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Abstract IEEE 802.11 Wireless Networks are getting

more and more popular at university campuses, enter-

prises, shopping centers, airports and in so many other

public places, providing Internet access to a large crowd

openly and quickly. The wireless users are also getting

more dependent on WiFi technology and therefore de-

manding more reliability and higher performance for

this vital technology. However, due to unstable radio

conditions, faulty equipment, and dynamic user behav-

ior among other reasons, there are always unpredictable

performance problems in a wireless covered area. De-

tection and prediction of such problems is of great sig-

nificance to network managers if they are to alleviate

the connectivity issues of the mobile users and provide

a higher quality wireless service. This paper aims to

improve the management of the 802.11 wireless net-

works by characterizing and modeling wireless usage

patterns in a set of anomalous scenarios that can oc-

cur in such networks. We apply time-invariant (Gaus-

sian Mixture Models) and time-variant (Hidden Markov

Models) modeling approaches to a dataset generated

from a large production network and describe how we

use these models for anomaly detection. We then gen-

erate several common anomalies on a Testbed network

and evaluate the proposed anomaly detection method-

ologies in a controlled environment. The experimental

results of the Testbed show that HMM outperforms

GMM and yields a higher anomaly detection ratio and

a lower false alarm rate.
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1 Introduction

Wireless 802.11 networks are getting more and more

popular in providing Internet access for a large num-

ber of users in university campuses, enterprises, urban

areas, and many other public places. These large-scale

networks, particularly speaking of IEEE 802.11 Infras-

tructure mode, consist of basic network components:

Wireless Stations, wired stations, and the Access Points

(AP) that function as connection links between the

wired and wireless sections. The APs provide coverage
and capacity for supporting mobile clients with hetero-

geneous devices and a variety of applications. Among

the many characteristics of such large-scale network is

the transition of huge volumes of traffic as a result of in-

tensive usage from different locations all over the cover-

age area. The mobile clients demand reliable connection

and high performance in all circumstances and expect

their applications to work smoothly around the wire-

less covered field, but this is an ideal case which is not

always achievable. The wireless users, most of the time

suffer from low coverage, intermittent connectivity, au-

thentication failure, degraded performance and many

other complications originated from the unreliable na-

ture of wireless connection and dynamic usage pattern

of other users in the vicinity.

Having further explored the connectivity procedure

in wireless networks, some inherent concerns and dilem-

mas become more clear. In Wireless 802.11 networks,

mobile stations perform an active or passive scanning

process to discover available APs in the vicinity and

ar
X

iv
:1

70
7.

00
94

8v
1 

 [
cs

.N
I]

  4
 J

ul
 2

01
7



2 Anisa Allahdadi, Ricardo Morla

connect to an AP with the highest received signal strength

(RSS) [24]. This association strategy, only based on

RSS, can lead to many connectivity problems and per-

formance issues as it may result in significant load im-

balance between APs. The overloaded APs can still

present high RSS and try to accommodate more sta-

tions while other APs are only slightly loaded or even

idle. Another source of performance degradation in WLANs

is the multi-rate flexibility and the fairness mechanism

of the MAC protocol- when a station far from the AP

reduces its bit rate to avoid repeated unsuccessful frame

transmission and as a result degrades the throughput

of the other stations associated with the same AP [17].

In addition to the aforementioned problems, due to

the unreliable and time-varying nature of the wireless

channels, 802.11 networks usually suffer from many pit-

falls such as exposed and hidden terminals, capture ef-

fect, interferences, signal fading, inconsistent coverage,

and many other examples. In such circumstances, high

packet loss is observed [13]- that results in inconsistent

connectivity and low performance. Network managers

are concerned about discovering such sort of problems

and abnormal events that occur in their network. Detec-

tion of anomalies is not only advantageous for prompt-

ing immediate administrative actions but also useful for

long-term network design, planning, and maintenance

decisions as the network infrastructure and usage evolve

over time.

In large deployments of 802.11 networks with vary-

ing usage, channel conditions, and operational constraints,

network managers often demand tools that provide them

with a comprehensive view of the entire network for au-

tomatic detection of the problems. In such widespread

networks, where at any moment there is a high possi-

bility of mal-functioning of APs and user devices, the

necessity of such automatic tools or applications is vital

to preserve the quality of service at an acceptable level.

Monitoring the infrastructure by any means rather than

intelligent diagnostic tools seems inconvenient in prac-

tice or overpriced in budget. For example, it is expensive

to deploy third party devices like sensors and sniffers in-

dividually on clients machines or APs for detection of

problems in different OSI layers, as studied earlier [7,

12,25]. And it seems impractical for network staff to

walk around the wireless covered area with a device

in their hand monitoring the network and measuring

the quality of connections at any time. In this paper,

we propose an automatic diagnostic tool that analyzes

the usage data of the APs- collected from a RADIUS

authentication server. We apply probabilistic learning

algorithms to produce a model for each access point or

group of access points, and identify anomalous events

with a margin of certitude. AP usage modeling and

anomaly detection in hotspots would assist network ad-

ministrators to ensure long-term quality of service by

analyzing various connectivity factors of wireless users

in particular localities. We propose probabilistic graph-

ical model- and in particular HMM- to establish a com-

prehensive image of the evolving structure of wireless

networks, to distinguish usage behaviors in different

locations and grouping context and their correlations

and dependencies, and to represent the spatio-temporal

anomalous patterns detected in wireless networks. In

the current work we focus more on proposing individ-

ual models for APs as the ground truth data is only

available through the single AP Testbed deployment

and the multiple APs’ experiment is planned for the

future work. The prospective methodology is based on

the development of HMM models and a detection tool

using WiFi campus data; our recent contributions [9,

10] have taken this approach into account. As a prelim-

inary investigation on the subject, we focused on short

802.11 sessions recorded through RADIUS authentica-

tion as a network artifact and an indicator of quality

of wireless access [9]. In [10] an exhaustive analysis is

performed for outlier detection in 802.11 wireless net-

works using HMM variations- single HMM, mixture of

HMMs and individual HMMs- and is evaluated by the

state of the art statistical methodologies. Furthermore

a number of network anomalous patterns are repre-

sented, in the same study, considering HMM parame-

ters such as hidden states’ transition and partial likeli-

hood of the observation sequences. In the present study

we considered HMM and its counterpart time-invariant

methodology- Gaussian Mixture Model (GMM)- to in-

vestigate the temporal relevancy of the employed data,

whether a simpler time-invariant model such GMM is

adequate to detect anomalies or a more complex model

like HMM is really needed. These two methodologies

are analyzed and compared with each other both in

modeling and anomaly detection experiments.

This paper contains two main parts: 1) analysis and

modeling of 802.11 AP usage and exploring the time

dependency of the employed data, and 2) identifica-

tion and detection of different types of anomalies and

characterizing them efficiently. The aforementioned ob-

jectives are investigated on a large dataset of AP usage

and examined on a smaller scale testbed for the purpose

of evaluation.

The rest of the paper proceeds as follows. In section

2, the related work and the most recent researches rel-

evant to the current work are presented. In section 3,

the wireless setup procedure in infrastructure mode is

characterized and the key attributes and functionalities

of RADIUS protocol are defined. Section 4 deals with

the process of data accumulation as a result of wireless
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users’ association attempts, and presents a set of main

features extracted from the dataset and feature selec-

tion techniques for further analysis. Statistical model-

ing of the AP usage data, categorized as time-invariant

and time-variant approaches are provided in section 5

and a brief discussion is enclosed at the end of the sec-

tion comparing these methodologies. In section 6, we

describe how the proposed models serve to detect and

characterize different forms of anomalies. In section 7,

the experimental results are analyzed and discussed,

and the evaluation process is represented based on the

deployed testbed in a controlled environment. In section

8, the major conclusions are provided and prominent

directions for future work are identified.

2 Related Work

2.1 Wireless Measurement Tools

Several prior works are dedicated to studying the dy-

namics of wireless network behavior, as well as the per-

formance and reliability of WLAN technologies [12] [31]

[30] [20]. In [12] a system called Jigsaw is presented

which uses multiple monitors to provide a single unified

view of physical, link, network and transport-layer ac-

tivities, including inference techniques for the particular

issues of 802.11. The authors deployed an infrastructure

with over 150 radio monitors that capture 802.11b and

802.11g activities in a university building to investi-

gate the causes of performance degradation. Significant

challenges of such vast distributed monitoring system

include the necessity of hardware and software instru-

mentations on each and every monitor and the scal-

able synchronization difficulties and inaccuracies. For

this reason, most wireless management techniques avoid

broad modifications in the clients devices, sensors, snif-

fers and monitors deployed in the large wireless covered

area.

In another line of research a Passive Interference Es-

timator (PIE) is presented [31] which provides a fine-

grained estimation of link interferences in WLAN. PIE

provides an estimate of WLAN interference caused by

client mobility, dynamic traffic loads, and varying chan-

nel conditions. This work is inspired by two previous

WLAN monitoring approaches: the aforementioned Jig-

saw [12] and WIT [21]. The PIE producers use sniffing

at APs to avoid deploying additional monitors similar

to Jigsaw, but with the penalty of missing a portion of

uplink client traffics and hence uplink client conflicts.

However, they proposed an accurate approach in esti-

mating link interference by providing a conflict graph

in real time.

