
On the Performance of QUIC over Wireless Mesh Networks

Jawad Manzoor1 2, Llorenç Cerdà-Alabern2, Ramin Sadre3, Idilio Drago4

Air University1

Universitat Politècnica de Catalunya2

Université catholique de Louvain3

Universita degli Studi di Torino4

*Corresponding author: Jawad Manzoor, jawad.manzoor@mail.au.edu.pk

July 2020

Abstract

The exponential growth in adoption of mobile phones and the widespread availability of
wireless networks has caused a paradigm shift in the way we access the Internet. It has not
only eased access to the Internet, but also increased users’ appetite for responsive services.
New protocols to speed up Internet applications have naturally emerged. The QUIC transport
protocol is one prominent case. Initially developed by Google as an experiment, the protocol
has already made phenomenal strides, thanks to its support in Google’s servers and Chrome
browser. Since QUIC is still a relatively new protocol, there is a lack of sufficient understanding
about its behavior in real network scenarios, particularly in the case of wireless networks. In
this paper we present a comprehensive study on the performance of QUIC in Wireless Mesh
Networks (WMN). We perform a large scale measurement campaign on a production WMN to
compare the performance of QUIC against TCP when retrieving files from the Internet. Our
results show that while QUIC outperforms TCP in wired networks, it exhibits significantly
lower performance than TCP in the WMN. We investigate the reasons for this behavior and
identify the root causes of the performance issues. We find that some design choices of QUIC
may penalize the protocol in WiFi, e.g., uncovering sub-optimal interactions of QUIC with
MAC layer features, such as frame aggregation. Finally, we implement and evaluate our
solution and demonstrate up to 28% increase in throughput of QUIC.

1 Introduction

The Internet is evolving from the perspective of both usage and connectivity. Wireless networks
(in particular WiFi) are nowadays a commonplace across the board including homes, offices, shop-
ping malls, restaurants, hospitals and university campuses. Wireless Mesh Networks (WMN) [1]
are getting popular, and some examples include Guifi.net, MadMesh, Merkai and Google WiFi.
Wireless traffic continues to grow at an unprecedented rate and it is predicted in a recent Cisco
white paper [2] that wireless and mobile traffic will exceed that of PCs, and will comprise more
than 63 percent of the total IP traffic by 2021.

While wireless networks provide mobility and ease of access to the Internet, they are also
prone to errors due to obstacles, moving objects, weather conditions, noise and interference with
other wireless sources etc. Nonetheless, technological advancements have allowed to tackle these
issues and provide good quality of experience. On the one hand, WiFi technology (based on
the IEEE 802.11 standards) has undergone a lot of improvements [3]. For instance, the IEEE
802.11n standard, predominant by now, allows coding schemes (MCS) that support data rates up
to 600 Mbps. On the other hand, there have been many efforts to improve upper layer protocols
so to better deal with issues that are inherent of the wireless links.

Such improvements have naturally involved the transport layer. The Transmission Control
Protocol (TCP), being the most widely used transport protocol in the Internet, has undergone
many improvements over the years. These improvements have helped TCP to efficiently exploit
advanced WiFi transmission methods too. Yet, TCP has some inherent issues, which limit its

1

This is a post-peer-review, pre-copyedit version of an article published in Journal of network and 
systems management. The final authenticated version is available online at: 
http://dx.doi.org/10.1007/s10922-020-09563-8



performance regardless of the used medium. Thus, new transport protocols for the Internet have
been proposed, and among them we have witnessed the successful deployment of QUIC.

QUIC started as an experimental protocol designed by Google. It is a transport protocol
that aims to provide a better user experience by reducing latency at the application layer. In a
recent measurement study [4], it was estimated that around 7% of the Internet traffic is carried by
QUIC. Two of the most popular Internet services, Google Search and YouTube, run over QUIC.
Other companies, such as Akamai, have also started to provide support for QUIC. In 2016 the
IETF chartered the QUIC Working Group, which has used Google’s QUIC as starting point for
standardizing the protocol, an effort that is still ongoing by the time of writing.

Since QUIC is in its early stages and is gradually evolving, there are still many open questions
about its deployment in real network scenarios. Prior studies [5, 6, 7, 8] on the performance
of QUIC mostly focus on wired networks, simple lab-based WiFi test-beds or simulations. In
contrast, we here present a comprehensive study of the performance of QUIC by performing a
measurement campaign on a production WMN in Barcelona, Spain. We rely on active probes
implemented in Raspberry Pi devices that are deployed at different nodes of the WMN and compare
the performance of QUIC against TCP. The results show that QUIC exhibits significantly lower
performance than TCP in the WMN. In our prior work we identified how packet pacing in QUIC
affects the frame aggregation at MAC layer [9]. In this paper we extend our prior work and perform
in-depth analysis of congestion control and loss detection algorithms of QUIC protocol to find
out the root causes of its performance degradation in WiFi networks. We reveal the factors that
impact the performance of QUIC in WiFi and implement possible solutions as a proof-of-concept,
showing that they significantly improve QUIC performance. We notice that the throughput of
the raspberries presented in this paper are significantly higher than those shown in our previous
work [9]. This is because some important links of the mesh were improved before the data gathering
campaign used in this paper.

In sum, the main contributions of our work are as follows:

• We provide the first measurement study of QUIC in a production WiFi community mesh
network, comprising heterogeneous WiFi devices in an urban area, having a high diversity of
quality in the links, and a large variety of real-world network conditions;

• We explore how advanced 802.11 standard features (e.g., frame aggregation) are impacted
by different configurations of QUIC parameters;

• We discover that high delay variations, which are common in wireless networks, negatively
impact the congestion control and loss detection algorithms of QUIC;

• We implement several optimizations as a proof-of-concept, showing up to 28% increase in
QUIC throughput in the WMN.

This paper is organized as follows. Section 2 describes the background of QUIC protocol and
also presents the work related to transport and MAC layer enhancements for WiFi. In Section 3
we give details about the methodology and describe the measurement environment we used to test
the performance of the QUIC. Section 4 presents the results of our measurements. In Section 5 we
provide an in-depth analysis of the results and in Section 6 we present the optimizations for QUIC
and their evaluation. Finally, in Section 7 we conclude our work.

2 Background and Related Work

2.1 QUIC History

QUIC started as an experimental protocol by Google in 2012 to solve some of the inherent issues of
TCP. The design goals of QUIC include rapid evolution and deployment, multi-streaming, latency
reduction, flexible congestion control, connection migration and resilience to NAT-rebinding [4].
To meet these goals, QUIC is developed as a user-space transport protocol running on top of UDP.
It provides several cross-layer enhancements, covering the weaknesses of TCP for transporting web
content.

2



In 2016 the IETF chartered the QUIC working group which used Google’s QUIC as starting
point. Several important changes have been introduced during the last 2 years. TLS 1.3 has
replaced Google’s crypto libraries. A new header compression scheme (QPACK) has been designed
to replace HPACK, the HTTP/2’s header compression scheme. Several implementations of IETF
and Google QUIC are currently available and a comprehensive list can be found at [10]. In this
paper we use Google QUIC v43 which is the latest available version at the time of our research
and is supported in the Chromium browser.

2.2 QUIC congestion controller

Describing all design decisions in QUIC is out of the scope of this paper. Some basic features of
QUIC are explained in Appendix A. We however list key aspects of the protocol in the following,
which will help to understand our measurements.

QUIC has a pluggable congestion controller which allows different algorithms to be used. QUIC
currently provides implementations for Cubic, NewReno and BBR. Here again, we refrain from
explaining all details of the various congestion control algorithms, listing only key characteristics
that are needed to understand results that follow. All information that is provided next is obtained
by analyzing the source code of QUIC v43 implemented by Google.

• Slow start algorithm
Like with the TCP congestion control algorithms, QUIC slow start (or the exponential growth
phase) is used to quickly converge to the available bandwidth of the end-to-end path between the
client and the server. The implementation of QUIC tested in this paper exits the slow start phase
when either a packet loss or an increasing delay is detected. To detect increases in the delay,
which is assumed to be an indication of queuing in the network, QUIC compares the minimum
RTT of the current burst of packets to the minimum RTT of the connection. If the delay is
larger than a certain threshold, the slow start phase ends. The tested QUIC implementation
uses a slow start delay factor of 1/8, which implies that the slow start will exit if the RTT has
increased by a factor of 1.25 when compared to the minimum RTT.

