
01 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Big Spatial Data Management for the Internet of Things: A Survey / Isam M. Al Jawarneh; Bellavista P.;
Corradi A.; Foschini L.; Montanari R.. - In: JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT. - ISSN
1064-7570. - STAMPA. - 28:4(2020), pp. 990-1035. [10.1007/s10922-020-09549-6]

Published Version:

Big Spatial Data Management for the Internet of Things: A Survey

Published:
DOI: http://doi.org/10.1007/s10922-020-09549-6

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/788526 since: 2021-03-01

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/s10922-020-09549-6
https://hdl.handle.net/11585/788526

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Al Jawarneh, I.M., Bellavista, P., Corradi, A. et al. Big Spatial Data Management for the
Internet of Things: A Survey. J Netw Syst Manage 28, 990–1035 (2020).

The final published version is available online at: https://doi.org/10.1007/s10922-
020-09549-6

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://doi.org/10.1007/s10922-020-09549-6
https://doi.org/10.1007/s10922-020-09549-6

1

Big Spatial Data Management for the Internet of Things: A Survey

Isam Mashhour Al Jawarneh, Paolo Bellavista, Antonio Corradi,

Luca Foschini, and Rebecca Montanari

Dept. Computer Science and Engineering (DISI), University of Bologna,
Viale del Risorgimento 2, 40136 Bologna, Italy

Abstract. The high abundance of IoT devices have caused an unprecedented accumulation of avalanches of geo-
referenced IoT spatial data that if could be analyzed correctly would unleash important information. This can feed

decision support systems for better decision making and strategic planning regarding important aspects of our lives

that depend heavily on LBSs. Several spatial data management systems for IoT data in Cloud has recently gained

momentum. However, the literature is still missing a comprehensive survey that conceptualize a convenient

framework that classify those frameworks under appropriate categories. In this survey paper, we focus on the

management of big geospatial data that are generated by IoT data sources. We also define a conceptual framework

and match the woks of the recent literature with it. We then identify future research frontiers in the field depending

on the surveyed works.

Keywords: Spatial Data, Spark, MongoDB, Spatial Partitioning, Internet of Things, Query Optimizers.

1. Introduction

In the last decade or so, the proliferation of ubiquitous positioning devices, and a massive spread of the

Internet of Things (IoT) paradigm have caused an accumulation of an unprecedented huge mass of datasets,

forming a phenomenon referred to as big data. Today, all kinds of businesses are data-driven, with data

being mostly geocoded and real-time [1] , making timely analysis a priority, and thus promoting the

emergence of Geographic Information Systems (GISs), with wide spectrum of applications, including

participatory healthcare [2] , neurology analytics [3] , medical pathology imaging [4] , and city planning

[5]. IoT is loosely defined as a network of interconnected computing devices that may constitute home

electronic appliances (e.g., security systems and cameras), connected vehicles, and sensor-enabled
positioning devices (and actuators) which communicate endlessly and transfer data in real-time [6].

Devices involved in an IoT network does not normally encapsulate large storage and processing capacities.

They otherwise depend on sending data loads through a middleware network layer to backend storage

media and capable processing systems.

Storing and processing huge avalanches of spatial data by merely depending on traditional centralized
batch-processing systems is inconvenient [7]. Because of inherent difficulties in dealing with such huge

data traffic, horizontal scalability is becoming essential, where beefing up (scaling up) single node deemed

insufficient. Therefore, various parallel-GIS systems have spawned and gained momentum in recent years.

A trend that has been made possible by the emergence and widespread adoption of cluster and Cloud

computing [8]. Cloud computing can be loosely defined as a paradigm that offers a rapid access to a pool of

interconnected computing and storage resources. In stark contrast with IoT, Cloud and cluster computing

environments are prepared with, theoretically, unlimited scalable storage and computation capacities. In

today’s dynamic and scalable applications scenarios, it is becoming a norm that IoT devices serve

avalanches of geo-referenced data loads to Cloud/cluster computing environments, allowing both

paradigms to operate synergistically so as to process huge amounts of (near)real-time geo-referenced data

streams with QoS guarantees. A typical architecture that promotes the integration of those two magnets

(Cloud and IoT) is a simple two layers tiered architecture that is composed by the IoT network layer and a
Cloud layer [9] . However, this integration between IoT and Cloud does not come for free and has its

limitations and drawbacks. Heterogeneous data loads are aggregated from diverse IoT sources and need to

be unified and transferred into a Cloud environment. Despite widely adopted, Cloud computing is

confronting critics in highly dynamic application scenarios. Perhaps most importantly because it harmfully

violates QoS goals envisaged in an SLA at times [8]. Challenging aspects that potentially deteriorate the

benefits that we reap from parallel computing that is offered by Cloud need to be addressed. Of a special

interest, a problem that is known as data partitioning. In its essence, data partitioning means splitting the

huge amounts of arrived data to computing (or storage) nodes in a Cloud. Traditional partitioning

2

approaches focus on balancing loads by sending roughly same size of data loads to worker (or

synonymously storage) nodes of the Cloud. Load balancing alone is not enough for processing spatial data

loads. Spatial data normally exhibits geographical spatial pairwise relationships, which is also known as

spatial autocorrelation, where spatial objects normally collocate in the same real geometry because they

are closely in a relationship. Respecting such relationship while splitting spatial data loads to worker nodes
of Cloud has proved to be efficient [10]. For example, by sending geometrically-proximate spatial objects

to same (or geographically nearby) worker nodes of the Cloud. This, in its turn, normally reduces the data

shuffling that may otherwise be enlarged. This is attributed to the fact that interesting analytics seeks to

reveal patterns behind this kind of autocorrelation, aiming, for example, at solving complex problems that

would otherwise remain elusive. For example, analyzing spatial autocorrelation to help containing a

contagious infectious disease before it spreads far away [11]. By placing geographically-nearby objects in

same (or close-by) Cloud nodes, we guarantee that answering such complex spatial queries will not result

in a lot of data shuffling, thus helps in avoiding a network congestion.

Works of the related literature have mainly focused on internetworking and hardware aspects of the

problem [6, 12]. That said, the share of works in spatial data management aspects for IoT remains humble.

Few works have also focused on surveying the analytical aspects for IoT [8, 13, 14] . However, those are

general and did not discuss the spatial characteristics of the IoT data. We posit that more attention must be

given to the big spatial data management aspects for IoT, with intercommunication, process and scalable

storage be predominant players while designing spatial data management solutions for the Cloud (or in-

house cluster) computing.

To close this void, in this survey paper, we focus on frameworks that are dedicated to the management of

big geospatial data that are generated by heterogeneous IoT devices and served to either Cloud computing

or in-house private computing clusters for processing and scalable storage. We survey those frameworks in

the sense that reveals the QoS aware optimizations they offer for the management of such data in Cloud

settings (and cluster in-premises computing). We refer to the Cloud that is leased by a third-party as a

public Cloud (such as Amazon EMR and Microsoft Azure), whereas the one that is a propriety of an

individual organizations is referred to as private Cloud. For simplicity, for the remaining parts of this paper,

we will refer to them both as ‘Cloud’. By QoS in this context, we are interested in time-based QoS goals
such as latency/throughput, accuracy goals (such as estimation quality) in Spatial Approximate Query

Processing Systems (SAQP), in addition to resource utilization goals. It worth noticing that partitioning per

se is a mean-to-an-end, where the goal is to achieve a set of QoS goals prespecified in a Service Level

Agreement (SLA). Consequently, we also survey strategies that improve query optimizers in spatial big

data management frameworks, such as indexing and caching. All in all, we aim at surveying QoS aware

optimizations that geospatial big data management systems offer in Cloud and cluster computing

environments. In addition to those contributions, we propose a unique general framework that hosts under

its umbrella the QoS aware spatial data management optimization treated as a first-class citizen that is

transparently incorporated atop the layers of the underlying systems. This enables those systems to relief

the shoulders of front-end developers from reasoning about the underlying logistics of QoS aware big

spatial data management in Cloud. Stated another way, in this survey paper, we capitalize on most

important aspects of QoS-aware big geospatial data optimizations from the angle of a Cloud computing
infrastructure and its synergy with IoT. Our framework is compatible with a typical general architecture

that synergistically integrate IoT with Cloud computing [6, 12] .

To fence ourselves within a reasonable scope, we are not focusing on general big data frameworks that

come readily deployed with Cloud infrastructures (in what is commonly known as Software as a Service,

SaaS for short) such as Apache Spark [15], Hadoop [16] and MongoDB [17, 18]. We otherwise focus on
spatial-aware frameworks that are engineered on top of some of those, aiming at serving QoS-aware

optimization patches injected transparently within the layers of the underlying core engines. For example,

GeoSpark [19] is engineered atop Spark core engine and introduces few patches for spatial-aware data

management in Cloud parallel computing environments for data consumed from IoT devices.

The remaining parts of this survey paper are organized as the following. We start by an overview,

providing an essential background on the related aspects of the topic, motivating the need for QoS-
awareness in big geospatial data context and drawing a general-purpose architectural view accordingly.

3

This is followed by a general framework that we propose for big geospatial data management in Cloud-

alike parallel computing settings. Thereafter, we present a comprehensive categorization of QoS-aware

spatial data management techniques in Cloud. We then elaborate the discussion by cross-matching

techniques with most relevant literature studies. In what follows, we define a unique taxonomy that divides

QoS optimizations into relevant sections. We summarize by recommending few research frontiers.

2. Background

In this section, we highlight various initiatives that are essential for classifying QoS- and spatial-aware data

management optimizations for a two-layer architecture that models the integration between IoT and Cloud.

First, we elaborate a toy motivating example that deliberately focus on some scenarios where such

optimizations are essential for an efficient system performance. Also, we review a typical IoT-Cloud

architecture that is widely accepted in the related literature.

2.1 Highly Dynamic Environments as a Motivating Scenario

We herein discuss a typical application scenario that imposes harsh QoS constraints on an underlying big

geospatial data management system that is receiving spatial data from IoT on a regular basis. Consider

smart city scenario where a decision-making application analyzes community Global Positioning System
(GPS) data collected by citizens, vehicles and shared bikes moving around in a city in real-time. Let’s

consider an example of a citizen who is wearing a sensor-enabled health monitoring device (for example, a

smart watch connected to the smartphone) with a chronic disease (e.g., Asthma) which may attack suddenly

while moving around in a city, and promptly needs an instant first-aid. The goal here is providing reliable

assistance to the patient and keeping the danger as low as possible. A system for managing the process of

rescue in a timely fashion is required. The system is expected to achieve a set of requirements. First, it

sends patient’s locations to nearest emergency service point. Also, analyzing patient’s health condition at

the time of attack for checking severity degree. Second, system can identify communities in the

surroundings of the patient (this needs a community detection algorithm [2]) and selects the best volunteer

who is the nearest and capable of providing first-aid assistance. Here election is made based on distance to

the patient location, social relativeness between patient and volunteer, the real ability of volunteer to

provide first-aid (i.e., being trained enough or not), and all those depend on many factors (among which the

degree of severity of the patient health condition has a highest priority).

Also, the system should be able to suggest the best route that the ambulance can take in order to avoid

heavy road congestions. Also, sensors send street congestion data to periodic traffic signal actuators, which

then decides to turn some traffic lights into green while making others red in a consistent fashion so as to

pave the way for the ambulance to pass smoothly en-route to the patient location.

In this simple, but representing scenario, people with their smartphones , patients with a smart watches,

street congestion sensors, and vehicles GPS-enabled devices are all considered “Things” that regularly send

their geo-referenced datasets through a networking layer to the Cloud (or in-house cluster) computing

network that hosts a geospatial analytics system which operates in parallel. In the next subsection, we

briefly discuss a reference architecture that has been applied widely for similar scenarios in the relevant

literature.

2.2 IoT-Cloud Reference Architecture

In this section, we schematize a typical reference IoT-Cloud architecture that has been widely applied for

scenarios similar to our toy example that we have discussed section 2.1. We specifically discuss its

limitations in meeting the QoS goals envisaged through an SLA.

Figure 1. shows a reference IoT-Cloud architecture showing a typical interplay and interaction between

constituting components, where IoT constitutes of devices (i.e. ‘Things’) at a bottom layer, which are
physical objects that are attached to sensors that, in turn, collects relevant geo-referenced data and serve it

through a middle network communication layer all the pyramid up to a top layer that hosts computation and

processing systems [20]. In this survey paper, we focus on those ecosystems that are deployed in a Cloud.

An inherent problem with this simple architecture, however, is that fact that it fails to convey the shape of

4

the transferred data to the Cloud. Stated in other terms, since most data that arrives from IoT is geo-

referenced, encapsulating a spatial multidimensional structure. This structure is however flattened into

tabular formats and the applications of the Cloud then need to reconstruct the multidimensional shape of

data to analyze it correctly, thus counteracting the benefits we may reap from the Cloud parallel computing.

In the next subsection, we briefly review the state-of-art big data management systems that come readily

deployed on public Clouds.

2.3 Traditional Cloud-based Big Data Management Frameworks for IoT

It was toward the end of 1970s that interest has turned from the hierarchical data representation model [21]

(which was dominant in DBMSs) to relational models in RDBMSs. However, in the last two decades,

companies have shifted their attention toward real-time big data analytics with increasingly complex

queries. The performance shortcomings of relational databases in processing big datasets have raised the
demand to introduce parallel data management schemes that are deployed on Cloud computing

environments, and the transition from monolithic to scalable horizontal architectures has become a

necessity. As means of coping with those challenges, database world has witnessed the birth of two

indispensable paradigms for big data management (in two veins, storage and processing) in Cloud. I) non-

relational storage-oriented DBs (commonly known as NoSQL, a shorthand for ‘Not only SQL’, we use

those henceforth interchangeably), and II) big data processing-oriented engines.