In a similar direction of work, fine-grained detec-

tion algorithms are proposed that are able to distin-

guish the root-causes of performance degradation at the

physical layer [30]. It is described that various faults,

such as hidden terminals, capture effects and noise,

could have the same propagation effects on the network

layer (degraded throughput) and therefore could lead to

the same remediation techniques from 802.11 (rate fall-

back), while they have completely different origins in

the physical layer. Hence, the researchers of this work

designed a unified framework for this purpose, called

MOJO, that combines the observations from multiple

distributed sniffers and diagnoses the granularity of the

root causes to suggest appropriate remedies for differ-

ent physical faults. Although the proposed framework

measures the impact of the most commonly observed

faults on different network layers, it is still a client side

monitoring system and suffers from the extensive sniffer

distribution all over the wireless covered area.

In [20], WiMed is proposed that uses only local

measurements from commodity 802.11 NICs for under-

standing how the medium is utilized, and for inspect-

ing the causes of interferences (including non-802.11 de-

vices). WiMed provides a time-domain view of how the

medium is used in a given 802.11 channel, and iden-

tify the root causes of interference using physical layer

properties such as bit error patterns and medium busy

times. The authors refrain from elaborate instrumen-

tation and dedicated infrastructure, however detectors

are only implemented for interference and contention,

and there is a higher confidence for recognition of non-

802.11 interferer rather than 802.11 sources of interfer-

ence.

All the above literatures expose the difficulties in

monitoring the wireless environment thoroughly, and

the challenges of performance estimation in such com-

plex networks. Most cases- require heavy instrumenta-

tion of the user devices and focus on specific anomalies

affecting individual users- thus neither considering us-

age trend nor location related anomalies.

2.2 Usage Modeling and Anomaly Detection

There are several lines of research that take an ap-

proach closely related to our work. In [23] AP usage

and daily keep-alive events of mobile stations in 802.11

hotspots in infrastructure mode are analyzed and mod-

eled. In this work, generative probabilistic models are

investigated such as Gamma mixture of exponentials

and Conditional probability models considering depen-

dencies between consecutive samples in time. The gen-

erative statistical models and experimental results of

this work conducted on a very similar dataset to ours
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provide some broad insight into AP usage and illustrate

those aspects of such networks that benefit our work.

In [22], a usage pattern called ”abrupt ending” is

explored in a similar dataset, and it concerns the dis-

association of a large number of wireless sessions in

the same AP within a one second window, or in a

nutshell ”simultaneous session ending”. The authors of

this work, further investigate this concept and intro-

duce some anomalous patterns that might be in cor-

relation with the occurrence of this phenomena. For

instance, they propose that interference across the AP

vicinity could be deduced when abrupt endings happen

to neighboring APs within specified time interval, or

the AP overloaded could be inferred when the contin-

ued sessions are present after abrupt endings. There are

a number of other anomalous patterns reported in this

paper such as AP halt/crash, persistence interference

and intermittent connectivity. The classification and

analysis of these anomaly-related patterns performed

in this research, inspired our work to regenerate similar

anomalies in a real Testbed to experiment and evaluate

the HMM methodologies practiced in the current study.

2.3 HMM Applications in Network Analysis

In wireless networking, HMMs are employed to address

various aspects of network measurement and analysis.

Hierarchical and Hidden Markov based techniques are

analyzed in [19] to model 802.11b MAC-to-MAC chan-

nel behavior in terms of bit error and packet loss. The

authors employed two random variables in packet loss

process, inter-arrival-rate and burst-length of packet

loss, and applied the traditional two-state Markov chain.

The results demonstrates that two-state Markov chain

provides an adequate model for the 802.11b MAC-to-

MAC packet loss process. Furthermore, in regard to bit

error modeling, three other Markov-based chains are

evaluated: full-state, hidden, and hierarchical Markov

chains. Among these chains, it is illustrated that the

full-state Markov bit error model of order 9 and above,

renders the best performance. Since the main concern

to use HMM in this example is to generate error traces,

a simple three-state HMM is designed and utilized for

one HMM solution: the adjustment of model parame-

ters to best account for the observed signal.

In a more recent line of research in [18] a multi-

level approach involving HMMs and Mixtures of Mul-

tivariate Bernoullis (MMB) is proposed to model the

long and short time scale behavior of wireless sensor

network links, that is, the binary sequence or trace of

packet receptions (1s) and losses (0s) in the link. In this

approach, HMM is applied to model the long-term evo-

lution of the trace, and the hidden states correspond to

packet reception rate. Within the aforementioned hid-

den states, the short-term evolution of the trace is mod-

eled by either another HMM or by a MMb. That is how

the multilevel, or in this case the two level approach,

is formed. The notion of multilevel HMM, or higher di-

mensional HMM, is an impressive concept regarding to

our own work, and we intend to make use of this ap-

proach to improve our HMM variations for anomalous

pattern detection in the future work.

One of the salient applications of HMMs addressed

in wireless networking is prediction. For instance in [11]

HMMs are utilized to model and predict the spectrum

occupancy of sharing radio bands. The channel status

prediction is considered as a binary series prediction

problem, as channel occupancy can be represented as

idle or busy depending on the presence or absence of

a primary user activity. An ergodic two-state discrete

HMM deals with this problem. Some other prominent

work has been done on a very similar subject in radio

spectrum sensing and status prediction using HMMs in

[8,16,32].

Furthermore, in another related work, HMMs are

applied for modeling and prediction of user movement

in wireless networks to address issues in Quality of Ser-

vice (QoS) [26]. User movement from an AP to an

adjacent AP is modeled using a second-order HMM.

Although the authors demonstrated the necessity of

using HMM instead of Markov chain model, the pro-

posed model is only practical for small wireless net-

works with a few number of APs, not huge enterprises

or widespread campuses.

As the above literatures indicate and to the best of

our knowledge, HMM related studies in wireless net-

work management are rarely used specifically in per-
formance anomaly detection.

3 Wireless Setup in Infrastructure Mode

In this section we describe how a 802.11 station asso-

ciates to an access point and how our setup authenti-

cates the user and authorizes access to the network.

3.1 Association of Wireless Station to Access Point

The process of the association of a wireless mobile sta-

tion to an AP, as it is currently implemented by most

manufacturers is described as follows: A wireless station

scans the available channels of each AP in the neigh-

borhood and listens to the beacon (passive approach) or

probe response frames (active approach). IEEE 802.11

protocol defines a number of Wi-Fi channels ranging

from 2.4 GHz to 5.9 GHz. The Wi-Fi channels that are
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Table 1 The Key Attributes of RADIUS Accounting Table

Acct-Status-Type has three values: Start, Alive and Stop. A Start record is created when a user session
begins. An Alive record is registered after each 10 or 15 minutes for the users that are still
connected. A Stop record is generated when the session ends.

Acct-Session-Id is a unique number assigned to each session to facilitate matching the Start and Stop
records in a detail file, and to eliminate duplicate records.

Acct-Session-Time records the user’s connection time in seconds. This information could be included in Alive
or Stop records.

Acct-Delay-Time is the number of seconds passed between the event and the current attempt to send the
record. The approximate time of an event can be determined by subtracting the Acct-
Delay-Time from the time of the record’s arrival on the RADIUS accounting server.

Called-Station-Id &
Calling-Station-Id

record the IP address of the AP (Called Station) and the wireless user (Calling Station)
connected to that AP.

Timestamp records the time of arrival on the RADIUS Accounting host measured in seconds since the
epoch (00:00 January 1, 1970). It provides a machine-friendly version of the logging time
at the beginning of the accounting record.

Acct-Input-Octets &
Acct-Output-Octets

records the number of bytes received (Acct-Input-Octets) and sent (Acct-Output-Octets)
during a session. These values appear in Alive or Stop records.

Acct-Input-Packets &
Acct-Output-Packets

records the number of packets received (Acct-Input-Packets) and sent (Acct-Output-
Packets) during a session. These values appear in Alive or Stop records.

the concern of this work (802.11 b/g/n) are listed in

the 2.4 GHz range and consist of one to eleven channels

(up to fourteen in some countries). The wireless station

stores the received signal strength indicator (RSSI) of

the APs in the vicinity and other relevant information

such as extended service set identification (ESSID), en-

cryption type (e.g. WPA, WEP), etc. When the scan-

ning process is over, the wireless station selects an AP

with the highest RSSI among the observed APs in its

proximity. After the process of authentication/ autho-

rization is accomplished, the permission is granted to

the wireless station and the connection is established.

Forthwith, the wireless station is associated with the

new AP and the user is ready to send and receive traffic

through that AP. The wireless station will be disasso-

ciated from the current AP under the mobility circum-

stances, AP shutdown or halt, RSSI recession or some

other normal or abnormal consequences of network fluc-

tuations. The process of AP selection only based on the

strongest RSSID lead to aforesaid load imbalance prob-

lem, while some APs are overcrowded and the other

available APs remain idle.

3.2 Remote Authentication Dial-In User Service

(RADIUS)

Remote Authentication Dial-In User Service (RADIUS)

is a network protocol that enables remote access servers

to communicate with a central server to authenticate

dial-in users and authorize their access to the requested

system or service. RADIUS is commonly used by Inter-

net Service Providers (ISPs), cellular network providers,

and corporate and educational networks, and it allows

the management of user profiles in a central database

that all remote servers can share. Having a central ser-

vice facilitates the process of tracking usage for billing

and network statistics. RADIUS is a de facto industry

standard used by a number of network product compa-

nies and it is a proposed IETF standard . This protocol

is used to provide network authentication, authoriza-

tion, and accounting services, and it is particularly de-

scribed in Request for Comments (RFC) 2865 and RFC

2866 .