• Acknowledgment modes
Google’s implementation of QUIC includes two acknowledgment modes:
– TCP ACKING: This mode is similar to TCP delayed acknowledgment, in which an ACK

is generated for every 2 received packets in accordance with RFC 1122. This is the default mode
of QUIC in Chromium at the time of writing;
– ACK DECIMATION: In this mode acknowledgments are delayed up to a maximum of

10 packets and a cumulative ACK is generated. The maximum duration for which the ACK
can be delayed is 25 ms and the actual delay time is calculated on the fly as the minimum
between max delay time and 1/4 of minimum RTT observed during the connection. The
ACK DECIMATION is only considered after at least 100 packets have been received to avoid inter-
fering with slow start. This mode is disabled by default.

• Loss detection algorithm
As said above, QUIC sends an acknowledgement every two segments. It detects losses by tracking
the packets that are in-flight and unacknowledged. When it receives an ACK for packets sent
later than unacknowledged packets, it starts a timer (based on the sending time of the possibly
lost packet) and declares the packet as lost if its acknowledgement is not received within a
particular period. QUIC uses a time reordering factor of 1/8 (fraction of the RTT). That is,
the packet is considered lost if the timer reaches 1.25 * RTT from the packet sending time.

• Packet pacing
QUIC v43 includes a packet pacing mechanism that aims to reduce sending bursts of packets by
introducing delay between consecutive packets. Reducing traffic burstiness is known to prevent
congestion and, as a consequence, reduce the undesirable effects of packet loss. The pacing
rate is calculated using the cwnd and the smoothed RTT. During slow start, the pacing rate is
2 ∗ cwnd/smoothed RTT and during congestion avoidance it is 1.25 ∗ cwnd/smoothed RTT .

3



Figure 1: Frame aggregation in 802.11

2.3 MAC layer enhancements for WiFi

The Wireless Mesh Network used for performing the experiments presented in this paper is based
on WiFi technology running IEEE 802.11 standards. WiFi technology has undergone an enormous
evolution in the recent years. A recent measurement study [11] with millions of Cisco Meraki access
points (APs) shows that around 99% of the APs use the 802.11n and 802.11ac standards. These
standards introduce enhancements to increase data rates. Among them, frame aggregation is a
simple method to enhance throughput, which we will show later to provide important opportunities
to improve the performance of QUIC in WiFi scenarios.

The wireless medium has a high overhead, which includes the MAC and PHY headers, ac-
knowledgments (ACK), backoff time and inter-frame spacing. For ACKs and small segments, the
overhead in terms of bytes can be higher than the actual payload. The frame aggregation scheme
amortizes this overhead and achieves high data throughput by combining multiple frames, also
known as MAC Service Data Units (MSDUs), into a single transmission unit.

There are two main aggregation techniques in WiFi MAC architecture: Aggregate MAC Service
Data Unit (A-MSDU) and Aggregate MAC Protocol Data Unit (A-MPDU) as shown in Fig. 1

A-MSDU: This technique receives and buffers multiple MSDUs destined to the same receiver
(next station) and combines them into a single MPDU. The aggregation is completed when either
the maximum A-MSDU size or the maximum delay is reached. The maximum A-MSDU size can
be 3.8 k, 7.9 k or 11 k bytes and it is negotiated between the sender and receiver. The individual
transmission sizes and delays vary between various driver implementations. The transmitter uses
Cyclic Redundancy Check (CRC) for the subframes and MAC header to produce the Frame Check
Sequence (FCS) which is used by the receiver to check for errors.

A-MPDU: This technique combines multiple MPDUs into a single unit having a common
PHY header. There is no waiting/delay time in construction of A-MPDU and its size depends
on the number of packets available in transmission queue. A-MPDU can have a maximum of 64
subframes and a maximum size of 65K bytes.

The performance gains of 802.11 frame aggregation have been extensively studied. Skordoulis
et al. [12] provide a performance comparison of A-MSDU, A-MPDU and the combined two-level
aggregation schemes and show that while all schemes improve throughput, each is suited for differ-
ent environments. They point out that the efficiency of A-MPDU depends on the packet inter ar-
rival rate because this scheme operates only on the packets that are already buffered in the trans-
mission queue. Therefore, faster inter arrival rates result in higher throughput. Kim et al. [13]
also evaluate the impact of frame aggregation on throughput. They show that, in general, increas-
ing the frame aggregation size improves the overall throughput performance and reduces collision
probability. They also show that faster frame arrival rates result in higher throughput. Lin et
al. [14] provide a study of A-MSDU and A-MPDU frame aggregation schemes under error-prone
channels using analytical and simulation methods.

4



As the 802.11 standard does not specify any particular frame aggregation scheduler, different
vendors have implemented their own versions. Some prefer better resource utilization while others
prefer timeliness and low delays. Various researchers have also proposed and evaluated different
schedulers. Selvam et al. [15] present a scheduler that selects the aggregation size and technique
(A-MSDU or two-level aggregation) based on the duration of frame transmit opportunity. Moh
et al. [16] propose an algorithm that adjusts the aggregation size according to the frame error
rate acceptable for the application. Hajlaoui et al. also propose a similar method where the
scheduler considers specific QoS requirements for multimedia applications and dynamically adjusts
the aggregated frame size. Saif et al. [17] propose an aggregation scheme (mA-MSDU) that reduces
the aggregation headers and improves performance for applications that have a small frame size
such as VoIP. Charfi et al. [?] show that 802.11n frame aggregation increases delay for low rate
applications as the MAC layer has to wait for packets to construct the whole aggregated frame.
They propose a new dynamic frame aggregation (DFA) scheduler to provide QoS satisfaction to
real time services. Kim et al. [?] investigate the issue network throughput degradation due to fair
allocation of channel access irrespective of packet size and data rate in 802.11n-based WLANs.
They formulate an optimization problem for a generalized two-level frame aggregation and propose
a frame size adaptation scheme that controls the number of packets in an aggregated frame. The
perform simulations to show significant improvement in throughput as compared to other schemes.
Coronado et al. [?] focus on software defined wireless networks and propose an adaptive ML-
based approach for selecting frame size by relying on standard frame aggregation mechanisms. The
proposed method obtains the required data from the control plane to adapt the frame size to the
needs of each user. Experimental results show around 18% improvement in goodput over standard
aggregation mechanisms.

While these prior studies study the issues of frame aggregation in WiFi networks by only
focusing on the MAC layer, we instead investigate how the design decisions of transport protocols
impact MAC layer features such as frame aggregation. In particular, we evaluate whether and how
QUIC profits from WiFi frame aggregation.

2.4 Transport protocol enhancements for wireless networks

Given the popularity of TCP, several researchers have investigated different ways to improve its
performance in wireless networks. A key factor affecting TCP performance in wireless networks
is the contention and collision between ACK and data packets. Reducing the number of ACKs
saves wireless resources and reduces interference with other packets thus improving performance.
Moreover, lowering the ACK frequency increases the burstiness of traffic, as the sender releases a
micro burst of packets after receiving the cumulative ACK. This behavior reduces the inter-packet
time, increasing the opportunities for frame aggregation at the 802.11 MAC layer.

Altman el. al [18] investigated the impact of increasing the TCP delayed acknowledgement
mechanism to more than two segments as recommended by RFC 1122. Singh et. al [19] propose
TCP with adaptive delayed acknowledgement, which aims to reduce the number of ACKs to one
per congestion window. Oliveira el. al [20] propose Dynamic Adaptive Acknowledgement where
the delay window is adjusted according to the channel conditions. In [21], the same authors provide
an improved delaying window strategy for robustness against losses.

Authors of [22] point out that the performance of TCP can degrade over wireless links due
to spurious timeouts and spurious fast retransmissions caused by TCP’s inability to distinguish
between acknowledgments for original packets and retransmissions. The Eifel scheme uses TCP
timestamps to avoid these issues. Authors of [23] study the sensitivity of TCP to sudden delay
variations in mobile networks and quantify the risk of spurious TCP timeouts caused by changing
RTT. Authors of [24] also report that long sudden delays during data transfers are not uncommon
wireless WANs and can lead to unnecessary retransmissions and low throughput. They show that
an aggressive TCP retransmission timer may trigger a chain of spurious retransmissions.

Similar research studies to understand the behavior of QUIC in wireless networks are largely
missing. We provide a first study on the impact of different strategies on QUIC’s performance in
WiFi networks, focusing on WMNs.

5



2.5 State-of-the-art in QUIC performance evaluation

There are several recent research studies that compare the growth, security and performance of
TCP and QUIC. Some explore the security of QUIC protocol [30, 31], while others study the
implementation of multipath support [32, 33]. Rüth et al. [25] provide a broad assessment of
QUIC usage in the wild. They monitor the entire IPv4 address space and about 46% of the DNS
namespace to detected QUIC support. Their findings reveal that the number of QUIC-capable
IPs has more than tripled between 2016 and 2017 and around 161 k domains are hosted on QUIC-
enabled infrastructure.

