
DEEP REINFORCEMENT LEARNING

BASED ACTIVE QUEUE MANAGEMENT

FOR IOT NETWORKS

by

Minsu Kim

B.Eng., Yonsei University, the Republic of Korea, 2017

A Thesis

Presented to Ryerson University

in partial fulfilment of the

requirements for the degree of

Master of Applied Science

in the program of

Computer Networks

Toronto, Ontario, Canada, 2019

©Minsu Kim 2019

Author’s Declaration

I hereby declare that I am the sole author of this dissertation. This is a true copy of the

dissertation, including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this dissertation to other institutions or individu-

als for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this dissertation by photocopying or

by other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

I understand that my dissertation may be made electronically available to the public.

ii

Abstract

Deep Reinforcement Learning based Active Queue Management

for IoT Networks

©Minsu Kim, 2019

Master of Applied Science

Computer Networks

Ryerson University

Internet of Things (IoT) has pervaded most aspects of our life through the Fourth Indus-

trial Revolution. It is expected that a typical family home could contain several hundreds

of smart devices by 2022. Current network architecture has been moving to fog/edge archi-

tecture to have the capacity for IoT. However, in order to deal with the enormous amount

of traffic generated by those devices and reduce queuing delay, novel self-learning network

management algorithms are required on fog/edge nodes. For efficient network management,

Active Queue Management (AQM) has been proposed which is the intelligent queuing disci-

pline. In this paper, we propose a new AQM based on Deep Reinforcement Learning (DRL)

to handle the latency as well as the trade-off between queuing delay and throughput. We

choose Deep Q-Network (DQN) as a baseline of our scheme, and compare our approach with

various AQM schemes by deploying them on the interface of fog/edge node in IoT infras-

tructure. We simulate the AQM schemes on the different bandwidth and round trip time

(RTT) settings, and in the empirical results, our approach outperforms other AQM schemes

in terms of delay and jitter maintaining above-average throughput and verifies that DRL

applied AQM is an efficient network manager for congestion.

iii

Acknowledgements

I would like to express my sincere gratitude to my supervisor Prof. Alagan Anpalagan

for giving me lots of opportunities and support, from leading me into Canada to completing

my studies with meaningful results. Without his trust, help and guidance, I would not have

completed my master’s studies.

Also I would like to extend my gratitude to the Computer Networks Program and the

School of Graduate Studies at Ryerson University which provided me with a chance to pursue

my master’s degree and all kinds of support for my studies.

I am grateful to Prof. Muhammad Jaseemuddin, Bobby Ma, and Javad Alirezaie for

being members of my defense committee and giving me constructive advice for a more solid

thesis.

It was my pleasure to be a member of WINCORE Lab and spend time with great col-

leagues and fellows, and I have felt their warm hearts and a friendly environment.

In addition, I would like to thank to my family for their trust and dedication during my

master’s studies, and my friends from all communities for their pray and encouragement.

Last but certainly not least, my special thanks go to my significant other, Buon, who is

always a constant source of love and motivation for my life.

