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Abstract

From virtual reality and telepresence, to augmented reality, holoportation, and remotely controlled robotics, these future network

applications promise an unprecedented development for society, economics and culture by revolutionizing the way we live, learn,

work and play. In order to deploy such futuristic applications and to cater to their performance requirements, recent trends stressed

the need for the “Tactile Internet”, an Internet that, according to the International Telecommunication Union (ITU), combines ultra

low latency with extremely high availability, reliability and security [1]. Unfortunately, todays Internet falls short when it comes

to providing such stringent requirements due to several fundamental limitations in the design of the current network architecture

and communication protocols. This brings the need to rethink the network architecture and protocols, and efficiently harness recent

technological advances in terms of virtualization and network softwarization to design the Tactile Internet of the future.

In this paper, we start by analyzing the characteristics and requirements of future networking applications. We then highlight

the limitations of the traditional network architecture and protocols and their inability to cater to these requirements. Afterward,

we put forward a novel network architecture adapted to the Tactile Internet called FlexNGIA, a Flexible Next-Generation Internet

Architecture1. We then describe some use-cases where we discuss the potential mechanisms and control loops that could be offered

by FlexNGIA in order to ensure the required performance and reliability guarantees for future applications. Finally, we identify

the key research challenges to further develop FlexNGIA towards a full-fledged architecture for the future Tactile Internet.
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I. INTRODUCTION

The last few years have witnessed the emergence of a new breed of futuristic applications. Ranging from virtual reality,

to augmented reality, holoportation, and telepresence, these applications are bound to completely revolutionize different domains

including communications, healthcare, education, commerce, gaming and culture. Unfortunately, the deployment of these

applications has been significantly inhibited because of the inability of today’s Internet technologies and protocols to cater

to their requirements in terms of performance (e.g., latency, bandwidth), reliability, and availability. Indeed, the current Internet

architecture and communication protocols suffer from several fundamental limitations in their design, which does not allow

them to offer the requirements of these future applications, which leads to low performance (e.g., high latency and packet loss)

and poor user experience.

Propelled by the need to overcome these limitations and motivated by the emergence and maturity of new technologies

and paradigms like virtualization, software defined networking, and network programmability, there is a growing determination

in the research and industrial communities to rethink the architecture of the Internet and to design novel communication protocols

and network services. The ultimate goal is to build the next-generation “Tactile” Internet, that would offer an ultra-low latency

with high levels of performance, availability, resiliency and security [1].

In this paper, we propose a novel fully-Flexible Next-Generation Internet Architecture (called FlexNGIA) where we provide

our vision of the future Tactile Internet infrastructure and services, business model, management framework, and network

protocol stack. More specifically, the FlexNGIA architecture is characterized by the following features:

• Business and Service Model: FlexNGIA defines the different stakeholders that should be involved in the future Internet

and identifies the services that should be offered by future network operators (i.e., Internet service providers). We argue

that future networks have to offer not only data delivery service but rather Service Functions Chains (SFCs) that are able

to carry the traffic between multiple sources of data to multiple destinations and to offer network functions that are tailored

to the application needs. These chains should also be customizable and able to offer different level of performance, availability

and reliability guarantees that could be customized based on the applications’ requirements.

• In-network computing: FlexNGIA promotes the deployment of computational resources throughout the infrastructure

from the edge to the edge including the core of the network. This provides the network with a real full programmability

and an unprecedented flexibility for operators to deploy a wide array of network functions within the network.

• Basic and advanced network functions: thanks to in-network computing, FlexNGIA considers a wide range of network

functions including the basic functions (e.g., packet forwarding, routing, firewall) but also more advanced functions to support

the applications (e.g., data compression, video and hologram processing) and the transport layer (e.g., congestion control,



video cropping). This requires to broaden the concept of Software-Defined Networking to provide not only APIs and protocols

to define basic forwarding rules (e.g., OpenFlow [2]) or data plane programmability (e.g., P4 [3]) but also APIs and protocols

to control the operation of the aforementioned advanced network functions.

• Cross-layer network protocol design: the FlexNGIA architecture advocates to combine the transport and network layers

in order to ensure a better control over the services of layers 3 and 4 and further improve their efficiency. The FlexNGIA

combined layer breaks the end-to-end principle adopted by today’s Internet. However, this allows the network to offer services

like data reliability (e.g., packet loss detection and retransmission) and congestion control in order to improve the overall

performance in terms of latency, bandwidth and packet loss.

• Application-aware networking: the FlexNGIA design allows the network to be aware of the application. In other words,

the network (i.e., the combination of transport and network layers) is aware of the flows used by the same application

even if the application’s components are distributed and sending data from different sources to different destinations. The network

is then aware of the run-time changing requirements of each flow in terms of performance, reliability and availability. It is also

aware of the type of data being transmitted and could take decisions taking into account the application context and the user

behavior within the application (e.g., cropping a video to show only the important objects of a video or a hologram).

• Flexible application design and traffic engineering: The FlexNGIA architecture allows the application designer to customize

the service function chain adapted to each of the deployed applications and to define the appropriate routing strategy within

this chain. For instance, routing could be run in a centralized manner like in software-defined networks or could use other

strategies like Segment Routing [4] where packets contain different kind of instructions (including forwarding instructions).

• Simplified Layer 2 virtualization: the FlexNGIA architecture relies on a layer-2 virtualization that allows to easily separate

the traffic of the different network applications. This can be seen as an extension of the VLAN technology that would allow to

identify each application of the network with a unique ID that remains valid even when packets travel through several networks

managed by different network operators.

• Fully flexible packet header format tailored to each application: FlexNGIA promotes a totally flexible header for the upper

layers (i.e., layer 3 and above) that could be defined by the application designer depending on the application type and requirements.

The headers could include meta-data (i.e., different kind of information) and also commands to be used or executed by the network

functions or the network resource management framework.

In the remaining part of this paper, we start by describing some of the major future Internet applications and we analyze

their key characteristics and requirements (Section II). We then present and dissect the limitations of the today’s network

architecture, protocol stack, packet headers and sources of latency, and we show how they are not able to cater to these

requirements (Section III). We next draw a rough sketch of the proposed network architecture adapted to the Tactile Internet

(FlexNGIA) where we provide our vision of the next-generation network infrastructure and services, business model, management

framework, network protocol stack and headers (Section IV). We describe afterward some use-cases where we discuss

the potential mechanisms and control loops that are offered by FlexNGIA in order to ensure the required performance

and reliability guarantees for future applications (Section V). We then summarize the key research challenges that should

be addressed to further develop FlexNGIA towards a full-fledged architecture for the Tactile Internet (Section VI). We finally

wrap up with some concluding remarks to highlight the main features of FlexNGIA (Section VII).



II. A GLANCE INTO FUTURE INTERNET APPLICATIONS

In the last few years, we are witnessing the emergence of a new breed of futuristic applications that are gaining momentum.

From virtual reality, holoportation, augmented reality, to telepresence, and remotely-controlled robotics, these applications are

changing the IT landscape and are pushing towards a new generation of the Internet that should be able to accommodate

the high-performance and changing requirements of these applications. In the following, we provide examples of typical

futuristic applications and then analyze their characteristics and requirements.

A. Typical Future Applications

Before delving into the technical issues pertaining to next-generation networks, we start in the following by describing

some potential network applications that will be common in the future:

• Telepresence: this application allows to navigate through streets, buildings, meet people, or carry out high-precision tasks

via a telepresence robot. This assumes that the user is able to remotely control the robot in a perfect and precise manner

and has a 3D high-definition visual display of the robot environment, a perfect 3D surrounding sound and ideally kinesthetic

communications with Haptic technologies that recreate the sense of touch perceived by the robot (by applying pressure,

vibrations, or motions to the user). Telesurgery, which refers to the ability for a doctor to perform a surgery remotely using

a robot, can be seen as a form of telepresence. This is a typical application that requires high guarantees of performance

(e.g., in terms of bandwidth and latency) and reliability.

• Virtual Reality: this application allows the user to navigate through a virtual environment and interact with virtual objects.

Similar to telepresence, it requires to recreate this environment including 3D visual display, sound, and haptic senses.

• Holoportation: holograms refers to high quality 3D models of humans or objects. Holoportation is defined as the technology

that allows holograms to be captured, compressed then transmitted and reconstructed at real-time in a distant location.

The application should allow the ported hologram to be incorporated into a virtual or real environment and interact with objects

and humans located in this environment.

• Augmented reality: this is a technology that allows to superimpose a computer-generated objects on a user’s view

of the real world. These objects could be images, videos, holograms, text or results of some analysis carried out on the current

physical environment of the user. Of course, this brings the challenge of capturing the real-world environment of the user,

analyzing it and providing the outcome of the analysis in real-time.

In a near future, we can expect to have these applications combined and to witness the merge of physical and digital worlds

where virtual and real become part of our environments. It is also expected that these future applications incorporate haptic,

taste and smell communications in addition to vision and audition in order to allow an immersive experience involving the five

senses [5]. In the following, we provide an example of a killer app that could combine all these features. This application

will be used as a reference application throughout this paper.

• The killer app: A typical application in the future would be a “virtual coffee shop” where users can meet each other

in a virtual reality environment that incorporates their holograms. Users should have an immersive experience where they

can “live” within this virtual reality environment (i.e., the coffee shop) and interact with each other through their respective

holograms as if they were in a real coffee shop. Ideally, they should be able to perfectly use and leverage the human five

senses (Sight, Sound, Smell, Taste, and Touch) to interact with each other and with the environment.