Closer to our work, some research studies investigate the performance aspects of QUIC. Megyesi
et al. [5] provide a comparative study of the performance of QUIC, SPDY and HTTP/1.1 in
terms of Web page load time. They test QUIC v20 by hosting different pages on Google Sites,
shaping the traffic between the client PC and Google Sites to emulate different bandwidth, RTT
and packet loss rates. They show that with packet loss, SPDY performs the worst, followed by
QUIC and HTTP/1.1. In case of high bandwidth and large page size, QUIC is three times faster
than HTTP/1.1 and SPDY. Carlucci et al. [6] investigate performance of QUIC v21 on emulated
networks using synthetic pages. They report that QUIC performs worse than HTTP/1.1, but
better than SPDY with large web pages and 2% random packet loss rate. Without packet loss,
QUIC performs better than HTTP/1.1 and SPDY for small and medium web pages, but worse for
large pages due to its usage of only six parallel streams. Cook et al. [7] perform experiments in a
local testbed, as well as using a 4G network card. They observe that QUIC and H2 have similar
performance, but QUIC connections are less sensitive to delay and packet loss. In case of 4G links,
QUIC outperforms H2. Kakhki et al. [8] evaluate QUIC v34 and TCP performance of web page
loading and video streaming. They show that QUIC generally outperforms TCP, but there are some
scenarios where QUIC’s performance is reduced, e.g., high packet reordering in the network and
large numbers of small objects in a web page. QUIC is however unfair with other protocols, taking
more than 50% of the bottleneck bandwidth when competing with 2 or even 4 TCP connections.
In our previous work [26, 27, 28] we analyze HTTP/1.1 and H2 traffic and evaluate performance
of H2 over TCP and QUIC v39 under adverse network conditions using emulations.

In contrast to these studies which mostly focus on fixed networks, emulated network conditions
with tools such as Linux tc and netem [29], or simplistic wireless network setups, this paper
is focused on QUIC’s performance in real-world WiFi networks. We perform experiments in a
production wireless mesh network where the WiFi signals may be impaired by many factors,
such as concrete walls, roofs or distance from access point. Additionally, the packets may travel
through several wireless hops in the end-to-end path, increasing the chances of impairments in
transit. Optimizing the protocols for wireless links can thus result in significant improvements in
the application-layer performance. Our preliminary work in this direction is presented in [9]. In
this paper we build upon our prior work and perform detailed analysis of congestion control and
loss detection algorithms of QUIC protocol. We reveal the factors that impact the performance of
QUIC in WiFi and optimize its performance.

3 Methodology

Our methodology to evaluate the performance of QUIC and TCP in WMNs is summarized in
Fig. 2. We rely on a production WiFi mesh network, in which we deploy a series of client nodes.
These nodes are connected to the Internet via multiple WiFi hops in the WMN. They download
content from a remote Internet server using an instrumented Chromium browser. Logs are saved
both at the client and server sides.

We next provide details about this setup, the way in which the server and clients are organized
along with their specifications, and the performance metrics used in the experiments.

3.1 Wireless community network

We perform experiments in a production wireless community network deployed in a neighborhood
of the city of Barcelona (Spain) called Sants [34]. The network was started in 2009 and in 2012 was
joined by nodes installed at Universitat Politècnica de Catalunya (UPC) within the EU CONFINE

6



Figure 2: Experimental setup.

project [35]. The network is operative since 2009. The nodes use the linux/openwrt [36] based dis-
tribution provided by the Quick Mesh Project (QMP) [37], which runs the BMX6 mesh routing pro-
tocol [38]. From now on we will refer to this network as QMPSU. QMPSU is part of a larger commu-
nity network started in 2004, which has more than 30.000 operative nodes called Guifi.net [39]. At
the time of writing QMPSU has around 80 active nodes. Fig. 3 shows the geographic location of ac-
tive nodes and links, using distinct colors to represent wireless links configured with different chan-
nels. In QMPSU there are 2 gateways that connect QMPSU to the rest of Guifi.net and the Internet.

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4
x (km)

y
(k

m
)

7

RP
UPC

6
5
4

1
2
3

Figure 3: QMPSU topology. Colors indicate links configured in the same WiFi channel.

QMPSU is 802.11an-based and the most common hardware is the Ubiquiti NanoStation M5,
equipped with a sectorial antenna and running QMP firmware1. There are also a number of
point-to-point links using Ubiquiti parabolic antennas running the original manufacturer firmware.
QMPSU also has a live monitoring web page updated hourly. A detailed description of QMPSU
can be found in [40], and a live monitoring page updated hourly can be accessed on-line [41].

QMPSU has been deployed by its own users. Its unplanned spread out using heterogeneous
WiFi devices in an urban area has produced a high diversity on the quality of the links. Thus, it
offers a very realistic testbed to evaluate the performance of QUIC under a variety of conditions.

3.2 Experimental setup

We want to measure and compare the data transfer throughput achieved using TCP and QUIC
between various clients in QMPSU and a server in the Internet. We deploy seven Raspberry PI 3
(RPi) devices attached to the premises of different volunteers across the QMPSU and use them
as the client nodes. The RPis have quad-core ARM Cortex-A53 CPU and 1 GB RAM and run

1Note that some WiFi parameters are implementation-specific, such as the thresholds to perform frame aggre-
gation.

7



Debian 9. Chromium browser v69 is used on the RPis in headless mode to load a web page from
the server in the campus of Politecnico di Torino (Polito), Italy. The server has a dual-core Intel
Core i5 CPU running Ubuntu 16.04.

The congestion controller in the server is TCP CUBIC. We use nginx web server for TCP and
quic-go server supporting QUIC v43.

The clients in QMPSU network first reach the gateway node located in UPC using wireless links
and then reach the server in Polito via the Internet as shown in Fig. 2. WiFi frame aggregation is
enabled by default in all antennas in QMPSU. The geographical location of the clients is shown in
Fig. 3, marked as RP. Tab. 1 shows the number of wireless hops (W-hops) in the WMN taken by
the traffic downloaded from the server in Polito to reach the RPis. RP1 is located inside UPC and is
directly connected to the fixed network without any WiFi links. Note that many of these WiFi hops
use different frequencies and thus are not interfering with each other. Fig. 4 shows the average RTT
between the clients and server and 95% confidence intervals2. The RTT was measured averaging
over a large number of pings (more than 4,000 samples). The figure shows that RTT is in the
range from 36 ms for RP1 to 90 ms for RP4, the client in the mesh having the weakest WiFi links.

Table 1: Characteristics of the client locations.

RP Name W-hops

RP1 UPC 0
RP2 BCCanBruixa20Rd6 1
RP3 BCNevaristoarnus5Rd3 2
RP4 BCNMelciorPalau62 5
RP5 GS26gener10 3
RP6 GSgV-rb 1
RP7 BCNJardiBotanicSants186 5

40

50

60

70

80

90

RP1 RP3 RP2 RP6 RP7 RP5 RP4
raspberry

R
T

T
[m

s]

Figure 4: Mean and confidence interval of RTT between various clients and the server.

3.3 Measurements and performance metrics

We download a large image file of 10 MB hosted on our web server in Polito from the clients in
Barcelona using TCP and QUIC. In both cases a single connection is used to load the web page.
We cleanup client caches between repetitions of the experiments. Since the server is known after
the first run of the experiments, for both TCP and QUIC we always go over the shortest steps to
establish the encrypted connections (see Fig. 14). To automate the experiments, we deploy scripts
that connect to remote clients in the mesh network hourly, to download the pages sequentially
using every protocol under test. Traffic is captured at both client and server sides using tcpdump,
and saved to a separate timestamped file.

We parse the captured traffic from each individual file and calculate various metrics such as the
total page transfer time, throughput, and packet inter-arrival time etc. Throughput is computed

295% confidence intervals of sample averages are computed using the Student’s t distribution.

8



0.00

0.25

0.50

0.75

1.00

20 40 60 80
throughput [Mbps]

Co
m

pl
em

en
ta

ry
 E

CD
F TCP

QUIC

Figure 5: Throughput of TCP and QUIC for all experiments performed using RP3 client. The shaded
areas are 95% confidence interval bands.