According to RADIUS protocol, whenever a client

associates to an 802.11 AP, a log event ”START” is

recorded in the accounting database. While the client

is still connected to this AP, every 10 or 15 minutes

(based on the server configuration) an interim log event

”ALIVE” is issued to refresh the connection between

the client and the AP. Eventually, when the user decides

to disconnect from the network, or for some reason it

is forced to leave the network, a log event ”STOP” is

recorded, which marks the end of the association pe-

riod of this user. Each log record includes some key

attributes of time-stamp, session ID, association dura-

tion, number of input and output packets/octets. Table

1 present a brief explanation of some of these key at-

tributes more relevant to this work.

RADIUS serves three main functionalities:

– Authenticates users before granting them access to

the network.

– Authorizes the authenticated users for specific net-

work services.

– Accounts the usage activity of the authorized users

for the services in use.

AAA stands for ”Authentication, Authorization, and

Accounting”. It defines an architecture that authenti-

cates and grants authorization to users and accounts for
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Fig. 1 The Authentication and Authorization Process in
RADIUS

their activity. When AAA is not used, the architecture

is described as ”open”, where anyone can gain access

and do anything, without any tracking.

3.2.1 Authentication and Authorization

Authentication refers to the process of validating the

identity of the user by matching the credentials pro-

vided by the user on the AAA server. If the credentials

match, the user is authenticated and gains access to the

network. On the contrary, if the credentials mismatch,

authentication fails and network access is denied. Au-

thentication can also fail, due to user incorrectly enter-

ing the credentials. A network administrator can choose

to permit limited network access to unknown users, for

instance the guests of a conference or a temporary pub-

lic event in academic environments.

Authorization deals with the process of deciding

what permissions are granted to the user. For exam-

ple, the user may or may not be permitted certain kinds

of network access or allowed to issue certain commands.

Typically, a user login consists of a query (Access-Request)

from the NAS to the RADIUS server and the RADIUS

server either grants or denies authorization (Access-

Accept or Access-Reject) based on the information passed

by in the request query. In each case, the RADIUS

server manages the authorization policy and the NAS

enforces the policy. The process of authentication and

authorization is delineated in Figure 1.

3.2.2 Accounting

Accounting refers to the recording of resources users

consume during the time they are connected to the net-

work. The information gathered can include the total

system time used, and the amount of data sent or re-

ceived by the user during a session. Over a network

session, the NAS periodically sends an accounting data

of user activity to the server (in ”Alive” or ”Stop” ses-

sions). This data is mainly used for the billing purposes.

However, we used the accounting information for the

reason of network monitoring and management as the

log dataset is already stored in a central database, the

RADIUS server, and facilitates the data collection pro-

cess.

The detailed information of users’ activities is not

included in the summary sent by NAS- for instance the

visited web sites or particular protocols in use is local to

the NAS- and is not available to the RADIUS server.

Transactions between the client and RADIUS server

are authenticated through the use of a shared secret,

which is never sent over the network. In addition, user

passwords are sent encrypted between the client and

RADIUS server to eliminate the possibility of snooping

on an insecure network.

4 Data Description and Feature Selection

In this section we present the main dataset used in this

paper, provide some preliminary statistical analysis and

describe the key features emerge from the raw dataset

as well as the of process of feature selection for modeling

and further investigations.

4.1 Large Dataset

For the current study, we use RADIUS authentication

log data collected at the hotspot of the Faculty of Engi-

neering of the University of Porto (FEUP). The Univer-

sity hotspots are part of the Eduroam European wire-

less academic network initiative. The trace data con-

sists of the daily summary of connections between 364

APs and their corresponding wireless stations collected

in almost two years, from January 1, 2010 to Decem-

ber 22, 2011. The university campus contains over 30

buildings, including classrooms, administrative offices,

auditoriums, libraries, cafeterias, laboratories, etc. Dur-

ing the mentioned period, the usage record of more than

45 thousand users was observed through the established

connections of over 24 million sessions. Table 2 depicts
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Table 2 The semester-level evolution of hotspot usage during two years

Academic Semesters # APs # Users # Sessions Total Input Traffic
(TB)

Total Output Traffic
(TB)

Spring 10/11 238 15564 5127823 148 253
Fall 10/11 278 15614 2619497 81 138
Spring 11/12 317 20200 5879742 177 359
Fall 11/12 338 21946 7167023 91 170

(a)

(b)

Fig. 2 Number of Sessions per User (Hourly) (a) Moving Average, and (b) CDF

the evolution of the usage across the hotspot through-

out the academic semesters.

In general, an increasing trend is observed in the

number of deployed APs, number of wireless users and

overall number of RADIUS sessions (start, alive, and

stop), from semester to semester. Total input and out-

put traffic, however, fluctuate between spring and fall

semesters to some extent. Although the overall sent and

received traffic grows in volume in ultimate fall/spring

semester rather than the earlier, the wireless network

are subjected to higher traffic in spring semesters com-

pared to fall semesters.

4.2 Preliminary Data Analysis

In this section we present some extensive statistical

analysis about the entire dataset and demonstrate rele-

vant graphics revealing some general facts of underlying

usage pattern of FEUP wireless network. We conduct

this study from two peculiar viewpoint, users and the

accompanying sessions, and APs and their accommo-

dated users.

4.2.1 User Sessions

As indicated earlier, each user could connect to the

same AP more than once during the day, and each con-

nection creates a separate sessionID in the accounting

table. An ideal association to the wireless network could

last for the entire day and if the user is fixed in its lo-
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(a)

(b)

Fig. 3 Number of Sessions per User (Daily) (a) Moving Average, and (b) CDF

cation, it is expected to have the same session without

interruption. However, this is not always the case and

users disassociate from their current AP and associate

to the same AP or another AP in the vicinity for var-

ious reasons. Figure 2 considers the proportion of the

user sessions in an hourly period and Figure 3 reveals

the same information on a daily basis.

Figure 2a shows the moving average of the num-

ber of sessions that each client (device) creates during

one hour of connection. Although the majority of users

have a few number of sessions in an hour which shows

few number of disassociations, the extreme cases are

also detectable in this figure. For instance, users are ob-

served that generate over 2000 sessions on average in an

hourly connection to a single AP. To study the greatest

population of users, Cumulative Distribution Function

(CDF) of users and their containing sessions is demon-

strated in Figure 2b. This figure displays that more

than 70% of the user connections remain unbroken and

preserve a single session during the hourly association

to their affiliated AP, and over 95% of the user connec-

tions contain only 5 sessions during an hour which is

the result of intentional or unintentional disassociation

from the current AP.

Figure 3a encloses similar information as Figure 2a,

but in a daily basis. As expected, the number of disas-

sociations during one day is higher than an hour period.

Figure 3b demonstrates that extremely consistent con-

nections which hold a single session during a day, are

less than 40%. Most of such connections could be issued

from stationary idle devices in vacant locations of the

campus with few or no other active users around. This

figure also displays that about 20% of the sessions are

interrupted between 5 and 20 times a day.

4.2.2 Access Points

In this part, the study is more focused on the usage be-

havior of APs as indicators of different locations around

the university campus. Figure 4 demonstrates the aver-

age number of users and sessions per AP during the two

years of experiment for the working days only. Clearly

this statistics could differ from semester to semester as

the number of users and their corresponding sessions

evolve over time, however this figure provides a gen-

eral report of involvement of the entire set of APs in
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Fig. 4 CDF of Average Number of Users & Sessions per AP

Fig. 5 CDF of the Daily Average Connection Duration of Users per AP (min)

the wireless covered area in two years of experiment.

Figure 4 displays that around 20% of the APs contain
only 10 sessions per day and almost 45% of the APs

associate with 10 users during the day. To maintain

the steadiness of the results, the weekends are excluded

from this statistics. The figure also shows that over 95%

of the APs (345 APs) contain at most 50 users a day

and about 30% of the APs (109 APs) typically associate

with 5 users each day.

Figure 5 reveals interesting information on the du-

ration of users’ daily connections per AP. It shows that

the average connection period of users in 30% of the

time is only 10 minutes per day. This data most prob-

ably belongs to the mobile users, guests, short-term

clients or inactive users. Figure 5 also demonstrates that

around 95% of the time, users maintain their connec-

tions to APs at most for 100 minutes, less than 2 hours

a day. Such information send an important message to

the network managers of the vitality of connection per-

formance and quality of service as a great number of

the users are connected to the network for less than 2

hours a day and getting interrupted over and over again

in such a short period of time could be disappointing.

The study of the information provided in Figure 4

and 5- yields more precise understanding of the im-

portance of the APs and learning their usage pattern

based on the locations, for instance whether they are

located in a busy entrance hall or a quiet corner of the

campus. Such sort of information also imply the po-

tential categories in terms of university divisions like

administrative office, classroom, cafeteria, auditorium,

etc. Such classification plays an important role for fur-

ther analysis and modeling practices for the purpose

of anomaly detection. It brings about the question of

similarities (or differences) of the usage patterns in po-

tential groups with different population of users that

could prompt interesting anomaly detection strategies

by learning the trend of the group and detecting the un-

usual events. These lines of research are of our interest

for the future work.
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4.3 Data Features

A number of features emerge from the raw dataset as

a result of a preliminary analysis and enumeration pro-

cess on a timely basis of 15 minutes. We categorize

all the measured features as two main classes: Density

Attributes and Usage Attributes. Those features that

are indicators of density, basically demonstrate how

crowded is the place in terms of active attendant users,

when in fact the usage features disclose the volume of

sent and received traffics by the present users. The for-

mer attributes mainly characterize the association pop-

ulation and durability, and the later ones reveal the to-

tal bandwidth throughput regardless of how populous

is the place and it is more relevant to the applications

utilized by the current mobile users.