Of course, all the aforementioned applications are provided as examples but the future definitely hides much more exciting

applications that are still unforeseen at the current time.

B. Requirements of Future Applications

As a matter of fact, the aforementioned applications have performance and reliability requirements that can vary from one

application to another. In the following, we briefly summarize these requirements:

• Bandwidth: these applications need to transmit tremendous amounts of data that can go from few tens of megabytes

to terabytes of data per second. Hence, it is clear that there is a pressing need for high bandwidth infrastructures. Table I provides

the amount of bandwidth requirements for a real-time transmission of a single hologram and the requirement for 4K, 8K

or 16K virtual environment (16K is the resolution of the human eye retina that could offer a truly immersive experience

for virtual reality [6]). It can be seen in the table that a single hologram needs up to 50Mbps even with compression.

In more realistic use-cases with multiple holograms and complex virtual environments (with hundreds of objects), the needed

amount of bandwidth will increase exponentially to hundreds of megabits.

TABLE I

BANDWIDTH REQUIREMENTS FOR SOME FUTURE APPLICATIONS

Application Bandwidth

Holoportation
100 Gbps to 1 Tbps (raw) [7]

30 to 50 Mbps (compressed) [8]

Virtual/Augmented Reality

(4K x 4K, 60 fps) → 20+ Mbps [9]

(8K x 8K, 120 fps) → 85+ Mbps [10]

(16K x 16K, 240 fps) → 300+ Mbps [9]

• Processing power: as mentioned earlier, future applications generate and consume tremendous amounts of data that,

depending on the application requirements, need to be processed at run-time before or after their transmission or even on their

way to the destination. Naturally, the type of processing will mainly depend on the application type (e.g., object recognition,

movement detection, data compression, data mining, video manipulation, video rendering, encryption).

• Latency: future applications are highly interactive and hence require high-precision, predictable and ultra-low latency.

Latency can go from 1ms to 1s depending on the interactivity of the application and the participating human sense [11], [12].

For instance, according to Fettweis et al. [11], the human sense of touch reacts within a range of 100ms to 1second depending

on how prepared is the user (i.e., if the user is expecting to touch an object the reaction time is around 100ms); The human

auditory reaction time is between 70ms and 100ms; The visual sense requires less than 10ms latency between successive

pictures; Tactile or haptic actions using human limbs require instantaneous visual and audio feedback with a latency of 1ms.

This would be the ultimate use-case where the user is manipulating objects in a virtual environment or through a telepresence

robot.

Furthermore, some future applications may require multiple flows to be synchronized (i.e., multi-flow synchronization),

that is to ensure that the generated data from different sources arrive at the destination within a specific interval of time or even

at a particular point of time. As this definition suggests, these flows might originate from different sources, which makes

multi-flow synchronization a daunting challenge requiring high-precision control of the data delivery over the network.



• Reliability: reliability refers to the guaranteed delivery of the transmitted data. some future applications may not tolerate

packet loss and may require high reliability; This means that data cannot be lost and should necessarily be received by the destination.

It is also possible that some applications require partial reliability, which means that reliable transfer is needed only for some

of the transmitted data or only during some period of time.

• Availability: availability referes to the proportion of time for which the application is available. Many of the aforementioned

future applications require ultra-high availability. Some of today’s networks offer an availability close to four or five nines [13]

( 99.99% and 99.999% correspond to downtimes of 360ms and 4ms per hour, respectively). However, four or even five nines are

definitely not acceptable for several applications like tele-surgery and autonomous driving where a 4ms downtime could be fatal.

Achieving high availability requires high resiliency of the infrastructure and the network services, that is a the ability to recover

seamlessly from potential software and hardware failures.

C. Characteristics of Future Applications

Looking at the aforementioned application, we can notice that they share many characteristics that could be summarized

as follows:

• Octopus-like applications: future applications requires to open a large number of traffic flows from multiple sources

to multiple destinations. These flows are typically coming from different sensors or objects and are directed towards several

destinations. In addition, each of these flows may have different performance requirements in terms of latency (end to end

delay and time synchronization), packet loss and throughput. A typical example of an octopus-like application would be

the aforementioned “virtual coffee shop” application where a virtual reality environment and the user holograms should be

transmitted at real time to each and every user. Each user in this application is a source of a flow of data towards the others

in order to transmit his own hologram. At the same time, he is the destination of multiple flows coming from the other users.

This results in an octopus-like application (e.g., similar to an octopus with multiple arms connecting several end points).

• Changing requirements: for these applications, each traffic flow is probably associated with an object or a sensor.

Depending on how the context of the application evolves over time, the performance requirements of the flows coming from

different objects/sensors might change over time. For instance, at some point of time, the flow may need stringent latency

requirement with minimal packet loss. At another point of time, it may tolerate more relaxed requirements, i.e., higher latency

and packet loss. As an example, recall the “virtual coffee shop” application. Assuming a user A is interacting (e.g., talking)

with user B within the virtual reality environment. Thus, the traffic flows between user A to user B should have stringent

requirement in terms of reliability, bandwidth, latency and packet loss. If, at some point of time, user A stops interacting

with user B, these requirements could be relaxed.

Given the aforementioned requirements and characteristics of future applications, we discuss, in the next Section, the main

limitations of today’s Internet and why it could not be the “Tactile Internet” that is able to support these new breeds

of applications.

III. LIMITATIONS OF TODAY’S INTERNET

The goal of this Section is to identify the limitations of today’s Internet and describe how they impede its ability to support

future applications. We hence analyze first today’s Internet infrastructure and services, the network stack protocols and headers

(i.e., the transport and the network protocols) then we identify and discuss the current sources of latency.



A. Internet Infrastructure and Services

ISP2 ISP3

ISP1

ISP4

Fig. 1. Traditional Internet

As shown in Fig. 1, today’s Internet is a an interconnected system of networks that are operated and managed by different

Internet Service Providers (ISPs). The main and only service provided today by an ISP to the other ones is the transit

service, that is to allow their traffic to “transit” or cross its network. However, ISPs do not provide guarantees on performance

(e.g., throughput, delay, packet loss) and availability. They also do not offer any function or service related to reliability,

security, privacy and application. It is clear that today’s Internet, with its basic “best-effort” data delivery service, cannot

be relied upon to cater to the stringent performance requirements of future applications.

It is also worth noting that Internet today could provide Diffserv [14] which supports different classes of service. However,

it does not guarantee deterministic delays for packet delivery and time synchronization of multiple flows.

B. Transport Layer Protocols

Today’s Internet transport layer mainly rely on Transport Control Protocol (TCP) [15] and User Datagram Protocol (UDP) [16]

to ensure end-to-end communications over the network. UDP is a basic protocol that provides only multiplexing and demultiplexing

services that allow to identify the source and destination processes at the end hosts. However, TCP offers more services

(e.g. reliability, flow and congestion control) and is the most used transport protocol today. That is why, in the following,

we focus on the limitations of TCP (the Reno version). We then compare it to recently proposed transport protocols like SCTP

and QUIC and show how they still inherit many of these limitations.

• One-size-fits-all service offering: Compared to UDP, TCP provides additional services like reliable data delivery service

(i.e., error check and retransmission in case of packet loss or errors) and congestion and flow control services operated from

the end-points. However, if TCP is used for a connection, all these services are mandatory for all the transmitted data and

throughout the duration of the whole communication. For future applications, the transfer requirements in terms of reliability,

throughput, packet loss and delay of the same flow may vary significantly over time. For instance, the reliability offered by

the transport layer may not be mandatory during the whole communication but only during some periods of time depending

on the current application’s requirements and context. In this case, packet loss detection and retransmission for a particular

flow could be used only for some packets or only when necessary during the communication.

Similarly, other TCP services like congestion and flow control might not be needed for some flows or may be needed during

a limited interval of time during the communication. For instance, we can imagine a flow that requires a high and constant



traffic rate for some period of time but TCP slow start and congestion avoidance schemes are controlling and limiting the data

sending rate, which may significantly hurt the performance of the application.

• The two end points limitation: The transport layer, as defined in the OSI model [17], assumes that a single connection

involves only two end-points. Existing protocols like TCP and UDP are building on this definition and provide all their

services based on this assumption. As a result, an application that is using and manipulating different objects could either use

a single TCP connection to transfer the data associated with all these objects or use multiple TCP connections to transport

these data. In addition, when these objects are not in the same physical location, there is no other option than using multiple

TCP connections between each pair of source-destination. Either way, the design of TCP does not allow the transport layer

and for the network to identify the flows that belong to the same application and that are transferring data of all objects/sensors

that contribute to run the same application (e.g., imagine the example a virtual environment built out from different objects

located in different geographic location). As a result, the transport layer and the network operate and manage these flows

independently from each other.

For futuristic applications, a flow belonging to an application should be managed while taking into account (1) the existence

of other transport flows belonging to the same application (even if they are not originating from the same source),

and (2) the application-level performance requirements for each of these flows, which may vary over time. For instance,

depending on the application context, the throughput of some connections might be decreased to allow to increase other

flows’ throughput and vice-versa. Packet dropping decisions might be also taken while considering the changing performance

requirements of these flows and their associated priorities.

• Blind congestion control: In current networks, TCP tries to blindly guess the state of the network in order to attempt

to avoid congestion. In particular, TCP uses two strategies, timeouts and duplicate acknowledgment, to detect potential packet

loss. However, these strategies are not accurate and may wrongly assume that some packets are lost. This may lead to unneeded

packet retransmissions and inappropriate decisions from the TCP congestion control scheme that may reduce data transmission

rate without being really needed. The lack of accurate information at the transport layer regarding the state of network

is definitely a major limitation of current TCP-based transport layer.