Examples of NoSQL databases include Amazon Dynamo DB [22] , Facebook Cassandra [23] , and Google

Bigtable [24] , MongoDB [17] and HBase [25]. The common characteristic of those systems is that notion

of referential integrity (consequently schema notion) is absent in those systems, leaving data formatted and

organized in a way that makes it self-describing, making it unnecessary to declare the structure to the

system a priori. Such flexibility makes non-relational databases easily adaptable to scenarios where data is

uneven, or frequently and unpredictably changing its structure or content. [26] Classifies non-relational

databases into four categories, document-oriented, graphic, key-value, and wide column databases.

Document-oriented databases adopt a document structure (typically a JSON-alike format) that resembles

the object model in object-oriented databases, where data for each object are stored in a single document

(analogous to records in relational tables) instead of being scattered across multiple tables, thus simplifying

data access and reducing the join processing, which otherwise would be necessary as a cause of referential
integrity in RDBMs. MongoDB [17] is an example document-oriented NoSQL database. Key-value DBs

store keys and related values in hash tables (Dynamo DB [22] is an example). Wide-Column DBs are

column-oriented data structures that assign multiple attributes for each key. Examples include Cassandra

[23] and Bigtable [24].

Figure 1. IoT-Cloud Two-layers Architecture

5

With MongoDB and HBase being notably the two predominant frameworks. We restrict ourselves to those

wide-columns and document stores. Key/value and graph NoSQL stores are outside the scope of this

survey. To the best of our knowledge, the latter are not widely adopted for spatial data management.

NoSQL databases are storage-oriented solutions not intrinsically engineered for handling data processing

workloads, which, in turns, has led to nearly a simultaneous emergence of processing-oriented parallel-
computing solutions for the Cloud, based on the MapReduce paradigm [27] (for example, Hadoop [16]) or

its successor variants (for example, Apache Spark [15]).

Those scalable systems are normally deployed on Cloud. They are general-purpose and are unaware of the

spatial characteristics of IoT data. In other words, they do not normally embed specialized management

strategies for big spatial data loads. Consequently, spatial-aware extensions, mechanisms and strategies are

required, which has led to the emergence of spatial-aware glues and patches atop the codebases of those

ecosystems.

2.4 IoT Requirements for Big Spatial Data Management Frameworks in the Cloud

IoT impose highly-demanding (sometimes harsh) constraints and requirements on spatial data management

frameworks that are deployed in a Cloud, aiming basically at achieving an acceptable degree of user

satisfaction. We start by common requirements from the existing literature [8, 13, 28] , then we extend the

definition to incorporate strict QoS aware requirements that appear in highly dynamic application scenarios

similar to the smart city scenario that we have presented in section 2.1, which necessitate the deployment of

spatial-aware big data management frameworks with custom services for IoT in the Cloud. This has led to

the emergence of a constellation of frameworks that we term as big spatial data management for IoT.

We consider highly dynamic application scenarios that require intermixing loads from heterogeneous IoT

sources (mostly in a mashup fashion). From those scenarios, we extract requirements that are common

among those kinds of analytics, which should be transparently achieved by the Spatial Data Management

System (SDMS) in order to be considered efficient for IoT in the Cloud.

Common requirements that we have identified from most emergent highly dynamic application scenarios

(such as smart cities, Industry 4.0 [29] and Industrial IoT), which should be translated afterwards into

architectural design goals for a qualified SDMS for IoT in Cloud include the following.

QoS guarantees. Spatial data management systems for IoT in Cloud should ensure that the system runs
within a prespecified list of time-based QoS guarantees expressed as latency/throughput and accuracy goals

(high-throughput/low-latency). Also, those systems should work on maximizing the resource utilization in

Cloud, such as to cut the unnecessarily additional costs from the user. Also, results accuracy should not be

affected above allowable error margins.

An efficient SDMS should seeks at transparently incorporating services that achieve a plausible balance

between those goals. Those services should be offered within the framework in a way that relieves the
shoulders of the programmers from having to reason atomically about them, allowing them thus to focus on

the data analytics tasks themselves instead of spending unnecessarily extra time in handling QoS logistics.

We have identified two architectural design perspectives in SDMSs that are normally considered in order to

design SDMSs for the Cloud which are able to achieve a plausible balance between the abovementioned

QoS goals. Those are, data partitioning and query optimizers. They are heavily discussed in the next

section.

3. A Conceptual Spatial-Aware Big Data Management Framework for IoT in the Cloud

In this section we convey a general conceptual architecture for spatial-aware big data management for IoT.

It serves as a springboard where we explain the main components that comprise the underlying systems.
We will use those components afterwards (specifically in section 4) to draw a unique taxonomy where we

6

cross match optimizations from the relevant literature with components of the framework that is

schematized in Figure 2.

In addition, we introduce data partitioning, elaborating on its main challenges in the spatial aware context

and building taxonomy for traditional data partitioning approaches, thus providing a relevant background in

this vein and paving the way for a convenient categorization of spatial-aware portioning methods.

Alongside, the same applies for the query optimizers.

In the last few decades, because of an elevated demand for analyzing big geospatial data, and because

current processing systems alone are unable to keep pace with those increasing demands, GISs have

evolved from centralized single-device systems to parallelized cloud-based systems (examples include

Hadoop-GIS [30], SpatialHadoop [31] , SpatialSpark [32] and GeoSpark [19]). Even though those

systems are based on a variety of parallel data processing ecosystems (basically Hadoop and Spark), many

influences funnel the style of those systems into an isomorphic layered architecture, encompassing three

primary layers (Figure 2. tells the story). The bottom layer is either a NoSQL parallel-DBMS, or big data

processing-oriented codebase core. The middle layer represents a specialized spatial-awareness extension

for various purposes, including spatial data representation or reformatting. The top layer is a service layer,

providing services such as custom data partitioning strategies and custom query processing optimizers.

However, two main elements are yet to be given more attention in this context. Those are, data partitioning
and query optimizers. Despite architectural generality, systems mentioned above differ on their partitioning

and querying strategies as herein follows.

In this survey paper, we focus on the top layer of the architecture in Figure 2. We have selected to scope

ourselves to this layer because we believe that custom spatial-aware data partitioning and query optimizers

are important factors en-route to achieve the IoT requirements that we have discussed in section 2.4. Data

partitioning and query optimizers does not operate in isolation, they instead complement each other

synergistically in order to achieve QoS goals prespecified in SLA.

3.1 Spatial Data Partitioning

Data partitioning is loosely defined as a technique for distributing partitions of data over several processing

elements (i.e., worker nodes) in a parallel computing environment (i.e., Cloud), where processing is

accomplished simultaneously by each processor instance on the corresponding partition. This parallelism is

essential for the operation of the two parallel big data management paradigms, processing-oriented and
storage-oriented. Comparatively speaking, NoSQL (storage-oriented parallel-DBMSs) partitions data,

aiming at a scalable storage and management it in a parallel fashion, whereas processing-oriented systems

partition data in order to accelerate query processing. The process of data parallelization is schematized in

Figure 3.

Spatial data partitioning comprises strategies that divide the embedding space (the space from which spatial

samples are drawn) using hierarchical representations structures (e.g., grid-based and tree-based) or non-

7

hierarchical representations such as Minimum Bounding Rectangles (MBR), both explained shortly in

section 4. Those spatial representations are used to split the IoT spatial data into worker nodes of the Cloud.

In the next subsection, we identify challenges that may hinder the achievement of QoS-aware data

partitioning for IoT spatial geo-referenced datasets in the Cloud.

3.1.1 Spatial data partitioning goals in Cloud

We have identified three contradicting goals focusing specifically on spatial data partitioning, which

determine the QoS of big spatial query processing. i) Load balancing, which is the process of de-clustering
data loads in a way that guarantees an even distribution among all partitions, thus mitigating data skewness.

While this is efficient for general-purpose data loads, it is insufficient for geospatial datasets. Spatial data

loads often show co-location continuum relations. We refer to this characteristic as ii) Spatial Data Locality

(SDL) preservation. Preserving this co-location feature is essential for an optimized big geospatial data

analytics performance. By achieving SDL preservation while splitting data, the partitioning strategy aims at

minimizing cross-partition spatial data access operations. For example, proximity-alike spatial queries

normally require accessing spatial tuples (representing objects) that are geometrically-nearby. By being

able to preserve such a proximity relation while splitting data, by for example sending geographically-

nearby objects to same partitions, the system axiomatically reduces cross-partition access as it only

accesses some partitions that host appropriate objects. The partitioning scheme should also, for the same

purpose and at the same way, aim at minimizing cross-partition joins. iii) Boundary Spatial Objects (BSO)

minimization. Imagining the earth flattened out (a.k.a. Euclidean space or flat surface) and split into cells
(forming a grid network). We refer to spatial objects residing exactly on borders between cells as Boundary

Spatial Objects (BSO). Accounting for those in a partitioning scheme is specifically challenging, as it

imposes extra processing overhead on the system. Specifically, if BSOs constitute a large portion of the

spatial dataset. This can be extremely detrimental to the processing operator in cases such as join

processing, especially that most well-performing join algorithms are based on filter-and-refine approach,

where processing BSOs (a.k.a. edge cases) in the refinement stage requires applying the real geometry

processor which is computationally expensive and turns prohibitive in extreme scenarios.

We classify load balancing methods as either being embedded or adaptive. The former means that the

original data partitioning method transparently achieves a plausible degree of load balancing, whereas the

latter means that the SDMS needs to perform additional steps after partitioning (which normally requires

repartitioning) in order to achieve a good degree of load balancing.

An efficient Spatial Data Management Engine (SDME) targets at allocating roughly equal weights of

spatial objects to processing elements, preserving, as much as possible, the SDL by grouping

geometrically-nearby objects within same subdomains, and minimizing BSOs. To achieve those, various

works of the literature have designed spatial-aware custom partitioning strategies that collectively provide

top service layer for solving some of those goals in a way that guarantees an acceptable degree of balance

between them as discussed hereafter. We evaluate representatives of those works based on the three goals

mentioned above. We first review classical data partitioning methods, as complex spatial-aware methods

are based on them. Afterwards, we provide taxonomies for spatial-aware partitioning schemes.

3.1.2 Spatial query optimizers

8

Data partitioning is a mean-to-an-end and the goal would be to optimize spatial queries that are imposed on

a SDMS. Query optimizers include spatial indexing and caching strategies. Access structures (i.e., indexes)

are normally imposed on the spatial representations in order to speed the access. Query routers normally

employ those structures in order to (sometimes aggressively) prune the search space upon receiving a

spatial query by forwarding query requests only to partitions (hosted in Cloud worker nodes) that
potentially contain part of the result set. This conceptualization reflects the importance of SDL preservation

while partitioning spatial IoT data.

Some works have went beyond applying a single access structure by employing instead a multi-layer access

structure in a staggered fashion. For example, an imposing a z-order curves ordering structure after a B-tree

index in MongoDB, thus comprising a compound index, where the former is applied for pruning the search

space by specifying the order of visiting grid cells upon receiving a query (which is then considered as a

global index), whereas the latter is applied locally to each grid cell to further prune the search space.

4. Big Spatial Data Management Systems for IoT: a Taxonomy

This section elaborates on taxonomies of spatial-aware optimization strategies for big geospatial data

management for IoT in the Cloud. We consider two veins. Those are, storage-oriented and processing-

oriented.

4.1 Spatial-aware Partitioning

We first briefly recapitulate the relevant data structures that support the introduction of spatial-aware data

partitioning methods for IoT in Cloud. We then taxonomize the rending QoS-aware spatial data partitioning

methods in a relevant alignment with the discussed data structures.

4.1.1 Multidimensional data structures in support for spatial partitioning

Data structures that support spatial partitioning can be classified under two general categories, either data-

dependent or space-dependent (a.k.a. data-independent). Under those broad categories, we classify four

prevalent methods for splitting the embedding space from which spatial objects are drawn.

Hierarchical splitting methods fall under data-independent category. Grid [33, 34] and quadtrees [35] are

the two most applied methods. Grid-based structures. They work by partitioning the embedding space into

a grid-shaped structure (uniform or arbitrary). Quadtree [35] (and its k-d tree [36] variation) also falls under

the category of data-dependent space representation structures. They work by recursively dividing a two-

dimensional Euclidean space into four square divisions until each division contains no more than one

spatial object. The distinction between grid splitting and quadtrees is that the former normally splits the

embedding space into uniformly-shaped cells, whereas the latter depends on the data distribution to decide

upon the splits. Quadtree approaches are more convenient for highly skewed datasets such as spatial data as
they have spatial data statistics in registration, generating more partitions in regions with high data density.

In other words, Grid structures are susceptible to load imbalance while they preserve SDL. On the other

hand, quadtrees can achieve a plausible balance between SDL preservation and load balancing. It worth

noticing that, despite mentioned separately in the literature, quadtrees are formed by a tree indexing

structure on the grid so that geometrically-congruent grid cells that are empty are joined into bigger

enclosing empty cells.