iv

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

List of Tables viii

List of Figures ix

List of Abbreviations xi

1 Introduction 1

1.1 Background . 1

1.1.1 Fog/Edge Computing Architecture for Internet of Things 1

1.1.2 Active Queue Management for Internet of Things 3

1.1.3 Reinforcement Learning for Network Management 3

1.2 Motivation and Objective . 4

1.3 Thesis Contributions . 4

1.4 Thesis Organization . 5

2 Literature Review of Active Queue Management 6

2.1 Active Queue Management Schemes . 7

v

2.1.1 Random Early Detection (RED) . 7

2.1.2 Controlled Delay (CoDel) . 7

2.1.3 Proportional Integral controller Enhanced (PIE) 8

2.2 Machine Learning Applied AQM and Network Traffic Scheduling Algorithms 9

2.3 Traffic Management for IoT Applications . 10

2.4 Summary . 12

3 System Model 14

3.1 Deep Q-Network . 14

3.2 DQN based AQM System Design . 17

3.2.1 Process of Selecting Action . 17

3.2.2 Reward Engineering . 18

3.2.3 Training Process . 20

3.3 Summary . 20

4 Experiment Setup 23

4.1 Characteristics of IoT devices . 23

4.2 IoT Testbed . 24

4.3 Assumptions and Parameter Setting . 24

4.4 Summary . 26

5 Results and Analysis 29

5.1 Comparison on Queuing Delay and Occupancy 29

5.2 Comparison on Different Bandwidth . 30

5.3 Comparison on Different Baseline RTT . 31

5.4 Analysis on Different IoT Categories . 33

5.4.1 UDP based IoT flows . 35

5.4.2 TCP based IoT flows . 35

5.5 Analysis on Reward Trajectory for Model Optimization 37

vi

5.6 Summary . 40

6 Conclusion 41

6.1 Conclusion and Summary . 41

6.2 Future Work . 42

6.2.1 Energy Efficient AQM Design . 42

6.2.2 Construction of IoT-realistic Simulation Environment 42

A Dequeue Rate Calculation in PIE 43

B AQM Performance Comparison in Various Environments 44

Bibliography 47

vii

List of Tables

2.1 Summary of related works. 13

4.1 Clustering of IoT attributes. 26

4.2 Measure of attribute clusters. 27

4.3 Environmental setup parameters. 27

4.4 Comparison AQM setup parameters. 28

4.5 DQN based AQM algorithm setup parameters. 28

5.1 Reward scaling factor sensitivity; P2P link data rate = 1Mbps; Baseline RTT

= 0ms; Number of IoT devices = 63 . 39

viii

List of Figures

1.1 3-tier fog computing architecture . 2

3.1 Markov Decision Process. 15

3.2 Process of selecting an action. 18

3.3 Flowchart of DQN based AQM training . 21

4.1 Overview of the IoT testbed . 25

5.1 Empirical CDF of queuing delay for flows of IoT devices; P2P link data rate

= 1Mbps; Baseline RTT = 0ms; Reward scaling factor δ = 0.5 30

5.2 Comparison of queue occupancy of AQM schemes; P2P link data rate =

1Mbps; Baseline RTT = 0ms; Number of IoT devices = 21; Reward scaling

factor δ = 0.5 . 31

5.3 Throughput per flows of 21 IoT devices; Baseline RTT = 0ms; Reward scaling

factor δ = 0.5 . 32

5.4 Mean delay per flows of 21 IoT devices; Baseline RTT = 0ms; Reward scaling

factor δ = 0.5 . 32

5.5 Throughput per flows of 63 IoT devices; P2P link data rate = 1Mbps; Reward

scaling factor δ = 0.5 . 33

5.6 Mean delay per flows of 63 IoT devices; P2P link data rate = 1Mbps; Reward

scaling factor δ = 0.5 . 34

ix

5.7 Maximum delay per flows of 63 IoT devices; P2P link data rate = 1Mbps;

Reward scaling factor δ = 0.5 . 34

5.8 Most frequent delay per flows of 63 IoT devices; P2P link data rate = 1Mbps;

Reward scaling factor δ = 0.5 . 35

5.9 Throughput per UDP flows of 18 IoT devices; P2P link data rate = 1Mbps;

Reward scaling factor δ = 0.5 . 36

5.10 Mean Delay per UDP flows of 18 IoT devices; P2P link data rate = 1Mbps;

Reward scaling factor δ = 0.5 . 36

5.11 Mean Jitter per UDP flows of 18 IoT devices; P2P link data rate = 1Mbps;

Reward scaling factor δ = 0.5 . 37

5.12 Throughput per TCP flows of 45 IoT devices; P2P link data rate = 1Mbps;

Reward scaling factor δ = 0.5 . 38

5.13 Mean Delay per TCP flows of 45 IoT devices; P2P link data rate = 1Mbps;

Reward scaling factor δ = 0.5 . 38

5.14 Comparison of reward on non-trained/trained model; P2P link data rate =

1Mbps; Baseline RTT = 0ms; Number of IoT devices = 63; Reward scaling

factor δ = 0.5 . 39

x

List of Abbreviations

6LoWPAN IPv6 over Low-power wireless personal area network

APs Access Points

AQM Active Queue Management

CDF Cumulative distribution function

CoDel Controlled Delay

CSMA Carrier-sense Multiple Access

DL Deep Learning

DNN Deep Neural Network

DQN Deep Q-Network

DRL Deep Reinforcement Learning

FAN Fog access node

FIFO First-In-First-Out

FQ-CoDel FlowQueue-Controlled Delay

HTTPS Hyper Text Transfer Protocol Secure

HVFT High Volume Flexible Time

IETF Internet Engineering Task Force

IoT Internet of Things

MDP Markov decision process

ML Machine Learning

MLP Multilayer Perceptron

P2P peer-to-peer

P-FIFO Priority-FIFO-fast

PIE Proportional Integral controller Enhanced

xi

QoS Quality of Service

RED Random Early Detection

RL Reinforcement Learning

RTT Round Trip Time

SDN Software Defined Network

TCP Transmission Control Protocol

TD Temporal Difference

UDP User Datagram Protocol

xii

Chapter 1

Introduction

1.1 Background

The concept and definition of Internet of Things (IoT) is derived from a connectivity of

every machine device on the accelerative convergence of many technologies such as wire-

less technologies, embedded systems, big data analysis, and real-time processing for smart

automation toward future Internet. International Data Corporation (IDC) expects that

worldwide IoT market will grow up to $1.7 trillion in 2020 [1]. With the high demand for

IoT devices such as smart hubs, cameras, and healthcare devices, Gartner predicts that a

typical family home could contain more than 500 IoT devices by 2022 composing smart

cities [2]. To deal with the data from IoT devices processed by cloud computing efficiently,

fog/edge computing architecture has been considered these days.

1.1.1 Fog/Edge Computing Architecture for Internet of Things

Following the phenomenon of IoT generation, current cloud computing architecture is moving

to fog/edge computing architecture to carry smart homes, and further smart cities. This

architecture deploys edge devices to carry out the considerable amount of computation and

storage locally by reducing the latency between IoT devices and servers, and improve the

1

Figure 1.1: 3-tier fog computing architecture

user's experience and resilience of services in the long run [3]. Figure 1.1 describes the basic

fog/edge computing architecture concisely, and it has three tiers as follows [4]:

• Tier-1 Things/End Devices : Devices of tier-1 contain IoT devices such as sensors

and end user (EU)'s mobile devices including smart phones, tablets, and smart watch.

These end devices are also known as Terminal Nodes (TNs).