Throughput [Mbps] Loss prob. %

TCP QUIC TCP-Gain % TCP QUIC
RP1 71.9 ± 3.0 76.3 ± 0.33 −5.7 0.0054 ± 0.0073 0.039 ± 0.05
RP2 61.1 ± 3.0 40.9 ± 3.0 49.5 0.21 ± 0.094 0.52 ± 0.38
RP3 61.6 ± 2.9 40.3 ± 2.8 52.6 0.29 ± 0.15 0.29 ± 0.15
RP4 5.0 ± 0.46 4.5 ± 0.35 12.3 0.42 ± 0.058 0.45 ± 0.15
RP5 10.2 ± 0.72 7.9 ± 0.44 29.4 0.49 ± 0.088 0.32 ± 0.27
RP6 49.8 ± 2.4 38.2 ± 2.4 30.3 0.19 ± 0.064 0.15 ± 0.081
RP7 31.4 ± 2.1 21.6 ± 1.9 45.4 0.16 ± 0.096 0.15 ± 0.077

Table 2: Average throughput and loss rate of TCP and QUIC.

by dividing the number of bits sent in the payloads of the connection over the time of the transfer,
ignoring connection establishment time. We also analyze the time sequence of data segments and
ACK packets. We log TCP cwnd using tcpprobe kernel module.3 In case of QUIC we instrument
the web server to log the cwnd size on each ACK. Average values of these metrics are calculated
using at least 200 experiments.

4 Evaluation

4.1 Performance comparison of TCP and QUIC

To evaluate the performance of TCP and QUIC we compare the average throughput of more than
200 experiments performed using each protocol as explained in Section 3.3.

WiFi frame aggregation is enabled by default in all antennas and both TCP and QUIC use a
single connection between the client and the server to load the web page. Tab. 2 shows the mean
throughput and packet loss probability of TCP and QUIC for various clients. RP1 is the client
located at UPC and is directly connected to LAN without any WiFi link. QUIC achieves slightly
higher throughput of around 76 Mbps as compared to TCP’s 72 Mbps on this wired link (5.7%
gain). This result conforms to prior studies that also find QUIC to perform slightly better than
TCP. However, the outcome is very different with other clients that involve one or more WiFi
hops on their end-to-end path. We can see that in all cases TCP achieves higher throughput than
QUIC. The difference is much higher is high-bandwidth links – e.g., in case of RP2 and RP3 TCP’s
throughput is larger than QUIC by roughly 50%. This TCP-gain is around 12%, 29%, 30% and
45% for RP4, RP5, RP6 and RP7 respectively as shown in Tab. 2. We can also see that the packet
loss rate is the range of 0.15% to 0.52% for various clients connecting through WiFi links. The
loss rate is almost zero for the client RP1 connected through wired link.

3https://wiki.linuxfoundation.org/networking/tcpprobe

9



Table 3: Comparison of QUIC and TCP performance under stress.

TCP Throughput (Mbps) QUIC Throughput (Mbps)

Device Normal Stressed Decrease Normal Stressed Decrease

RP2 58.5 53.47 8.6% 38.8 17.7 54.3%
RP7 31.8 29.6 6.9% 21.2 16.6 21.6%
RP5 10.2 9.89 3% 7.3 6.1 16.4%

Fig. 5 shows the complementary ECDF of the throughput achieved using all the experiments
performed using one of the clients, i.e., RP3. For each curve Fig. 5 shows 95% confidence intervals
bands4. We can see that TCP achieves higher than 60 Mbps throughput in more than 66% of
experiments, while this number is only 11% for QUIC. On the other hand, TCP achieves less than
30 Mbps throughput in only 2% cases while this number is 26% for QUIC.

4.2 Impact of the userspace implementation of QUIC on results

TCP is implemented in the OS kernel while QUIC is implemented in userspace. This could have
negative impact on performance, particularly on resource-constrained mobile devices. This impact
was first shown experimentally by Kakhki et al. [8]. They showed that on a mobile phone (MotoG)
QUIC v34 spends 58.84% of the time in “application limited state” as compared to only 7.05% on
a PC. In application limited state the cwnd is not increased any further because the client may be
slow and unable to process the incoming packets at the sender’s rate.

Since we use RPis to perform experiments, we check to what extent the userspace implemen-
tation of QUIC in RPis impacts our results. To this end, we instrument the source code and log
the state machine of QUIC during experiments.

In a first experiment, we load the same web page with a 10 MB image from the server over
QUIC using two clients, an RPi and a PC, both located at the same place. Both devices have
no other client processes running during the experiments. This experiment is repeated 30 times
and the mean time expended in which QUIC state are calculated. Results of this experiment are
summarized in Fig. 6. There is little difference between RPi and PC in the amount of time spent
in the various states. This shows that the performance of QUIC has improved over time (when
compared to [8]), and its userspace implementation is not a limiting factor on moderately powerful
devices such as RPis. It also validates our choice of using RPi as client.

Yet, this first experiment has been performed without any other load on the devices. We also
check whether performance would be affected in case clients have high workloads – e.g., due to
other process running simultaneously. We thus repeat the experiment while stressing the CPU
of some RPis using Linux stress tool. We record mean throughput and compute the difference
between the stressed and unstressed setting. We perform this experiment on three RPis which
have different link quality and capacity and the results are shown in Table 3.

We can see that stressing the CPU has a big impact on QUIC throughput which drops by up
to 54%. TCP throughput is reduced by a maximum of 8.6% in the worst case. We also observe
that the higher the bandwidth the bigger the reduction is. In low bandwidth links the network
becomes the bottleneck therefore, stressing the CPU has little impact.

These results show that QUIC’s userspace implementation can indeed have negative impact on
low-end devices with limited processing power. However, with moderately powerful devices this is
not an issue. For the experiments presented in this paper, we carefully avoid any other load on the
client devices, since our focus is to understand the performance of the protocols in similar testing
conditions.

495% confidence bands of ECDF have been estimated via the Kolmogrov-Smirnoff approach using R package [?].

10



Figure 6: QUIC v43 state transitions on RPi (green dotted box) vs PC (red solid box). The numbers
show the percentage of time spent in each state. The behavior is very similar on both devices.

Table 4: List of all input features.

No.
Features Details

1
Server/client mean
inter-packet time

The inter-departure time between packets on the server side
and the inter-arrival time between packets on the client side

2
Server/client inter-

packet time variation
The variance of inter-packet time of server/client

3 Server/client burstiness
The burstiness is computed using the index of dispersion

for intervals as described in [42]

4 Mean delay
The mean value of one way delay of all data packets

transferred from server to client

5 Delay variation The variance of one way delay

6 Packet loss

Probability of packet lost. It is defined as the fraction of
the total transmitted packets that did not arrive at the

receiver, calculated by dividing the number of lost packets
over the total transmitted packets

7 Out of order
Probability of out of order packets. It is defined as the

fraction of the total transmitted packets that are received
in a different order from which they were sent

8 ACK freq
ACK frequency is the ratio of acknowledgements and data

packets

9 Mean cwnd
Mean value of the congestion window measured throughout

the data transfer

10 Cwnd variation Variance in the size of congestion window

11
Slow start/ Congestion

avoidance/ App
limited/ Recovery freq

A vector containing 4 features: The frequency of slow start,
congestion avoidance, recovery and application limited

phase respectively. This is the percentage of time spent in a
particular phase during the data transfer

5 Determining factors of TCP and QUIC performance

To identify the determining factors of TCP and QUIC performance in WiFi, we follow a two-step
process. First, we apply a “black-box approach”, using machine learning techniques, to identify
key factors that impact the throughput of the protocols. Once we have identified these factors, in
the second step we inspect QUIC source code to further investigate them to understand the root-
causes of the performance issues.

We analyze the network traffic captured at the client and server side and compute several at-
tributes/features from individual network connections. These features are derived from informa-
tion in IP and TCP/UDP headers and logs of cwnd. The protocol design as well as the network
conditions may dictate the value of a feature. Table 4 shows the list of all features computed for
each individual connection. With this list, we apply classic feature selection methods to assess how

11



they correlate with the throughput of connections. Then we present the subset of features that in-
fluences throughput the most.

5.1 Subset feature selection

To see how various combinations of features impact throughput, we use a decision tree to learn
how to predict the throughput of connections from the given features. More than a precise method
to predict throughput, we are interested in understanding which subset of features contributes the
most for the predictions. Decision trees are simple to understand and interpret and provide useful
information about the relationship between various features.

Our target variable is the throughput. For the sake of simplicity, we divide throughput into
discrete bins of 10 Mbps that are classified as t0, t10, t20, t30 etc, where class t0 represents
throughput in the range of 0 Mbps to 10 Mbps, class t10 represents throughput in the range of
10 Mbps to 20 Mbps and so on. We take roughly 2 000 network connections from our experiments.
For each network connection we extract all features, assign a class based on its throughput range,
and then apply decision tree learning on the dataset. We use the implementation of the C4.5
decision tree algorithm offered by Weka [43].