Other space-partitioning methods include Voronoi diagrams which partitions a Euclidean plane into

polygonal regions such that each spatial point within a region is closer to a central point in its region when

comparing its distance to other regions central points any other site.

As a way of contrast, data-dependent splitting methods depend on objects hierarchy as they project spatial

space from which objects are drawn into a higher level up in the pyramid, thus guaranteeing to have the
enclosed objects in registration (i.e., their space identity is preserved). Under this category falls R-tree and

R+-tree [37]. Spatial objects reside in leaf nodes of the R-tree (implemented normally as a B+-tree because

the spatial objects reside in leaf nodes only). R-trees are specifically useful in online (non-stationary)

settings as spatial objects can be added to the tree in a hot-swappable fashion instead of waiting all objects

9

to arrive. The distinction between R-tree and R+-tree is that the former is based on overlapping bounding

rectangles (representing the embedding space), whereas the latter is based on non-overlapping bounding

rectangles. The tradeoff in this situation is apparent, as for the non-overlapping representations, a spatial

object spans many bounding rectangles with which it intersects, thus expanding the tree height and the

storage space, therefore. However, a speed up is easily obtained at query run time. On the contrary, for
overlapping representations, an object resides within the boundaries of one bounding rectangle. This

reduces the tree size on the cost of an increased search space at query time.

Grid representations (and synonymously quadtree-based representations) can be enriched with space-filling

curves [38] , which are ordering (a.k.a. Linearization [39]) representation-enriching structures that projects

a multidimensional space (representing the embedding space) to a one-dimensional space, thus acting as a

dimensionality reduction approach. Ordering structures normally follow other approaches to enrich them.
For example, z-order curves can be imposed on grid structure to specify the order at which grid cells will

be traversed at query time. Z-order curves loosely preserve the locality of spatial objects.

A special application of Z-order curves is geohash 1, which generates geocodes as strings the larger the

shared prefix the more geometrically-proximate spatial objects.

Because every partitioning method has its own drawbacks, most works of the related literature have applied

custom spatial partitioning approaches that are based on a mashup of the primitive types that we have

discussed in this section. In the next subsection, we recapitulate representative custom spatial partitioning

methods for IoT data in Cloud.

4.1.2 Spatial partitioning methods for IoT data in Cloud

We first review common custom spatial partitioning approaches and thereafter we build a taxonomy for

their application in modern big spatial data management frameworks, together with the primitive types

mentioned in section 4.1.1. We also identify their pros and cons of each method in relation to the three

spatial partitioning goals that we have discussed in Section 3.1.1, thus providing a guidance to the

community interested in big spatial data management for IoT in Cloud. Custom spatial partitioning

methods that are most common include the following:

I) Binary Space Partition (BSP) tree [40] . It is a method that is similar to the k-d tree in the sense

that it performs halving in every dimension. However, splitting lines are not orthogonal to the axis

corresponding to a dimension (as opposed to orthogonal splitting lines in k-d trees), resulting thus

in a grid of polygons. The non-regularly shaped polygonal structure helps BSP in achieving a

plausible balance between SDL preservation and load balancing.

II) Sort-Tile Recurse (STR) [41] . It first tiles the embedding space into vertical slabs, where each

slab contains several tiles. Horizontally-adjacent tiles (belonging to adjacent slabs) need not

having straight lines that span neighboring slabs. This process results in a structure that resembles
a staggered grid-shaped representation. As tiles have different sizes, STR is able to strike a

balance between preserving SDL and load balancing.

III) Methods based on Space-Filling Curves (SFC) [42] , including Hilbert-curves and Z-curves,

where in z-curves, data is sorted based on its order along the z-curve, thus splitting the curve into

roughly equally loaded splits. SFC is an efficient geometric method for mapping spatial object

location from multi-dimensional space to a linear dimension, simulating geometric space as it is

flattened out, assigning a key signifying nearest spatial coordinates, thereafter sorted list

constitutes the linear ordering, which cut then to equal size divisions to be distributed to working

nodes of the cluster.

1 http://geohash.org/

10

Other custom partitioning methods. This category includes methods that are aware of the three

spatial partitioning goals, and henceforth are applied in scenarios that require accounting for them

altogether. For example, some scenarios require applying a density-based clustering algorithm in

Cloud (such as DBSCAN-MR), in which case any traditional spatial partitioning results in BSOs.

Therefore, a custom BSO-aware partitioning method should be applied to ensure that BSOs are
minimized. For example, [43, 44] have developed an adaptive dynamic data-density spatial-aware

partitioning method for big geospatial datasets, where it trades-off load balancing and BSO’s

minimization better than traditional methods. They have applied the method in highly dynamic

application scenarios that require applying density-based clustering algorithms on huge amounts

of IoT spatial data in Cloud. Also, [45] have designed a query-workload-aware technique for

partitioning big spatial data that adaptively renews the partitioning in accordance with a query

workload (being adaptive), achieving roughly equal load balances while preserving a good degree

of SDL. In the same vein, Cruncher [46] employs a dynamic adaptive method that is aware of

query workload. Cost-model-based repartitioning is enabled, where a cost model calculates

number of points and queries for each partition and repartitions accordingly.

Table 2 summarizes what have been sketched so far, comparing the performance of the spatial partitioning

techniques, and introducing an important dimension that shows capability of every method in handling each

of three main partitioning goals (load balancing, SDL preservation and BSO minimization).

Table 2. Taxonomy of capabilities of general spatial-aware partitioning methods in handling spatial partitioning

challenges defined in section 3.1.1

method big spatial data partitioning goals

 load

balancing

BSO

Minimization

SDL

preservation

Grid-based ✓ X ✓

BSP ✓ X ✓

Quadtree ✓ X ✓

STR ✓ X ✓

Grid with space-ordering (z-

curves)

✓ X ✓

Custom partitioning method ✓ ✓ ✓

As it is apparent from the table, only a custom partitioning method will be able to strike a plausible balance

between the three conflicting spatial partitioning goals. We now provide a taxonomy for some

representative frameworks in both veins (i.e., processing and storage) that we consider baseline

representatives. Afterwards, we provide a comprehensive taxonomy that summaries other relevant works

that are based on some of those baselines.

In processing-oriented systems, over-the-counter, SpatialHadoop [31] provides few spatial partitioning

methods including grid and Z-order curves (and Hilbert synonymously), STR (and STR+ which is a variant

of STR), and Quadtree [47] .Hadoop-GIS currently only supports grid partitioning [30] in addition to an

adaptive method to repartition overloaded cells into further cells to solve the data skewness that is

persistent in spatial data loads (load balancing). They term their adaptive load balancing method as SATO.
From the in-memory frameworks, SpatialSpark, currently supports three types including uniform grid, BSP

and STR [32] . On the other hand, GeoSpark [48] provides a main support for uniform grid, Hilbert-

curves, quadtree, R-tree and Voronoi. In storage-oriented systems, two refence systems that provide spatial

partitioning supports are MongoDB in its native form (from the document-oriented NoSQL) and MR-

HBase [39] which is a seminal work that provides spatial partitioning capabilities over HBase. However,

HBase natively does not offer spatial support. However, it does not support partitioning on geospatial keys,

so it intrinsically does not support spatial partitioning. Table 2 sums-up our taxonomy for the spatial

partitioning techniques sketched previously. MR-HBase offers a hybrid custom spatial partitioning method

11

that is based on linearization (specifically, Z-orders). It also supports k-d tree and trie-based quadtree. MR-

HBase trades off load balancing with an embedded method that checks on insertion time whether a

threshold on the size of a physical storage bucket it exceeded, in which case it is split into several buckets.

They depend on the fact that the underlying structures for splitting (K-d and Quad trees) intrinsically

restrict the number of enclosing objects in each subspace. Table 3 summarizes what has been sketched

herein.

Table 3. Taxonomy of spatial-aware partitioning strategies in core SDMEs

What then remains incumbent is deciding which method to select for a specific IoT application scenario.

Since data that is arriving from IoT is georeferenced, all scenarios that are deployed on a Cloud should seek

applying methods that at least provide spatial locality preservation and load balancing. IoT scenarios that

encompass online interactive processing should avoid data-dependent partitioning such as R-tree and R+-

tree. The reason is that, despite simple and appealing approaches, space-depend approaches are expensive

and may require reconstructing the grid after the grid cell becomes saturated. As a way of contrast, R-tree

D
at

a
m

an
ag

em
en

t
p
ar

ad
ig

m

T
y
p
e

S
y
st

em

Spatial data partitioning method

Space-dependent Data-dependent Ordering custom

U
n
if

o
rm

 g
ri

d

Q
u
ad

tr
ee

-b
as

ed

k
-d

 t
re

e

V
o
ro

n
o
i

S
T

R

R
-t

re
e

&
 R

+
-t

re
e

B
S

P

H
il

b
er

t-
cu

rv
es

Z
-o

rd
er

s

S
to

ra
g
e-

o
ri

en
te

d

N
o
S

Q
L

-B
as

ed

M
o
n
g
o
D

B
 X ✓ X X ✓ X X ✓ X

M
D

-

H
B

as
e ✓ ✓ ✓ X X X X X ✓ ✓

P
ro

ce
ss

in
g

-o
ri

en
te

d

S
p
ar

k
-B

as
ed

 S
p
at

ia
lS

p
ar

k
 ✓ X X ✓ ✓ ✓ X X X

G
eo

S
p
ar

k
 ✓ ✓ ✓ ✓ X ✓ X ✓ X X

H
ad

o
o
p
-B

as
ed

 S
p
at

ia
lH

ad
o
o
p
 ✓ ✓ ✓ X X X X ✓ ✓ X

H
ad

o
o
p
-G

IS
 ✓ X X X X X X X X ✓

12

(R+-tree) builds the tree dynamically on-the-fly as new objects arrive. In cases where speed is a priority,

R+-tree is preferable over R-tree. However, in cases where two datasets need to be combined (using a

spatial join for example), data-dependent methods are undesirable as they do not have maps (i.e., a map of

embedding space and a map of spatial objects overlaid) in registration. Hence, spatial queries that require

autocorrelation would become costly. In those scenarios, it is preferable to use a space-dependent method
as they easily can solve autocorrelation questions by overlaying maps one over the other. Moreover, a

profiling can be conducted on part of the IoT data to check the degree of skewness. In scenarios where data

skewness is high, a quadtree-based method is to be preferred over a uniform grid counterpart. In scenarios

with prevalent proximity-alike queries (such as kNN and spatial range search, discussed shortly in section

4.2.1), space-dependent methods based on grid and quadtree are preferred. In scenarios where user is

willing to trade tiny error bounded accuracy loss for the benefit of lower latency, space-filling curves are

the best.

Spatial data partitioning is a mean-to-an-end, where the goal is optimizing spatial query performance. In the

next section, we categorize spatial query optimizers.

4.2 Query Optimizers

Query optimizers encompass methods that tradeoff the QoS goals mentioned in section 2.4 (low-

latency/high-throughput, error-bounded accuracy, high resource utilization). Most common optimization

methods depend on access structures (i.e., indexing) and caching. We first briefly discuss most common

spatial queries.

4.2.1 Spatial data analytics in highly dynamic and scalable IoT scenarios

Dynamic smart city and Industry 4.0 application scenarios that require intermixing loads in an

unprecedented mashup fashion are innumerable including, for example, for road traffic control [49],

clustering microblogging topics by region [50]. The aspect that is axiomatic in all those scenarios is that

they necessitate various spatial analytics.

Common seminal spatial queries include the following

A) Range spatial query (a.k.a. proximity queries). Range searches return the set of spatial objects that

fall at a maximum specified range (e.g., radius) from a specific spatial object (most often referred to as

focal point, query point or test point). An example spatial range search from our scenario is “finding

people near an accident location in range that is equal to 1K meters maximum”. We support range

spatial queries for the batch processing (explained in chapter 4).
B) Spatial join. In its general form, spatial join is a set of all pairs that is formed by pairing two geo-

referenced datasets while applying a spatial predicate (e.g., intersection, inclusion, etc.,) [51]. The two

participating sets can be representing multidimensional spatial objects. An example spatial join query

from our scenario in section 1.1 is “finding boroughs to which each GPS-represented spatial point

(volunteer) belongs, a.k.a. geofencing”, which requires joining spatial points with a master table

representing boroughs.

C) Spatial clustering. Clustering algorithms basically aim at grouping identical spatial objects together

into subgroups called clusters. From many types of clustering algorithms, density-based clustering [52]

has picked up pace recently and is widely accepted for the overarching traits it provides. It is a class of

clustering that basically works by separating spatially dense space regions from outliers, thus dense

regions constitute clusters. A well-known method for density-based clustering is DBSCAN [53] .
However, tailoring such an algorithm for the parallel computing environments requires attention, as a

naïve solution poses heavy network communication overhead. To cope with this challenge, related

versions (DBSCAN-MR [54] or MR-DBSCAN [55]) have been tuned for parallel general-purpose

big data workloads. Clustering is one of the most important data analytics activities [56] . We support

density-based clustering within the layers of SpatialBPE as explained in chapter 4. An example spatial

clustering query form our scenario in section 1.1 is “grouping volunteers, in specific proximity to

incident location, by the level of training they possess”

D) K-nearest neighborhoods (kNN). It is an optimization proximity search problem (i.e., based on range

search queries). Formally, given a set A of points in an embedding space S and a query point (a.k.a.