4.3.1 Density Attributes

User Count : the number of unique users observed in a

specific location (indicated by an AP) during the pre-

defined time-slot (15 min).

Session Count : the total population of active sessions

during a time-slot regardless of the owner user. This

attribute reveals the number of attempts made by the

the congregation of the present users to associate to

the current AP. The connection time span of each user

consists of one to many sessions.

Connection Duration : the total duration of association

time of all the current users. This attribute is an indi-

cator of the overall connection persistence. The utmost

amount of this features is achieved when there is no ev-

idence of disassociation in the ongoing active sessions

during a time-slot (User Count ∗ 15min).

4.3.2 Usage Attributes

Input Data in Octets : the number of octets transmit-

ted from the client and incoming to the NAS port, and

is only present in the Stop or Alive sessions. This at-

tribute briefly refers to the number of bytes uploaded

by the wireless user.

Output Data in Octets : the number of octets received

by the client and leaving the NAS port, and is only

present in the Stop or Alive sessions. This attribute

shortly refers to the number of bytes downloaded by

the wireless user.

Input Data in Packets : the number of packets trans-

mitted by the client and incoming to the NAS port.

This attribute is similar to the above Input-Octet, just

to be measured in packets instead of bytes.

Fig. 6 Correlation Matrix of the Main Data Features

Output Data in packets : the number of packets re-

ceived from the client and leaving the NAS port. This

attribute is similar to the above Output-Octet, just to

be measured in packets instead of bytes.

4.4 Feature Selection

In this section we discuss the connection and correlation

of the data features explained earlier and disclose how

to choose the best set of features for further analysis.

Figure 6 depicts the correlation matrix of all the

above features. There is a high correlation observed be-

tween User Count and Session Count, on the grounds

that the number of sessions are always equal or higher

than the number of users in a time-slot. Duration do

not have a strong correlation with any of the mentioned

features, neither with Density Attributes, nor with Us-

age Attributes.

Having considered the input and output traffic trans-

ferred in octets, there is no significant correlation be-

tween these two compared to Input and output data

in packets. However there is a slightly noticeable cor-

relation between Output Octets and its corresponding

attribute Output Packets, as well as Input Octets and

Input Packets. Although there is a slight correlation

between input/output data in octets and in packets,

we consider them as semi-independent variables and in-

clude both of them in our further experiments. The in-
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Fig. 7 The Behavior of the Main Features Relative to the Three Principal Components

formation added to the system through input and out-

put traffic in octets simply take into account all the sent

and received data in bytes. However, the input and out-

put traffic measured in packets, could bring other types

of information as the packets’ size could differ by var-

ious factors such as application types and communica-

tion protocols.

For subsequent analysis and modeling procedures,

we favor using less features rather than the entire set

of attributes introduced earlier. For this reason, we ap-

plied Principal Component Analysis (PCA) technique

to find the combination of the variables which best ex-

plain the phenomena and contain the greatest part of

the entire information.

In this case the first three principal components

bring the cumulative proportion of variance to over

95%. Figure 7 demonstrates the participation propor-

tion of each feature to the principal components. From

an analysis of this Figure we conclude that the first

principal component is associated with all the above

features in a positive manner, more specifically with

the usage attributes. The second principal component

is declined towards the density attributes, increasing

with the larger density values and yet decreasing with

the larger usage values. The single largest contributor

to the third principal component is the input data in

octet or the amount of uploaded bytes by the wireless

users. The other features play less important roles in

the third component, positively or negatively. Approx-

imately categorizing the principal components like so,

provides us with a deeper understanding of the connec-

tion of the aforementioned features, density or usage

attributes, with the emanate best features resulted by

PCA technique.

4.5 Conclusions

In this section we introduced collected RADIUS data

from FEUP hotspot as the main dataset of this work

and performed a preliminary analysis from two points

of view- user sessions and access point- to demonstrate

the situation of the data respecting the hourly and daily

sessions per user as well as the user population and con-

nection duration per AP. Moreover we presented two

main groups of features- usage attributes and density

attributes- and defined a number of features for each

group. We further studied the connection and correla-

tion of the data features and selected the best combina-

tion of those features applying PCA. In the upcoming

section we show how to model the AP usage data using

the selected features represented in this section.

5 Statistical Modeling of 802.11 AP Usage

In this section we introduce statistical techniques for

modeling purposes and in the upcoming section we in-

dicate how to apply these models for anomaly detection.

The modeling approach itself can be used in distinct di-

rections such as to study the similarities and differences

of the locations, to categorize the localities in terms of

functionality (e.g. classroom, office, library) or specifi-

cation (homogeneous/heterogeneous daily, seasonal or

constant usage). We introduce time-invariant and time-

variant models and in each case we show how to apply

the model on the large dataset previously elaborated.

5.1 Time-invariant Modeling

We first consider models that assume there is no time

binding between consecutive daily events. Although this

might not be precisely the case, it yields simpler model-

ing approach. Later in the paper we compare this type

of modeling with others that do consider dependency

between consecutive daily events.
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5.1.1 Gaussian Mixture Model

We begin our modeling efforts by applying techniques

that assume all daily events come from the same dis-

tribution, regardless of any time dependency between

the consecutive records. To explain this, we pick Gaus-

sian Mixture Model (GMM), a probabilistic model that

presume all the data points are generated from a mix-

ture of a finite number of Gaussian distribution with

unknown parameters. The Expectation Maximization

(EM) procedure is the optimization technique utilized

to fit the unknown parameters and incorporate infor-

mation about the covariance structure of the data as

well as the centers of the latent Gaussians [28].

p(x|λ) =

M∑
k=1

ωk g(x|µk, Σk) (1)

where x is a D-dimensional continuous-valued data

vector (of features), wk, k = 1, ...,M , are the mixture

weights, and g(x|µk, Σk), k = 1, ...,M , are the compo-

nent Gaussian densities. Each component density is a

D-variate Gaussian function of the following form,

g(x|µk, Σk) =
exp{− 1

2 (x− µk)′Σ−1k (x− µk)}
(2π)D/2|Σk|1/2

(2)

with mean vector µk and covariance matrix Σk .The

mixture weights satisfy the constraint that
∑M

k=1 ωk =

1.

The complete Gaussian mixture model is parame-

terized by the mean vectors, covariance matrices and

mixture weights from all component densities. These

parameters are collectively represented by the follow-

ing notation,

λ = {ωk, µk, Σk} k = 1, ...,M (3)

5.1.2 GMM Application: Case Study

GMM could be applied to our data features in sev-

eral ways, for instance a single mixture model for the

entire set of data, or a mixture model for each loca-

tion separately. The later approach is closer to our goal

of proposing practical models for each place indicated

by an AP (or a broader neighborhood) to explore the

characteristics of that place, and ultimately discover-

ing the abnormal behaviors occurring in contrast with

the expected usage pattern. Note that in our previous

work [10] we modeled and identified the anomalies of

three categories: of a single model for all APs, a mix-

ture model for groups of APs and individual models for

each AP. In this work we study the individual model

to be able to evaluate it with our deployed testbed and

in the future work we intend to explore the models for

the potential groups of APs.

In order to investigate the modeling capacities of

GMM for the mentioned aims, we select two different

spots to be our test cases: a highly crowded AP at the

computer service section with 3726 observed users, and

a less crowded AP in the chemical engineering depart-

ment with overall 175 users. The experiment takes into

consideration the second semester period of 2011 from

February to July. To achieve more precise result, we fo-

cus on the working daily pattern, hence the data records

belong to the working days (from Monday to Friday)

and the working hours (8 a.m. to 6 p.m.).

On each location, GMM fits are computed with three

mixture components. The Gaussian density parameters

(mean and covariance matrix) are depicted in Figure 8,

the first row belongs to the crowded AP and the second

row shows the density parameters of the less crowded

AP. In order to facilitate the visual perception and to

have an easier comparison, the density parameters are

illustrated in 2D, despite the fact that GMM process is

conducted on 3 features (principal components).

The data is standardized on each column to have

zero mean and one standard deviation, so the density

values are not appropriate to be compared with each

other directly. However, the contour lines show the di-

versity of the data points in each mixture component

and the direction of spread as well as the mass center.

The R value on each plot represents the correlation be-

tween the X and Y axis, correspondingly the first two

principal components.

Each location is characterized in this manner and

according to GMM modeling approach,

λ1 = {ωi1, µi1, Σi1} i = 1, ..., 3

and

λ2 = {ωj2, µj2, Σj2} j = 1, ..., 3

represent the mixture weights and density parame-

ters of the first and the second APs respectively.

5.2 Time-variant Modeling

In this section we consider models that assume time de-

pendency between consecutive daily events. In this case

the sequences of data records matter and they form sig-

nificant connections in a meaningful context or profile.

In time-variant models in general, conditional probabil-

ities for events are determined based on the history of

the events. In the following section we study the Hidden

Markov Models for modeling the time-varying sequen-

tial data for the ultimate purpose of anomalous pattern

recognition which we discuss more in detail in the next

section.