• Retransmission delays: As the transport layer is responsible for the end-to-end communication between end points,

retransmission of lost packets is carried out by the source end point. As a result, a significant additional delay is experienced

whenever a packet is lost. For instance, using TCP, this delay would be equal to the timeout or the time needed to receive

three duplicate packets added to the end-to-end delay from the source to the destination. This additional delay is roughly equal

to one round trip time plus the end-to-end delay2. It is clear that the way reliability is implemented by TCP is a handicap

for many flows that require ultra-low latency.

• Few words about QUIC and SCTP: Although TCP is the most used transport protocol today, new transport protocols

like SCTP and QUIC have been recently proposed to address some of the TCP’s limitations. In this section, we describe how

these protocols work and highlight the issues that they are still not able to solve.

The Stream Control Transmission Protocol (SCTP) is a connection-oriented transport protocol that offers a reliable full-duplex

association that refers to a communication between exactly two systems (an “association” is equivalent to a “connection”

2The round trip time is the time needed to send a packet to the destination and receive its acknowledgment. The end-to-end delay is the time to send

the packet from the source to the destination



TABLE II

COMPARISON OF THE SERVICES OFFERED BY TCP, QUIC AND SCTP

Service TCP QUIC SCTP

Communication

type

Two end points

(one single flow)

Two end points

(multiple streams)

Two end points

called association

(multiple streams)

Flow control Yes Similar to TCP Similar to TCP

Congestion

Control

Slow-start

+ Cong. avoidance
Similar to TCP Similar to TCP

Muli-streaming Not supported Yes Yes

Stream initiation

/teardown
Not supported

At any time during

the communication

Only at initiation

/teardown

Stream

flow control
Not supported Yes

Combined

(Not per stream)

Stream

prioritization
Not supported Yes Yes

Stream reliability Single flow Supported Supported

Ordered delivery
Within a flow

(mandatory)
Within a stream

Within a stream

(optional)

Explicit congestion

notification
Optional Optional Optional

Multi-homing Not Supported Yes Yes

Reliability
Mandatory

for all packets
Full/Partial Full/Partial

in TCP) [18]. Unlike TCP that assumes a single stream of data, an SCTP association transfers simultaneously multiple

independent streams of messages between the two end points over the same session. Each stream is a sequence of messages

that should be delivered to the upper-layer protocol at the receiving side. A key advantage of SCTP over TCP is that a packet

loss may block the delivery of only the stream to which it belongs, whereas other streams are delivered normally to the upper

layer without any delay. SCTP could also allow partial reliability by indicating the level of reliability for each message [19].

Another transport protocol that have been recently proposed is QUIC (Quick UDP Internet Connections) [20], [21], [22].

QUIC’s main goal is to improve the performance of http traffic in terms of latency and bandwidth. It allows to establish

a connection between two endpoints on top of UDP where a single connection multiplexes several streams of data. In addition to

stream multiplexing, QUIC provides a credit-based flow control similar to TCP where the receiver advertises the number of bytes

it could accept for each stream and for the entire connection [22]. QUIC also allows the application to indicate the relative

priority of the streams in order to decide which data will be transmitted first.

It is also worth noting that both, SCTP and QUIC, implement congestion control schemes that operates like the ones of TCP

(i.e., slow-start and congestion avoidance algorithms) [23], [18]. Unlike TCP, both protocols allows multi-homing (i.e., each

endpoint could support multiple IP addresses at the same time so there is no need to instantiate another connection if the IP

address changes). However, multi-homing is only used for redundancy purposes (i.e., not for load balancing).

Table II compares services and features offered by TCP, QUIC, SCTP [20], [21], [22], [18], [24]. Compared to TCP,

QUIC and SCTP provide more multi-streaming, multi-homing and more flexibility in terms of reliability. However, both still



support only connections between two end points. As a result, the transport layer is not aware of all the flows (or streams)

that belong to the same application when more than two end-points are involved. This does not allow the transport layer

to take into account all the streams when carrying out flow and congestion control. Furthermore, both QUIC and TCP still use

the same congestion control scheme of TCP and hence inherent its limitations. That is, they have to go through the slow start

(i.e., gradual increase of the sending rate) and congestion avoidance (i.e., linear increase of the sending rate). They are not also

able to accurately detect packet loss as they rely on timeouts and duplicate acknowledgment.

Finally, the support of the network to these transport protocols is very limited. Indeed, the network does not notify

the transport layer or support it in performing its services like flow and congestion control and packet retransmission. The only

potential support is the Explicit Congestion Notification (ECN) that provides some hints to the transport protocol to react

to congestion. However, ECN does not provide accurate information about the location and gravity of the congestion. In addition,

ECN notifications are sent to all TCP connections going through the same congested router, which may lead them to reduce

all their sending traffic at the same time. It is clear that a better collaboration and more exchange of information between the

transport and network layers may potentially address these issues.

C. Network Layer Protocols

Current network layer protocols mainly offer “best effort” data delivery by routing traffic towards its destinations. They do

not provide any performance guarantees in terms of throughput, delay and packet loss. Furthermore, the network layer is not

aware of the applications’ composition in terms of flows (i.e., the flows belonging to the same application), their performance

requirements, and how these requirements are changing over time. As a result, it could not dynamically adjust the routing

strategy and adapt the congestion control according to these requirements.

Furthermore, even when a congestion happens, the network drops packets “blindly” without taking into consideration

their priority, their belonging flows and their relevance for the application. Another important limitation is that current networks

have only three options to react to congestion: dropping packets, balancing the load across multiple paths or dynamically

changing the route. However, these three options may impact the application performance. Packet dropping incurs additional

delays for retransmission. Balancing the load may lead to overload some paths and underuse others. Changing routing paths

assumes that there are paths that have enough bandwidth to carry the traffic, which may not be always true.

Finally, in current TCP/IP protocol stack, the network and the transport layers do not collaborate to address the congestion

in the network. Each layer operates independently of the other and tries to reduce congestion with the limited knowledge

it has. For instance, the network layer does not provide any explicit feedback about the packet loss and the congestion state

in the network and does not support the transport layer to control flow rates or to ensure data reliability and retransmitting

lost data.

D. Network Stack Headers

Another major limitation of today’s Internet is that the current protocols use headers that do not provide, by default, meta-data

and information that will be mandatory to manage the traffic of future applications. These headers are also not customizable

enough to be adjusted to the application and its associated traffic engineering requirements. Ideally, depending on the needs

of the application, the packet header should include meta-data with information about objects/sensors, flows (e.g., flow ids and

their ownership to application), applications’ requirements, type and relevance of the carried data.



Furthermore, the current protocols are also not flexible enough to incorporate commands that could be executed by the network

like requests for a particular route or packet processing (e.g., data compression). Finally, current protocols have several fields

in the headers that are rarely used or might be useless in many cases. For instance, MAC addresses in the Ethernet header

are not relevant for point to point communication and the Type of Service field in the IP header is not used in most cases.

E. Sources of Latency

As one of the requirements of future applications is ultra-low latency, we identify and analyze in this Section the different

sources of delays in the network. Table III defines these different delays and provide the parameters on which they depend.

Of course, in order to reduce the end-to-end delay, its composing delays should be shrunk. We can note that media-dependent

delays, like the transmission delay, require further improvements to existing media and to the functions of the physical layer

(e.g., coding) in order to increase their transmission capacity. All the other delays (e.g., retransmission and steering delay)

are governed by the network architecture and protocols. As a result, future network architecture and protocols should provide

efficient solutions to accurately control these delays.

It is also worth noting that, while edge computing is a promising solution to reduce delays in the network, it may not be

beneficial for all applications, especially when users involved in the same communication are geographically far from each

other. In this case, the traffic has to cross the Internet to connect these users, and hence all the aforementioned delays have

to be experienced.

TABLE III

SOURCES OF DELAY IN THE NETWORK

Source of Delay Comment

Propagation delay
It refers to the time needed for a signal to go through

transmission media. This time depends on the characteristics

of the media (i.e., signal propagation speed and distance)

Transmission delay
It is the time needed to inject a packet into the media.

It depends on the transmission capacity of the media (bps)

and the packet size.

Processing delay

It is defined as the time needed by a network function

or an application to process a packet.

It is usually at the scale of nanoseconds for hardware-based

network functions but can be much higher

for software-based network functions

Queuing delay

It is the time that a packet waits for in a network component

(device or network function) before it can be processed

or transmitted. It depends mainly on the load of the network.

A high queuing delay is a sign of congestion in the network device.

Retransmission delay

It is the time needed to detect a packet loss and retransmit it.

A retransmission may be triggered by the link layer (e.g., Wi-Fi)

and also by the transport layer when TCP is used. In this case,

this delay is at least 3 times the end-to-end delay.

Steering delay
It is the time incurred when the traffic is first steered to a location

to be processed before it is forwarded to the final destination.

End-to-end delay
It is the total time needed to send a packet from the source

to the destination. It encompasses all the delays above.



IV. FLEXNGIA: FLEXIBLE NEXT-GENERATION INTERNET ARCHITECTURE

In what follows, we describe the proposed Flexible Next-Generation Internet Architecture adapted to the Tactile Internet

(FlexNGIA), and provide its key architectural elements in terms of infrastructure, services, management framework, network

protocol stack and headers, and describe the potential business model adapted to this new architecture. Throughout this Section,

we discuss also the advantages of this new architecture and how it overcomes the limitations of today’s Internet.