The resulting decision trees for TCP and QUIC are shown in Figure 7a and 7b. The leaf
nodes of the tree depict the throughput class while the intermediate nodes show the factors that
result in the corresponding throughput. The value next to each leaf node is the percentage of
accurately classified instances of that class. The overall accuracy, precision and recall is 80.05%,
79.8% and 80.01% respectively for QUIC and 81%, 81.3% and 81% respectively for TCP. The trees
confirm that factors impacting throughput are different for TCP and QUIC. While cwnd is the
most important factor for both protocols, slow throughput is associated with packet losses, server
burstiness, and mean delay, in the case of TCP, but with slow start frequency, delay variation and
client burstiness, in the case of QUIC.

These results are partly expected and can be explained with domain knowledge and intuition.
For example, the cwnd defines how much unacknowledged data can be in-flight before an ACK is
received. Generally, the larger the cwnd size, the higher the throughput. Both feature selection
approaches capture this intuition and show how the cwnd setting is vital for both QUIC and TCP.

Instead, the difference on importance of other features is not immediately obvious and call for
further analysis. For example, the algorithms that control the slow start, congestion avoidance
etc. specify how to grow the cwnd size. The slow start phase is designed to quickly converge on
the available bandwidth between the client and the server. During this phase the cwnd increases
exponentially on each RTT. Once we are out of the slow start and into the congestion avoidance
phase the cwnd grows at a much lower rate. The slow start phase seems to affect QUIC more than
TCP. Similarly, the end-to-end delay impacts the growth of cwnd because the sender has to wait for
ACKs from the receiver before increasing the sending rate. Wireless connections are particularly
susceptible to signal interference that causes network data to be corrupted in transit, increasing
delays due to link layer retransmissions. In the same way, packet losses impact the sending rate
in a similar manner. TCP and QUIC are both reliable transport protocols, therefore they react to
packet losses by reducing the sending rate, albeit to different extent, and retransmitting the lost
packets.

In the next section we further investigate the factors identified by the decision trees by digging
into the source code of QUIC v43. We try to find out why these factors impact QUIC and TCP
protocols differently by critically evaluating the design decisions of QUIC.

5.2 Root-causes of performance issues of QUIC in WiFi

The results of our experiments in Sec 4 show that QUIC has lower performance than TCP in the
WMN. The decision trees provide useful information and show that cwnd size, high delay variation,
client burstiness etc. impact QUIC’s performance. We now further investigate these factors to
identify the root-causes for the problem.

Since the cwnd size dictates throughput, we start by analyzing the cwnd of TCP and QUIC,
instrumenting Chromium to log their values during all our experiments. As a reference, we select
RP3, the client with the highest quality WiFi links, and measure the available bandwidth capacity

12



90%78%

86%74%78%85%

> 206 <= 206

<= 0.05 > 0.05<= 0.00002 > 0.00002

<= 31> 31 <= 0.003 > 0.003

(a) Decision tree for TCP.

<= 0.0004 > 0.0004

> 308 <= 308

> 20 <= 20 > 0.003

> 0.0025

> 16 <= 16

<= 0.0025

<= 0.003

high low

89%74%84%75%

76%

78%75%

(b) Learned decision tree for QUIC.

Figure 7: Simplified decision trees for TCP and QUIC show how various features result in throughput
shown at the leaf nodes. Threshold for splitting the nodes is shown at the branches. The percentage of
accurately classified instances is shown next to each leaf node.

and the RTT between the client and the server using netperf and ping, respectively. We estimate
the optimal cwnd size (minimal window allowing the maximum throughput) using the well-known
bandwidth-delay product:

Optimal cwnd = Bandwidth×RTT

For RP3, with 62 Mbps of available bandwidth and 44 ms RTT, the cwnd size needs to be at least
340 kB to keep the link saturated. Figure 8 shows the complementary ECDF of the mean cwnd
size measured during more than 200 experiments each for TCP and QUIC. For each curve Fig. 8
shows 95% confidence intervals bands. The blue vertical line represents the optimal cwnd size. We
can see that more than 71% of cases TCP finishes the transfer with a mean cwnd size larger that
the optimal value, while this occurs only in 30% of the cases with QUIC. Furthermore, in around
25% of the cases the cwnd size in QUIC is smaller than half of the optimal size.

13



0.30

0.71

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000
mean CWND [kbytes]

Co
m

pl
em

en
ta

ry
 E

CD
F

TCP
QUIC

Figure 8: Mean cwnd comparison for RP3 client. The blue vertical line is the optimal cwnd size calculated
using the bandwidth delay product. The shaded areas are 95% confidence interval bands.

Table 5: Frequency of normal and abnormal behavior of QUIC observed during the measurement cam-
paign.

Early exit False loss detection Normal

39% 51% 10%

To see why QUIC selects sub-optimal cwnd so often, we plot individual cwnd charts for over
200 experiments performed using QUIC and TCP. We observe that two abnormal behaviors occur
in QUIC quite frequently. First, QUIC often exists early from slow start, before reaching the op-
timal cwnd size, and while in the congestion avoidance phase it increases the cwnd at a slow pace.
Second, QUIC spuriously detects congestion and reacts by reducing cwnd to a sub-optimal size.
In TCP such a behavior is not very common. Early exit from slow start in TCP is usually due
to an actual packet loss and false loss detection due to packet re-ordering which generates multi-
ple duplicate ACKs. The causes for this behavior in QUIC are explained in detail next. Table 5
shows the frequency of normal and abnormal behavior of QUIC during experiments.

Cause 1: QUIC v43 exits early from slow start and has a sluggish congestion avoid-
ance phase

In slow start phase the cwnd size is increased exponentially. Premature exit from slow start
results in underestimation of bandwidth and low throughput. As explained in Sec 2.2, QUIC v43
congestion control algorithm exits from slow start phase when an increasing delay is detected (RTT
has increased by more than 1/8th). E.g., if minimum RTT is 40ms, an increase of up to 5ms from
this value can be tolerated for the slow start phase to continue. This idea works well in wired
networks where RTTs are quite stable and a significant increase indicates congestion. However,
the same does not hold true for WiFi networks where it is common to have variation in RTT due
to factors related to the underlying medium and not due to network congestion.

High delay variation in the network at the start of a transfer forces QUIC to exit early from slow
start phase. As a result, the cwnd cannot increase to the optimal size and leads to low throughput.
This behavior of QUIC is shown in Fig. 9a which compares the delay, cwnd size and throughput
of QUIC for a single transfer using RP3 where this behavior occurs. We can see that right at the
start of the transfer the delay varies between 24 ms and 30 ms. This variation of around 6 ms is
larger than QUIC’s threshold of 3 ms which results in early exit from slow start.

Although TCP also exits early from slow start occasionally, as shown in Fig. 9b, the impact
of this behavior is much more damaging for QUIC because after exiting early from slow start
QUIC’s cwnd increases very slowly in congestion avoidance phase while this rate is much faster in
case of TCP. This can be observed in cwnd chart in Fig. 9a where QUIC’s cwnd increases linearly
and it takes around 4 s to increase the cwnd from 70 kB to 180 kB. QUIC is not able to reach
the optimal cwnd size of 320 kB even until the end of the transfer. On the other hand, TCP has

14



mean=21.6

mean=123.0

0

10

20

30

80

120

160

26

30

34

38

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time [s]

th
ro

ug
hp

ut
[M

bp
s]

C
W

N
D

[k
by

te
s]

O
W

D
[m

s]

(a) QUIC v43 early exit from slow start.

mean=41.8

mean=219.5

0

25

50

75

0
100
200
300
400
500

28
30
32
34
36
38

0.0 0.5 1.0 1.5 2.0
time [s]

th
ro

ug
hp

ut
[M

bp
s]

C
W

N
D

[k
by

te
s]

O
W

D
[m

s]

(b) TCP’s early exit from slow start.

Figure 9: High delay variation affects QUIC v43 slow start and congestion avoidance algorithms.

mean=38.0

mean=241.7

0

20

40

60

100

200

300

400

500

25

30

35

40

0.0 0.5 1.0 1.5 2.0 2.5
time [s]

th
ro

ug
hp

ut
[M

bp
s]

C
W

N
D

[k
by

te
s]

O
W

D
[m

s]

(a) QUIC spuriously detects losses

mean=76.0

mean=570.0

0

25

50

75

100

0

200

400

600

800

25.0

27.5

30.0

32.5

0.00 0.25 0.50 0.75 1.00
time [s]

th
ro

ug
hp

ut
[M

bp
s]

C
W

N
D

[k
by

te
s]

O
W

D
[m

s]

(b) Normal TCP download

Figure 10: High delay variation affects QUIC’s loss detection algorithm

a parabolic curve and it takes only around 1.6 s to increases cwnd from 90 kB to 480 kB. The
corresponding mean throughput of this download is around 21.6 Mbps for QUIC and 41.8 Mbps
for TCP on the same link. This behavior can be attributed to the slow packet pacing rate used
by QUIC v43 when not in the slow start phase. This results in under-utilization of the available
cwnd. We have measured the percentage of experiments when QUIC and TCP exit early from
slow start and are not able to reach the optimal cwnd size before the end of the download. This
is value only 8.5% for TCP and 100% for QUIC. In other words, QUIC never attains the optimal
cwnd size in any of our experiments when it exits early from slow start.