13

test point) q ∈ S, kNN seeks to find the c ≥ 1 number of points forming a subset B such that all points

in B are closest than all other points in the remaining subset (A – B). Stated another way, every point

in A but not in B is at least as far away from q as the furthest point in B. More mathematically, given a

query point q, a set of c ≥ 1 nearest neighbor to q is B, where B ⊆ A such that ||S|| = c and ∀ point pi ∈

(A – B), EuclideanDistance (q, pi) ≥ max
𝑞𝑝 ∈ B

(𝑞, 𝑞𝑝). We support kNN for batch mode within the layers

of SpatialNoSQL as explained in chapter 4. An example kNN query form our scenario in section 1.1 is

“finding the nearest 10 volunteers around an incident location”.

4.2.2 Spatial query optimizers

Traditional naïve distributed query processors work by simply searching all partitions for results, even

though some partitions do not contain relevant data that may contribute to the result. Query routing is one
of the most widely accepted mechanisms in spatial query optimizers, which then acts as a pruning machine

that forces the underlying system to forward spatial query requests to few partitions instead of searching all

the partitions in Cloud. Two aspects facilitate query routing in Cloud based spatial data management

deployments for IoT. Those are spatial indexing and caching, the topics of the next two subsections.

A. Spatial-aware Indexing

Spatial partitioning methods that we have discussed in section 4.1 are meant to strike a plausible balance

between three contradicting spatial partitioning goals that we have recapped in section 3.1.1. However, they

do not necessarily guarantee achieving QoS goals envisaged in highly dynamic IoT scenarios. Query

routers often comprise spatial structures that are used for expediting the access to spatial partitioned data in

Cloud deployments. Access structures (indexes) normally include simple structures such as arrays where

each element of the array references a cell in the grid representation, in addition to tree-based structures

such as B+-trees and PK-tree [57] , both can be imposed on a quadtree representation. . The way to search

for spatial query result in IoT data distributed with a tree structure traversing tree node, which is expensive.
This means that query optimizers should seek minimizing, as much as possible, the number of tree nodes

visited for answering a spatial request.

As a representative for storage-oriented NoSQL frameworks, several spatial index structures are provided

by MongoDB including single, compound (indexes on multiple fields), geospatial Indexes (2d indexes

for flat planar geometry, and 2dsphere indexes for spherical geometry). However, As the time of this

writing, an indexed key cannot be used for partitioning, a drawback that has been solved in [29] . HBase

[25] supports basically single indexing but does not natively support spatial indexing.

Also, we have identified the following spatial-aware indexing techniques in the literature (we use them in

our taxonomy hereafter) for spatial query optimization: i) Multi-level index (MLI for short). For example,

Two-layer indexing – global and local. SpatialHadoop [31] employs a two-level index structure of global

and local indexing. The global index references data across computation nodes while the local index

organizes data inside each node. ii) spatial coding index (SCI). In this class, geo-coding keys are indexed.
For example, geohash is a class of geo-coding that calculates a special string using the GPS coordinates

(specifically longitude and latitude) of a spatial object (normally spatial points). iii) One-Layer Index (OLI)

(for example, global indexing (GI)). iv) On-demand spatial indices (also known as on-the-fly spatial

indexing [58]) (ODSI)

One reason that promoted the use of spatial-aware indices is borne out by the fact that the cost of creating
and storing a spatial-aware index is amortized by the benefits we reap during query time, such as lowering

latency.

B. Spatial-aware Caching

Caching is the process of storing latest results in main memory, aiming at speeding up subsequent

interrelated queries, and thereby saving re-computation cost and providing system with a performance

boost.

14

As a representative for NoSQL, in addition to its direct support for many spatial processing peculiarities,

MongoDB optimizes queries automatically to make evaluation as efficient as possible. The query optimizer

selects best index to use by periodically querying and selecting an index with best response time for each

query type. The results of these tests are stored as query cache plans and updated periodically [17] .

On the other hand, as representatives for processing-oriented systems. [59] have designed a custom strategy

that is chiefly based on caching frequently accessed spatial data objects, and thus preserving spatial-

adjacency feature (interchangeably termed as SDL). Most frequently accessed objects are loaded together

with their most geographically-adjacent set of related objects to a cache memory pool. We term this

caching method as spatial-locality-aware caching. Also, LocationSpark [60] applies a dynamic in-memory

caching to cache most frequently and recent spatial datasets in-memory. Perhaps more convenient,

Cruncher [46] employs an adaptive caching technique for maintaining frequently accessed spatial data in-
memory. The mechanism is simply based on maintaining access-pattern statistics within grid cells. This

includes a usage counter and the time of last access, which are used for alternating most frequent accessed

data in scenarios of main-memory shortage. We term this strategy as adaptive instantaneous-in-memory

caching. GeoSpark [61] applies custom caching method that is co-location aware in the sense that it

automatically caches intermediate results (from previous iterations) in-memory, aiming at facilitating

subsequent co-location mining access. This method is a hybrid comprising adaptive and spatial-locality-

aware strategies.

Intuitively, spatial-aware caching incurs extra storage cost which however is insignificant when compared

to the query performance boost it provides. However, it seems that most relevant works of the literature did

not apply caching. If for no other reasons than to avoid taxing precious often-small main memory resources

that would be otherwise exploited for processing queued jobs.

5. Solution Comparison

In table 4, we cross-match related studies that encapsulated one of the systems mentioned in table 2,

serving a systematic taxonomizing of the literature on spatial data management for IoT. For example, some

of the works operates on top of Hadoop-GIS [30] and added their optimizations. So, that Hadoop-GIS does

not provide optimizations for spatial locality does not intuitively imply that works operating on top of it
behave similarly. For example, while Hadoop-GIS does not provide spatial locality, SATO [62] provides it

through the support of Hilbert-curve partitioning, however it utilizes Hadoop-GIS only for query

optimization and spatial data representation and preprocessing. We provide a comprehensive analysis of

optimizations aspects for QoS-Aware partitioning of big geospatial data for IoT (which have been sketched

in all previous sections). Systems surveyed are represented in a chronological order in each orientation and

taxonomy section in table 4. We start by processing-oriented systems, where the order proceeds as the

following. We first start by Spark-based systems. We have selected this way as Spark has recently stood

out as a de facto standard for big data processing workloads. Thereafter, we swiftly shift to Hadoop-based

systems, which proceed as the following. We first start by systems that are engineered directly on top of

native Hadoop itself, thereafter we move to systems that sit on top of Hadoop representatives (e.g.,

Hadoop-GIS and SpatialHadoop). We complete our survey by listing most significant related storage-

oriented systems.

For each taxonomy section, we first elaborate on representative reference systems, where others are built on

top of them. For example, for Hadoop-based systems, we first focus on SpatialHadoop as a reference

spatial-aware system built directly on top of Hadoop, thereafter we highlight other systems that are either

built on SpatialHadoop or directly on Hadoop (but are not considered reference systems). We follow the

same methodology for Spark, as we take GeoSpark and SpatialSpark as spatial-oriented reference systems
built on top of Spark. We here cross-match literature works with relevant strategies discussed in section 4,

in two veins, partitioning and querying.

5.1 Spatial-aware Partitioning Aspects

Several works of the relevant literature have landed their optimizations either on top of Spark or one of its

spatial-aware representatives. One of the main pillars in this domain is GeoSpark [48] that has been

15

presented in and rapidly evolved to become a spatial-aware adjunct to Spark. It has expanded Spark RDDs

with a spatial RDDs (SRDD for short) and designed a custom partitioning method that is aware of load

balances, SDL and BSOs, which do not come included out-of-the-box with Spark. It guarantees load

balancing by creating a global grid file that resembles the earth flattened out, thereafter disseminates each

element from the SRDD into its correspondent location on a cell within the global grid. For loads to be
evenly distributed, it is automatic to infer that grid cells have different sizes, which also intuitively

guarantees respecting SDL. GeoSpark however is irrelevant as-is for applications that necessitate density-

based clustering. To close this void, a recent work in this synergy has been engineered on top of GeoSpark

is that of [43, 44] , which has focused on injecting spatial-awareness through a service-oriented layer on top

of Spark (and more specifically on top of GeoSpark). This layer consisted of a spatial-density-based and

adaptive (repartitioning-enabled) data partitioning method. Their method is adaptive in the sense that for

every application session, it self-tunes division factors for the benefit of subsequent sessions, aiming at

balancing loads among participating elements while minimizing BSOs in a density-based clustering

application. Put simply, the method works by calculating automatically new cutting configurations

(analogous to vertical partitioning line in planar geometry) that aim at minimizing BSOs for subsequent

application sessions. It takes running time and cutting values (the most recent required by each partition) as

an input, performs its computations (mathematical calculations that aim at minimizing BSOs) and returns
new optimized splitting configurations. In fact, the calculation method is simply a sliding mechanism that

moves the cut towards either east or west, based on a previous knowledge of processing workload of each

element. The main query optimizer they provide is a density-based clustering capability that is supported

through their custom portioning method.

Along the same lines, another Spark-based framework termed as LocationSpark [60] has incorporated a
novel transparent layer (termed as query scheduler) within Spark, aiming at resolving load balancing for

highly skewed datasets. Their patch is adaptive in the sense that it collects statistical information from each

partition, thereafter, based on a cost model it repartitions data of stragglers (hotspot bottleneck-responsible

partitions). In addition, LocationSpark has mitigated the SDL challenge by introducing a learning model

that first samples data to learn the distribution in the real geometries, thereafter, indexing with a global

index and distribute data accordingly. This global spatial index also guarantees load balancing by shuffling

data around until stragglers vanish. Also, LocationSpark has introduced a novel bloom filter (termed as

spatial bloom filter, sFilter for short) intended for partially solving the BSOs problem. sFilter automatically

recognize whether a spatial point is included within a range, thus avoiding BSOs replication to neighboring

partitions or broadcasting query point to overlapping partitions.

Perhaps one of the most significant Spark-based works that aims at mitigating SDL problem is the

framework termed as Cruncher [46] , which employs a custom adaptive partitioning strategy that basically

aims at optimizing spatial co-locality. It is adaptive in the sense that it maintains statistics for optimizing

data partitioning by gradually adapting data partitions in a way that avoid redundant processing based on a

cost model. While this method aims at resolving SDL, it also balances loads to some extent. However, it is

unable of mitigating BSOs.

Off-the-shelf, SpatialSpark (appears in [32]) supports uniform grid, BSP and STR. Uniform grid

intrinsically supports load balancing. BSP and STR are aware of load balancing and SDL preservation.

A recent model called Stark [97] broke into this consortium by incorporating a custom partitioning method,

encapsulating the so-called Locality-Manager within Spark layers, aiming at preserving SDL in a best-

effort manner. Multiple RDDs are partitioned using the same partitioning strategy, thus avoiding costly

shuffling in join and co-group RDD transformations. Partitions that contain data sharing co-locality are

aggregated in what they term as collection partition, thereafter a single collection partition is disseminated

to the same processing element of the processing cluster, thus avoiding unnecessary shuffling afterwards. If

a collection partition is very large, deeming it unsuitable for a single executor, it is instead mapped to

various executors. They also introduced a consistent hashing scheme for elastically shrinking or expanding

partitions without the need for re-partitioning. Stark partially achieves load balancing by employing a

mechanism that groups multiple related partitions into the so-called group partitions, which can be

subdivided or aggregated as needed to achieve load balancing. Also, Stark logs the delay of every
transformation in every task, which, in turns, drives subsequent partitioning decisions. Another work that

16

shares the same name (despite different collaborators) is STARK [63] which has provided the opportunity

of choosing between two partitioning schemes, grid and BSP. Grid partitioning supports SDL preservation,

it however leaves partitions lopsided.

Shifting our attention now to Hadoop-based systems. A work by [64] introduced AEGIS, which is a

Hadoop-based framework that mainly focuses on providing the ability to get along with the partitioning

strategy based on a defined set of constraints by the user. For example, clustering images requires a close

awareness for a multispectral space, thus localization of geometries within HDFS is essential, therefore the

selected partitioning method is required to be able to preserve SDL, while balancing loads.

One of the most interesting Hadoop-based works in this direction is the work of [45] which has introduced

AQWA, encompassing a query-workload-aware custom adaptive partitioning method. Its adaptivity flow

from the fact that it incrementally repartitions datasets in accordance with query-workloads and data

skewness, thus evenly distributing workloads (load balancing). It achieves this by employing a cost model

that calculates query cost for each partition, thus assigning the cost with the partition as additional

information, thereafter, trying to relieve query execution cost by splitting data of the slowcoaches. Based

on query-workloads, this partitioning scheme partitions datasets that are geometrically co-located and

queried most frequently into fine-grained partitions, thus supporting SDL preservation.

Also, [59] proposed a custom geography-aware quadripartition method that first partitions a geographic

region into four sub-regions, thereafter, applies space filling curves to each sub-region. This guarantees

SDL preservation as data residing in each region (geographical regions and grid cells are resembled) are

aggregated within the same data block, aiming at distributing them to the same processing element. This

method guarantees load balancing by keeping sub-regions with different geometric sizes reside in the same

data block, thus allowing the same number of elements for each data block.

In addition, [65] hinted their design of RESQUE, a boundary and density aware spatial data partitioning

scheme for pathology image analytical jobs in Hadoop. It preserves locality by being density aware.