A. Network Infrastructure
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Fig. 2. Network infrastructure

The main characteristic of future network infrastructures is the availability of fully programmable computing and networking

resources not only at the edge of the network but also at the core as shown in Fig. 2. The core nodes of the network are Points

of Presence (POPs) that will consist of routers, switches and also computing resources (e.g., servers, GPU, NPU). The main

features of future infrastructures could be summarized as follows:

• Edge to edge infrastructures: today’s cloud providers are building infrastructures everywhere from the edge of the network

to the core. Such infrastructures are made out from cloud data centers with large amounts of resources and several micro clouds

with potentially less computing resources towards the edge [25], [26], [27].

• Computing resources are everywhere: in future infrastructures, computing resources should be available throughout

the infrastructure including the network core and the network edge. However, it is worth noting that the amount of computing

resources may be variable depending on the location. These resources could be powerful servers with advanced processing

capabilities like Field-Programmable Gate Arrays (FPGAs) and Network Processing Units (NPUs) or simply commodity servers

with basic capabilities. Of course, such equipment allows to run any network function or task in any node of the network.

This allows In-Network Computing, which is a major change compared to traditional networks. This provides the advantage

of eliminating any steering delay by processing data in the network nodes that are in the path towards the destination.
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Fig. 3. Example of an edge to edge infrastructure: Google Cloud Platform (Source:[28])

• Programmability and advanced network functions: this feature is realized through several technologies including,

but not limited to, software defined networking and network function virtualization. Software defined networking allows

to separate the network control plane from the data plane. It advocates implementing the control plane as a logically centralized

controller that provides switches with the forwarding rules to handle the traffic. At the same time, network function virtualization

advocates to run traditional network functions (e.g., routing, firewall, intrusion detection) on virtual machines or containers

hosted in commodity servers. While these technologies radically change the way the network is configured and its functions

are provisioned, they can be used to go beyond these simple changes. Indeed, future network functions should go beyond

the traditional ones (i.e., packet forwarding) to include more advanced functions like video compression and encoding,

congestion control, application data aggregation and processing.

It is clear that today’s trend is that cloud providers and companies build and use their own private transit backbones rather

than public transit backbone. Several web-scale companies such as Google, Facebook and Amazon have already started to build

their edge to edge private infrastructures. For instance, Fig. 3 shows the Google Cloud Platform, which is a world-wide software

defined platform. The infrastructure is made out from 15 data centers, 100 points of presences and more than 1000 edge nodes

equipped with computing resources [28].

A key advantage of having such a private world-wide network is that the infrastructure’s owner has full control over all



the resources from the edge to the edge, and hence, has the full flexibility and ability to program these resources and configure

the network and the computing resources in order to be better guarantee the sought-after performance objectives.

B. Network Services
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Fig. 4. Example of a Service Function Chain Associated with an Application

Future networks should offer not only data delivery service but also advanced services like reliability and application-tailored

services. Thanks to technologies like virtualization and software defined networking, the network will allow to dynamically

provision Service Function Chains (SFCs) tailored to each application. As shown in Fig. 4, an SFC is made out from Virtual

Network Functions (VNFs) connected through virtual links. Service function chains and their composing VNFs could be

tailored based on the application’s need and performance requirements. As shown in the figure, a service function chain

supports data transmission from multiple sources towards multiple destinations, which allows to capture the octopus-like

characteristic of future applications connecting multiple users at the same time (e.g., the use case of “virtual coffee shop”

described in Section II-B).

As seen in the figure, at each endpoint (i.e., source or destination), a special network function called Application Assistant

(AA) is deployed to receives the incoming or the outgoing traffic from the sources and destinations, respectively. The AA

operates at the application layer and is in charge of to aggregating the traffic coming from different sensors/objects, to process

it, tag it or filter it based on the application requirements and context (e.g., requested performance, data relevance, flow priority).

When the service function chain is designed, one should define the following elements:

• Sources and destinations of the traffic

• The types of each of its composing network functions, its implementation, its input packet format and its output packet

format, and its requirements in terms of hardware and resources (e.g., GPU, NPU, CPU, memory and disk) and performance

(e.g., packet processing rate, processing delay).

• The overall requested performance of the chain (e.g., end-to-end delay, packet processing rate)

• The communication protocols that should be deployed to ensure the communication between the end-points of the service

function chain and its composing network functions. FlexNGIA allows to design and deploy any communication protocol

above layer 2. More details on how this is achieved are provided in subsection IV-E.



We provided above some elements defining a service function chain associated with an application. However, this definition

could be expanded to include more elements depending on the context and the application requirements.

How this definition is a game-changing for the Internet landscape and industry? FlexNGIA provides the designer of

the chain/application the flexibility of designing not only the end points (i.e., client and server of an application) but also

the communication protocols and the network functions that are deployed in the network. We therefore do not restrict the

communication protocols to the common ones (e.g., TCP, UDP, QUIC, IPv4 or IPv6) but opening the door to the application

designers to further innovate and develop customized network functions and communication protocols at the different layers

that are adapted to their applications (layer 3 and above). We can therefore imagine in a near future an application store (similar

to Google Play Store or the Apple App Store) where different applications are available with different network functions and

protocol stack. When the application is launched, the whole associated service function chain including its network functions

and communication protocols are dynamically provisioned in the network. This is definitely a game-changing concept that

opens the door for limitless innovation for future Internet applications with customized communication protocols and network

services.

In the following, we provide more details about the network functions that could compose the service chain as advocated

by FlexNGIA.

C. Network Functions and Protocol Stack

With FlexNGIA, we define two types of functions that could be provided in future networks:

• Basic network functions: The network will definitely offer data delivery through traditional (or basic) network functions

like routing, packet forwarding, firewalls and intrusion detection systems.

• Advanced network functions: As future networks contain computing resources throughout the infrastructure (e.g., commodity

servers, dedicated network hardware, FPGA, GPU, NPU), they will be able to carry out in-network computing to support

applications. As a result, depending on the application, advanced application-aware functions could be deployed dynamically
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Fig. 5. Classes of advanced functions of FlexNGIA and their operating layers. The figure shows also two special network functions proposed in FlexNGIA

(i.e., Application assistant and Transport Assistant)



in the network to perform data processing, machine learning, data compression, object rendering, stream multiplexing, incorporating

data into flows (e.g., subtitling for video, merging or adding objects for augmented reality) and caching. Such functions could

operate at different layers (e.g., OSI layer 1 to layer 7 or even at the queue management level). As a result, the concept

of software-defined networking should go beyond configuring forwarding elements (i.e., forwarding rules) to allow to dynamically

configure these advanced functions (e.g., how selective reject should work, what kind of processing the network should apply

to a video streaming).

Fig. 5 shows the three classes of network functions defined in FlexNGIA and their operating layer in the protocol stack

TABLE IV

EXAMPLES OF ADVANCED NETWORK FUNCTIONS

Function Description Benefit

Application-Aware Functions

Data

processing

Processing the content of incoming packets

(e.g., application-level processing like

data compression, video cropping)

Support application

Reduce traffic size

(data compression)

Flow

multiplexing

Merge multiple flows based on the content

(e.g., subtitling for video, incorporating data,

merging or adding objects for augmented reality)

Support application

Transport and Traffic Engineering Functions

Forwarding Forward packets according to forwarding rules
Reduce congestion

and delay

Load balacing Distribute packets across several paths
Reduce congestion

and delay

Packet caching

& retransmission

Cache packets in the network to retransmit them

if a loss is detected. This allows faster retransmis-

sion delays (see Transport Assistant in Sect. IV-C)

Ensure reliability

Reduce delay

Congestion

control

Store packets in order to gradually transmit them

at a different sending rate. This function could use

slow start and congestion avoidance algorithms

or novel congestion control algorithms adapted

to the application

Reduce congestion

Packet

duplication

Duplicate relevant packets through different paths

to ensure packets are received at the destination
Ensure reliability

Packet

bundling

Several packets are grouped into a single one to

reduce the header size or to combine their content
Reduce traffic size

Selective

packet drop

Packets are dropped selectively based on priority

or application’s context and requirements
Reduce congestion

Partial

packet drop

Some bytes are dropped from the packet if this

will not impact the user’s quality of experience
Reduce congestion

Monitoring & Measurements Functions

Coarse-grained

monitoring

Collect coarse-grained statistics about the flows

(e.g., average queuing delay, average processing

delay, rate)

Monitoring

Per-packet

monitoring

Incorporate monitoring information within

the packet header (e.g., timestamp,

queuing delay, processing delay)

High-precision

monitoring



architecture. Table IV shows these classes with some examples of functions and describes their goal and potential benefits

to improve application and network performance and to support the operation of application, transport and network layers.

Specifically, the three classes of functions are as follows:

• Application-aware network functions: These functions operate at the application layer and are tailored to each application.

They are hence aware of the application’ logic and characteristics like traffic flows used by the same application (even if

they are connecting multiple sources and multiple destinations) and the requirements of each of these flows in terms of

performance, reliability and availability. They should be also aware of the type of the transmitted data and the application

context. They can hence process packets or take decisions (e.g., selectively drop packets, compress data) taking into account

the application requirements and user experience. The Application Assistant introduced above could be considered as an

example of an application-level network function.