Anomaly Detection and Modeling in 802.11 Wireless Networks 13

Fig. 8 Density Parameters of Three Gaussian Mixture Components of the Selected APs. a Crowded AP, b Less Crowded AP

5.2.1 Hidden Markov Model

HMMs are generally used for the stochastic modeling of

non-stationary time-series. HMMs provide a high level

of flexibility for modeling and analyzing time-varying

processes or sequential data. Their particular applica-

tion is in recognition such as speech recognition, ac-

tivity recognition, gene prediction, etc. where data in-

stances are represented as a timely sequence of esti-

mates. In the current research we propose how to use

HMMs for modeling and anomaly detection purposes

in wireless networks which has never been investigated

before to the best of our knowledge.

Rabiner and Juang [27] presented a comprehensive

tutorial on HMM which provides a profound under-

standing of the basic blocks of HMM. HMM symbol-

izes a doubly stochastic process with a set of observable

states and a series of hidden states which can only be

observed through the observable set of stochastic pro-

cess. The goal in HMM is recovering a data sequence

that is not immediately observable through the other

set of observable data.

The formal definition of a n-state HMM notation is

determined as follows:

– A set of hidden states S = {si} , 1 ≤ i ≤ n
– A set of possible symbol observations in discrete

models V = {vi} , 1 ≤ i ≤ m
– State transition probability distribution (transition

matrix) A = {ai,j} , 1 ≤ i, j ≤ n , ai,j = P (sj at

t+ 1|si at t)

– Observation symbol probability distributions (emis-

sion matrix), B = {bj(k)} , 1 ≤ k ≤ m , bj(k) =

P (vk at t|sj at t)

– Initial state distribution π = {πi}, 1 ≤ i ≤ n ,

πi = P (si at t = 1)

– m = number of observation symbols in discrete mod-

els

– n = number of hidden states

The set λ = (A,B, π) completely defines an HMM

[27]. However, in continuous emissions, instead of hav-

ing m outcomes for the observations, distribution pa-

rameters such as mean and covariance are determined.

In such cases a model is represented as λ = (A,µ,Σ, π),

and µ and Σ stand for mean vector and covariance ma-

trix respectively.

Using the model λ, an observation sequence O =

o1, o2, ..., oT is generated as follows:

1. Select an initial state, s1, according to the initial

state probability distribution, π;
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Fig. 9 Density Parameters of Three Hidden State in HMM of the Selected APs. a Crowded AP, b Less Crowded AP

2. Set t = 1;

3. Choose ot according to observation probability dis-

tribution in state st, bst(k);

4. Choose st+1 according to the state transition prob-

ability distribution for state st, ast,st+1

5. Set t = t + 1; return to step 3 and continue until

t > T

Given the form of the HMM, there are three key

problems of interest that solving them promotes mod-

eling the real world applications. These problems are

listed as the following [27]:

Problem 1 – Given the observation sequence O =

o1, o2, ..., oT and the model λ = (A,B, π), how we com-

pute P (O|λ), the probability of the observation sequence.

Problem 2 – Given the observation sequence O =

o1, o2, ..., oT , how we choose a state sequence S = s1, s2,

..., sT which is optimal in some meaningful sense.

Problem 3 – How we adjust the model parameters

λ = (A,B, π) to maximize P (O|λ).

According to our data set, the HMMs form obser-

vations with continuous multivariate Gaussian distribu-

tion, hence the emission matrix B is defined by the dis-

tribution parameters associated with the set of states.

In the proposed model, the HMMs contain fully con-

nected states, thus transitions are allowed from any

state to any other state.

5.2.2 HMM Application: Case Study

In this section we select the very same APs as in the

GMM case study (Section 5.1.2), and build HMM mod-

els for each of them separately. Our focus is once more

on the working daily pattern in the second semester of

2011, from Monday to Friday in the working hours.

As described earlier, we consider fully connected

HMMs (ergodic model) with continuous Gaussian dis-

tribution as the emission probabilities and 3 hidden

states. The states are initialized randomly, and the num-

ber of states is selected heuristically based on the best

practice of the experiments conducted on both the large

dataset and the Testbed dataset. For the multivariate

Gaussian distribution of the observations, each compo-

nent of the mean vector is uniformly drawn between

µ− 3σ and µ+ 3σ and the initial covariance matrix is

diagonal and each initial variance is uniformly drawn

between 1
2σ

2 and 3σ2. The initial probability matrix

(π) and the transition matrix (A) are uniformly drawn.

The initial HMM is then optimized with the Baum-

Welch algorithm with the cut off likelihood value of
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1e− 6 or the maximum number of iterations set to 20.

After the optimization process, the physical meaning

of the hidden states are more discernible. The values of

the principal components in each state shows the ten-

dency of the states to the usage or density attributes.

For example a hidden state with the highest value for

the second principal component shows a more popu-

lated case in terms of users or sessions density. In the

future work where the concern is more on modeling the

anomalous patterns we utilize the interpretation of the

hidden states to relate them to the physical conditions

of the locations.

The Gaussian density parameters of the three hid-

den stated are illustrated in Figure 9, similar to Figure

8, the first row is affiliated with the crowded AP and

the second row belongs to the less crowded AP. The

contour lines in these two figures represent the overall

picture of the population and density distribution of

the data in each component or state. Suchlike graphs

are visual aids to depict the density parameters only,

and for inspecting the goodness of distribution over the

entire feature set and make any comparison, further in-

vestigations are required.

5.3 Model Comparison: GMM vs. HMM

In this section two techniques are considered only for

the sake of modeling purposes, a time-invariant model

(GMM) and a time-variant model (HMM). In the com-

ing section we investigate the ultimate goal of this mod-

eling which is the recognition of anomalous points or

regions. At this stage, before exploring the anomaly de-

tection territory, we briefly itemize the modeling func-

tionalities and propose some simple tests to verify the

more qualified model.

The potential functionalities of the locations char-

acterization and modeling are listed as following:

– Classification of the locations, represented by APs,

in terms of utility and temporal patterns.

– Recognition of the meaningful similarities and dis-

tinction of the locations.

– Grouping the most related APs and propose mix-

ture models for the groups [10].

To investigate the competency of the two proposed

models and estimate the capacity of each, we conduct

a simple test. First of all, we measure the log-likelihood

of the models in modeling the training data of the two

samples, crowded AP and less crowded AP, and then

we select a random day from each AP and calculate

the log-likelihood of the models towards the test data

which is new to both models. We use log-likelihood val-

ues (LLV) to measure the goodness of fit of our models.

The model with larger log-likelihood value surpasses the

model with smaller log-likelihood value.

Given data x with independent multivariate obser-

vations x1, ..., xn, the likelihood of a Gaussian mixture

model with M components is defined as [14]:

likelihood(x|λ) =

n∏
i=1

M∑
k=1

ωk g(xi|µk, Σk) (4)

where g(x|µk, Σk) is the kth component’s Gaussian

density, as already defined in Equation 1, and ωk is

the probability that an observation belongs to the kth

component.

The log-likelihood function takes the following form:

log-likelihood(x|λ) =

n∑
i=1

log(

M∑
k=1

ωk g(xi|µk, Σk)) (5)

In the EM process, the parameters of the GMM,

λ, are estimated so that the likelihood of the GMM

given the training data is maximized, Maximum Like-

lihood Estimation (MLE). Ensuing several iterations,

the MLE yields the likelihood of the GMM given the

training data. We applied MClust R package [15] to

conform the Gaussian mixture components and esti-

mate the log-likelihood of the training and test data

provided in Table 3.

The likelihood of a HMM is basically the first key

problem of HMMs stated earlier, the probability of an

observation sequence given the model parameters:

P (O|λ) =
∑
all S

P (O|S, λ)P (S|λ)

=
∑

s1,s2,...sT

πs1bs1(O1)as1,s2bs2(O2)...asT−1,sTbsT(OT)
(6)

We utilized GHMM library [29] for the formation of

HMMs, estimation of log-likelihoods and all the other

requisites of the experiments performed in this work.