Cause 2: QUIC v43 spuriously detects congestion

Spuriously detecting congestion and declaring packets as lost causes unnecessary retransmissions
and may result in performance degradation because the protocol takes action to reduce the sending
rate.

15



Table 6: Throughput achieved over a WiFi link with frame aggregation enabled and disabled using RP6
client.

Throughput (Mbps)
Frame aggregation disabled Frame aggregation enabled Gain(%)

TCP 26.1 ± 1.3 49.8 ± 2.4 90
QUIC 23.7 ± 1.1 38.2 ± 2.4 61

As explained in Sec 2.2, QUIC v43 loss detection algorithm tracks the unacknowledged packets
and declares those packets as lost whose acknowledgement is not received within a fixed threshold
of 1/8th of the RTT from the packet sending time. This threshold seems quite conservative and
causes performance degradation in WiFi networks with high RTT variation.

Fig. 10a shows this particular behavior during a download when QUIC stays in slow start for
longer duration and is able to grow its cwnd to a good size, but soon afterwards it starts reduc-
ing the cwnd repeatedly, and we see a staircase pattern going downwards. This is again caused
by high delay variations that are visible in one-way-delay (OWD) chart5. This reduction in cwnd
size is triggered by QUIC v43 loss detection algorithm. However, using the IP identification field
from the client and server side, we confirm that there is zero packet loss during this transfer. As
a result, the mean throughput of QUIC is limited to 38 Mbps. We rarely observe this with TCP.
Our experiments shows that this behavior occurs in almost 51% of cases for QUIC and only 1.9%
for TCP. Fig. 10b shows the normal behavior of TCP download on the same client and link.

Cause 3: QUIC v43 does not exploit advanced WiFi transmission methods

QUIC aims to reduce traffic burstiness and, as a consequence, queuing delays and packet losses
by using packet pacing [44]. We observe that due to the characteristics of the WiFi medium and
interactions between transport and MAC protocols, bursty traffic might actually be beneficial in
WiFi. One apparent reason for this behavior is frame aggregation. As mentioned in Section 2.3,
frame aggregation in recent 802.11 standards is a key feature to achieve high throughput, and
bursty traffic with short inter-packet time increases frame aggregation opportunities [12][13].

In order to measure the impact of frame aggregation on TCP and QUIC performance we repeat
our experiments by disabling frame aggregation in the antenna located at UPC. The traffic from
the client RP6 in the WMN passes through this WiFi link to reach the gateway and then the server
in Polito. In order to assess the relevance of frame aggregation and to observe how both protocols
exploit it, Table 6 shows the throughput and 95% confidence intervals obtained for RP6 with and
without frame aggregation in the WiFi link. The table shows that with frame aggregation the
throughput is increased by almost 90% with TCP and only 61% with QUIC. This shows that TCP
can efficiently exploit frame aggregation while QUIC is not able to fully benefit from it.

To see why this is the case, we compare the inter-packet time of both protocols. As an example,
Fig. 11a shows the ECDF and histogram of the inter-packet time of TCP and QUIC for one of the
downloads from RP3. This information is retrieved from the server side packet traces of two back-
to-back experiments done using TCP and QUIC. We can see that around 50% of TCP packets
have inter-packet time between 2µs and 4µs while for QUIC this range is between 50µs and 100µs.
Large inter-packet time means less chances of exploiting frame aggregation.

Figure 11b shows a scatter plot of the throughput vs. burstiness for all downloads from RP3.
For TCP the figure shows a clear correlation between throughput and burstiness: the higher is the
burstiness the higher is the throughput. However, burstiness is not the only parameter influencing
the throughput. This explains why there is a small proportion of points having a relatively low
throughput even if the burstiness is high. As expected, Figure 11b shows that QUIC is much less
bursty than TCP, due to packet pacing.

5OWD is measured as the timestamp difference of the corresponding packets in the tcpdump traces captured at
the server and client sides.

16



3.1 85

0

25

50

75

100

0

1

2

3

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0

10 0 10 1 10 2 10 3 10 4

time [s]

inter packet time [µs] (log10 scale)

th
ro

ug
hp

ut
[M

bp
s]

co
un

t×
10

3
E

C
D

F
TCP
QUIC

(a) Inter-packet time comparison of TCP and QUIC
at the sender.

TCP

QUIC

th
ro

ug
hp

ut
[M

bp
s]

0

20

40

60

80

0

20

40

60

80

0 50 100 150
burstiness

(b) Impact of burstiness on throughput of TCP and
QUIC.

Figure 11: TCP gets higher benefits from WiFi frame aggregation due to its bursty traffic

6 Optimizing QUIC v43

6.1 Modifications

Taking into consideration the performance issues of QUIC v43 in WiFi, we incorporate the follow-
ing modifications in QUIC source code: (1) We use ACK DECIMATION as default acknowledgment
mode which reduces the transport layer acknowledgment frequency, increasing traffic burstiness
at the server side and thus resulting in greater aggregation opportunities at the WiFi MAC layer.
(2) We make QUIC’s congestion controller more tolerant to RTT variation in WiFi networks by
increasing the threshold defined for exiting slow start. (3) We make QUIC’s time-based loss detec-
tion algorithm more resilient in WiFi networks by increasing the threshold defined for considering
a packet lost.

Since these features are not controllable from the browser configuration, we had to study the
source code, make required modifications, and cross compile a customized version of Chromium
browser for ARM architecture and deploy it on the RPis. We call this version Bursty QUIC
(BQUIC).

We have carefully proposed these changes in the QUIC protocol design so that tweaking it to
make it perform better on one particular link layer does not have negative effects in the general
case. We validate the effectiveness of these changes by performing experiments in our production
WMN testbed where the end-to-end path between client and server contains one or more WiFi
last hops as well as wired links in the Internet.

6.2 Performance evaluation of QUIC v43 and BQUIC

To better understand the difference in behavior of QUIC and BQUIC and their performance, we
compare various parameter including throughput, loss rate and one-way-delay (OWD). Tab. 7
presents the mean values of all experiments for each client with 95% confidence intervals.

We can see that BQUIC achieves much higher throughput. The gain in throughput ranges
between 7% to 28% for different clients. Clients with high performance WiFi links generally show
higher gains and vice versa. One of the reasons is that bad quality links are usually limited by
factors such as noise or interference etc., that cause packet losses.

The WiFi MAC layer retransmits lost unicast frames multiple times before abandoning its
transmission which increase end-to-end delay that can be observed in case of RP4 and RP5 in
Tab. 7. The bottleneck is such cases is the bad link quality therefore the proposed optimizations,
namely improving slow start and loss detection algorithms and exploiting WiFi frame aggregation

17



have little benefits. In high quality links the QUIC protocol design factors act as bottleneck
therefore and optimizing it results in significant improvement in performance which can be observed
in case of RP2 and RP3. The client RP1 that is connected via fixed network shows very little
performance improvement since our proposed optimizations particularly target issues of QUIC in
the WiFi medium. However, the case of RP1 is very important as it shows that these optimizations
do not have negative effects in fixed networks.

Table 7: Performance comparison of QUIC and BQUIC

Device Throughput (Mbps) Loss prob. (%) OWD (ms)

QUIC BQUIC Gain QUIC BQUIC QUIC BQUIC

RP1 76.3± 0.33 80.4± 0.98 5.4% 0.039± 0.05 0.011± 0.012 12.6± 0.86 13.2± 1.0

RP2 40.9± 3.0 50.6± 4.0 23.8% 0.52 ± 0.38 0.32 ± 0.19 22.0± 0.75 22.8± 0.76
RP3 40.3± 2.8 51.7± 3.9 28% 0.29 ± 0.15 0.26 ± 0.12 25.6± 0.37 26.3± 0.43
RP4 4.5 ± 0.35 4.8 ± 0.37 7.3% 0.45 ± 0.15 0.39 ± 0.085 93.1± 4.4 86.6± 4.6
RP5 7.9 ± 0.44 9.2 ± 0.71 16.3% 0.32 ± 0.27 0.29 ± 0.074 56.7± 8.6 58.5± 8.7
RP6 38.2± 2.4 42.3± 3.6 10.7% 0.15 ± 0.081 0.33 ± 0.2 22.2± 2.5 23.8± 2.5
RP7 21.6± 1.9 26.1± 2.6 20.5% 0.15 ± 0.077 0.17 ± 0.094 41.5± 3.1 47.0± 4.7

Next, we compare the loss rate of QUIC and BQUIC, which have been computed by comparing
the identification field of the IP header of transmitted and received datagrams. In most cases
the loss rate is slightly lower in BQUIC. An apparent reason for this is the higher rate of frame
aggregation in BQUIC which combines more packets into a single unit and transmits it over the
WiFi link, thus reducing the probability of loss of individual packets. It also validates that making
QUIC traffic slightly more bursty does not increase packet losses, which is commonly expected. In
case of RP6 and RP7 we do observe higher loss rate but the increase in minimal. Lastly, in case
of RP1 which we see almost no packet losses which is common for fixed networks.