• Transport and traffic engineering network functions: These functions could provide advanced forwarding and load balancing

functions (e.g., rule-based forwarding and routing). They also offer mainly transport layer services (e.g., congestion control,

packet caching and retransmission) and traffic engineering functions (e.g., selective packet dropping). FlexNGIA defines

a special network function called Transport Assistant (TA) that implements such functions. More details about the TA

are provided in the following paragraphs.

• Monitoring and measurements network functions: These functions aim at monitoring and measuring the performance

metrics of the network services and functions.

FlexNGIA proposes also two special network functions, called Application Assistant and Transport Assistant, that could

significantly support future network applications. The use of these functions is not mandatory and any other network function

could be imagined, designed and proposed. The way they are implemented and their operation could be customized depending

on the application’s requirement. Fig. 5 shows their operating layer and shows also a new proposed concept called Object

Service Access Point (OSAP) allowing to handle multiple sensors at the network edge. In the following, we provide more

details about the OSAP and these two functions:

• Object Service Access Point (OSAP): an object service access point is an end point for communication between an object

(or a sensor) and the application assistant. Different objects or sensors are connected through the OSAPs to the application

assistant which is the first network function in the service function chain associated with the application.

• Application Assistant (AA): an application assistant is instantiated at each of the chain endpoints. An endpoint at a particular

chain corresponds to a location of a user (sources or destination). The application assistant is in charge of receiving and

controlling data flows arriving from several objects or sensors at this endpoint and then forwards them to the following

functions in the service function chain.

The application assistant is also responsible for setting the application requirements in terms of performance and reliability

for each of the flows coming from the objects/sensors. It can also dynamically configure the objects or sensors (e.g., data

throughput, compression rate) depending on the application requirements, context and user behavior. For instance, in an augmented-reality

application, a user might have several virtual objects superimposed in his view. However, in practice, he may focus on

using only one of these objects. In this case, the application assistant identifies such behavior and reduces the throughput

of the data associated to the less used objects. Furthermore, the application assistant conveys the application’s requirements

(i.e., throughput, flow priority, requested reliability) to the network functions of the chain and potentially (when needed)



to the application controller located at the central resource management. The application assistant incorporates such

information in the packet headers as metadata or commands. It is hence in charge of mapping the application context and

requirements into metadata incorporated into the packets.

• Transport Assistant (TA): the transport assistant is a cross-layer component that carries out functions of the traditional

transport layer (e.g., TCP) and network layer (e.g., IP) at the same time (Fig. 5). It can be seen as an advanced network

function that is part of the provisioned service function chain. Hence, it can be instantiated many times in the chain

throughout the path to the destinations depending on the needs of the application. The transport assistant receives the

data flows and also information about the performance requirements of each of them from the application assistant. These

requirements could be different from one object flow to another and could also change over time. The transport assistant

is responsible for congestion control, data loss management, packet retransmission (see Table IV for more examples).

These services are offered while taking into account all the flows of the same application and their requirements in terms

of performance and reliability.

In the following, we provide more details about the benefits of the TA and the combination of the transport and network layers.

D. FlexNGIA Cross-layer Transport

One of the main features advocated by FlexNGIA (though not mandatory) is to merge the traditional transport and network

layers to build a cross-layer transport layer that combines both layers. Fig. 6 compares the functions of the traditional layers

to that of the proposed cross-layer transport. As shown in the figure, the main benefit of such layer combination is that layer

3 and 4 services are performed by a single entity (i.e., the combined layer).

Unlike traditional networks where congestion control and traffic routing problems are addressed separately at two different

layers (i.e., transport layer and the network layer), the proposed cross-layer transport solves these problems altogether taking
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Fig. 6. Proposed network stack architecture (with cross-layer transport) compared to the TCP/IP architecture



into account the applications’ requirements (provided by the application assistant) and the network state. For instance, when

there is congestion in the network, the combined layer will make sure that, depending on the application’s requirements, context

and user behavior (captured by the application assistant), some flows are delivered with stringent performance and reliability

requirements while others could tolerate low quality of service. This could be done by dynamically adjusting the amount

of dropped packets from each flow, caching packets, readjusting the data sending rate, adjusting the packet retransmission rate,

changing routing paths, and by adjusting the number, size and location of the virtual network functions that are processing

packets from these flows.

Another benefit of this cross-layer design is that the network could also offer other advanced functions like data reliability

that can be achieved through in-network packet caching and retransmission originated from the network (rather from the source

endpoint) as the network is aware of the application’s and flow requirements at run-time (see Table IV for more examples

of advanced functions).

It is worth noting that the proposed combined layer in FlexNGIA breaks the end-to-end principle adopted by today’s Internet

and existing application and transport protocols (e.g., UDP, TCP, QUIC, SCTP). Indeed, in FlexNGIA, application-specific

features and transport layer services are not implemented only in the end points but could be also offered or supported

by advanced functions (e.g., transport assistants) running within the network.

(a) TCP and UDP (c) FlexNGIA(b) SCTP and QUIC

Physical 
end-host

Transport 
end point

Transport layer 
connection

Fig. 7. Illustration of how one single network application might be seen at the transport layer

To better highlight the benefits of the cross-layer transport design, let us assume that we have one single application

that involves several physical hosts and several objects (e.g., virtual reality objects). This could be the case of a virtual reality

environment built out from different objects transferred from different locations. Fig. 7 shows how this application is seen

by the transport layer in traditional networks using TCP, SCTP and QUIC compared to how it is seen with FlexNGIA’s

cross-layer transport. As shown in Fig. 7 (a), the transport layer using TCP is not aware of the flows belonging to the same

application (even when these flows have the same source and destination) and hence each end-to-end TCP communication

is handled separately from the others. With SCTP and QUIC (Fig. 7 (b)), the transport layer becomes aware of the flows

(or streams) of the same application when they connect the same source and destination hosts. The transport layer manages

then each flow (or stream) while taking into account the others. However, when these flows connect different source and

destination hosts, the transport layer and the network handle them in a separate manner without considering that they all

belong to the same application. With the cross-layer design of FlexNGIA (Fig. 7 (c)), all the end-points involved in the

same application are identified and the traffic shared among them is recognized by the network and is associated to the same

application (thanks to the information added to the packet headers and to the awareness of the management framework and

the chain network functions). This allows the network and transport layers to be fully aware of the application composition in



terms of flows and requirements.

As a result, the transport assistants could manage all these flows while taking into account that they all belong to the same

application. They monitor these flows and divide the total bandwidth allocated for the application among them. They could

also control the congestion and route the traffic while considering the type and meaning of the data carried by each of the flows

and its importance for the application (depending on the context and user behavior). For instance, if a virtual reality user is

manipulating a particular virtual object, the flow carrying the data of this object becomes more important than that of the other

flows. The transport assistants at the end points or within the network will react accordingly.

Please note that Fig. 7 shows an abstraction of the application’s communications at the transport layer. This means that

it does not show the real paths taken by the traffic between the different end-points (i.e., packets between the end-points do

not necessarily take the same path).

E. Network Stack Headers

As FlexNGIA relies on a logically centralized management framework and service function chains to carry applications’

traffic, we are defining the two following types of packets to carry management and application data:

− Signaling packets: these packets do not carry data and are used mainly to instantiate an application and to convey its initial

requirements (i.e., SFC specifications) in terms of network functions (types of network functions, their resource requirements

in terms of cpu, memory, disk) as well as the virtual links connecting these functions (e.g., bandwidth, delay).

− Regular packets: these packets carry mainly the application data (if there are any) in addition to metadata (i.e., additional

data pertaining to the application or any other function of the network layer stack) and also commands that could be executed

by the network functions and the application control module. Table V provides examples of possible metadata and commands.

Depending on the application, different types of metadata and commands could be defined. Furthermore, the format of regular

packets should be as follows:

1) A layer-2 header that contains mainly an application id (similar to a VLAN id) which is used to identify a single application

TABLE V

EXAMPLES OF METADATA AND COMMANDS

Example of Metadata Examples of commands

- Application id

- Object/sensor source

- Object/sensor destination(s)

- Packet Priority

- Performance requirements at run-time

(e.g., throughput, delay, packet loss)

- Retransmission needed or not

- Retransmission timeout (i.e., retransmission

is not needed after this time out)

- Routing preference

- Video/audio compression rate, requirements,

and quality

- Timestamp at particular nodes

- Packet processing time at a particular nodes

- Packet queuing delay at particular nodes

- Drop if congestion

- Compress video to a minimum

of X bps if needed

- Crop the video carried by this flow

to a particular surface if needed

- Send only to user X and Y

- Add timestamp

- Add values of packet processing

and queuing delay

if they exceed a threshold

- Add delay value from source

- Send report if this packet’s delay

exceeds a threshold



and to carry out packet forwarding through the application SFC. This is similar to having a layer-2 network virtualization

where a virtual network is considered to connect the network functions needed for a single the application.

This virtualization layer provides several advantages. First, the application id could encode the operator id that initiated

the application (on-behalf of the user) in addition to a unique identifier for the application itself within the operator network.

Consequently, the resulting application id could be kept the same throughout different networks of different operators. This

addresses the drawbacks of VLAN technology [29], which provides a limited number of possible VLANs ids that could not be

kept throughout). This also removes the need for other technologies like VXLAN [30], which adds additional encapsultations

(MAC in UDP) or like Overlay Transport Virtualization (OTV) [31] as the application ID could be kept when the packet goes

through different networks and data centers.