However, the authors did not discuss the exact working mechanism of their method. A work that goes hand

in hand for the same authors is found in [4] , where they have introduced a custom boundary and density-

aware spatial data partitioning method for digital pathology imaging analytics (as those resembles spatial

data sets) in Hadoop. They handle BSOs by discarding them as they claim that pathology imaging analytics
normally employs statistical based methods where tiny fraction of BSOs does not contribute to the overall

result. To mitigate data skewness problem, they employ a greedy cost-based partitioning model, thus

balancing workloads. The method also accounts for SDL for accelerating proximity-alike queries.

However, the authors did not expand their reasoning on that. [66] has designed a Hadoop-based framework

that bundles a custom partitioning scheme that is aware of BSOs, SDL and load balancing goals. The

method chiefly relies on quadtrees. It embarks on by sampling source data, aiming at distributing equal-

sized collections to processing elements of the cluster, thus respecting the load balancing principle. This is

possible because they allow jagged shaped partitioning (opposite to rectangular partitioning) that contains

many disjoint datasets from the space. Thereafter, a quadtree is built for every element during the Map

phase (part of MapReduce job), thus generating one partial quadtree for each collection, aiming at emitting

partial quadtree indexed collection (instead of a single input record) to the Reduce phase (part of

MapReduce job). They mitigated the BSOs challenge by referencing BSOs with multiple index entries,
thereafter, managed to post-process duplicate spatial index entries during top-level analytics. In addition,

they provide a mechanism for maintaining co-location SDL characteristic by incorporating an additional

MapReduce job for reorganizing original data source, constructing a spatially-ordered set of data and

indexing it.

As a unique work within this consortium, SpatialHadoop [31] , setting at the core of Hadoop, supports a
custom locality-load-aware partitioning scheme. It guarantees load balancing by fitting each equal-sized

partition within one HDFS Hadoop block. This is also applicable by employing a custom calculation

method for computing the number of required partitions beforehand. They also applied a statistical method

for calculating co-location-preserving boundaries with different-sized tiles corresponding to space regions,

thus preserving SDL. In addition, they provide two approaches for mitigating BSOs problem, where in the

first one they assign a record to one partition based on best-matching, while in the other one they replicate

17

BSOs to bordering partitions, thereafter applies a back-stage processing for refining obtained results

through query processor. SpatialHadoop also supports many other specific spatial partitioning methods.

Instead of worrying about implementing their half-baked custom partitioning schemes, GISQF [67] take

advantage of efforts that have been put in SpatialHadoop. Hence, intrinsically supports that same

partitioning scheme.

SHAHED [68] propose a hybrid partitioning method on top of Hadoop that consists of two sub-schemes.

The first is a grid partitioning. Even though grid portioning does not guarantee load balancing, in their case

and since they presume the uniform distribution of their datasets, they achieve load balancing. The second

sub-scheme applies z-orders on each grid cell, which achieves SDL preservation.

CoS-HDFS [69] has been injected within SpatialHadoop layers. It modified Hadoop default partitioning

scheme so that it fosters the Minimum Bounding Rectangle (MBR) of blocks in a way that guarantees co-

locating bordering or overlapping MBRs, thus preserving SDL. Furthermore, the framework naturally

supports load balancing as different-sized MBRs contain roughly same number of spatial objects.

Hadoop-GIS (presented in [30]) supports a custom data skewness aware spatial partitioning model. Their

model aims at trading off load balancing and BSOs. For load balancing, their algorithm divides source data

into tiles (using Hadoop default grid partitioning scheme), thereafter highly-dense-tiles are further

subdivided into granular tiles using a recursive partitioning approach. For resolving BSOs, the algorithm

resumes by replicating BSOs to neighboring tiles, thereafter, applying a refinement postprocessing step (as

an additional MapReduce job) for remedying duplicated spatial objects before concluding the query result.

In addition to the traditional spatial partitioning methods (uniform grid, BSP, Hilbert-curves and STR),

SATO (integrated with Hadoop-GIS) [62] has designed a boundary optimized custom strip partitioning

method. SATO partitioning scheme comprises four main steps. Those are Sample, Analyze, Tear, and

Optimize. In Sample, a subset of the dataset is sampled to identify dense regions. Thereafter, an analyzer is

responsible for gleaning data hotspots (high dense regions), thus deriving a suitable global partitioning

scheme that minimizes BSOs while accounting for cross-partition load balancing. Then those coarse

regions are subjected to tear, thus generating granular data-skewness aware partitions, and thereby

enhancing spatial load balancing. Finally, additional partition statistics are produced and employed to

optimize query’s performance. Example statistics include the number of BSOs, which is useful for
minimizing BSOs while repartitioning if necessary. To further improve on BSOs reduction, SATO

introduced a boundary optimized strip partitioning (tantamount to strip partitioning) with a slight difference

of being able to greedily select best partitioning in both directions (horizontal and vertical) that guarantees

to a good extent a minimized BSOs number.

Researchers working on storage-oriented systems contend that optimizations are also possible in this

direction. For example, the work by [70] has patterned a novel model called HGrid and injected it within
the layers of HBase. The model bundles a custom hybrid spatial data partitioning method that combines

quadtree and grid partitioning models into a robust model that aims mainly at achieving good extent of

SDL preservation. The shortcomings of the z-ordering linearization in achieving SDL properly motivated

their work, as z-curves do not necessarily guarantee that subsequent grid cells are geographically co-

located. HGrid works by first splitting the space into equal-sized grid tiles, where each tile corresponds to a

single z-ordering value, thereafter all points of each tile are contiguously listed in a regular grid composed

of finer-level cells. In this structure, every spatial object is referenced by two values computed by

combining quadtree z-values with regular grid indices. The combination of z-curves with regular grid offers

a higher-level degree of equilibrium between load balancing and SDL preservation. [71] has incorporated

one-dimensional spatial coding-based grid partitioning method known as GeoSOT for supporting spatial

partitioning in HBase. GeoSOT is a linear spatial coding method that utilizes quadtrees and comprises of
many levels expanding from the macro-scale level (representing the whole earth) to the most granular level

(square centimeter for example). It first subdivides into tiles, thereafter for each tile z-ordering is applied. A

combination that guarantees at least SDL preservation and load balancing.

18

Perhaps most importantly in this direction is a MongoDB-based work by [29] , which strikes a plausible

balance between load balancing and SDL preservation by applying an adaptive and hybrid spatial custom

partitioning method based on geohash encoding.

A seminal work that is based on HBase is MD-HBase [39], which constitutes a multidimensional index

overlaid over a key/value store. They utilize a linearization approach based on Z-orders. K-d trees and

Quad trees.

Even though many relevant works have proposed hybrid custom partitioning methods that aim at meshing

support for the three partitioning goals, they do this attentively, as over-enhancing one of the requirements

may negates the benefits of others.

5.2 Spatial Query Optimizers

In this subsection, we discuss the support of big geospatial management systems for IoT analytics by

improved query optimizers that exploit some of the spatial partitioning methods mentioned in this survey.

We start by some Spark baseline representatives, moving to the retiring Hadoop, and then concluding by

storage-oriented systems.

As a reference system in this vein, GeoSpark [29, 48] supports basic querying through SRDD indexing,

where spatial indexing (SRDD Indexing) such as quadtree and R-tree are bundled as global indexes. Also,

whenever required a local spatial index is created after trading off its creation cost with the gain it provides.

In addition, GeoSpark utilizes adaptive and spatial-aware caching for supporting spatial co-location

patterns related queries, such as containment and range queries. Moreover, GeoSpark applies an adaptive

caching method that is aware of SDL. Simply put, it caches recent results in-memory, aiming at

accelerating subsequent proximity-alike access patterns.

LocationSpark [60] has designed a novel algorithm for handling basic spatial query processing needs. It

supports MLI indexing scheme (local and global). For global indexing, it uses grid and region quadtrees,

whereas the choice of local index is left for the end user (grid or R-tree), aiming at supporting a variety of

application scenarios. This elasticity makes it possible to plugin further indexing mechanisms within

LocationSpark tiered architecture. To avoid communication overheads produced by replication or

duplication in conventional spatial range-based query handling methods, authors of LocationSpark have
introduced a spatial bloom filter (encapsulated with global index), which effortlessly discover whether a

spatial point is contained within a spatial range or not. As a complementary enhancement, LocationSpark

contributes a dynamic in-memory caching that keeps recurrently accessed datasets in-memory, while

spilling less frequently accessed data to disk.

SpatialSpark [32] injects R-tree indices for containment spatial queries (i.e., range). In addition, this is

significantly important for supporting spatial joins.

Cruncher [46] employs an OLI indexing scheme that creates ODSI indexes for each partition depending on

its statistical query workload awareness. OLI indexes include global index (k-d tree) and an ODSI that is

built on-the-fly based on need. For example, if a specific partition is hit too hard by recurrent range query

requests, it is then indexed on-demand for speeding-up queries, thereafter those indexes are discarded in

case that the partition is not receiving more recurrent range queries. In addition, Cruncher leverages an

adaptive real-time caching model that keeps frequently-accessed spatial data in-memory, aiming at
minimizing the number of RDD copies in memory. It works by keeping statistical information regarding

access patterns within granular grid cells. Those statistical data are used for alternating datasets between

memory and disk.

Stark [72] employs a static range partitioning method with co-locality enabled, thus boosting range queries

performances. However, it does not provide a special indexing or caching mechanisms for this purpose.

STARK [63] supports the creation of in-memory R-tree partition-level indexing, aiming at optimizing basic
spatial querying such as early pruning of partition-level spatial object not contributing toward the result.

Range spatial filters have been further supported by implementing them as a Spark transformation,

eliminating the need for resource-intensive shuffling.

19

Hadoop-based systems also provide efficient optimizations for basic spatial query processing. In [64] ,

multiple basic querying capabilities are supported through the elasticity that the framework provides

regarding the usage of indexing schemes. For example, depending on the case in hand, user can choose to

apply R-tree, k-d tree or quadtree among many other techniques. Also, a spatial aware global indexing (GI)

can be constructed on demand and shared among the participating processing nodes.

In [45], AQWA maintains a set of spatial-aware main-memory data structures, upholding statistics

regarding data and queries distribution, aiming at providing speedup for basic spatial queries (range queries

for example). They use that structure for caching also. However, the authors did not intensively explain

about the nature of the structures they provide.

Authors in [59] has proposed a multi-layer spatial indexing technique (MLSI) that basically consists of

global index (GI) and local index (LI). The GI is based on quadtree, which is the first step necessary for

determining locations of the containing data blocks, which is instantiated during the recursive geometrical

quadripartition process, whereas local index is constructed based on space filling curves and is utilized for

specifying locations of spatial objects within a specific block. Both indexes aim at improving spatial data

retrieval for Hadoop. This indexing scheme strongly supports simple spatial querying (selection queries,

including range query for example). In addition, authors have designed a custom spatial-locality aware

caching scheme that speeds up scanning stragglers (i.e., hotspots). In simple ways, it works by first
applying a mathematical model to calculate most frequently accessed spatial objects. For those hotspot

objects, the model caches in-memory sets of nearest objects, this significantly accelerates range-based

queries.

RESQUE [65] has introduced on-the-fly spatial indexing method (or ODSI) that is utilized to assist spatial

calculations, which significantly proves to enhance query response while introducing only tiny neglect-able
overhead. Same authors in their similar work appeared in [4] support basic querying by employing the

same ODSI scheme.

SpatialHadoop [31] supports basic spatial querying (such as range queries) by employing general-purpose

standard spatial index structures such as grid, R- trees and R+ trees. They also design a MLI indexing

scheme (local and global). In addition, they have implemented two modes for supporting range queries.

The first mode is a no-replication mode (applies in case of R-tree) that encompasses two steps, step one
applies a global filter (based on global index) for selecting blocks overlapping with query regions, where

fully-satisfying blocks are copied as-is, while partially-satisfying blocks are sent to the second step for

further processing. In the second step, a local filter (based on local index) operates on block granularity-

level to filter tuples that satisfy query predicates. Thereafter results of the first and second step are

combined in a global result set. The second mode (applies in cases of R+-tree and grid) is employed in case

that some tuples are replicated throughout partitions. The main difference from the first mode is that, in the

first step, blocks that fully satisfy range-query predicates need to be further processed for dealing with

replicated records, while the second step includes a local filter that employs an additional replicate

avoidance step to ensure that the global result is free of duplications. GISQF [67] are SpatialHadoop-based

patches, thus features a similar level of query-ability as SpatialHadoop.

SHAHED [68] applies a MLI technique that constitutes three-layer indexes, grid, z-curves and quadtree.

Grid and z-curves resembles a local index that accelerate query processing on a microscale (grid

granularity-level), whereas quadtree is utilized to provide a performance boost on the macro-scale (inter-

grid) which provides a global overview that accelerates processing of basic spatial queries such as selection

queries (for example, range queries). Also, the query processor runs in three stages for better supporting

range queries, temporal filter, spatial filter, and spatial refine. The process commences by applying a

temporal filter that discards irrelevant partitions by only considering those that contain values within the
specified temporal range, thereafter for each temporal partition, a spatial filter is applied to select tiles that

fall within the required spatial range, where some fully satisfy the predicate (are completely copied with no

further processing) while others partially satisfy, thus transferred to a spatial refinement step that is

responsible for filtering spatial objects that overlaps the spatial range specified. In addition to those,

SHAHED utilizes mechanisms already announced in SpatialHadoop for basic spatial query processing.