We also compare the mean one way delay of the packets to see if the increased traffic burstiness
in BQUIC causes queues in the middleboxes to build up, which would result in increase in delay.
In most of the good quality links the delay is almost the same for QUIC and BQUIC. As explained
earlier, with BQUIC we observe lower packet losses due to higher frame aggregation in case of bad
quality links that are highly prone to errors. Lower loss rate means less MAC layer retransmissions
which result in lower delays. This can be observed for RP4 which has the worst quality links and
the delay is reduced from 93.1 ms to 86.6 ms.

6.3 Fairness comparison

Fairness among the competing flows of various transport protocols is very important for a network.
It has been shown in prior studies that QUIC consumes greater share of bottleneck bandwidth
as compared to TCP. In our previous work [28] we observed in an emulated environment that a
QUIC v39 flow consumes around than 70% of the bottleneck bandwidth when competing with a
single TCP flow and around 50% when competing with 2 TCP flows. [8] have shown even greater
unfairness with QUIC v34 where QUIC consumes more than half of the bottleneck bandwidth even
when competing with 4 TCP flows.

Here our main objective is to measure the fairness of QUIC v43 and BQUIC with TCP in a
WiFi network. We have shown that BQUIC is able to achieve higher throughput than QUIC in
WiFi but it is crucial to make sure that it does not starve other competing flows. We perform
measurements using two different links. First is the wired link between the two university campuses
in Spain and Italy. Second is the WiFi link between a client in the mesh network and UPC campus.
We run a script that starts two parallel threads on the client to fetch a web page from the server
using TCP and QUIC. We repeat the experiment using TCP and BQUIC.

Fig. 12 shows the results of the wired network. In agreement with prior studies, we can see
that QUIC consumes much higher share of the bottleneck bandwidth than TCP. BQUIC also has
similar behavior and we do not find it to be more aggressive than QUIC, confirming that our
proposed changes do not have a negative impact in fixed networks.

18



0

25

50

75

100

0 1 2
time [s]

th
ro

ug
hp

ut
[M

bp
s]

TCP
QUIC

0

25

50

75

100

0 1 2
time [s]

th
ro

ug
hp

ut
[M

bp
s]

TCP
BQUIC

(a) TCP vs QUIC (b) TCP vs BQUIC

Figure 12: Fairness comparison in wired network

0

20

40

60

0 1 2 3 4
time [s]

th
ro

ug
hp

ut
[M

bp
s]

TCP
QUIC

0

10

20

30

40

0 1 2 3 4
time [s]

th
ro

ug
hp

ut
[M

bp
s]

TCP
BQUIC

(a) TCP vs QUIC (b) TCP vs BQUIC

Figure 13: Fairness comparison in WiFi network

In case of WiFi network the behavior of QUIC and TCP is very different as shown in Fig. 13.
Here TCP gets much higher share of bandwidth and QUIC is able to grab more bandwidth only
after the TCP flow is about to finish. Interestingly, the competing flows of TCP and BQUIC
are quite fair to each other which is a positive thing. Besides providing higher throughput, our
proposed optimization also provides better fairness with competing TCP flows in WiFi.

7 Conclusions

In this paper we evaluated the performance of QUIC v43 in WMN. We first highlighted that while
QUIC achieves better throughput than TCP in wired networks, it achieves sub-optimal throughput
in high performance WiFi links. We showed this by performing experiments in a production
WMN. Using machine learning techniques, we determined the factors that impact TCP and QUIC
performance and then proceeded to investigate the root-causes of QUIC’s performance degradation
in the WMN. We discovered that high variation in delay in WiFi links can be misinterpreted by
QUIC as a sign of congestion and it can also result in early exit from slow start phase. Another
cause is the design decision to make QUIC traffic smooth by using packet pacing, which does not
allow it to efficiently exploit 802.11 frame aggregation. We implemented and evaluated BQUIC,
i.e., a customized version of QUIC v43 that increases traffic burstiness to better exploit WiFi frame
aggregation and optimizes threshold for slow start and loss detection algorithms. Our results show
that BQUIC achieves up to 28% higher throughput than vanilla QUIC.

While our experiments focus on WMNs, we believe that the findings may be applicable to other
WiFi networks as well. The reason is that the root-causes of the performance issues are related to
the transport protocol design and its interaction with the WiFi MAC layer. This work opens op-
portunities for other researchers to study cross-layer optimizations. Layer-2 protocols in wired and
wireless networks are nowadays significantly different, this, coupled with the flexibility of modifi-
cation provided by QUIC opens the opportunity for researchers to study cross-layer optimizations
and dynamically tune the protocol for each network type. This can greatly improve the overall
performance and end-user experience.

19



Acknowledgments

This work was supported by the Erasmus Mundus Joint Doctorate in Distributed Computing
EMJD-DC program, the Spanish grant TIN2016-77836-C2-2-R, and Generalitat de Catalunya
through 2017-SGR-990. This research was conducted as part of the PhD thesis which is available
online at upcommons.upc.edu.

References

[1] Leonardo Maccari and Renato Lo Cigno. A week in the life of three large wireless community
networks. Ad Hoc Networks, 24:175–190, 2015.

[2] Cisco Visual Networking Index. https://www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-vni/white-paper-c11-741490.html,
2018. (accessed May 2019).

[3] Guido R Hiertz, Dee Denteneer, Lothar Stibor, Yunpeng Zang, Xavier Pérez Costa, and
Bernhard Walke. The ieee 802.11 universe. IEEE Communications Magazine, 48(1), 2010.

[4] Adam Langley et al. The quic transport protocol: Design and internet-scale deployment. In
Proceedings of the SIGCOMM, pages 183–196, 2017.

[5] Péter Megyesi, Zsolt Krämer, and Sándor Molnár. How quick is quic? In Communications
(ICC), 2016 IEEE International Conference on, pages 1–6. IEEE, 2016.

[6] Gaetano Carlucci, Luca De Cicco, and Saverio Mascolo. Http over udp: an experimental in-
vestigation of quic. In Proceedings of the 30th Annual ACM Symposium on Applied Comput-
ing, pages 609–614. ACM, 2015.

[7] Sarah Cook, Bertrand Mathieu, Patrick Truong, and Isabelle Hamchaoui. Quic: Better for
what and for whom? In IEEE International Conference on Communications (ICC2017), 2017.

[8] Arash Molavi Kakhki, Samuel Jero, David Choffnes, Cristina Nita-Rotaru, and Alan Mislove.
Taking a long look at quic: an approach for rigorous evaluation of rapidly evolving transport
protocols. In Proceedings of the 2017 Internet Measurement Conference, pages 290–303. ACM,
2017.

[9] Jawad Manzoor, Llorenç Cerdà-Alabern, Ramin Sadre, and Idilio Drago. Improving perfor-
mance of quic in wifi. In 2019 IEEE Wireless Communications and Networking Conference
(WCNC), 2019.

[10] QUIC Implementations. https://github.com/quicwg/base-drafts/wiki/

Implementations. (accessed May 2019).

[11] Apurv Bhartia, Bo Chen, Feng Wang, Derrick Pallas, Raluca Musaloiu-E, Ted Tsung-Te Lai,
and Hao Ma. Measurement-based, practical techniques to improve 802.11 ac performance. In
Proceedings of the 2017 Internet Measurement Conference, pages 205–219. ACM, 2017.

[12] D. Skordoulis, Q. Ni, H. h. Chen, A. P. Stephens, C. Liu, and A. Jamalipour. Ieee 802.11n mac
frame aggregation mechanisms for next-generation high-throughput wlans. IEEE Wireless
Communications, 15(1):40–47, February 2008.

[13] B. S. Kim, H. Y. Hwang, and D. K. Sung. Effect of frame aggregation on the throughput
performance of ieee 802.11n. In 2008 IEEE Wireless Communications and Networking Con-
ference, pages 1740–1744, March 2008.