2) The upper-layer headers of the packet are flexible headers that could include metadata and commands defined by the application

designer. Of course, the network functions in the chain that will process the application traffic should be aware of the expected

format. The designer of the application decides of the packet format (i.e., header and payload) of the packets expected

and generated by the application assistants and by each network function in the chain.

This fully flexible header format provides the possibility to tailor the packets to the needs of each application and the network

functions of the service chain that will be deployed to steer and process the application’s traffic.

F. Network Management Framework

Before delving into the details of the FlexNGIA resource management framework, we first describe an example of how

a service function chain associated with an application could be allocated resources.

• Resource Allocation for Service Function Chains

Fig. 8 shows how a service function chain is allocated computing and networking resources. The resource allocation of the

chain is carried out in mainly two steps: 1) Translation and 2) Mapping. A service function chain associated with an application is

first translated into a virtual topology. To build this virtual topology, each network function is translated into a certain number of

instances. An instance could be either a container or a virtual machine implementing a specific network function. The number

and size of the instances for each network function depend on several parameters like the demand (i.e., incoming traffic),

the type of the function, the instance processing capacity (e.g., number of processed packets per second) and cost. The work

of Ghrada et al., [32] provides some insights on how to select virtual machine instances based on the network function type,

processing capacity and cost.

The instances are connected through virtual links such that the traffic goes through the functions in the order defined in the

chain. Each virtual link has specific requirements in terms of bandwidth and propagation delay. Even the instances implementing

the same function may need to synchronize and share some data pertaining to the operation of the function itself, and hence

may need to be connected with virtual links. For example, instances implementing an intrusion detection system may need to

synchronize information about potential attacks.

Once the virtual topology is defined, the next step is the mapping onto the physical infrastructure. In this step, resources

are allocated for all instances and virtual links while taking into consideration their performance requirements. Other objectives

may be also considered during the mapping step like the cost minimization, energy efficiency, availability of green sources

of energy.
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Fig. 8. Example of Resource Allocation for a Service Function Chain

In the example described in Fig. 8, network functions NF11, NF12 and NF13 require three, two and three instances,

respectively. The resulting virtual topology is then mapped into the infrastructure. For example, instances 3 and 4 are mapped

onto POP 3 while instance 5 is mapped onto POP 5, respectively.

• FlexNGIA Management Framework

As future network operators do not only offer packet delivery but service function chains, there is a compelling need

to define a more sophisticated resource management framework to allocate and manage the resources of these chains while,

at the same time, ensuring their performance, reliability and availability requirements and achieving the network operators’

objectives (e.g., energy efficiency, usage of green sources of energy, load balancing).

As shown in Fig. 9, the FlexNGIA management framework is a logically-centralized framework that manages the resources

of the whole infrastructure. In the following, we describe the role of the modules composing this framework:

− Signaling module: the signaling module is responsible for instantiating the application. This includes the instantiation



S1

0

1

2

6

7

5
9

12

8

10

S0

S2

D1

Application1 - SFC1

Physical Infrastructure

NF12NF11

NF13

Mapping

3

4

13

11

Resource Management Framework

Monitoring 

Module

Application 

Control 

Module

Monitoring 

Data

Failure Management 

Module

AA

AA

AA

AA

…
…

..

…
…

..

AA

AA

AA

Resource Allocation 

Module

NB: For simplicity, the figure shows only the mapping of the chain SFC1 

associated to Application 1

S6

S5

S7

DN

Applicationn - SFCn

NFn2NFn1

NFn3

Monitoring 

Data

AA

AA

AA
AA

Application 

Control 

Module

Sensors/

objects

Signaling Module

Commands

Monitoring 

Data

Point of Presence

Physical Link

Virtual Link

D

S Traffic Source

Traffic Destination

Mapped Instance 

AA Application Assistant

Service Function ChainSFC

Sensors/objects

AA

Fig. 9. Network Management Framework

of its associated service function chain and a special module in the management framework called the application controller.

As shown in Fig. 10, the application’s provider/owner sends a request to the signaling module, which creates an instance

of the application control module. The application control module communicates then with the resource allocation module

that will allocate the resources for the chain.

− Application Control module: this module is part of the management framework. An instance of the application control

module is created for each application (Fig. 9). This module is in charge of managing the SFC that processes and delivers the traffic

of a particular application. It is hence evaluates the traffic demand and the amount of resources required for the chain. This means

that it responsible for estimating the number of instances (virtual machines or containers) for each network function in the

chain and their resource requirements in terms of CPU, memory and disk and the amount of bandwidth required for each virtual
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link. To achieve this goal, the application control module regularly receives monitoring data from the monitoring module and

also additional metadata (for instance, information describing the run-time application’s requirements) and commands from

the application assistants (located at the application endpoints). Based on these information, the Application Control module

could scale up and down the resources of network functions, add more network functions in the chain and might configure the

network function operation (e.g., changing the forwarding rules for a particular routing network function, changing the encoding

scheme in a video-encoding network function).

− Resource allocation module: this module is responsible for allocating resources requested by the application control

module while ensuring the network operator’s high-level objectives (e.g., performance, network utilization, energy efficiency

and operational costs). This module could also implement resource optimization schemes to leverage virtual machine migration

to dynamically relocate virtual machines or containers in order to achieve the sought-after operator’s objectives.

− Failure management module: this module is responsible for identifying and predicting failures and mitigating their impact

on the deployed services in a proactive or reactive manner. It should take into account failure patterns and the availability

requirement for each service chain in terms of number of nines.

− Monitoring module: this module is in charge of collecting different statistics about the physical and virtual components

and monitor their actual state. The type of the gathered data and the collection frequency could be configured and adjusted

by the application control module and the resource allocation module to collect statistics for on the service function chains

and the physical infrastructure.



G. Business Model

Future Internet will involve different stakeholders. Although they might look similar to the ones of today’s Internet, their roles,

responsibilities and the services they are offering will significantly evolve. We can identify the following two main stakeholders:

• Network operator: similar to an ISP, a network operator owns and manages the physical infrastructure and the virtual

resources. However, the services offered by such operators should not be restricted to data delivery but it should encompass

more services and stringent guarantees. These services could be service function chains or network functions that might be

connected in a particular topology with stringent requirements in terms of performance (e.g., cpu, memory, disk, end-to-end

delays, processing delays, rate, packet loss), security, reliability and availability. The network operator is supposed to deploy

platforms and software required to run the requested network functions and to provision the requested service function chains.

• Application provider: an application provider is a company or an institution that want to deploy a particular application

and offer it to end users. He defines the required service function chain adapted to the application to be deployed. Hence,

he is in charge of identifying the chain components, topology and potential sources and destinations of the traffic. An application

provider relies on a network operator to provision and manage the requested chain and to satisfy the potential service level

agreement. In some cases, the application provider could be a network operator at the same time.

• End user: end users are users of a particular application. The traffic originated from these users will be steered across

the service function chain deployed for the application.

V. USE CASES

In this Section, we provide some use-case applications where we showcase how FlexNGIA could implement them and satisfy

their requirements.

A. Mixed Virtual Reality and Holograms

In this use-case, we are considering a virtual reality environment in which several human holograms should be incorporated

(Fig. 11). The whole virtual environment should be “ported” at real-time to three users situated in different geographical

locations. The users should be then able to explore the virtual environment and interact with the teleported human holograms.

Fig. 11 shows the service function chain required for this application. The chain has three sources of data (two holograms

H1 and H2 and one virtual reality environment VR1) and three destinations where users are located at D1, D2 and D3.

In this example, we assume three network functions are needed, namely an encoder to encode and compress the 3D video/audio

flows, a transport assistant, and a video cropper. In practice, there might be several instances of each network function.

The example shown in Fig. 11 assumes that there are three instances of the encoder, two instances of the transport assistant

and two video croppers. These instances are then mapped onto the physical infrastructure taking into consideration several

potential objectives like the performance (e.g., end-to-end delay), energy efficiency and availability.

In the following, we provide more details about these three network functions and how they should operate for this particular

application:

• Encoder: this network function is charge of encoding and compressing the 3D video/audio flows coming from the three

sources. In the example provided in Fig. 11, we assume there is an instance of the encoder for each source of data.

• Transport Assistant: this function is in charge of the congestion control, packet caching and retransmission, packet

scheduling and dropping decisions. We can see in this example that two instances of the Transport Assistant are created
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Fig. 11. Mixed reality with virtual reality and holograms

in physical nodes 8 and 9, respectively. For example, as the instance in node 8 receives packets coming from the three

sources. It is aware of all the flows coming from the three sources and can prioritize or drop packets based on the information

provided by the application assistants. Furthermore, Transport Assistant instances could also cache packets requiring low latency

and retransmit them directly in case of packet loss. Each of these instances could also implement a congestion control and

retransmission strategy depending on the application’s requirements.

• Video Cropper: this network function operates at the application layer and is responsible for cropping some parts of the

virtual environment or holograms when needed and could adjust the video/audio quality through compression. This allows to

reduce the size of the transmitted data and only keep the most relevant data needed by a particular user. For instance, when

user 1 is interacting with hologram H1 only and is looking at a particular angle of it (e.g., face), the video cropper can crop

the remaining angles or parts of the hologram. At the same time Hologram H2 maybe interacting with user 2. In this case,

the cropper cuts down or reduces the quality of the other parts of the virtual environment before sending the data to user 2.

As a result, the benefit of the cropper is to reduce the amount of the data transmitted to a user taking into account the current

context of the application based on the interest and behavior of the user.