20

CoS-HDFS [69] utilizes the same indexing scheme that has been proposed by SpatialHadoop, aiming at

providing a flat ground for processing basic spatial queries such as range and aggregation queries.

Hadoop-GIS [30] utilize a MLI indexing scheme comprising a global inter-partition-level index, and an

intra-partition-level local ODSI index for efficient spatial basic querying operations. For example, in spatial

containment queries, global index is utilized for pruning the search space by discarding irrelevant tiles that

do not contribute to the query result. This is advantageous, since the size of global index is small, thus

easily circulated across cluster processing elements with tiny communication overhead.

SATO [62] has designed a MLI region-based scheme that constitutes a local index for each tile and a global

index for each partition aiming at enhancing MapReduce basic spatial queries. However, authors did not

elaborate on the mechanism.

Some storage-oriented systems provided spatial indexing mechanisms for efficient basic spatial querying.
For example, [73] applies a simple mechanism for supporting range-alike queries. It consists of providing a

unique key for each range set, indexing the key which can then be used as a predicate in the range query.

Also, it supports indexing geohashes (SCI indexing), which provides additional support for range scans.

Aligned with this, HGrid [70] has incorporated a MLI indexing scheme (comprising of global index and

fine-grained secondary index). This supports range-based queries as follows, first, a MBR is computed

based on the range query predicates, thereafter z-ordering values of the relevant tiles are identified, which

constitutes the primary indexing for the equivalent HBase rows, then secondary indices (corresponding to

equivalent columns in HBase) are calculated based on grid cells (regular grid) overlapping with MBR

covering range query space, concluding by merging subquery results in a global result set. The support for

range-alike queries in [71] stems from the SCI indexing for a one-dimensional spatial coding (GeoSOT)

they provide.

The discussion sketched so far has focused on basic spatial query support such as range queries. we now

shift to more advanced querying. To keep things in the loop, we start by Spark-based, moving to Hadoop-

based, and summing up by storage-oriented frameworks.

On top of Spark, SpatialSpark [32] has injected concise, yet effective, patches into Spark cores, aiming at

supporting indexed spatial joins. One relation is indexed using R-trees and broadcasted to all processing

elements of the cluster, thus providing a local view at each partition, thereafter local joins are performed on

each partition by probing elements of the local relation with global relation, then the combination of local

results constitute the global spatial join result, thus resembling a divide-and-conquer approach.

GeoSpark [48] introduces a spatial query processing layer incorporating a support for advanced spatial

queries, such as spatial join and KNN. It was possible to optimize spatial join queries using local spatial on

demand indexing techniques that are created for the SRDD involved in a spatial join query.

LocationSpark [60] supports complex queries including spatial join and kNN by a robust MLI indexing
mechanism that incorporates a novel spatial index (sFilter). It plugged a mathematical model that trades off

many alternatives, thereby selects best-matching partition-level execution plan. However, the authors did

not elaborate on those mechanisms.

Cruncher [46] introduced inter-query optimizations for kNN queries that is based on OLI and ODSI

indexes. Authors did not discuss how this facilitates kNN.

Stark [72] employs a module that supports complex transformations that span multiple datasets (spatial join

and co-group), which is mainly supported by the guarantee of co-locality preservation, thus minimizing

shuffling between participating nodes.

STARK [63] propose a novel algorithm for optimizing spatial kNN processing on top of Spark. The

algorithm first performs conventional kNN locally for each partition of the processing cluster, thereafter in-

ascending orders locals contributing in accordance with their distance from the focal point (i.e., query

point). Afterwards, local results are joined, sorted in-ascending and a global set of kNN elements is selected

accordingly. Also, they support spatial joins as follows: a Cartesian product is performed on two sides of

21

the join query (two RDDs), verifying if they match the join predicate, thus pruning them in case of no-

match. On the other side, partitions that cross-match the query predicate is referenced, so that one partition

is indexed using R-trees and broadcasted to other partitions for cross-matching against spatial join

predicate, thereafter performing traditional local join, and concluding by combining local results into a

global result set. As a more sophisticated spatial querying, STARK flattened the ground for the passage of
clustering algorithms. They basically adapt [55] to efficiently work under Spark by applying their cost-

aware custom partitioning method, that chiefly focuses on balancing loads, thus avoiding a congestion that

may occur in straggler nodes of the processing cluster, which are a set of nodes that are overburdened with

heavy workloads.

In [45] , AQWA propose an effective method for processing KNN. This method requires only one

MapReduce job for a specific KNN query. They achieve this by employing some metrics, thus limiting the

scanning process only to specific partitions that contain answers to the KNN query.

The work by [59] supports the processing of spatial join and KNN in a two-phased process (filter-

refinement), where in the filter phase applies aggressive pruning to exclude objects that do not contribute

toward query results, thereafter passes those to a refinement step to extract only those objects that satisfy

query predicates. This is possible because of the support for special spatial indexing mechanisms within

this framework.

Under the hood, RESQUE [65] supports spatial join as follows: it first employs R-trees for constructing

indexes on all tiles of the grid, thereafter a spatial join component applies a MBR spatial join on two R-

trees, afterwards applying a further refinement step to conclude objects that contribute to the results

calculation. RESQUE also supports kNN queries on medical imaging. For example, finding kNN human

cells in proximity with specific blood vessels. It also supports density-based clustering for answering
queries like “finding human cells regions with density higher than or lower than a specific threshold”.

However, the authors did not provide a discussion on how those supports are implemented apart from the

support of an on-the-fly spatial indexing that may benefit in those cases.

SpatialHadoop [31] supports kNN by designing a custom algorithm consisting of three steps: the first step

is an initialization step that computes k-nearest element locally (within the same partition as the focal point)

by employing the conventional kNN algorithm locally. The second step is a correctness check in the sense
that it builds a circle centered at the focal point (kNN query point). If the set of elements found in the first

step fall only within the circle, they are considered as a result, otherwise a third step is needed,

encompassing a refinement procedure that executes a range query for obtaining all points within a MBR

bounding the circle, thereafter range query results are scanned to obtain final results contributing to kNN

answer.

SpatialHadoop also provides a novel algorithm for processing spatial joins. It mainly comprises three steps;
the first step is a global join, which constitutes calculating a full list of possible join results by specifying

all overlapping MBRs, leveraging the global indexing scheme for each pair, then applying a conventional

spatial join algorithm, subsequently a model is employed to combine each pair in a single split that is sent

to the second step. In the second step, a local join is applied for which elements of the two blocks of a

combined split are joined locally, producing a list of join records. This is basically engineered by exploiting

the local indexing scheme while applying the Map function for locally joining records. This step introduces

duplicate records which triggers the beginning of a third step, in which a reference-point duplicate

avoidance technique is exploited for removing duplicate records before concluding the result. Being

directly engineered on top of SpatialHadoop, SHAHED [68] , GISQF [67] utilizes SpatialHadoop

mechanisms for supporting complex queries like spatial join and kNN.

CoS-HDFS [69] supports join because of its ability of preserving the co-location characteristic, thus data is

indexed in a way that facilitates application of join predicates. Further, CoS-HDFS changed the partitioning

strategy of Hadoop so that blocks that are potential to be joined are located on the same processing node. It

also supports kNN by utilizing the capability from SpatialHadoop.

22

In Hadoop-GIS [30] , a MapReduce job is employed to perform spatial join, where in the Map phase,

spatial objects of the same partition are paired, thereafter those are sent to a Reduce stage for performing

local MBR based spatial joins on two datasets residing in the same partition utilizing an on-the-fly index.

SATO [62] applies a multi-level sampling approach for an improved spatial join experience. The approach

is mainly ruled out by a changeable control sampling ratio, which can be tweaked depending on the query

workload, so that spatial objects that are more frequently accessed by spatial joins are sampled with an

elevated ratio.

From the storage-oriented frameworks, perhaps most significantly is that MD-HBase [39] supports kNN

Query by an algorithm that proceeds as follows. The algorithm incrementally expands search region and

subsequently sort the enclosed subspaces in an ascending order relative to the query point. Thereafter, the

algorithm scans the closest subspace that has not been visited before and accordingly sorts spatial objects in

relation to their distance to the focal point. If the algorithm finds k points such that the distance to the last

point is less than the nearest waiting subspace, the query returns the result.

It is becoming apparent that most methods depend on the filter-refinement (patterned after true-hit filtering

approach [74]) approach for spatial join processing. This is attributed to the fact that performing Cartesian

product spatial join is specifically resource-intensive. It is also clear from the taxonomy in table 4 that

storage-oriented systems do not focus on providing optimizations for complex spatial query processing.

One reason for this consensus is that processing disk-resident datasets entail a high tax on the processing

system because of the I/O communication overhead. It is also clear that even though Spark has mostly

replaced Hadoop, some works still focus on the retiring system harnessing its powers in the geospatial

multidimensional analytics for IoT.

Table 4. QoS-aware optimizations aspects analysis for big geospatial data management

P
ar

ad
ig

m

Authors, year Spatial-aware

partitioning aspects1

Basic spatial query optimizations Spatial queries

LB

SDL

BSO

Spatial-

aware

caching

Spatial-aware indexing

DBC

SJ

KNN

 MLI SCI OLI ODSI

S
p
ar

k
 -

 b
as

ed

SpatialSpark

[32] , 2015

✓ ✓ X X X ✓ X X X ✓ X

Magellan

Spark [75] ,

2015

✓ ✓ X ✓ X ✓ X ✓ X ✓ ✓

LocationSpark

[60] , 2016

✓ ✓ X ✓ ✓ X X X ✓ ✓ ✓

Cruncher [46]

, 2016

✓ ✓ X ✓ X X ✓ ✓ X ✓ ✓

Geospark

[48] , 2016

✓ X ✓ ✓ ✓ ✓ ✓ X X ✓ ✓

Stark [72] ,

2017

✓ ✓ X X X X X X X ✓ X

STARK [63] , ✓ ✓ X X X X ✓ ✓ ✓ ✓ ✓

1 ✓: satisfied, X: not satisfied.

23

2017

 SparkGIS

[76] , 2017

✓ ✓ X ✓ ✓ X ✓ ✓ X ✓ ✓

 Simba [77] ,

2016

✓ ✓ X ✓ ✓ X ✓ X X ✓ ✓

 [43, 44] ,

2017, 2018

✓ ✓ ✓ ✓ X X ✓ X ✓ X ✓

H
ad

o
o
p
-b

as
ed

[59] , 2012 ✓ ✓ X ✓ X X ✓ X X ✓ ✓

RESQUE [65]

, 2012

X ✓ ✓ X X X X ✓ ✓ ✓ ✓

[4] , 2012 ✓ ✓ ✓ X X X X ✓ ✓ ✓ ✓

AQWA [45]

,2015

✓ ✓ X ✓ X X X X X X ✓

AEGIS [66] ,

2015

✓ ✓ X X X ✓ X X X X X

S
p
at

ia
lH

ad
o
o
p
-b

as
ed

GISQF [67] ,

2014

✓ X X X ✓ X X X X ✓ ✓

SpatialHadoo

p [31] , 2015

✓ ✓ ✓ X ✓ X X X X ✓ ✓

SHAHED[68]

, 2015

✓ ✓ X X ✓ X X X X ✓ ✓

CoS-HDFS

[69] , 2016

✓ ✓ X X ✓ X X X X ✓ ✓

H
ad

o
o
p
-G

IS
-

b
as

ed

SATO [62] ,

2014

✓ X ✓ X ✓ X X X X ✓ X

Hadoop-GIS

[30] , 2015

✓ X ✓

X ✓ X X ✓ X ✓ ✓

st
o
ra

g
e-

o
ri

en
te

d

HGrid [70] ,

2013

✓ ✓ X X ✓ X X X X X ✓

[71] , 2015 ✓ ✓ X X X ✓ X X X X X

[73] , 2017 ✓ ✓ X X X ✓ ✓ X X X X

 MD-HBase

[39] , 2011

✓ ✓ X X ✓ ✓ X X X X ✓

 MongoDB-

based [29] ,

2018

✓ ✓ X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

5.3 Discussions and Performance Evaluations

Relevant works of the literature have mainly focused on providing optimizations for IoT data in Cloud in
two veins: spatial partitioning and query optimizers. The main aim is minimizing the network shuffling

overheads in Cloud deployments, by adopting spatial-aware data management frameworks that encompass

methods which collaborate synergistically in achieving that broad goal. Also implies within the same vein a

goal of maximizing Cloud resource utilization and cutting the costs on the user. Studies have shown that

the average utilization in cloud deployments is under 40 percent of the overall reserved resources [78, 79].

This is possibly due to the fact that users lack the relevant understanding on how to configure the auto-

scaling parameters (which requires technical knowledge for most SPEs) that, in its turn, behooves them to

select lenient configurations that allow, most often, the overprovisioning in order to handle peak loads ,

leading then to a low resource utilization. The indirect effect that spatial data management plays on the

Cloud networks and IoT data is prevalent.

24

An important performance note is that partitioning is not about creating so many chunks as this is

detrimental to query performance. To this end, efficient systems have focused on building smart

partitioning methods that account for this. Despite their disparities, most works have focused on providing

an acceptable degree of balance among partitioning goals, including BSO minimization, SDL preservation

and load balancing. However, those requirements are greatly contradicting, therefore the domain-specific
fixes and patches provided by current frameworks are not general-purpose in the sense that their exposure

to diverse application scenarios may reveal their weaknesses and deteriorate their goals. In addition, most

of the works have concentrated on Hadoop, neglecting the fact that Hadoop ecosystem has been engineered

to specifically process immutable files, deeming it unsuitable for read-intensive applications. Therefore,

systems embarking on Spark for managing big spatial workloads significantly outperform their Hadoop-

based counterparts, and more works are encouraged on top of Spark, harnessing its robustness for spatial-

oriented diverse-domain workloads.