Table 3 contains the log-likelihood values of the trained

GMM and HMM models for the selected APs, regard-

ing both the training and test data. Comparing the

log-likelihood values of the training data, HMM pro-

vides higher values (less negative) both for the crowded

AP and the less crowded AP. Note that the training

data contains 25 days data and the test data consists

of only one day data selected randomly from the un-

observed days. Concerning the test data, it is expected

that the selected day from the same AP obtains higher

log-likelihood value rather than the data from another

AP due to the possible similarity of daily usage in a

specified location. The first GMM (built over the crowded

AP data) provides the same amount of log-likelihood

for both test data, thus yields no distinction for its

own usage pattern rather than the other AP. However,

the second GMM (trained with the less crowded AP
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Table 3 Log-likelihood Values (LLVs) of the Training and Test Data Belong to the Selected APs for GMM and HMM Models

````````````````
Test Data LLVs

Trained Model GMM
Crowded AP

GMM
Less Crowded AP

HMM
Crowded AP

HMM
Less Crowded AP

The same train data -3468 -2154 -2553 -2131
Test data from the crowded AP -189 -189 -134 -209
Test data from the less crowded AP -509 -95 -195 -115

data) provides higher log-likelihood value for its own

data rather than the other AP.

HMMs, on the other hand, provide higher amount

of log-likelihood for their own test data rather than the

other AP, which shows the better matched model for

self data. Both GMM and HMM models for the crowded

AP provide close values of log-likelihood for the test

data, so the models do not seem to be very robust in

distinguishing between its own data and the other AP.

Howbeit, GMM and HMM models for the less crowded

AP achieve higher log-likelihood values for the training

data rather than the models of the crowded AP. It must

be considered that the test data is selected randomly

and the pattern of the selected day is not determined

in terms of normal or abnormal usage, nevertheless the

overall outcome of HMM models looks more satisfying

compared with GMM. In Section 7, the experiments

are conducted on the testbed dataset with recognized

anomalies so that the conclusion will be based on the

known ground truth. In the next section, we investi-

gate the time-variant specifications of HMMs towards

the simplicity of the time-independent GMM concern-

ing the anomaly detection objectives.

5.4 Conclusions

In this section we presented GMM as time-invariant

and HMM as time-variant modeling techniques. As a

case study for each approach we selected two different

locations in the university campus- a highly crowded

AP and a less crowded AP- and applied the forenamed

methodologies. We then defined the log-likelihood for

each method separately to examine the goodness of fit

for the proposed models in terms of train and test data.

Having conducted a simple experiment on the selected

APs revealed that HMMs are more likely to provide a

robust model to distinguish between their own pattern

and an unfamiliar pattern. In the following section we

show the functionality of the proposed models to detect

anomalous cases in AP usage data.

6 Detection of Anomalies in AP Usage Data

In this section we show how the aforementioned mod-

els are utilized for the purpose of anomaly detection.

We further explore the capabilities of these models in

recognition of abnormal events and series of unexpected

occurrences.

6.1 Anomaly Detection Approach

Network administrators are generally concerned with

anomaly detection as well as prediction. These two im-

portant tasks enable them not only to make immediate

decisions to alleviate the complications of the network,

but also to establish longstanding plans to support the

expansion of the network and its dynamic usage over

time.

6.1.1 GMM Estimation: Divergence from the Gaussian

Densities

The most generic definition of the anomalies asserts

those points or small regions isolated from the normal

zones which contain the majority of the observations.
Thus, a straightforward approach to detect anomalies,

when there is no ground truth available, is to define the

normal zones and distinguish those rare observations

which hardly belong to those normal sectors.

In GMM, the time-invariant model discussed ear-

lier, a number of Gaussian mixture components are de-

termined and each component contains normal density

parameters. The model is built based on several train-

ing data and the newly arrived records are inclined to

the most compatible component with the least distance.

Hence, to detect abnormal points we need to estimate

the affinity degree of each point, as already described

in Equation 4, and mark outliers as having the slightest

probability of belonging to any cluster.

6.1.2 HMM Estimation: Likelihood Series

HMM, as a time-variant model, considers the temporal

dependency between consecutive data records. Calcu-

lating the log-likelihood of a single data point or a series
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of sequential data points as already expressed in Equa-

tion 6, emanates the mis-behaving records comparing

to the log-likelihoods of the norm of the data. The un-

expected low values for the log-likelihood in HMM are

generally due to one or some of the following arguments:

Divergence from the Assigned Hidden State: Given an

HMM model λ and an observation sequence of O =

o1, o2, ..., oT , the most probable set of states are gener-

ated by Viterbi algorithm as S = s1, s2, ..., sT , si ∈ S.

To estimate the distance of a data point in time t to

its counterpart HMM state (st) in Viterbi path, the

Mahalanobis distance is evaluated between time-series

elements and the hidden states. Consequently the out-

liers which display the unreasonable distance to their

assigned hidden states, are highlighted to potentially

have a poor value in the likelihood series. This approach

is approximately similar to the outlier detection tech-

nique addressed earlier for GMM components.

Less Likely State Transition: According to the third

well-known HMM problem, stated in Section 5.2.1, when

a HMM model is trained the model parameters are ad-

justed to maximize the probability of the observed data

P (O|λ). The transition probability matrix is one of the

salient components of the trained model. The highest

transition probabilities are frequently observed between

identical states (si to si), while the lowest probabilities

often occur between the most distant states. However,

regardless of the form of the transition matrix, in the

Viterbi sequence outcome, it is expected to observe the

transition probabilities proportional to the values of the

transition matrix. Whenever this principal is violated

there exist an anomaly prospect. For instance if in a

Viterbi path the transition from state si to state sj
occurs only once (out of 60 transitions), and the transi-

tion probability of ai,j is 30% in the transition matrix,

this circumstance sounds unlikely and thus an anomaly-

prone transition.

6.1.3 Anomaly Detection: Case Study

In this section we explore the addressed methodologies

to detect anomalous data points or data sequences in

the same two APs that we proposed GMM and HMM

models for their corresponding training data. Figure 10

highlights the outliers of the one day test data detected

by measuring the largest distance from the Gaussian

components. The result of the first AP (crowded AP) is

displayed in blue and the second AP (less crowded AP)

is demonstrated in green. Two data points are marked

in red that both belong to the first model of the crowded

Fig. 10 GMM Estimation of Anomalous Data Points Based
on the Largest Distance from the Assigned Gaussian Compo-
nent

Fig. 11 HMM Estimation of Anomalous Data Points Based
on the Lowest Log-likelihood

AP. These outliers are appointed to a Gaussian com-

ponent of the first model, but with the lowest proba-

bility (less than 60%). Here we selected the normality

threshold to be 60%, however it could differ from model

to model and the most appropriate value of threshold

could eventually be decided by the network manager.

Figure 11 displays the anomalous points detected by

HMM based on the lowest value of the log-likelihood.

In this approach, two different data points are marked

as outliers which belong to the first AP training data,

the crowded AP. The cut-off value is considered to be

log-likelihoods below -100, note that this value could

also be configured. The more strict cut-off value yields

higher false positive rate. We investigated the likely ori-

gins of the outliers emerged in this case and we ob-

served that the Mahalanobis distance of the marked

data points are maximal with the assigned hidden state

in the Viterbi path. That must have caused the low log-

likelihood value in the likelihood series. Further exper-

iments on anomaly detection by HMMs and evaluation

techniques are performed in our previous work in [10].
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However, in this case study we demonstrated how

the anomaly detection analysis work in our proposed

framework. In the next section, we evaluate both mod-

els based on the achieved results of the deployed testbed,

hence we can determine with more confidence which

points are detected correctly.

6.2 Conclusions

In this section we described the anomaly detection tech-

niques by GMM and HMM. In GMM we define anoma-

lies as the distant data points that hardly belong to

any Gaussian component, while in HMM anomalies are

the data points with the minimum likelihood value. As

discussed more in detail in our previous work [10], we

analyzed the root cause of the low likelihood value as

divergence from the assigned hidden states as well as

the low probability in state transition. We further ex-

plored the addressed methodologies to detect anomalies

at the same APs from the previous section. We justified

the detected anomalous points, however in absence of

the ground truth in the large dataset it was not possible

to throughly evaluate the anomalous points and we left

the evaluation process for the next section.

7 Experimental Setup

In order to validate anomaly detection techniques pro-

posed in this work we deployed an exploratory testbed

with one single AP and generate a number of anomalies

in a controlled environment for experimental purposes.

We work with FreeRADIUS server which is widely used

for Enterprise Wi-Fi and IEEE 802.1X network security

and communication, particularly in the academic com-

munity, including Eduroam [1]. The very basic aspects

of our testbed dataset is elaborated in the following

section.

7.1 Server Configurations and Users Specifications

The set up process of the FreeRADIUS server is per-

formed on a Linux machine with 2.30 GHz Intel(R)

Core(TM) i5-2410M CPU, and 8GiB System Memory.

The database system used to store primary configura-

tions and AAA information is MySQL and consist of 10

preordained tables. The principal tables employed for

data collection and analysis are labeled as radcheck (au-

thentication), radpostauth (authorization) and radacct

(accounting). Other essential configurations are con-

ducted directly on FreeRADIUS setting files, such as

server and client security configurations, required cer-

tificates, database setups, and so forth.

As stated earlier, the testbed deployed for this study

is dedicated to one-AP-many-users. Thus, we describe

the AP configurations and wireless users specifications

in the following lines. The AP is an enhanced 802.11g

wireless access point powered by D-Link 108G technol-

ogy, DWL-2100AP, and supports WPA and WPA2 se-

curity protocols. The wireless users connected to this

network during one month of experiment consist of two

laptops, two smart phones, and two tablets. A sum-

mary of the users’ specifications in terms of devices,

operating systems and participation time in the experi-

ment is provided in Table 4. Obviously not all the users

were present everyday and every hour of the test, but

they follow a natural form of entering and exiting the

network. Some devices were disassociated from the net-

work when the users simply depart from the coverage

area and others were deliberately disconnected in the

time of specific anomaly generation. In the coming sec-

tions we present all types of anomalies generated and

organized for this testbed.

Table 4 A summary of the testbed users’ specifications

Device OS Participation
Time (%)

Surface Pro II Win 10 100%
Asus Win XP 100%
Alcatel onetouch Andriod 85%
iPhone iOS 15%
iPad iOS 100%
Dell Win 10 8%

7.2 Network Anomaly Generation in a Controlled

Environment

In this section we describe how some of the known wire-

less network issues are re-generated to make the desired

data records for the evaluation of the proposed meth-

ods in this work. In the time of experiment not all days

encounters anomalies, some days simply end as NOR-

MAL days and the users’ connection and amount of net-

work usage are according to the users’ usual plan of the

day. In ABNORMAL days, however, one or some kind

of anomalies are provoked to test the behavior of the

model under abnormal circumstances. The anomalous

patterns selected for this purpose are common cases

occur in real networks relatively often and affect the

performance of users connection and availability of the

network. Succeeding paragraphs deal with the specific
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aspects of these anomalies and point out how to repli-

cate them.

7.2.1 AP Shutdown/Halt

To reproduce this anomalous effect, when there is no

session recorded in the accounting table, the AP could

be shutdown for a while or restarted. This anomaly is

regenerated under various circumstances and for dif-

ferent period of time and in the real world could be

considered as AP shutdown, halt, crash or power off.

7.2.2 Heavy Usage

Single User This anomaly arises when only one user

performs heavy download or upload. It might affect the

rest of the associated users depending on the amount

of usage, duration, time of the day and other relevant

factors.

Multiple Users This anomaly emerges when more than

one user use the network excessively, and therefore the

overall throughput of the network intensifies. This could

occur in a NORMAL day or as an anomalous event and

the network tolerance, as expected, varies for different

networks and different AP configurations. In any case,

the proposed model is expected to detect the irregular-

ity and report the level of hazard so that the network

managers could take control of the situation and make

required changes if possible.

7.2.3 Wireless Network Interference

In a real network, a variety of things can interfere with

the radio waves, degrading the quality of connection

and decreasing the network reliability. Sources of in-

terference are commonly from other wireless networks

in the vicinity when they all locate in the same chan-

nel, from non-802.11 devices such as microwave ovens

or cordless phones that use 2.4GHz band as well, from

other clients in a crowded environment when they all

try to transfer data at the same time, and from RF

effects such as hidden terminals or capture effects. In

this work we intend to cause interference anomaly in

a systematic and controlled manner. For this aim, we

made use of a python script named wifijammer [6] to

intentionally jam wireless clients or APs in the range

to simulate the same outcome as the aforementioned

interferences. The jamming process works by sending

1 de-authentication packet to the client from the AP,

1 de-auth to the AP from the client, and 1 de-auth

to the AP destined for the broadcast address to de-

authenticate all clients connected to the AP. Many APs,

however, ignore de-auth to broadcast addresses. We em-

ployed wifijammer in the following plans by applying

peculiar properties each time to create different forms

of interferences.

Jamming the Entire Channel In this practice, the mon-

itor mode interface is set to listen and de-authenticate

clients or APs on a specific channel. This way of jam-

ming influence all the available networks on the current

channel and imply interferences caused by busy chan-

nels.

Jamming Clients with Various Time Intervals Execut-

ing the De-authentication procedure with short time in-

tervals hinder clients from recovering and disable them

for the entire period of jamming, so the immediate re-

sult in the accounting table is the one-time stop ses-

sion from each client and then a silent period without

any start session. While de-authenticating with a larger

time interval makes clients reclaim and try to get back

the connection to the AP, and subsequently many short

sessions is observed in the accounting table because

they are de-authenticated right after getting connected

again. In such manner we can replicate two interference

cases observed in the real datasets frequently.

Jamming Specific Clients De-authenticating some spe-

cific clients and not the rest, resembles the hidden-

terminal situation, when one client is forced to back-

off and delay data transfer because the other clients

can not sense its send-request. Depending on the time

interval discussed earlier, the sessions outcome in the

accounting table could be different.

7.3 Testbed Experimental Results

The testbed experiment is deployed in a home envi-

ronment, with a single AP and 6 regular users and be-

tween 3-4 guest users. The experiment contains 5 weeks

of data, 30 working days, and is performed in two dif-

ferent time span, once in November 2015 and a while

later in April 2016. There exist 20 normal days with no

anomalies provoked, and 10 abnormal days containing

at least one anomalous event a day. Each anomaly takes

from 15 minutes to around an hour.

In the following paragraphs we show how the mod-

eling and anomaly detection techniques operate in the

presence of the ground truth, data obtained from the

testbed deployment.
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Fig. 12 Likelihood values of the training and test data be-
long to Testbed for GMM Model

Fig. 13 Likelihood values of the training and test data be-
long to Testbed for HMM model

7.3.1 GMM vs. HMM Modeling: Pros and Cons

For the first experiment, a GMM model is built with 10

randomly selected normal days as training data. From

then on, the likelihood of the generated model is com-

puted against the training data as well as 10 unobserved

normal days and 10 abnormal days as test data. The

same process is performed on the HMM model, with

the same set of training and test data. The summary

of this experiment is displayed in Figure 12 and 13.

Both figures demonstrate overall higher likelihood

values for the training data. The likelihood values of the

unobserved data set is divided into normal and abnor-

mal outputs which are displayed in graphs with differ-

ent colors and shapes. In both models there are higher

likelihood values for the normal days rather than the

abnormal days. However, there is a discernible bound-

ary between the normal and abnormal results in HMM

while in GMM the likelihood values are not clearly sep-

arated and there are even some instances that the like-

lihood value of the normal day is lower than the ab-

normal day. The daily likelihood of abnormal days are

apparently lower than the normal days, and this value

varies with the number of abnormal occurrences and

duration of each event. However, it is more straightfor-

ward to define a threshold for HMM rather than GMM

model, to announce a day normal or abnormal.

7.3.2 Anomaly Detection

In this section we determine the anomalous time-slots

with the proposed methodologies and compare the achieved

results from the model with the testbed anomalous ranges

recorded for the abnormal instances. Note that various

thresholds for each technique produce different results

as the detection and false positive rates change based

on the selected threshold. We made use of some sta-

tistical metrics to measure the detection accuracy and

false alarms such as fall-out or false positive rate (FPR),

specificity (SPC) or true negative rate (TNR), sensitiv-

ity or true positive rate (TPR), and eventually accuracy

(ACC) and F1 score. In order to acquire the specific

definition of each terminology refer to [5].

The summary of the analysis on the normal and

anomalous test data are presented in Table 5 for GMM

modeling and in Table 6 for HMM modeling approaches.

Table 5 shows that higher thresholds increase the

possibility of anomaly detection (24.9% rather than 4.7%),

however the false positive rates also increase accord-

ingly (19% rather than 9.9% and 3%). In normal test

data, when we expect no anomalies to occur, from 2.5%

to 10.5% fall-out is observed. Comparing this fall-out

ratio to the results of Table 6 for normal test set, it

is noted that much lower false alarms is marked for

HMM (from 0.5% to 3.75%). Furthermore, the FPR for

the anomalous data in HMM is quite trivial relative to

GMM FPR output (1.1% in HMM vs. 19% in GMM).

The highest detection rate or TPR in HMM modeling

is achieved with Threshold equals to -10 which is 75%

in average for 10 abnormal days of the experiment.

Regarding the FPR or fall-out ratio recorded for

normal data in HMM, a careful consideration on each

false alarm is performed and it is noted that the HMM

model is slightly sensitive to extreme download ratio

and in some cases both download and upload volumes.

As the testbed is deployed in a real home environ-

ment with real wireless users, although in normal days

no anomaly is generated deliberately, there might have

been some evidences of rather high download or upload

by the users as it happens quite often in every wireless

network. Therefore the false positive examples occurred

in normal days could be introduced as real anomalies

appearing in normal days, however for this experiment

we assumed that normal days contain no anomalies. In

our future work we intend to propose an unsupervised

anomaly detection algorithm that detect anomalies in
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Table 5 Anomaly detection of the normal and anomalous test data belong to Testbed for GMM
```````````````̀