2

• Tier-2 Fog : The fog/edge nodes of tier-2 consist of the network router, switch, gateway,

and Access Points (APs). In fog/edge computing architecture, these devices have the

function of computation and storage.

• Tier-3 Cloud : This tier includes usual cloud servers and data centers which are capable

of providing sufficient storage and computing resources.

In the middle of the architecture, the fog/edge nodes are required to bear and accommodate

traffic generated by both of the cloud servers and end devices through efficient network

scheduling or resource management.

1.1.2 Active Queue Management for Internet of Things

Although IoT devices do not have to transmit entire packets to cloud servers through the edge

gateway, edge devices suffer from traffic generated by numerous IoT devices. For efficient

management when it comes to queuing networks, Active Queue Management (AQM) has

emerged as the intelligent network managing mechanism to selectively transmit and receive

packets [5]. Unlike passive queue such as First-In-First-Out (FIFO), AQM introduces the in-

telligent drop of network packets to reduce network congestion by tuning AQM's parameters

such as packet-drop probability adapting to the state. Widely used and recommended AQM

schemes by Internet Engineering Task Force (IETF) [6] include Random Early Detection

(RED) and Controlled Delay (CoDel) that will be introduced in chapter 2.

1.1.3 Reinforcement Learning for Network Management

In recent years, Machine Learning (ML) has become an important technology and grown up

in the industries and our quality of life. And especially, Deep Learning (DL) appears to be

outperforming among various ML approaches in various fields such as efficient data coding

and modeling objects (unsupervised learning) as well as normal classification and prediction

jobs (supervised learning) [7]. DL also has been applied to Reinforcement Learning (RL),

3

which is a category of ML aiming at how software agent learns optimal actions on certain

states to take the maximum cumulative reward [8]. Deep Reinforcement Learning (DRL)

is DL applied RL which means that software agent's function approximator deploys Deep

Neural Network (DNN) as its baseline, and it has also demonstrated greater performance on

RL based applications such as playing games and motion control. Recently, the domain or

application of state-of-the-art DRL schemes has been extended to networking fields such as

network resource management [9].

1.2 Motivation and Objective

Since the state transition of network environment is discrete, this discrete nature is suitable

for being represented as a finite Markov Decision Process (MDP) which is introduced in

chapter 3 in detail. Because the finite MDP is the main principle of reinforcement learning,

we are motivated by this point, in addition to the fact that DRL has shown remarkable

performance on highly stochastic environments, and IoT infrastructure consists of numerous

various types of end devices causing stochastic state transition. Our objective is to use deep

learning to AQM for the first time as well as designing and implementing a fine state-aware

AQM scheme on the interface of fog/edge nodes against the transilient IoT environment.

Since fog/edge nodes have enough computing power, training the environment through DNN

is not an issue.

1.3 Thesis Contributions

To enhance active queue management, we propose a deep reinforcement learning applied

AQM scheme for efficient network management and study the trade-off between queuing

delay and throughput, while maintaining Quality of Service (QoS) in terms of low jitter.

Our system is designed based on Deep Q-Network (DQN) including main Q-network and

target network trained using experience replay. It selects a packet drop or non-drop action

4

at the packet departure stage depending on the current state consisting of current queue

length, dequeue rate, and queuing delay. After an action is selected, a reward is calculated

based on the several elements that will be clarified in chapter 3 in detail. All experiments

are conducted on IoT based topology.

The main contributions of this thesis can be summarized as follows:

• Introduction of DRL applied AQM scheme for efficient network management to study

the trade-off between queuing delay and throughput with maintained QoS such as jitter

• Implementation of IoT testbed which contains 21 different real IoT devices' character-

istics in seven different IoT device categories

• Analysis of the experimental results, verification of our proposed scheme' s perfor-

mance, and providing of design guidelines for DRL based AQM

1.4 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, related works including widely

used AQM schemes and ML applied AQM algorithms are described. The overview and detail

design of our AQM scheme are presented in Chapter 3. Next, our IoT testbed including

topology, scenarios and IoT characteristics is explained in Chapter 4. Finally, we evaluate

and analyze our experiment results in Chapter 5 and we conclude the thesis with summary

and future work in Chapter 6.

5

Chapter 2

Literature Review of Active Queue

Management

Active Queue Management (AQM) is one of the intelligent network management methods

deployed in the network interface of a router or switch [5]. AQM has parameters such as

packet-drop probability tunable by both of users and queue itself adjusting to the environ-

ment. Unlike the traditional queue management methods such as drop-tail and FIFO, AQM

drops packets before the queue is full to avoid the queue overflow by bursty flows as known

as bufferbloat. Consequently, it causes low throughput and high latency and jitter, which is

the variation in the latency or queuing delay on packet flows and that is why AQM has been

developed and used widely. However, while coping with this problem, early AQM schemes

had a drawback which is the parameter tuning since the performance of AQM highly de-

pends on the base parameters setup. There have been attempts for either minimum tuning

of parameters or self parameter tuning. In this chapter, we introduce the widely-used AQM

and research about ML applied AQM schemes as well as the network scheduling algorithms.

We also review AQM performance studies on IoT testbed.

6

2.1 Active Queue Management Schemes

Traditional queue management cannot deal with rapidly changing queue's state such as

oversized buffers which is bufferbloat. Recent IETF has expressed interest in up-to-date

AQM schemes to deal with this problem [6]. Here, we briefly introduce and summarize three

recognized AQM schemes: RED [10], CoDel [11], and PIE [12] recommended by IETF.