Regarding the patches provided for an optimized query performance, studies mostly geared their attention

toward spatial indexing, mostly neglecting spatial-aware caching. Perhaps motivated by the fact that in

most cases of spatial indexing, the cost of creating the index carries only tiny overhead fraction, while

significantly enhances query overall performance. However, one should consider that spatial indexing is a

mean-to-an-end, aiming at accelerating spatial queries. The interest in spatial-oriented join is absent in this

consortium, if for no other reason than the advisability that caching is resource-intensive, tending to wreak

havoc on any bare metal commodity resources, especially for compute-intensive repetitive structures (kNN

join for example). While this applies for centralized systems, it need not be the case in the existence of

cloud-based systems, which offer cost-effective elastic solutions where all processing elements of the

computing cluster collaborate in every single point of optimization, including the build of distributed
parallel caching, where main memories of all participating machines are contributing in the caching

process, making it inexpensive and yet efficient.

We notice that the interest in supporting spatial querying capabilities have gained an increased momentum

of interest in the last decade or so. Perhaps geared by the fact that most interesting real-life query scenarios

in today’s businesses encapsulates intrinsically complex querying (for example, spatial join and kNN) for

discovering interesting patterns that facilitates decision making. However, current systems need to give
more awareness to spatial partitioning challenges, including BSOs, SDL and load balancing. One of those

challenges significantly challenges systems resources and diminishes the benefits of parallelization,

therefore all traditional working algorithms are to consider those challenges while adapting themselves to

work in parallel computing environments and their accountabilities are to aim for a weighted balance for

those.

6. Open Issues and Recommended Future Research Frontiers

We here recommend some of the QoS- and spatial-aware optimization directions for big geospatial

datasets. During our exhaustive review of the literature, we have noticed that those issues have been mainly

left unanswered. However, we believe that tackling those issues potentially boosts SDMEs performances

for most common spatially-loaded scenarios.

6.1 Weighted Balance to Satisfy Partitioning Requirements

Despite the huge efforts in advancing emerging techniques for QoS-aware big geospatial data management

for the benefit of better utilizing Cloud resources in managing georeferenced IoT data, various issues

remained unanswered. Perhaps most significantly is the question of how-to better tradeoff the three main

requirements for a spatial-aware partitioning in a way that guarantees an acceptable error-bounded loss of

accuracy in exchange with a reduced latency. Most methods of the literature have focused on some of the

partitioning goals, while trading-off the three together has been left often untouched. We encourage a future

work that communicates a weighted balance between spatial partitioning challenges in a way that is general

enough to be applied in various highly dynamic application scenarios with huge amounts of IoT data.

25

6.2 Online Locality Preservation and BSOs

The fast speed of spatial data arrival rate easily drains a spatial processing engine (SPE) resources and

challenges its capacity as it quickly becomes laborious. Most works of the literature have focused on

providing optimizations for the offline QoS-aware big spatial data management mode and have proved

order of magnitude improvements compared to baseline frameworks. However, today many interesting

applications, depending on avalanches of continuously arriving IoT data, seek to process an online deluge

of big geospatial data streams that normally arrive very fast and continue to grow in an unbounded fashion.

In addition, most queries seek proximity-related answers (kNN and spatial join). Preserving a pairwise

relationship seems interesting for a SPE to withstand during aggressively burst workloads. However, this

kind of computations while disseminating fast arriving spatial datasets is specifically not a simple matter.

To the best of our knowledge, algorithmic complexity-wise, there are only few algorithms for preserving
spatial locality online (such as the work by [1]). This is attributed to the costly calculations by checking

spatial co-location. In this context, the linear-time-complexity naïve algorithms are inacceptable. Hence, a

layer that bundles such capability is desired in this domain, abstracting the underlying complexities of such

handling and offering a flattened ground for front-end developers so that they focus on analyzing data

rather than handling congestions. To such an end, among initial considerations to achieve this is finding a

compute-tractable approximate sub-linear or even constant-complexity method that preserves SDL online.

However, the cost of preserving SDL should be amortized by an improved querying experience on the long

run.

6.3 Full-fledged QoS-aware Library for Big Geospatial Data Management for IoT

Accountabilities for QoS-awareness in big geospatial management systems for IoT in Cloud are often patch

efforts and domain specific fixes, leaving the handling of many logistics to the front-end developers, which
encompasses much of a burden and counteracts the benefits of underlying systems. It is therefore necessary

to develop a full-fledged library that helps ease the developers burden by offloading those logistics to lower

tiers and incorporate them transparently so that the programmer does not have to reason about them

atomically, and therefore give them exposure to a diversity of application domains and poise them to take a

central position in modern spatial database management systems.

7. Conclusive Remarks

This survey contemplates taxonomy of big spatial data management strategies for IoT in the Cloud. Novel

strategies in both veins (storage and processing-oriented) have been contemplated in two directions

(partitioning and query optimizers). Their support for a set of aggressive spatial-aware partitioning

requirements is elaborated. Traditional common spatial partitioning methods behave favorably for uniform

spatial workloads. However, for highly skewed spatial data loads coming from heterogeneous IoT sources,
their performance degrades significantly. This motivated a constellation of researchers to design novel

spatial-aware big data management optimizations for IoT in the Cloud, focusing mainly on two aspects,

partitioning and query optimization. For example, some partitioning methods aim at preserving SDL, while

maintaining a fair load balance throughout data partitions. Other methods focused on minimizing BSOs,

providing an opportunity to boost the performance of some data mining algorithms (for example, density-

based clustering). To this end, most relevant works of the literature have been reviewed and a cross-

matching have been conducted to map those works to their relevant classes of the taxonomy. We aimed at

providing a comprehensive comparative taxonomy that enables researchers to advance the domain. An in-

line discussion has been drawn throughout sparse parts of the survey, discussing the capability of each

optimization in relation to some of the challenges (for example, partitioning challenges). We have also

highlighted other avenues for investigation in this road.

What’s more, most of the works of the relevant literature have focused only on some classes of

optimization, neglecting the others. Seemingly, reasons are testified by the fact that it is challenging in big

spatial context to consider contradicting requirements, where optimizing one diminishes the benefits of

others. For example, considering SDL preservation often leaves data partitions lopsided, causing load

imbalance. We believe that a future work is to consider a weighted balance of all trade-offs involved in big

geospatial data management. Also, most works have focused on processing-oriented as most operations in

26

parallel geospatial data management are predominantly read operations, characterizing those systems by

being read-intensive applications.

To sum up, a wealth of spatial-aware frameworks is built on top of Hadoop. However, Hadoop has not been

designed specifically for read-intensive applications, which is a fundamental flaw that makes Hadoop-

based systems less interesting than their Spark-based counterparts. Spark excels in the field and continues

as such for the foreseeable future. However, despite that their ability to outperform Hadoop-based systems

by factors of magnitude, Spark-based systems require considerable efforts before reaching their tipping

points.

Most works in the relevant literature have focused on networking/hardware aspects for IoT in Cloud, Edge

and Fog. Some works have focused on general-purpose big data management for IoT. To the best of our

knowledge, this survey paper constitutes a unique effort that focuses on spatial data management aspects

for IoT in Cloud.

Acknowledgments. This research was supported by the SACHER (Smart Architecture for Cultural

Heritage in Emilia Romagna) project funded by the POR-FESR 2014-20 (no. J32I16000120009) through

CIRI.

References

[1] I. M. Al Jawarneh, P. Bellavista, L. Foschini and R. Montanari, "Spatial-aware approximate big data

stream processing," in 2019 IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1-6.

[2] I. M. Aljawarneh, P. Bellavista, C. R. De Rolt and L. Foschini, "Dynamic identification of participatory

mobile health communities," in Cloud Infrastructures, Services, and IoT Systems for Smart

CitiesAnonymous Springer, 2017, pp. 208-217.

[3] S. S. Sahoo, A. Wei, C. Tatsuoka, K. Ghosh and S. D. Lhatoo, "Processing neurology clinical data for

knowledge discovery: Scalable data flows using distributed computing," in Machine Learning for Health

InformaticsAnonymous Springer, 2016, pp. 303-318.

[4] A. Aji, F. Wang and J. H. Saltz, "Towards building a high performance spatial query system for large

scale medical imaging data," in Proceedings of the 20th International Conference on Advances in

Geographic Information Systems, 2012, pp. 309-318.

[5] E. Gomes, M. A. Dantas, D. D. de Macedo, C. De Rolt, M. L. Brocardo and L. Foschini, "Towards an

infrastructure to support big data for a smart city project," in 2016 IEEE 25th International Conference on

Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), 2016, pp. 107-112.

[6] P. Bellavista, J. Berrocal, A. Corradi, S. K. Das, L. Foschini, I. M. Al Jawarneh and A. Zanni, "How
Fog Computing Can Support Latency/Reliability-Sensitive IoT Applications: An overview and a

Taxonomy of State-Of-The-Art Solutions," 2019.

[7] R. R. Vatsavai, A. Ganguly, V. Chandola, A. Stefanidis, S. Klasky and S. Shekhar, "Spatiotemporal

data mining in the era of big spatial data: Algorithms and applications," in Proceedings of the 1st ACM

SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, 2012, pp. 1-10.

[8] A. Botta, W. De Donato, V. Persico and A. Pescapé, "Integration of cloud computing and internet of

things: a survey," Future Generation Comput. Syst., vol. 56, pp. 684-700, 2016.

27

[9] P. Bellavista, J. Berrocal, A. Corradi, S. K. Das, L. Foschini and A. Zanni, "A survey on fog computing

for the Internet of Things," Pervasive and Mobile Computing, vol. 52, pp. 71-99, 2019.

[10] I. M. Al Jawarneh, P. Bellavista, L. Foschini and R. Montanari, "Spatial-aware approximate big data

stream processing," in IEEE Global Communications Conference, GLOBECOM, 2020, .

[11] K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman and P. Daszak, "Global

trends in emerging infectious diseases," Nature, vol. 451, (7181), pp. 990-993, 2008.

[12] P. Bellavista, J. Berrocal, A. Corradi, S. K. Das, L. Foschini and A. Zanni, "A survey on fog

computing for the Internet of Things," Pervasive and Mobile Computing, 2018.

[13] M. Ge, H. Bangui and B. Buhnova, "Big data for internet of things: a survey," Future Generation

Comput. Syst., vol. 87, pp. 601-614, 2018.

[14] E. Siow, T. Tiropanis and W. Hall, "Analytics for the internet of things: A survey," ACM Computing

Surveys (CSUR), vol. 51, (4), pp. 1-36, 2018.

[15] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker and I. Stoica, "Spark: Cluster computing with

working sets." HotCloud, vol. 10, (10-10), pp. 95, 2010.

[16] K. Shvachko, H. Kuang, S. Radia and R. Chansler, "The hadoop distributed file system." in Msst,

2010, pp. 1-10.

[17] S. Bradshaw and K. Chodorow, Mongodb: The Definitive Guide: Powerful and Scalable Data

Storage, 3rd Edn. O’Reilly Media Inc, USA, 2018.

[18] K. Banker, MongoDB in Action. Manning Publications Co., 2011.

[19] J. Yu, Z. Zhang and M. Sarwat, "Spatial data management in apache spark: The geospark perspective

and beyond," GeoInformatica, vol. 23, (1), pp. 37-78, 2019.

[20] R. Khan, S. U. Khan, R. Zaheer and S. Khan, "Future internet: The internet of things architecture,

possible applications and key challenges," in 2012 10th International Conference on Frontiers of

Information Technology, 2012, pp. 257-260.

[21] D. C. Tsichritzis and F. H. Lochovsky, "Hierarchical data-base management: A survey," ACM

Computing Surveys (CSUR), vol. 8, (1), pp. 105-123, 1976.

[22] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian,

P. Vosshall and W. Vogels, "Dynamo: amazon's highly available key-value store," ACM SIGOPS

Operating Systems Review, vol. 41, (6), pp. 205-220, 2007.

[23] A. Lakshman and P. Malik, "Cassandra: a decentralized structured storage system," ACM SIGOPS

Operating Systems Review, vol. 44, (2), pp. 35-40, 2010.

[24] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes and

R. E. Gruber, "Bigtable: A distributed storage system for structured data," ACM Transactions on Computer

Systems (TOCS), vol. 26, (2), pp. 1-26, 2008.

[25] A. H. Team, "Apache hbase reference guide," Apache, Version, vol. 2, (0), 2016.

28

[26] K. Grolinger, W. A. Higashino, A. Tiwari and M. A. Capretz, "Data management in cloud

environments: NoSQL and NewSQL data stores," Journal of Cloud Computing: Advances, Systems and

Applications, vol. 2, (1), pp. 22, 2013.

[27] J. Dean and S. Ghemawat, "MapReduce: simplified data processing on large clusters," Commun ACM,

vol. 51, (1), pp. 107-113, 2008.

[28] B. Jennings and R. Stadler, "Resource management in clouds: Survey and research challenges,"

Journal of Network and Systems Management, vol. 23, (3), pp. 567-619, 2015.