[14] Y. Lin and V. W. S. Wong. Wsn01-1: Frame aggregation and optimal frame size adaptation
for ieee 802.11n wlans. In IEEE Globecom 2006, pages 1–6, Nov 2006.

[15] Tamizh Selvam and Subramanian Srikanth. A frame aggregation scheduler for ieee 802.11 n.
In 2010 National Conference On Communications (NCC), pages 1–5. IEEE, 2010.

20



[16] Melody Moh, Teng-Sheng Moh, and Ken Chan. Error-sensitive adaptive frame aggregation
in 802.11 n wlan. In International Conference on Wired/Wireless Internet Communications,
pages 64–76. Springer, 2010.

[17] Anwar Saif, Mohamed Othman, Shamala Subramaniam, and Nor Asila Wati Abdul Hamid.
An enhanced a-msdu frame aggregation scheme for 802.11 n wireless networks. Wireless
Personal Communications, 66(4):683–706, 2012.

[18] Eitan Altman and Tania Jiménez. Novel delayed ack techniques for improving tcp perfor-
mance in multihop wireless networks. In IFIP International Conference on Personal Wireless
Communications, pages 237–250. Springer, 2003.

[19] Ajay Kumar Singh and Kishore Kankipati. Tcp-ada: Tcp with adaptive delayed acknowledge-
ment for mobile ad hoc networks. In Wireless Communications and Networking Conference,
2004. WCNC. 2004 IEEE, volume 3, pages 1685–1690. IEEE, 2004.

[20] Ruy De Oliveira and Torsten Braun. A dynamic adaptive acknowledgment strategy for tcp
over multihop wireless networks. In INFOCOM 2005. 24th annual joint conference of the
IEEE Computer and Communications Societies. Proceedings IEEE, volume 3, pages 1863–
1874. IEEE, 2005.

[21] Ruy De Oliveira and Torsten Braun. A smart tcp acknowledgment approach for multihop
wireless networks. IEEE Transactions on Mobile Computing, 6(2):192–205, 2007.

[22] George Xylomenos, George C Polyzos, Petri Mahonen, and Mika Saaranen. Tcp performance
issues over wireless links. IEEE communications magazine, 39(4):52–58, 2001.

[23] Michael Scharf, Marc Necker, and Bernd Gloss. The sensitivity of tcp to sudden delay varia-
tions in mobile networks. In International Conference on Research in Networking, pages 76–
87. Springer, 2004.

[24] Andrei Gurtov. Effect of delays on tcp performance. In Emerging Personal Wireless Commu-
nications, pages 87–105. Springer, 2002.

[25] Jan Rüth, Ingmar Poese, Christoph Dietzel, and Oliver Hohlfeld. A first look at quic in the
wild. In International Conference on Passive and Active Network Measurement, pages 255–
268. Springer, 2018.

[26] Jawad Manzoor, Idilio Drago, and Ramin Sadre. The curious case of parallel connections in
http/2. In 2016 12th International Conference on Network and Service Management (CNSM),
pages 174–180. IEEE, 2016.

[27] Jawad Manzoor, Idilio Drago, and Ramin Sadre. How http/2 is changing web traffic and how
to detect it. In 2017 Network Traffic Measurement and Analysis Conference (TMA), pages
1–9. IEEE, 2017.

[28] J. Manzoor, R. Sadre, I. Drago, and L. Cerdà-Alabern. Is there a case for parallel connections
with modern web protocols? In 2018 IFIP Networking Conference (IFIP Networking) and
Workshops, pages 1–9, May 2018.

[29] Linux Network Emulator. http://man7.org/linux/man-pages/man8/tc-netem.8.html,
2011. (accessed May 2019).

[30] Marc Fischlin and Felix Günther. Multi-stage key exchange and the case of google’s quic pro-
tocol. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 1193–1204. ACM, 2014.

[31] Robert Lychev, Samuel Jero, Alexandra Boldyreva, and Cristina Nita-Rotaru. How secure
and quick is quic? provable security and performance analyses. In 2015 IEEE Symposium on
Security and Privacy, pages 214–231. IEEE, 2015.

21



[32] Quentin De Coninck and Olivier Bonaventure. Multipath quic: Design and evaluation. In
Proceedings of the 13th International Conference on emerging Networking EXperiments and
Technologies, pages 160–166. ACM, 2017.

[33] Alexander Rabitsch, Per Hurtig, and Anna Brunström. A stream-aware multipath quic sched-
uler for heterogeneous paths. In ACM CoNEXT 2018 Workshop on the Evolution, Perfor-
mance, and Interoperability of QUIC (EPIQ’18), 2018.

[34] Sants-UPC Community Newtork. http://sants.guifi.net. (accessed May 2019).

[35] Community Networks Testbed for the Future Internet, CONFINE. http://

confine-project.eu/. FP7 European Project 288535 (accessed May 2019).

[36] OpenWrt Linux distro. for embedded devices. https://openwrt.org. (accessed May 2019).

[37] Quick Mesh Project. http://qmp.cat. (accessed May 2019).

[38] Llorenç Cerdà-Alabern, Axel Neumann, and Leonardo Maccari. Experimental evaluation of
bmx6 routing metrics in a 802.11 an wireless-community mesh network. In Future Internet
of Things and Cloud (FiCloud), 2015 3rd International Conference on, pages 770–775. IEEE,
2015.

[39] Open, Free and Neutral Network Internet for everybody. http://guifi.net/en. (accessed
May 2019).

[40] Llorenç Cerdà-Alabern, Axel Neumann, and Pau Escrich. Experimental evaluation of a wire-
less community mesh network. In The 16th ACM International Conference on Modeling, Anal-
ysis and Simulation of Wireless and Mobile Systems, MSWiM’13, Barcelona, Spain, Novem-
ber 3–8, 2013. ACM.

[41] qMp Sants-UPC monitoring page. http://dsg.ac.upc.edu/qmpsu. (accessed May 2019).

[42] Riccardo Gusella. Characterizing the variability of arrival processes with indexes of dispersion.
IEEE Journal on Selected Areas in Communications, 9(2):203–211, 1991.

[43] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

[44] Florian Gratzer. Quic-quick udp internet connections. Future Internet and Innovative Internet
Technologies and Mobile Communications, 2016.

Appendices

Appendix A QUIC features

• Multiplexing
Stream multiplexing was implemented in HTTP/2 over TCP to solve the head-of-line blocking
at the application layer: Even if HTTP/1.1 supports request pipelining, responses must arrive
in the same order as the requests. Page rendering thus may get blocked if important requests
are fired only after less important content is requested. However, HTTP/2 has only partially
solved the problem and the head-of-line blocking has been passed down to the transport layer.
When a packet is lost, all HTTP/2 streams are blocked and TCP buffers any subsequent packets
until the successful retransmission of the lost packet. QUIC implements stream multiplexing at
the transport layer. QUIC design avoids head-of-line blocking at both application and transport
layer. A QUIC connection can still make progress on some streams while others are paused due
to packet loss.

22



Figure 14: Comparison of TCP and QUIC connection establishment.

• Low-latency connection establishment
The establishment of a secure connection usually requires several round trips. Round trip latency
can make a big difference on long distance links or WiFi and cellular networks. QUIC combines
the transport and crypto handshake and reduces the number of round trips required for setting
up a connection.

Fig. 14 shows the comparison of connection establishment of TCP and QUIC with encryption. It
takes 3 RTT for TCP and TLS 1.2 to establish the connection with an unknown server. The first
round trip is required for the three-way TCP handshake. The second round trip is required to
negotiate the TLS version and the cipher suite. In the third round trip key exchange is initiated,
which is used to establish the symmetric key for the session. In case of resumed connections, only
2-RTTs are required. This procedure is improved in TCP with TLS 1.3 where it takes 2-RTT for
the initial connection and 1-RTT for resumed connections. QUIC further reduces this latency.
It takes only 1-RTT to establish a secure connection with an unknown server using inchoate
ClientHello (CHLO). It then starts application data transfer in the next round trip along with
complete CHLO. Repeated connections are started with 0-RTT by sending the complete CHLO
along with encrypted data directly.

• Connection migration
QUIC supports connection migration e.g., from WiFi to cellular because QUIC connections are
identified by a 64-bit connection ID which remains the same across these migrations. On the
other hand, a TCP connection is identified by a 4-tuple (source and destination IP address,
source and destination port number). Therefore, TCP connection does not survive IP address
changes and NAT re-bindings.

• Header and payload encryption
QUIC hides most of its state information by using header and payload encryption by default.
While it helps in avoiding network ossification and pervasive monitoring, it comes at the cost of
complicating network operations and management. Routine tasks of network operators such as
detecting anomalies, capacity planning, and traffic engineering become harder due to transport
layer header encryption.

23


