in parameters within a case study.

5.2 Single v/s Double Migration

In this experiment, we study the migration profiles of PCE and SDN, under
varied circumstances.

Figure 5 plots the migration profiles of nodes in the network to PCE, SDN
and PCE+SDN, under probabilistic strategy estimation approach and multi-
path routing preference. Given that we assume migration to SDN is more
expensive than that to PCE (i.e., αPCE < αSDN ), Figure 5 shows that a
greater number of nodes migrate to PCE, than SDN, and also that almost
every node that migrates to SDN also migrates to PCE. We observe from
Figure 5 that none of the domains migrate to SDN, without migrating to PCE.
This demonstrates the fact the benefits derived from SDN are best exploited
in combination with PCE, than by itself.

Figure 6 plots the migration profiles to PCE and SDN, in three different
scenarios, under deterministic strategy estimation approach and multi-path
routing preference. PCE-only plots the PCE migration profile in the network,
when only migration to PCE is studied in isolation, i.e., SDN is not considered
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Fig. 5: Migration profiles of PCE, SDN, and PCE+SDN

at all. Similarly, SDN-only plots the SDN migration profile in the network,
when only migration to SDN is considered in isolation, i.e., PCE is not studied
at all. Finally, PCE+SDN plots the profile of nodes migrating to both PCE
and SDN, when PCE and SDN migrations are considered simultaneously. This
plot shows that migration to SDN which is generally small by itself, can be
further promoted by joint migration to PCE, which is more widely accepted,
given the complementary relationship between PCE and SDN. Also, a small
increase can be observed in the PCE migration from PCE-only to PCE+SDN,
thus SDN also has a small impact in improving the PCE deployment.

5.3 Early Adopters

We next study the effect of early adopters on the PCE and SDN migration
profiles in the network, based on the type and number of early adopters. In this
experiment, an early adopter is a network domain that has migrated to PCE
since the beginning of simulation. Early adopters act as the seed for migration
in the network, thereby catalyzing the migration process.

Figure 7 (top) plots the effect of type of PCE early adopters on the PCE
migration profile in the network, under deterministic strategy estimation ap-
proach and multi-path routing preference. We choose the early adopters based
on their degree of connectivity in the network. Figure 7 (top) contrasts the
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Fig. 6: Single v/s Double Migrations

PCE migration profile in the network given no early adopters, 3 early adopters
(amongst the minimum degree nodes in the network), and 3 early adopters
(amongst the maximum degree nodes in the network). As can be intuitively
expected, these plots suggest that nodes with high degrees, on migrating, have
a greater effect in promoting the network-wide migration profile, than nodes
with smaller degrees. This can be attributed to the fact that a large number
of paths pass through the high-degree nodes in the network. Thus, the migra-
tion of a single high-degree node would affect the migration choices of a large
number of transit nodes, due to its high degree of connectivity.

Figure 7 (bottom) plots the effect of number of PCE early adopters on the
PCE migration profile in the network, under deterministic strategy estimation
approach and multi-path routing preference. It contrasts the PCE migration
profile in the network given 0, 3 and 5 early adopters (amongst the minimum
degree nodes in the network). As can be intuitively expected, the plot shows
that a higher the number of early adotpers result in a better migration profile.

5.4 Cause of Migration

In this experiment, we study the motivations for transit domains to migrate
to either PCE or SDN or both. As discussed earlier, a transit node migrates
either to reduce its operational expenditures (OpEx), or to increase the traffic
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flowing through it (and, in turn its revenue), or both. For every domain that
choose to migrate during the simulation, we monitored them, and categorized
their cause of its migration, amongst (1) exclusive reduction in OpEx, (2)
exclusive increase in traffic (in turn, resulting in an increase in its revenue),
and (3) both (1) and (2). Figure 8 plots this data (in percentages) for various
combinations of routing choice (single- or multi-path) and strategy estima-
tion choice (deterministic or probabilistic). This plot contradicts the common
misnomer that a domain migrates primarily because of a resulting increase
in traffic (or revenue). The plot illustrates an important aspect of migration,
which is, a transit node may migrate even if its migration decision does not
result in an increase in traffic (or revenue), but only based on its OpEx re-
duction. We observe that a significant fraction of migrations result exclusively
due to decrease in OpEx. Moreover, OpEx reduction proves to be more im-
portant in case of single path routing, than multi-path routing. Figure 8 also
demonstrates that revenue increase almost always results in combination with
OpEx reduction as a cause of migration, and rarely in isolation.

5.5 Effect of Coupling Coefficient

In this experiment, we study the effect of coupling coefficient on the migra-
tion profile. Figure 9 plots the effect of coupling coefficient on PCE (top) and
SDN (bottom) migration profiles in a 150-node topology with 92 stubs and
58 transits, under deterministic strategy estimation approach and multi-path
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Fig. 9: Effect of coupling coefficient on PCE (top) and SDN (bottom) migration
profiles
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routing preference. We observe that the resulting migration profile is enhanced,
when we account for the complementary relationship between PCE and SDN
(coupling coefficient = 1.5) than otherwise (coupling coefficient = 1). This is
because, when PCE and SDN operate simultaneously in a domain, the result-
ing benefits are larger than the sum of benefits derived from PCE and SDN
individually. Thus, domains deploying either PCE or SDN benefit from this
aspect, and also choose to adopt the complementary technology i.e., SDN or
PCE, respectively, consequently resulting in a higher number of migrants.