[29] I. M. Al Jawarneh, P. Bellavista, F. Casimiro, A. Corradi and L. Foschini, "Cost-effective strategies

for provisioning NoSQL storage services in support for industry 4.0," in 2018 IEEE Symposium on

Computers and Communications (ISCC), 2018, pp. 1227.

[30] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang and J. Saltz, "Hadoop gis: a high performance

spatial data warehousing system over mapreduce," Proceedings of the VLDB Endowment, vol. 6, (11), pp.

1009-1020, 2013.

[31] A. Eldawy and M. F. Mokbel, "Spatialhadoop: A mapreduce framework for spatial data," in 2015

IEEE 31st International Conference on Data Engineering, 2015, pp. 1352-1363.

[32] S. You, J. Zhang and L. Gruenwald, "Large-scale spatial join query processing in cloud," in 2015 31st

IEEE International Conference on Data Engineering Workshops, 2015, pp. 34-41.

[33] J. L. Bentley and J. H. Friedman, "Data structures for range searching," ACM Computing Surveys

(CSUR), vol. 11, (4), pp. 397-409, 1979.

[34] D. E. Knuth, "The art of computer programming: Sorting and Searching, 2nd edn., vol. 3," 1998.

[35] R. A. Finkel and J. L. Bentley, "Quad trees a data structure for retrieval on composite keys," Acta

Informatica, vol. 4, (1), pp. 1-9, 1974.

[36] J. L. Bentley, "Multidimensional binary search trees used for associative searching," Commun ACM,

vol. 18, (9), pp. 509-517, 1975.

[37] T. K. Sellis, N. Roussopoulos and C. Faloutsos, "The R -tree: A dynamic index for multi-dimensional

objects," in Proceedings of the 13th International Conference on very Large Data Bases, 1987, pp. 507-

518.

[38] H. Sagan, "Space-Filling Curves. Springer-Verlag, 1994." 1994.

[39] S. Nishimura, S. Das, D. Agrawal and A. El Abbadi, "Md-hbase: A scalable multi-dimensional data

infrastructure for location aware services," in 2011 IEEE 12th International Conference on Mobile Data

Management, 2011, pp. 7-16.

[40] H. Fuchs, Z. M. Kedem and B. F. Naylor, "On visible surface generation by a priori tree structures," in

ACM Siggraph Computer Graphics, 1980, pp. 124-133.

[41] S. T. Leutenegger, M. A. Lopez and J. Edgington, "STR: A simple and efficient algorithm for R-tree

packing," in Proceedings 13th International Conference on Data Engineering, 1997, pp. 497-506.

29

[42] T. Asano, D. Ranjan, T. Roos, E. Welzl and P. Widmayer, "Space-filling curves and their use in the

design of geometric data structures," Theor. Comput. Sci., vol. 181, (1), pp. 3-15, 1997.

[43] I. M. Aljawarneh, P. Bellavista, A. Corradi, R. Montanari, L. Foschini and A. Zanotti, "Efficient

spark-based framework for big geospatial data query processing and analysis," in 2017 IEEE Symposium

on Computers and Communications (ISCC), 2017, pp. 851-856.

[44] I. M. Al Jawarneh, P. Bellavista, A. Corradi, L. Foschini, R. Montanari and A. Zanotti, "In-memory

spatial-aware framework for processing proximity-alike queries in big spatial data," in 2018 IEEE 23rd

International Workshop on Computer Aided Modeling and Design of Communication Links and Networks

(CAMAD), 2018, pp. 1-6.

[45] A. M. Aly, A. R. Mahmood, M. S. Hassan, W. G. Aref, M. Ouzzani, H. Elmeleegy and T. Qadah,

"AQWA: adaptive query workload aware partitioning of big spatial data," Proceedings of the VLDB

Endowment, vol. 8, (13), pp. 2062-2073, 2015.

[46] A. S. Abdelhamid, M. Tang, A. M. Aly, A. R. Mahmood, T. Qadah, W. G. Aref and S. Basalamah,

"Cruncher: Distributed in-memory processing for location-based services," in 2016 IEEE 32nd

International Conference on Data Engineering (ICDE), 2016, pp. 1406-1409.

[47] A. Eldawy, L. Alarabi and M. F. Mokbel, "Spatial partitioning techniques in SpatialHadoop,"

Proceedings of the VLDB Endowment, vol. 8, (12), pp. 1602-1605, 2015.

[48] J. Yu, J. Wu and M. Sarwat, "Geospark: A cluster computing framework for processing large-scale

spatial data," in Proceedings of the 23rd SIGSPATIAL International Conference on Advances in

Geographic Information Systems, 2015, pp. 70.

[49] S. Amini, I. Gerostathopoulos and C. Prehofer, "Big data analytics architecture for real-time traffic

control," in 2017 5th IEEE International Conference on Models and Technologies for Intelligent

Transportation Systems (MT-ITS), 2017, pp. 710-715.

[50] H. Abdelhaq and M. Gertz, "On the locality of keywords in twitter streams," in Proceedings of the 5th

ACM SIGSPATIAL International Workshop on GeoStreaming, 2014, pp. 12-20.

[51] E. H. Jacox and H. Samet, "Spatial join techniques," ACM Transactions on Database Systems (TODS),

vol. 32, (1), pp. 7, 2007.

[52] H. Kriegel, P. Kröger, J. Sander and A. Zimek, "Density‐based clustering," Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, vol. 1, (3), pp. 231-240, 2011.

[53] M. Ester, H. Kriegel, J. Sander and X. Xu, "A density-based algorithm for discovering clusters in large

spatial databases with noise." in Kdd, 1996, pp. 226-231.

[54] B. Dai and I. Lin, "Efficient map/reduce-based dbscan algorithm with optimized data partition," in

2012 IEEE Fifth International Conference on Cloud Computing, 2012, pp. 59-66.

[55] Y. He, H. Tan, W. Luo, S. Feng and J. Fan, "MR-DBSCAN: a scalable MapReduce-based DBSCAN

algorithm for heavily skewed data," Frontiers of Computer Science, vol. 8, (1), pp. 83-99, 2014.

[56] R. Xu and D. Wunsch, Clustering. John Wiley & Sons, 200810.

30

[57] W. Wang, J. Yang and R. Muntz, "PK-tree: A spatial index structure for high dimensional point data,"

in Information Organization and DatabasesAnonymous Springer, 2000, pp. 281-293.

[58] A. Aji and F. Wang, "High performance spatial query processing for large scale scientific data," in

Proceedings of the on SIGMOD/PODS 2012 PhD Symposium, 2012, pp. 9-14.

[59] Y. Zhong, X. Zhu and J. Fang, "Elastic and effective spatio-temporal query processing scheme on

hadoop," in Proceedings of the 1st ACM SIGSPATIAL International Workshop on Analytics for Big

Geospatial Data, 2012, pp. 33-42.

[60] M. Tang, Y. Yu, W. G. Aref, A. R. Mahmood, Q. M. Malluhi and M. Ouzzani, "Locationspark: In-

memory distributed spatial query processing and optimization," CoRR, pp. 1-15, 2019.

[61] J. Yu, Z. Zhang and M. Sarwat, "Spatial data management in apache spark: The geospark perspective

and beyond," GeoInformatica, vol. 23, (1), pp. 37-78, 2019.

[62] H. Vo, A. Aji and F. Wang, "SATO: A spatial data partitioning framework for scalable query

processing," in Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in

Geographic Information Systems, 2014, pp. 545-548.

[63] S. Hagedorn, P. Gotze and K. Sattler, "The STARK framework for spatio-temporal data analytics on

spark," Datenbanksysteme Für Business, Technologie Und Web (BTW 2017), 2017.

[64] R. Giachetta, "A framework for processing large scale geospatial and remote sensing data in

MapReduce environment," Comput. Graph., vol. 49, pp. 37-46, 2015.

[65] A. Aji and F. Wang, "High performance spatial query processing for large scale scientific data," in

Proceedings of the on SIGMOD/PODS 2012 PhD Symposium, 2012, pp. 9-14.

[66] R. T. Whitman, M. B. Park, S. M. Ambrose and E. G. Hoel, "Spatial indexing and analytics on

hadoop," in Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in

Geographic Information Systems, 2014, pp. 73-82.

[67] K. M. Al Naami, S. Seker and L. Khan, "GISQF: An efficient spatial query processing system," in

2014 IEEE 7th International Conference on Cloud Computing, 2014, pp. 681-688.

[68] A. Eldawy, M. F. Mokbel, S. Alharthi, A. Alzaidy, K. Tarek and S. Ghani, "Shahed: A mapreduce-

based system for querying and visualizing spatio-temporal satellite data," in 2015 IEEE 31st International

Conference on Data Engineering, 2015, pp. 1585-1596.

[69] M. M. Fahmy, I. Elghandour and M. Nagi, "CoS-HDFS: Co-locating geo-distributed spatial data in

hadoop distributed file system," in 2016 IEEE/ACM 3rd International Conference on Big Data Computing

Applications and Technologies (BDCAT), 2016, pp. 123-132.

[70] D. Han and E. Stroulia, "Hgrid: A data model for large geospatial data sets in hbase," in 2013 IEEE

Sixth International Conference on Cloud Computing, 2013, pp. 910-917.

[71] Z. Weixin, Y. Zhe, W. Lin, W. Feilong and C. Chengqi, "The non-sql spatial data management model

in big data time," in 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2015,

pp. 4506-4509.

31

[72] S. Li, M. T. Amin, R. Ganti, M. Srivatsa, S. Hu, Y. Zhao and T. Abdelzaher, "Stark: Optimizing in-

memory computing for dynamic dataset collections," in 2017 IEEE 37th International Conference on

Distributed Computing Systems (ICDCS), 2017, pp. 103-114.

[73] K. Zheng, D. Gu, F. Fang, M. Zhang, K. Zheng and Q. Li, "Data storage optimization strategy in

distributed column-oriented database by considering spatial adjacency," Cluster Computing, vol. 20, (4),

pp. 2833-2844, 2017.

[74] T. Brinkhoff, H. Kriegel, R. Schneider and B. Seeger, Multi-Step Processing of Spatial Joins. ACM,

199423(2).

[75] R. Sriharsha, "Magellan: geospatial analytics on spark," Retrieved May, vol. 1, pp. 2018, 2015.

[76] F. Baig, H. Vo, T. Kurc, J. Saltz and F. Wang, "Sparkgis: Resource aware efficient in-memory spatial

query processing," in Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in

Geographic Information Systems, 2017, pp. 1-10.

[77] D. Xie, F. Li, B. Yao, G. Li, L. Zhou and M. Guo, "Simba: Efficient in-memory spatial analytics," in

Proceedings of the 2016 International Conference on Management of Data, 2016, pp. 1071-1085.

[78] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz and M. A. Kozuch, "Heterogeneity and dynamicity of

clouds at scale: Google trace analysis," in Proceedings of the Third ACM Symposium on Cloud Computing,

2012, pp. 7.

[79] C. Delimitrou and C. Kozyrakis, "Quasar: Resource-efficient and QoS-aware cluster management," in

ACM SIGARCH Computer Architecture News, 2014, pp. 127-144.

Isam Mashhour Al Jawarneh is a research Assistant and Ph.D. student at the Computer

Science and Engineering Department (DISI) of the University of Bologna, Italy. His research

interests cover many aspects of big data stream processing and active data warehousing for

highly dynamic application scenarios. He has authored/co-authored many international journal

articles and papers for flagship conferences (such as IEEE GLOBECOM and ICC). He has a

research and teaching experience at higher-education level for more than 12 years.

Paolo Bellavista (SM’06) received MSc and PhD degrees in computer science engineering

from the University of Bologna, Italy, where he is now a full professor of distributed and

mobile systems. His research activities span from pervasive wireless computing to

location/context-aware services, from edge cloud computing to middleware for Industry 4.0

applications. He is currently the scientific coordinator of a large H2020 big data innovation

action called IoTwins about distributed digital twins for the manufacturing industry. He serves on the

Editorial Boards of IEEE Communications Surveys and Tutorials, IEEE T. on Network and Service
Management, Elsevier Pervasive Mobile Computing, Elsevier Journal on Network and Computing

Applications, and Springer Journal of Network and Systems Management.

Antonio Corradi (SM’19) graduated from University of Bologna, Italy, and received MS in

electrical engineering from Cornell University, USA. He is a full professor of computer

engineering at the University of Bologna. His research interests include distributed systems,

middleware for pervasive and heterogeneous computing, infrastructure for ser-vices and

network management.

Luca Foschini (SM’19) graduated from the University of Bologna, Italy, where he received

a Ph.D. degree in computer science engineering in 2007. He is now an associate professor of

computer engineering at the University of Bologna. His interests span from integrated

management of distributed systems and services to wireless pervasive computing and

32

scalable context data distribution infrastructures and context-aware services. Currently, he is working on

mobile crowdsensing and crowdsourcing and management of Cloud systems for Smart City environments.

Rebecca Montanari graduated from the University of Bologna, where she received a Ph.D.

degree in computer science engineering in 2001. She is now an associate professor of computer

engineering at the University of Bologna. Her research primarily focuses on semantic-based

middleware supports for service provisioning, context-aware services, security solutions for

pervasive environments, policy-based service management, and adaptive and scalable

middleware solutions for system and service management.

	Copertina_postprint_IRIS_UNIBO(2)
	JONS_Bellavista_survey