2.1.1 Random Early Detection (RED)

RED is one of the early classic AQM schemes for congestion avoidance, and basically it

has three parameters to adapt to the state: two thresholds thmin and thmax, and packet

marking probability p. If the average queue size Lavg is less than thmin, packet is accepted to

enqueue. If queue length is in between thmin and thmax, RED calculates p to mark the packet

by dropping it or by modifying the packet header depending on the transport protocol. If

Lavg is greater than thmax, RED drops the packet rather than modifying the packet header

to control Lavg. Variants of RED have been developed including Adaptive RED (ARED)

and Weighted RED (WRED) for better QoS [13].

2.1.2 Controlled Delay (CoDel)

CoDel is packet-sojourn time based AQM, and tracks the (local) minimum queuing delay

experienced by packets. The minimum packet-sojourn time can be decreased only when a

packet is dequeued; and to maintain the updated minimum value, CoDel measures the value

within a certain interval Tint, set to 100ms by default. CoDel assumes a target delay Ttarget

and when the queuing delay exceeds Ttarget during Tint, a packet is dropped and the next

drop time is set by a control law defined as follows:

tnew = tcurr +
Tint√
Ndrops

, (2.1)

7

where tnew is new next drop time, tcurr is current next drop time and Ndrops is the number

of drops since the dropping state was entered. When the queue delay is below Ttarget, the

controller stops dropping the packets. A distinct feature of CoDel is that it drops packets at

the packet departure stage. We deal with FlowQueue-CoDel (FQ-CoDel) [14] as well, which

classifies flows into one of 1024 sub-queues by hashing the 5-tuple of source and destination

IP addresses, source and destination port numbers, and protocol number. Each sub-queue is

implemented based on CoDel, and FQ-CoDel deploys a byte-based deficit round-robin (DRR)

mechanism to serve sub-queues. FQ-CoDel has a distinct parameter quantum which is the

number of bytes each queue keeps to decide to dequeue on each round of the scheduling

algorithm. The default size of quantum is set to 1514 bytes, which corresponds to the

Ethernet maximum transmission unit (MTU) plus the hardware header length of 14 bytes.

2.1.3 Proportional Integral controller Enhanced (PIE)

PIE is a burst-tolerance AQM scheme. Similar to CoDel, PIE drops the packet depending

on the queuing delay, but it is more delicate with additional parameters. For every Tupdate

interval, PIE calculates packet-drop probability p based on queuing delay, α, and β where

α and β are static configured parameters, set to 0.125 and 1.25 by default which determine

the final balance between latency offset and latency jitter. When it comes to PIE, queuing

delay is estimated by dequeue rate as follows:

cur del =
qlen

avg drate
, (2.2)

where cur del is the current queuing delay, qlen is current queue length in bytes, and

avg drate is the average dequeue rate. To overcome rate fluctuation which is a common

issue in wireless networking, PIE measures the dequeue rate periodically (refer to Appendix

A for details). PIE handles bursts as well by deploying a maximum bursting allowance

parameter Bmax to allow bursts bypassing the random drop process.

8

By using AQM schemes, the bufferbloat and network congestion have been alleviated

comparing with using traditional passive queues, but it is still possible to improve the AQM

combining different technologies such as Machine Learning (ML) dealt in the next section.

2.2 Machine Learning Applied AQM and Network Traf-

fic Scheduling Algorithms

Machine learning (ML) is a study of data analysis that approximates an algorithm or math-

ematical model to improve performance of a certain task gradually. As one of ML methods,

reinforcement learning (RL) is defined as training an agent to make it select an optimal

action for a certain task by giving a reward. In networking field, the agent's “certain task”

can be expressed as a network scheduling or resource management. There have been several

attempts for applying ML and RL techniques to not only in AQM but also in network traffic

and resource control.

In [15], Bouacida et al. implemented LearnQueue AQM algorithm based on reinforcement

learning for wireless networking. By manipulating a buffer size dynamically using Q-Learning

in a certain interval, they update the Q-table and optimize the policy of Q-function, but

they tested their algorithm with only two and three nodes deployed scenarios. Bisoy et

al. of [16] suggested the AQM scheme based on a shallow neural network of one hidden

layer consisting of three neurons to deal with non-linearity of networking system and to

reduce queuing delay, but their work did not deal with trade-off between throughput and

delay performance. In [17], Vucevic et al. proposed Reinforcement Learning-Queuing Delay

Limitation (RL-QDL) AQM algorithm. The RL agents receive topology information from

bandwidth broker that manages the resource handling and QoS provisioning depending on

the achievement of QoS expectations in egress routers (ER). It assumes class based queuing

(CBQ) by supporting three different classes: expedited forwarding (EF), assured forwarding

(AF), and best effort (BE) traffic in order to provide end-to-end QoS to users with different

9

types of services.

In terms of the network scheduling algorithms, Chen et al. proposed DRL based op-

timized computation offloading policy by deploying a double DQN on the edge node [18].

Comparing with baseline algorithms, their approach indicated the optimal trade-off between

the task delay and drops. In [19], Chinchali et al. investigated real data of cellular net-

work traffic and introduced DRL based scheduler focusing on High Volume Flexible Time

(HVFT) traffic including software and data updates to mobile IoT devices, large data trans-

fer from IoT sensors to cloud servers, and pre-fetched ultra-high quality and bit-rate video.