It is also worth noting that identifying the number of instances, their order and their placement is an open research challenge

that should be addressed while taking into account the application’s context and requirements in terms of performance, reliability



and availability.

B. Network-Assisted Reliable Data Transport
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Fig. 12. Network-Assisted data transport

In traditional networks, TCP ensures reliability through retransmissions when packet loss is detected. However, current

TCP is not really able to accurately detect packet loss and only speculates about it when a timeout is reached or when

three duplicate acknowledgments are received. This may incur more traffic (e.g., unnecessary retransmissions) and additional

delays for retransmitting lost packets, leading for more congestion and higher latency in the network.

The combination of layers 3 and 4 allows the combined layer to be aware of the state of the network (congestion)

and the current loss of packets and therefore, it could better manages congestion. For instance, the network could ensure

the reliability instead of TCP. In this case, many instances of the Transport Assistant could be created in the path towards

the destination to offer reliability by detecting packet loss and carrying out retransmission from the network nodes (Fig. 12). A

Transport Assistant could be seen as a new network function that is responsible for assisting the transport of data by providing

other functions like congestion control and reliability. One or more instances of the Transport Assistant could be instantiated



TABLE VI

DETNET NETWORK FUNCTIONS

Function Name Function Operation

Packet Replication Function (PRF)
Send multiple packet duplicates

through disjoint paths

Packet Elimination Function (PEF) Eliminate duplicate packets

Packet Ordering Function (POF) Re-order packets that are received out of order

in the path between the source and destination depending on the application’s requirements (e.g., in terms of performance and

reliability). More precisely, here are some services that could be offered by this function:

• The Transport Assistant could keep a copy of the transmitted packets (i.e., packet caching) and analyze incoming traffic

to check for acknowledgments. If a packet loss is detected, either by an explicit message or through a timeout or duplicate

acknowledgments, the Transport Assistant retransmits the lost packet without the need to wait for the source to retransmit it.

This significantly reduces retransmission delays and allows to detect more accurately packet loss. It is worth noting that this new

function acts at the transport level and breaks the traditional end-to-end principle of the traditional OSI transport layer. Of course,

more sophisticated packet retransmission mechanisms could be designed and implemented in Transport Assistants.

• Any instance of the Transport Assistant throughout the path could also implement a congestion control scheme that

adjusts the rate at which packets are forwarded depending on the state of the remaining portion of the path (i.e., congestion).

This feature is different from traditional TCP where only the source node is responsible for adjusting the data sending rate.

• The header of the packets could be customized to provide the transport assistants with the required information to carry

out the aforementioned services. For instance, the header could contain metadata that provide information about the different

video layers or the components of a hologram (e.g., layer or component importance and priority, requested reliability for each

packet, interval of time for which the packet is needed). This will help the Transport Assistant to take informed decisions

about the incoming packets (e.g., dropping packets of some layers or components if needed, deciding whether a packet should

retransmitted or not).

C. Deterministic Networking

In this use case, we focus on the deployment of a Deterministic Networking (DetNet) service over the FlexNGIA architecture.

DetNet services [33] have been proposed by IETF DetNet Working Group with the goal of carrying unicast and multicast data

flows with extremely low latency and low data loss rates within a single network domain. In DetNet, Quality of Service (QoS)

parameters are defined in terms of the minimum and maximum end-to-end latency and jitter, packet loss ratio, and an upper

bound on out-of-order packet delivery.

DetNet ensures the QoS objectives thanks to three techniques, namely, (1) resource allocation, (2) explicit routing and

(3) protection mechanisms. In the following, we provide more details about these techniques. Resource allocation refers to

allocating enough bandwidth and buffer to each flow. Explicit routing means that the route of the data flow does not change

during the flow lifetime. Protection service aims at controlling packet loss by mitigating media and memory errors and failures.

It mainly relies on the key idea that loss can be significantly reduced by sending the data over multiple disjoint paths. This is

achieved by a set of network functions that are described in Table VI.



Figure 13 shows a typical DetNet Service with its typical network functions (the ones described in Table VI) and empowered

by the Transport Assistant function. The traffic should be delivered from a source (POP 1) to two destinations (POPs 11 and 13)

with a pre-determined end-to-end latency and jitter, close-to-zero packet loss ratio, and an upper bound on out-of-order packet

delivery. The figure shows how the service function chain is translated into a virtual topology, which is, in turn, mapped

onto the physical infrastructure. We can see that POP 1 hosts a replication function that replicates the traffic into two different

paths to reach POP 5 where an elimination function ensures to keep a single copy of each packet by dropping duplicated packets.

The same POP 5 hosts a packet ordering function that reorders the packets before sending them to POP 8 to be duplicated

towards the destinations (POPs 11 and 13).

To further improve the service performance and reliability, we included the Transport Assistant function in the service function

chain. Thus, several instances of the Transport Assistant (placed in POPs 1, 5 and 8) will carry out services of the combined

transport and network (e.g., packet caching and retransmission, and congestion control).

It is worth noting that the number of instances for each function as well as the order of the functions are provided

as an illustration in this example. More research work should be carried out to investigate the best techniques to identify

such parameters and evaluate their impact on the service performance.
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D. High-Precision Monitoring and Packet Scheduling

In this use-case, we focus on high precision debugging and monitoring. We also look at the possible options to leverage

FlexNGIA to efficiently collect statistics in-network and leverage high precision monitoring to provide high precision packet

scheduling. In the following, we provide more details on how these functionalities could be implemented:

• In-network and high-precision statistics collection: network functions could be configured dynamically to incorporate

high precision statistics into data packets (e.g., timestamp, processing and queuing delays, queue size). Another possibility is to

include a monitoring function in the service function chain that could collect such statistics, incorporate them into the packets

and eventually report them to the application control module or other functions in the chain. This function could also

analyze the statistics and report the analysis outcome only when it is needed (e.g., based on a threshold on some statistics

related to the network or the application performance). This could significantly reduce the monitoring traffic and the need

to communicate with the application control module while it reduces the time needed to report potential issues.

• High-precision packet scheduling: high-precision monitoring and collection of statistics that are incorporated into packets

(e.g., timestamp, queuing delay) could provide a more accurate and precise information to packet schedulers and congestion

control mechanisms. This opens the door for many research opportunities to design better packet scheduling techniques in order

to offer high-precision packet delivery (i.e., deterministic deadline or within an interval of time). Network functions could be

also designed to react taking into account these statistics. For instance, the time remaining for a packet before reaching

the deadline could be used to take decisions on how to adjust the packets’ queuing priority, change its route, or compress

its content.

VI. KEY RESEARCH CHALLENGES

In this Section, we summarize key research challenges that should be addressed in order to further develop FlexNGIA

architecture and ensure the performance of the resource management framework and the sought-after application objectives

in terms of performance, reliability and availability.

A. Designing Service Function Chains

One of the main challenges pertaining to the FlexNGIA architecture is how to design the service function chains that are tailored

to the applications. Depending on the application type and requirements, the application designer should identify the best type

of functions, the virtual links to connect them, and define how they should cooperate with each other and what kind of data,

metadata and commands they should exchange (e.g., application data, statistics, synchronization data). It is worth noting

that these functions could operate at different layers (e.g., network, transport or application), which provides a wide range

of flexibility but makes the design of the chain more challenging. The use cases presented in Section V show some examples of

how service chains should be tailored and customized to applications. The design of the chain encompasses also the definition

of the role of the application controller including the management and control tasks that it should carry out. Such tasks could

include the elasticity management, routing within the chain, and the operation of network functions.

The FlexNGIA architecture allows the application designer to customize the chain and define the best routing strategy adapted

to the chain. The routing could be managed like in SDN where a single entity (i.e, a single controller) programs the forwarding

rules and the operation of the network functions belonging to the chain. FlexNGIA easily supports other routing strategies like



Preferred Path Routing [34] or Segment Routing [4] where each node (or network function through the chain) steers the packet

through a list of instructions (called segments).

B. Resource Allocation

From the network operator’s perspective, the placement and allocation of the resources of the applications’ service function

chains are key challenges to achieve high-level objectives like ensuring high availability of the resources, minimizing energy

consumption, increasing the usage of green energy and minimizing different operational costs. A large body of work has

addressed some of these challenges in the context of virtual network embedding problem and service function chaining [35],

[36], [25], [37], [38], [39]. However, more research effort should be performed to estimate the amount of the resources needed

for each network function in the chain, to decide whether these functions should be distributed or not (e.g., single or multiple

virtual machines/containers) and to identify the best type of hosting environments (containers, virtual machines, dedicated

hardware). Of course, several parameters need to be taken into account such as the performance requirements (e.g., processing

time, end-to-end delays) and also application-level requirements (e.g., video quality, reliability).

Furthermore, as mentioned previously, FlexNGIA assumes resource allocation is carried out in two steps, chain translation

into a virtual topology and then the mapping of this virtual network. Though each of these steps could be carried out

independently from the other, it would be interesting to explore solutions that could perform these steps in a coordinated

manner. This is a promising research avenue as the translation of the chain into a virtual topology (i.e., VM/container instances

and virtual links) should ideally take into consideration the available capacity and the type of resources within the physical

infrastructure.

C. Signaling

Signaling refers to the process of sending control packets in order to initiate the resource allocation process for a particular

application and inform the network and the management framework about the main features and requirements of the application.