Data - Threshold

Statistical Metrics
False Positive Rate
(FPR)

True Negative Rate
(TNR)

True Positive Rate
(TPR)

Accuracy
(ACC)

F1 Score

Normal Testset (Threshold: 0.6) 2.5% 97.5% 0% 97.5% 0%
Normal Testset (Threshold: 0.7) 5.5% 94.5% 0% 94.5% 0%
Normal Testset (Threshold: 0.8) 10.5% 89.5% 0% 89.5% 0%

Anomalous Testset (Threshold: 0.6) 3% 97% 4.7% 81% 8.1%
Anomalous Testset (Threshold: 0.7) 9.9% 1.01% 4.7% 75% 7.2%
Anomalous Testset (Threshold: 0.8) 19% 81% 24.9% 70% 20.75%

Table 6 Anomaly detection of the normal and anomalous test data belong to Testbed for HMM
```````````````̀

Data - Threshold

Statistical Metrics
False Positive Rate
(FPR)

True Negative Rate
(TNR)

True Positive Rate
(TPR)

Accuracy
(ACC)

F1 Score

Normal Testset (Threshold: -50) 0.5% 99.5% 0% 99.5% 0%
Normal Testset (Threshold: -20) 1.75% 98.25% 0% 98% 0%
Normal Testset (Threshold: -10) 3.75% 96.25% 0% 96% 0%

Anomalous Testset (Threshold: -50) 0% 100% 39% 90% 49%
Anomalous Testset (Threshold: -20) 0% 100% 43% 91% 52%
Anomalous Testset (Threshold: -10) 1.1% 98.9% 75% 95% 74%

Table 7 Detection rate of various anomalous patterns of the Testbed
```````````````̀

Model

Anomalous Patterns
Jamming Channel
(Low Intervals)

Jamming Channel
(High Intervals)

Heavy Usage
(Single User)

Heavy Usage
(Multiple
Users)

AP Power
Off

GMM (Threshold: 0.8) 28.5% (4/14) 17.3% (4/23) 8.3% (1/12) 0% (0/3) 35.2%
(6/17)

HMM (Threshold: -10) 71.4% (10/14) 73.9% (17/23) 83.3%
(10/12)

100% (3/3) 82.3%
(14/17)

an unlabeled test dataset which is the case when no

ground truth is actually provided.