As a baseline of DRL model, authors used Deep Deterministic Policy Gradient (DDPG)

algorithm to train actor and critic networks, and the RL agent resides at the cell tower for

HVFT control. In [20], Xu et al. applied DRL to network traffic engineering by deploying

actor-critic method with prioritized experience replay. Authors compared their algorithm

with the widely used baseline solutions such as Shortest Path (SP), Load Balance (LB), and

Network Utility Maximization (NUM), and verified their model performs better than given

baseline solutions.

Although there have been meaningful works, current ML based AQM works do not

consider stochastic environments such as IoT networks, or introduced network schedulers

work on the task or job processing level, not packet processing level. In the next section, we

review the research about traffic management for IoT applications as well.

2.3 Traffic Management for IoT Applications

Along with the growth of IoT markets and technologies, traffic scheduling and management

for IoT applications have been flourished recently.

Kua et al. analyzed performances of several AQM schemes such as FlowQueue CoDel

(FQ-CoDel) and PIE assuming the IoT enabled smart home testbed including low and

high-rate IoT applications, video call traffic, bulk file transfers, and multimedia streaming

10

server [21]. As the indicators of AQM schemes' efficiency, authors described throughput and

round trip time (RTT). There were efforts to reduce IoT service delay for edge computation

offloading policy as well [22], [23]. In [22], Zhang et al. consider G/M/1 queue as a task

buffer at the edge computing server in First Come First Served (FCFS) and non-preemptive

manner. The authors used Locality-First policy and probability-based policy by setting a

probability parameter to make an offloading decision as the offloading policies. Yousefpour

et al. used load sharing approach between edge nodes to reduce the IoT service delay as an

edge offloading policy [23]. They considered the different request types from IoT devices as

well as the queue length which is the task buffer for load sharing.

In [24], Zhao et al. introduced multi-tier in fog/edge layer for desired throughput-delay

trade-off per user consisting of fog access node (FAN) which caches a subset of popular

contents and fog control node (FCN) connected to FAN through the backhaul connections

having higher computing and storage capacity than FAN. Zheng et al. investigated multiple

service frequency constraints in wireless channels [25]. The authors scheduled packets ar-

rived at links using round-robin and maximum-weight scheduling. The links are categorized

into different stages indicating the priority level, and on the same stage, maximum-weight

scheduling gives a priority to a link with longer queue size to be served.

In [26], Bhandari et al. applied priority queues to the cluster head to prioritize and

aggregate the incoming packets. The proposed mechanism guaranteed QoS requirements

in terms of latency and reliability. Al-Kashoash et al. proposed optimization-based hybrid

congestion alleviation (OHCA) which combines both traffic and resource controls in the IPv6

over Low-power wireless personal area network (6LoWPAN) to utilize the network resources

effectively [27]. Zhao et al. approached in a different way from above works which is laying

cloudlets down on the optimal places to minimize the access delay using Software Defined

Network (SDN) [28]. The control plane on SDN controllers assigns cloudlets to APs based

on the average cloudlet access delay among all placement cases.

11

2.4 Summary

In this chapter, we introduced widely used AQM schemes including RED, PIE, and CoDel

and reviewed related works for network traffic and resource management based on ML tech-

niques. Unlike the research about traffic management for IoT applications dealt in section

2.3 which is task scheduling or management, our approach deals with network flow of pack-

ets itself at the physical queue level in the network device's interface. To the best of our

knowledge, this is the first work to design deep learning based AQM as well as DRL. Table

2.1 tabulates the summary of related works, and in the next chapter, we introduce the design

of our system model in detail.

12

T
ab

le
2.

1:
S
u
m

m
ar

y
of

re
la

te
d

w
or

k
s.

P
u
b
li
c
a
ti
o
n

T
it
le

S
c
o
p
e

N
e
tw

o
rk

m
a
n
a
g
e
m
e
n
t

M
a
ch

in
e

L
e
a
rn

in
g

Io
T

A
p
p
li
c
a
ti
o
n

A
Q
M

O
th

e
r

a
p
p
ro

a
ch

e
s

D
e
e
p

L
e
a
rn

in
g

O
th

e
r
M

L

m
e
th

o
d
s

[1
5]

P
ra

ct
ic

al
an

d
D

y
n

a
m

ic
B

u
ff

er
S

iz
in

g

u
si

n
g

L
ea

rn
Q

u
eu

e
X

X

[1
6]

D
es

ig
n

of
an

ac
ti

ve
q
u

eu
e

m
a
n

a
g
em

en
t

te
ch

n
iq

u
e

b
as

ed
on

n
eu

ra
l

n
et

w
or

k
s

fo
r

co
n

g
es

ti
o
n

co
n
tr

o
l

X
X

[1
7]

R
ei

n
fo

rc
em

en
t

L
ea

rn
in

g
fo

r
A

ct
iv

e
Q

u
eu

e
M

a
n

a
g
em

en
t

in
M

ob
il

e
A

ll
-I

P
N

et
w

o
rk

s
X

X

[1
8]

O
p

ti
m

iz
ed

C
om

p
u

ta
ti

on
O

ffl
o
a
d

in
g

P
er

fo
rm

a
n

ce
in

V
ir

tu
al

E
d

ge
C

om
p

u
ti

n
g

S
y
st

em
s

v
ia

D
ee

p
R

ei
n

fo
rc

em
en

t
L

ea
rn

in
g

X
X

X

[1
9]