5.6 Effect of Equi-cost Routing Preferences

In this experiment, we study the effect of routing choices, when multiple equi-
cost shortest paths exist in the network to provision a user request. Figure 10
plots the effect of equi-cost routing preferences on the PCE (top) and SDN
(bottom) migration profile, under deterministic strategy estimation approach
and multi-path routing preference. In presence of multiple equi-cost shortest
paths, we consider the routing choices of randomly choosing any one of them
(single-path routing), or distributing traffic uniformly across all of them (multi-
path routing). As can be observed from Figure 10, the former choice results in
an enhanced migration profile than the latter. This may be attributed to the
fact that distributing traffic over multiple paths reduces the amount of traffic
flowing through each such path, thereby lessening the incentive derived by the
intermediate transit nodes from migration.

5.7 Effect of Network Topology

In this section, we discuss the effect of size of the network topology on the
migration profile of a network. In addition to the 100-node topology, we con-
sider 50- and 150-node topologies, with similar characteristics, in terms of the
fraction of stub/transit nodes in the network, seed network size, degree of stub
nodes, etc. Figure 11 plots the percentage of nodes migrating to PCE (top)
and SDN (bottom) migration profiles, under deterministic strategy estimation
approach and multi-path routing preference. We observe that a larger frac-
tion of nodes migrate in the 50-node topology, than in the 100-node topology,
which in turn has a larger number of migrants than the 150-node topology.
This leads us to conclude that for the same set of parameters, the migration
profile is increasingly pronounced in smaller topologies than larger topologies.

5.8 Strategy Estimation Approach

In this experiment, we compare the effect of different strategy estimation
heuristics employed by a domain on the migration profile of the network. Fig-
ure 12 plots the number of domains migrating to PCE or SDN over time, when
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multipath routing is enabled. We observe that the deterministic approach re-
sults in a lesser number of migrants than the probabilistic approach for both
PCE and SDN migrations.

This behavior can be explained as follows. As a thumb rule, greater the
number of neighboring migrated domains, greater is the likelihood of a domain
to migrate. In the deterministic and probabilistic approaches, the estimated
number of neighboring migrated domains considered by a domain is greater
than or equal to the actual number of migrated domains in the neighborhood.
Amongst the deterministic and probabilisitic approaches, the likelihood of mi-
gration of a node varies with the effective migration coefficient of neighboring
nodes as shown in Figure 3. The reader may note that the area under curves
in Figure 3 are proportional to the total number of migrations resulting from
each estimation approach. Had the effective migration coefficient of the nodes
be uniformly varying between 0 and 1, both approaches would have resulted in
similar migration profile. However, we observe in our simulation (and can also
be intuitively derived) that the effective migration coefficient varies roughly
between 0 and 0.8, thereby providing the probabilistic approach an upper
hand. As a result, the probabilistic approach results in a greater number of
migrants than that from the deterministic approach.

Although more and more transit domains migrate with increasing traffic
in the network, it is important to note that the saturation point of migration
is reached not when all transit domains migrate, but at a lesser number of
migrants. For example, out of 39 transit nodes in the network, only about 36
migrate at saturation, as seen in Figure 12. This is because of the shortest-path
routing between the stub nodes. Thus, only those transit domains which lie on
the shortest path(s) between a pair of stub nodes, eventually migrate, whereas,
transit nodes with no stub-to-stub traffic have no incentive in migrating, even
when every other node in its neighborhood may have migrated.

6 Conclusion

In this paper, we proposed an agent-based model to study network migration
to multiple technologies that may be correlated, and applied it to study two
emerging technology frameworks, i.e., PCE and SDN. We believe to have ad-
vanced the science in the existing agent-based models by considering a few
novel critical factors, including (i) synergistic relationships across multiple
technologies, (ii) reduction in operational expenditures (OpEx) as a reason to
migrate, and, (iii) implications of local network effects on migration decisions.
As is characteristic of agent-based models, defining the mutual, microscopic in-
teractions between agents lead to insights about the macroscopic, system-wide
behavior, which was analyzed and demonstrated by our model.

The results obtained from our case study suggest that migration to SDN
can be eased by joint migration to PCE, and that the benefits derived from
SDN are best exploited in combination with PCE, than by itself. The case
study also showed that studying migration to related technologies in combina-
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tion is important than studying migration to each technology in isolation. The
results indicate that the migration to SDN can be promoted by several factors,
namely, (a) in combination with a widely-accepted complementary technology
such as PCE, (b) early adopters, (c) an agent’s ability to predict its neighbor’s
decisions to migrate to either of the technologies.

Our future work includes applying our model to study larger topologies (of
the scale of thousands of domains). Also, multi-vendor, multi-layer network
migration scenarios with IP/Optical network integration is a relevant scenario
to investigate. Our model can also be extended to study inter-relationships
between three or more migrating technologies, which can be explored should a
relevant case study emerge. Another important aspect would be to study the
order of migration in a network, i.e., “migration scheduling”, showing which
type of nodes should migrate first.
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