Table 7 displays the total proportion of different

anomalies’ occurrences in the Testbed and presents the

detection rate of each anomalous pattern by GMM and

HMM. Here we consider the anomalous test data and

the highest likelihood thresholds of both models (0.8

for GMM and -10 for HMM) that provide the max-

imal detection rate. Detection ratio is determined by

the overall number of time-slots marked as anomaly by

the model divided by the total number of time-slots en-

counter particular types of anomaly. Comparing GMM

and HMM once more demonstrates the superior ca-

pability of HMM in recognition of anomalous events,

while providing unnoticeable false positive rate (Table

6). Among the various types of anomalies generated

for the Testbed, the highest detection rate belongs to

heavy usage pattern, producing by multiple users and

then single user. The lowest detection ratio, however,

originates from jamming channel with low interval. Al-

though there are some specific anomalous instances that

are never detected by the model, regardless of the cut-

off threshold, the overall detection rate of the HMM

is quite satisfactory. We intend to improve the detec-

tion estimate capacity of HMM in our future work by

proposing more complex variations of HMMs.

7.4 Conclusions

In this section we described the Testbed deployment

on a single AP and the process of data collection from

a RADIUS server. We further explained the anoma-

lies generated deliberately to prepare the ground truth

data for model evaluation. We reproduced AP Shut-

down/Halt, Heavy Usage from a single user and mul-

tiple users, and various types of interferences as a set

of network anomalies. We then applied our proposed

model to detect anomalous points, and discussed the

effectiveness of each model. The experimental results

demonstrated that HMM outperformed GMM in ob-

taining higher detection ratio while producing minor

false alarm.
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8 Conclusions and Future Work

In large deployments of 802.11 networks with varying

usage, channel conditions, and operational constraints,

network managers often demand tools that provide them

with a comprehensive view of the entire network. Ana-

lyzing the users’ behavioral patterns, learning efficient

models to detect anomalous periods, and measuring the

temporal performance of the network under certain cir-

cumstances are of great significance to provide an ade-

quate level of satisfaction for the wireless users. Propos-

ing time-invariant and time-variant modeling approaches

and utilizing those models for anomaly detection in ad-

dition to a RADIUS testbed deployment with simulated

anomalies compose the key contributions of this work.

We proposed a new application of HMMs in perfor-

mance anomaly detection of 802.11 wireless networks

and explored the necessity of temporal specifications of

HMM rather than its simple time-independent coun-

terpart model, GMM. We performed analysis and com-

pared HMM and GMM in terms of modeling compe-

tency and anomaly detection performance on the large

FEUP dataset as well as a similar but minor version

of the deployed testbed with provoked anomalies for

evaluation purposes.

The experimental results show that HMM models

are capable of detecting a great portion of provoked

anomalies on unobserved test data set (up to 75% TPR),

and even disclosing unintentional anomalies occurred

during the normal days of experiment. Besides, the false

positive ratio is fairly low (only 1.1%) in HMM that

outperforms GMM both in detection and fall-out rate.

In future work we intend to propose an anomaly

detection algorithm that works in unsupervised mode

regardless of the anomalous information provided for

the data records. Furthermore, we will propose more

complex HMMs to characterize and distinguish vari-

ous anomaly-related patterns. We also plan to extend

the testbed to multiple APs to explore new aspects of

anomalies that concern the mobility effects of the wire-

less users in AP vicinities.
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Snoeren, Geoffrey M. Voelker, and Stefan Savage. Jig-
saw: Solving the puzzle of enterprise 802.11 analysis.
In Proceedings of the 2006 Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications, SIGCOMM ’06, pages 39–50, New
York, NY, USA, 2006. ACM.

13. D. Dujovne, T. Turletti, and F. Filali. A taxonomy of
ieee 802.11 wireless parameters and open source measure-
ment tools. Communications Surveys Tutorials, IEEE,
12(2):249–262, Second 2010.

14. Chris Fraley and Adrian E Raftery. Model-based cluster-
ing, discriminant analysis, and density estimation. Jour-
nal of the American statistical Association, 97(458):611–
631, 2002.

15. Chris Fraley, Adrian E. Raftery, Thomas Brendan Mur-
phy, and Luca Scrucca. mclust Version 5.1 for R: Normal
Mixture Modeling for Model-Based Clustering, Classifi-
cation, and Density Estimation, 2015.

16. Chittabrata Ghosh, Carlos Cordeiro, Dharma P Agrawal,
and M Bhaskara Rao. Markov chain existence and hidden
markov models in spectrum sensing. In Pervasive Com-
puting and Communications, 2009. PerCom 2009. IEEE
International Conference on, pages 1–6. IEEE, 2009.

17. M. Heusse, F. Rousseau, G. Berger-Sabbatel, and
A. Duda. Performance anomaly of 802.11b. In INFO-
COM 2003. Twenty-Second Annual Joint Conference of

http://freeradius.org/
https://www.ietf.org/
https://www.ietf.org/
http://tools.ietf.org/html/rfc2865
http://tools.ietf.org/html/rfc2865
http://tools.ietf.org/html/rfc2866
http://tools.ietf.org/html/rfc2866
http://systems-sciences.uni-graz.at/etextbook/bigdata/confusionmatrix.html
http://systems-sciences.uni-graz.at/etextbook/bigdata/confusionmatrix.html
http://systems-sciences.uni-graz.at/etextbook/bigdata/confusionmatrix.html
https://github.com/DanMcInerney/wifijammer
https://github.com/DanMcInerney/wifijammer


Anomaly Detection and Modeling in 802.11 Wireless Networks 23

the IEEE Computer and Communications. IEEE Soci-
eties, volume 2, pages 836–843 vol.2, March 2003.

18. Ankur Kamthe, Miguel A Carreira-Perpinán, and Al-
berto E Cerpa. M&m: multi-level markov model for wire-
less link simulations. In Proceedings of the 7th ACM Con-
ference on Embedded Networked Sensor Systems, pages
57–70. ACM, 2009.

19. Syed A Khayam and Hayder Radha. Markov-based mod-
eling of wireless local area networks. In Proceedings of
the 6th ACM international workshop on Modeling anal-
ysis and simulation of wireless and mobile systems, pages
100–107. ACM, 2003.

20. Kaushik Lakshminarayanan, Srinivasan Seshan, and Pe-
ter Steenkiste. Understanding 802.11 performance in het-
erogeneous environments. In Proceedings of the 2nd ACM
SIGCOMM workshop on Home networks, pages 43–48.
ACM, 2011.

21. Ratul Mahajan, Maya Rodrig, David Wetherall, and
John Zahorjan. Analyzing the mac-level behavior of wire-
less networks in the wild. In ACM SIGCOMM Computer
Communication Review, volume 36, pages 75–86. ACM,
2006.

22. Dossa Massa and Ricardo Morla. Abrupt ending of
802.11 ap connections. In Computers and Communica-
tions (ISCC), 2013 IEEE Symposium on, pages 000348–
000353. IEEE, 2013.

23. Dossa Massa and Ricardo Morla. Modeling 802.11 ap
usage through daily keep-alive event counts. Wireless
networks, 19(5):1005–1022, 2013.

24. Anthony J. Nicholson, Yatin Chawathe, Mike Y. Chen,
Brian D. Noble, and David Wetherall. Improved access
point selection. In Proceedings of the 4th International
Conference on Mobile Systems, Applications and Ser-
vices, MobiSys ’06, pages 233–245, New York, NY, USA,
2006. ACM.

25. U. Paul, A. Kashyap, R. Maheshwari, and S.R. Das. Pas-
sive measurement of interference in wifi networks with
application in misbehavior detection. Mobile Comput-
ing, IEEE Transactions on, 12(3):434–446, March 2013.

26. Pratap S Prasad and Prathima Agrawal. Movement pre-
diction in wireless networks using mobility traces. In
Consumer Communications and Networking Conference
(CCNC), 2010 7th IEEE, pages 1–5. IEEE, 2010.

27. L. Rabiner and B.-H. Juang. An introduction to hidden
markov models. ASSP Magazine, IEEE, 3(1):4–16, 1986.

28. Douglas Reynolds. Gaussian mixture models. Encyclo-
pedia of Biometrics, pages 827–832, 2015.

29. A. Schliep, I. G. Costa, B. Georgi, C. Hafemeister,
A. Schonhuth, and M. P. Mahmud. GHMM library.
http://ghmm.org. Accessed in March 2016.

30. Anmol Sheth, Christian Doerr, Dirk Grunwald, Richard
Han, and Douglas Sicker. Mojo: A distributed physical
layer anomaly detection system for 802.11 wlans. In Pro-
ceedings of the 4th international conference on Mobile
systems, applications and services, pages 191–204. ACM,
2006.

31. Vivek Shrivastava, Shravan K Rayanchu, Suman Baner-
jee, and Konstantina Papagiannaki. Pie in the sky: On-
line passive interference estimation for enterprise wlans.
In NSDI, volume 11, pages 25–25, 2011.

32. Vamsi Krishna Tumuluru, Ping Wang, and Dusit Niy-
ato. Channel status prediction for cognitive radio net-
works. Wireless Communications and Mobile Comput-
ing, 12(10):862–874, 2012.

Anisa Allahdadi received the B.Sc.

in Computer Science from BIHE Univer-
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