C
el

lu
la

r
N

et
w

or
k

T
ra

ffi
c

S
ch

ed
u

li
n

g

W
it

h
D

ee
p

R
ei

n
fo

rc
em

en
t

L
ea

rn
in

g
X

X
X

[2
0]

E
x
p

er
ie

n
ce

-d
ri

ve
n

N
et

w
o
rk

in
g
:

A
D

ee
p

R
ei

n
fo

rc
em

en
t

L
ea

rn
in

g
b

a
se

d
A

p
p

ro
a
ch

X
X

[2
1]

U
si

n
g

A
ct

iv
e

Q
u

eu
e

M
a
n

a
g
em

en
t

to
A

ss
is

t

Io
T

A
p

p
li

ca
ti

on
F

lo
w

s
in

H
o
m

e
B

ro
a
d

b
a
n

d
N

et
w

o
rk

s
X

X

[2
2]

T
h

eo
re

ti
ca

l
A

n
al

y
si

s
o
n

E
d

g
e

C
o
m

p
u

ta
ti

o
n

O
ffl

oa
d

in
g

P
ol

ic
ie

s
fo

r
Io

T
D

ev
ic

es
X

X

[2
3]

O
n

R
ed

u
ci

n
g

Io
T

S
er

v
ic

e
D

el
ay

v
ia

F
og

O
ffl

o
a
d

in
g

X
X

[2
4]

F
E

M
O

S
:

F
og

-E
n

ab
le

d
M

u
lt

it
ie

r
O

p
er

a
ti

o
n

s
S

ch
ed

u
li

n
g

in
D

y
n

am
ic

W
ir

el
es

s
N

et
w

o
rk

s
X

X

[2
5]

S
ch

ed
u

li
n

g
F

lo
w

s
W

it
h

M
u

lt
ip

le

S
er

v
ic

e
F

re
q
u

en
cy

C
o
n

st
ra

in
ts

X
X

[2
6]

L
at

en
cy

M
in

im
iz

at
io

n
in

W
ir

el
es

s
Io

T
U

si
n

g
P

ri
o
ri

ti
ze

d

C
h

an
n

el
A

cc
es

s
an

d
D

a
ta

A
g
g
re

g
a
ti

o
n

X
X

[2
7]

O
p

ti
m

iz
at

io
n

-B
as

ed
H

y
b

ri
d

C
o
n

g
es

ti
o
n

A
ll

ev
ia

ti
on

fo
r

6L
o
W

P
A

N
N

et
w

o
rk

s
X

X

[2
8]

O
p

ti
m

al
P

la
ce

m
en

t
of

C
lo

u
d

le
ts

fo
r

A
cc

es
s

D
el

ay

M
in

im
iz

at
io

n
in

S
D

N
-B

as
ed

In
te

rn
et

o
f

T
h

in
g
s

N
et

w
o
rk

s
X

X

T
h
is

w
o
rk

D
e
si
g
n

o
f
D
e
e
p

R
e
in
fo
rc
e
m
e
n
t
L
e
a
rn

in
g

b
a
se
d

A
c
ti
v
e
Q
u
e
u
e
M

a
n
a
g
e
m
e
n
t

X
X

X

13

Chapter 3

System Model

In this chapter, we first give an explanation of Deep Q-Network (DQN) which is the baseline

of our system. Then we describe the design of our system in terms of the state, action, and

reward, and the algorithm is followed by focusing on how to give a reward to the agent in

detail.

3.1 Deep Q-Network

In reinforcement learning, the software agent interacts with the environment ε in a sequence

of discrete time step t = 1, 2, 3, ... , and generally ε is stochastic. At each time step t, the

agent selects an action at ∈ A(s) from the set of action space on the given state st ∈ S.

After taking an action at, the agent receives a reward rt ∈ R ⊂ R and observes a new state

st+1. By iterating this interaction, each observation in the sequence or trajectory is suitable

for being expressed as a finite Markov Decision Process (MDP) that begins like this:

s1, a1, r1, s2, a2, r2, s3, a3, r3, ...

The transition of MDP satisfies Markov property that refers to the memoryless property of a

stochastic process. In the stochastic process, future states of the process only depend on the

14

present state, not on the whole trajectory of events. Figure 3.1 shows the finite transition

of MDP [8]. On the network queue, as packets come into the queue, the agent can observe

the current queue state such as queue length and take an action whether to drop the packet

or not. The queuing delay is affected by the action, and we can derive a reward as well as

observe a next state. Therefore, it can be considered as MDPs, and we can apply RL to the

sequence representation at each time step t.

Figure 3.1: Markov Decision Process.