As described in the FlexNGIA network management framework, when a new application is instantiated, the application

controller should be instantiated and the needed amount of the computing and networking resources should be allocated

in the network infrastructure. It is therefore necessary to put forward efficient signaling scheme that will efficiently inform

the network (i.e., central resource management) and eventually configure the network. The main challenge in this context

is to put forward signaling schemes that allow the allocation of the service chain resources and performance requirements

of the application that should be ultra-fast and efficient.

The signaling becomes more challenging when resources need to be allocated throughout different networks belonging

to different network operators [40], [41]. In this case, more advanced signaling schemes could be proposed to include automated

negotiation process between different network operators to identify the ones that should be involved to allocate the resources

for a particular request and to identify the best end-to-end resource allocation in terms of performance, reliability and security

guarantees and in terms of the operational costs as well.

D. Distributed Cross-Layer and Advanced Network/Transport Protocols

The Transport Assistant is a network function introduced by FlexNGIA to allow the network to offer combined transport

and network services, which will allow faster packet retransmission through packet caching and better control over the congestion

as it is managed from within the network.



In the use-case of network assisted reliable data transport (Section V-B), we discussed how Transport Assistants proposed

in FlexNGIA could achieve such goal. However, there is still several challenges that should be addressed to fully benefit

of the cross-layer transport. For instance, one of these challenges is to identify the optimal number of Transport Assistant and

their placement within the service chain. It is also of utmost importance to define a distributed cross-layer protocol to ensure

the communication between the Transport Assistant instances that will allow them to interact with each other and exchange

information about the state of the communication and the progress of data delivery (e.g., acknowledgment, data sequence,

packet loss, congestion control) and also devise novel and customized congestion control, packet caching and retransmission

algorithms that are tailored to the application’s requirements.

Beyond the possibility of designing distributed cross-layer protocols to leverage the Transport Assistants, the FlexNGIA

architecture allows to deploy any protocol operating on top of layer 2 including network and transport layers and to fully

benefit from the softwarization technologies to easily adopt existing protocols (e.g., Multipath TCP), to evolve them and also

to devise new ones that are tailored to the application’s requirements.

E. Fault-tolerance and Failure management

To ensure high availability of the future applications and services, several failure management solutions should be developed.

They can be either proactive or reactive [42], [38], [43], [44], [45], [46]. Proactive techniques aim at addressing failures before

they happen. This can be done through provisioning backup virtual machines and backup links that can take over the service

in case of failure. The main benefit of such techniques is that service interruption time is minimal; however, this comes

at the cost of allocating backup resources that are only used when a failure happens. Unlike proactive techniques, reactive

techniques aim at mitigating failures after they happen. Of course, these techniques incur less resource wastage but may result

in a higher interruption time.

Furthermore, more work is needed to achieve the high availability of network functions and to put forward efficient recovery

schemes that allow a fast, smooth and automatic failover after a failure and ensure a quick data recovery and state reconstruction

in the backup function [47], [46].

F. High-Performance Virtual Network Functions and Services

In order to cater to the stringent performance requirements of future applications, network service chains processing

the exchanged packets need to consist of ultra-low latency software or hardware network functions. In this context, software-based

network functions running on virtual machines and containers hosted in commodity servers seem to be the best option to provide

high flexibility to create network functions whenever and wherever needed. However, the performance of such network functions

in terms of instantiation time, processing capacity and latency is still low compared to hardware and still hard to be predict. This

precludes their deployment in production environments and brings the need to further investigate server and NIC virtualization

technologies, Linux kernel network stack, I/O and CPU schedulers, and inter-VM communication in order to maximize the

packet processing capacity and speed of the containers and virtual machines and to ensure high isolation among them in terms

of CPU and networking performance [48], [49], [50], [51], [52], [53].

Furthermore, network functions could be also implemented in dedicated hardware and programmable data plane chips.

In this context, a challenging task is to dynamically design and develop different kind of network functions in an optimal

and efficient manner on programmable hardware using available languages like P4 [3].



G. High-Precision Monitoring and Measurements

Monitoring and measurements are key features not only to debug the potential issues with the infrastructure and the

applications but also to provide the customers of the network operators with the possibility to check that the SLA requirements

associated with the requested service chain are respected (in terms of delay, bandwidth and packet loss). In addition to traditional

coarse grained monitoring of high-level network services and traffic flows, future applications may require high-precision

monitoring and measurement (e.g., at the scale of micro or milliseconds) at a fine-grained level (e.g., at the packet level). A large

body of work has looked at the monitoring challenge in software-defined networks and how to minimize different monitoring

costs (e.g., number of collected packets, bandwidth, storage, processing) while reducing data collection and processing time [54],

[55], [56]. However, fine-grained and high-precision monitoring and measurements techniques have not been well addressed

in the literature. Inband network telemetry should also be developed to allow data and statistics collection through the data

plane without involving the control plane [57].

Furthermore, to be able to offer ultra-low latency services and allow high-precision monitoring, one of the major challenges

is to ensure high-precision time synchronization between the infrastructure’s nodes. The synchronization error should be

in the order of microseconds or less. This will provide the ability to the network operators and to their customers as well to carry

out high-precision and fine-grained debugging and monitoring and also to check and validate the service level agreements

in terms of delay, bandwidth and packet loss.

H. SDN++

The concept of software defined networking has been evolving since it is emergence. First, the OpenFlow protocol [2]

allowed to process packets differently thanks to match-action rules “if the packet matches a condition, then do this action”.

Data plane programmability using P4 [3] or Protocol Oblivious Forwarding (POF) [58], [59] goes further by providing an

entire language to instruct the networking equipment how to process packets. For instance, it could tell the switch or router

how to parse the packet, which fields to match, how to encapsulate, and what action to perform for each header. This opens

up the possibility that the entire network could be reshaped within a single administrative domain.

FlexNGIA advocates to further broaden the concept of software defining networking by providing protocols and languages

that allow to configure and program the behavior of network functions (referred to as SDN++). Advanced languages could

be developed to allow to program the services offered by the transport assistants (e.g., caching, retransmission algorithms,

congestion control) or by other application-level functions (e.g., hologram or video croppers, data compression, data aggregation).

The development of SDN++ will also push forward the concept of intent-driven networking [60], [61] where high level

requirements (called intent) are conveyed to the network. In this context, the major challenge is how to express an intent

and how to translate it into a service function chain, network functions, routing schemes, and protocols that would allow to

ensure the intent’s requirements.

I. Pricing

As FlexNGIA advocates offering service function chains to steer the traffic of each application, pricing becomes more

challenging than it is for today’s Internet that offers only data delivery as a service. Novel pricing scheme should be devised

to take into account not only the amount of traffic steered through the chain but also the amount of computing and networking

resources allocated for the chain as well as their usage over time. It is also important to note that the amount of resources is



directly related to the desired service level agreement in terms performance, availability and reliability of the service chain.

It is therefore of utmost importance to develop pricing models that estimate a fair price for a service function chain depending

on the type of its composing network functions, the virtual links connecting them, the amount of resources they are consuming

and the requested SLA.

J. Security and Privacy

As FlexNGIA promotes in-network computing, many network functions should access the header and the content of the packets

to be able to read, process, use and eventually modify them if needed. While this feature offers a high flexibility to devise

new network functions, security, privacy and trustworthiness remain daunting challenges to address. These challenges have

been widely discussed when cloud computing model and services emerged few years ago [62], [63], [64]. However, there

is still a lot of work to be done in order to make sure that the cloud and the proposed in-network computing functions are

privacy-preserving, secure and trustworthy.

Many solutions could be envisaged to secure the FlexNGIA architecture and the network functions of the provisioned chains.

For instance, a promising solution would be to define levels of security to identify the different access levels to the packet

header and content. In this case, some network functions may not have the right to read and modify the packet header or data,

others may only have access to some fields in the header (i.e., the remaining header fields could be encrypted) or to particular

types of the packets. For example, a traffic management function would need only to read the priority of the packet without

having access to the encrypted content. Another function may need only to access some particular flows of packets or some

types of packets within each flow (e.g., flows with no private data). In this context, different techniques to share and distribute

security keys among functions and potentially different network operators could be devised to allow to access to different

types of packets or data within the packet. It is clear that the security and privacy techniques and solutions differ from one

application to another and should be customized based on the requirements of each application.
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VII. CONCLUSION

In this paper, we analyzed the characteristics and requirements of future networking applications. It also highlighted

the limitations of the today’s network architecture and protocols and their inability to cater to these requirements. We hence put

forward a Flexible Next-Generation Internet Architecture adapted to the Tactile Internet (called FlexNGIA) that could address

these limitations. As shown in Fig. 14, FlexNGIA defines a novel Internet architecture that leverages the availability of computing

resources throughout future network infrastructures to allow in-network computing. This allows the network to host advanced

network functions that could support the network applications. FlexNGIA also defines a business model where network operators

could offer not only data delivery but also service function chains with stringent requirements in terms of performance, reliability

and availability. Another relevant feature of FlexNGIA is that it advocates for the combination of transport and network layers

that allows the network to offer better congestion control and reliability services by allowing in-network advanced functions

to be aware of the flows belonging to to same application and the requirements of each of them. FlexNGIA considers also a fully

flexible packet headers that could be tailored to the application requirements.

As discussed in the aforementioned key research challenges, FlexNGIA provides only the potential building blocks of the future

Internet architecture that requires deterministic and ultra-low latency, high bandwidth requirements, high reliability, resiliency

and availability. However, in order to cater to these requirements, many challenges pertaining to FlexNGIA need to be addressed

including signaling, the design of service function chains, resource allocation, fault-tolerance, performance, monitoring, pricing

and security.
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