The two most significant features of RL are trial-and-error search and delayed reward

which means that the next state's immediate reward is also considered on the current state

[8]. Ultimately with these features, the agent selects an optimal action on any given state by

maximizing the total reward. In order to evaluate the value of actions, Q-learning has been

used as a common method of Temporal Difference (TD) learning that updates the model at

the end of each time step [29]. Q-learning finds an optimal policy for expected cumulative

future reward on the current state. Action-value function known as Q-function, gives a value

for every action of each state, and is updated by the following equation:

Q(st, at)← (1− α) ∗Q(st, at) + (rt + γ ∗max
a′

Q(st+1, a
′)), (3.1)

where rt is a reward after taking an action at on state st, a
′ is an expected action to maximize

the Q-value, α is learning rate, and γ is discount factor for future reward. Since we design

discrete actions of packet drop/non-drop actions, our policy π = p(a|s) is deterministic that

15

maps each state s to an action a. The goal of the agent is to select an action to maximize the

cumulative future reward through Q-function, so the optimal Q-function can be expressed

as follows:

Q∗(s, a) = max
π

Est∼ε
[
rt + γrt+1 + γ2rt+2 + ... |st = s, at = a, π

]
, (3.2)

which is the maximum expected cumulative reward acquired by the policy π after taking

an action a on the state s. Since we focus on deep neural network (DNN) as a function

approximator, it outputs the predicted Q-value Q(s, a|θ) where θs are weights of neurons of

DNN. In order to minimize the difference between predicted Q-value and optimal Q-value,

loss is defined as:

L(θ) = min
θ

T∑
t=1

[(
Q(st, at|θ)− (rt + γ ∗max

a′
Q(st+1, a

′|θ))
)2]

, (3.3)

However, when reinforcement learning uses a neural network as a function approximator,

it has a disadvantage that is unstable or diverges to train Q-function. One reason of the

instability is that the neural network receives highly correlated data as sequential inputs in

the observation, so it causes over-fitting or falling into local minimum. Another reason of

divergence is due to non-stationary target which means that both of the predicted Q-value

and optimal Q-value depend on weights θ so when the neural network is trained, target

value is also changed and it is difficult to converge. To overcome these issues, DQN has been

developed, which is the baseline model of our system [30]. There are two main features of

DQN: experience replay and network separation.

In order to reduce correlation between observations, the concept of experience replay is

used. Instead of training the neural network in order of sequence, we store the agent's expe-

riences et = (st, at, rt, st+1) at each time step t into the replay memory Dt = {e1, e2, ..., et}.

To update the neural network, mini-batches of experiences (s, a, r, s′) ∼ U(D) are selected

randomly in uniform distribution from the replay memory. The way of training the neural

16

network at iteration i uses a similar loss function to the equation (3.3):

Li(θi) = E(s,a,r,s′)∼U(D)

[(
Q(s, a|θi)− (r + γ ∗max

a′
Q̂(s′, a′|θ−i))

)2]
(3.4)

By deploying two networks (main Q-network Q and target network Q̂), we can set the

stationary target. The target network parameters θ−i are updated by Q-Network parameters

θi periodically, not in every step. With these features, DQN has shown outstanding perfor-

mances comparing with all previous Q-learning based algorithms as will be seen in chapter

5.

3.2 DQN based AQM System Design

In this section, we introduce the design of state, action, and reward function for our DQN

based AQM algorithm.

3.2.1 Process of Selecting Action

With respect to the state of RL, we consider three elements: current queue length in packets

L, dequeue rate Rdeq, and queuing delay d and we use PIE's dequeue rate calculation method

[12]. At each time step t, state st is defined as st = {Lt, Rdeq,t, dt} which is an input of

multilayer perceptron (MLP) consisting of two hidden layers of 64 neurons for each layer.

For selecting an action, main Q-network is used and it returns two probabilities as an output

(drop/non-drop probability). Following the higher probability, it decides a packet drop/non-

drop action at, and the action occurs on the packet departure stage of queue as if CoDel's

dropping action [11]. In order to find a better action on a certain state, we use explore/exploit

strategy which means that the agent takes an action based on its own selection (exploit),

or sometimes takes a random action uniformly based on a certain probability (explore). For

the explore/exploit strategy, we use ε-greedy algorithm starting from a highly random action

probability. At the first episode of the network simulation, the exploring probability is set

17

to 90% based on the round of episode and it dwindles down to 0% through the episodes.

The agent takes an action in periodic interval Tint only when there is queuing delay in the

queue. Figure 3.2 describes the process of selecting an action.

Figure 3.2: Process of selecting an action.

3.2.2 Reward Engineering

After taking an action, the RL agent waits for next state st+1 during the interval Tint. The

selected action is evaluated by a reward function. The most important point of designing

the reward function is to optimize the trade-off between queuing delay and drop-rate as

well as to avoid infinite packet drop state or non-drop state. We refer learnQueue's reward

function as a baseline [15]. There are two main components for a reward: delay reward

and enq reward for queuing delay and packet drop-rate respectively. The delay reward is

defined as:

delay reward = δ ∗ (delay ref − curr delay), (3.5)

where delay ref is the desired queuing delay, curr delay is the current queuing delay defined

in the equation 2.2, and δ is a scaling factor between delay reward and enq reward. The

18

enq reward is defined as:

enq reward = (1− δ) ∗ (min delay − delay ref) ∗ enq rate, (3.6)

where enq rate is enqueue rate during Tint, and it is calculated as:

enq rate =
Nenq

Nenq +Ndrops

, (3.7)

where Nenq is the number of enqueued packets and Ndrops is the number of dropped packets.

When Nenq is 0, enq rate is set to 0. Depending on the scaling factor δ, we can balance

the importance between the queuing delay and packet drop-rate by the agent. Unlike learn-

Queue's reward function that defines max delay which is the maximum time required to

drain the queue depending on the AP's physical data rate, we define min delay which is

delay when the link between the edge device and cloud gateway is fully utilized as follows:

min delay =
Lbyte
Rphy

, (3.8)

where Lbyte is the current queue length of the edge device in bytes, and Rphy is the physical

bandwidth (data rate) of peer-to-peer (P2P) link connected to the edge device. Finally, the

reward is calculated as the sum of both components:

reward = clip(delay reward+ enq reward,−1,+1). (3.9)

To avoid the divergence of a reward and regularize it, we clip the reward to the constant

minimum and maximum values corresponding to -1 and +1.

19

3.2.3 Training Process

Since we use DQN as our model, the agent stores an experience et = (st, at, rt, st+1) in tuple

format to the replay memory at each time step t. Once the number of experiences in replay

memory is over mini-batch size, the agent randomly picks samples of the experiences from

the memory in uniform manner. Following equation (3.4), the agent minimizes the temporal

difference error (TD-error) using mean square error (MSE) loss function. We apply the

rectified linear unit (ReLU) activation function defined as f(x) = max(0, x) at each hidden

layer, and softmax function at the output layer to convert outputs into action probabilities.

At the first episode, we initialize the weights of MLPs using Xavier initializer which is

assigning the weights of the layers from a Gaussian distribution [31], and optimize the loss

using Adam optimizer [32] to train the model. Figure 3.3 shows the flowchart of DQN based

AQM training process. In the flowchart, tcurr is current time step t, and C is target update

step to update the target network periodically. Algorithm 1 describes the pseudocode of

DQN based AQM training process. We follow the principle of DQN introduced in [30], but

since there is no concept of ”game over” in network simulation, the discounted future reward

is always added to the immediate reward. To avoid infinite packet drop/non-drop action

on certain states, we control the reward function. After giving the reward, we initialize the

dequeue rate depending on the queuing delay following the PIE's dequeue rate calculation

scheme [12]. In the pseudocode, we assume that in time step t, if the selected action is

dropping the packet, at = 1, otherwise, at = 0. The interval of each time step is Tint.

3.3 Summary

In this chapter, we presented our system model in terms of the RL state and action setup,

and reward function. Also we introduced which ML techniques we use to our MLPs including

the activation functions, loss optimizer, and MLPs' weight initializer. In the next chapter,

we introduce how we set up the IoT testbed, assumptions for the experiment, and parameters

20

setup for the topology and AQM schemes.

Figure 3.3: Flowchart of DQN based AQM training

21

Algorithm 1 DQN based AQM training algorithm pseudocode

1: for i = 1→ Nepisode do

2: Initialize main network Q and target network Q̂ with normalized weights θ and θ−

3: Calculate Rdeq and d when the packet is dequeued
4: Call every Tint periodically
5: for t = 1→ T do
6: if Rdeq > 0 then
7: Observe current state st ← [Lt, Rdeq,t, dt]
8: Take a random action in the training mode with random variable ε
9: ε← random()

10: if ε < 1/((i/5) + 1) then
11: Select action at ← random()
12: else
13: Select action at ← argmaxaQ(st, a; θ)
14: end if
15: Take action at and observe next state st+1 after Tint
16: Calculate enq reward and delay reward
17: if at = 0 and min delay < delay ref then
18: enq reward← 0
19: end if
20: if Lt = 0 and at = 1 then
21: reward rt ← −1
22: else
23: if Lt+1 = 0 and at = 0 and enq rate = 0 then
24: rt ← −1
25: else
26: rt ← enq reward+ delay reward
27: end if
28: end if
29: rt ← clip(rt,−1, 1)
30: Store experience et ← st, at, rt, st+1 in replay memory D
31: Sample random mini-batch of ej from D uniformly

32: output yj ← rj + γ ∗maxa′ Q̂(sj+1, a
′; θ−)

33: L(θ)←
(
yj −Q(sj, aj; θ)

)2
34: Perform a gradient descent step on L(θ) to minimize it w.r.t parameter θ
35: Update Q̂← Q for every C step
36: if dt+1 < 0.5 ∗ delay ref and dt < 0.5 ∗ delay ref and at = 0 and Rdeq,t+1 > 0

then
37: Rdeq,t+1 ← 0
38: end if
39: end if
40: end for
41: end for

22

Chapter 4

Experiment Setup

In this chapter, we briefly explain the characteristics of IoT, and deal with our testbed,

assumptions for the experiment, and how we set up the parameters.

4.1 Characteristics of IoT devices

In order to understand real behaviours of IoT devices, we survey the materials of analysis on

smart home/campus network traffic. Authors in [33] measured the IoT network traffic for

over three weeks, and clustered their characteristics applying K-means clustering algorithm

with over 95% for IoT devices identification. After classification, they investigated the

patterns of IoT as well. Their analysis shows that IoT devices remain idle for most of

the time in general which means that no packet is exchanged during this interval. Also

considering only IoT devices, daily average load is 66kbps which is higly low rate. Another

observation is that most of the traffic by IoT is based on TCP, rather than UDP, and

more than 50% of TCP port is 443 which is Hyper Text Transfer Protocol Secure (HTTPS)

protocol. In [34], authors investigated traffic from smart home consisting of sensors, hubs,

plugs, and electronics for 22 days, and it shows similar pattern with [33]'s result.

23

4.2 IoT Testbed

In order to construct the IoT testbed as close as possible to the real IoT infrastructure,

we use real IoT characteristics clustered by [33]. From the clustered attributes, we use

five characteristics to implement IoT testbed: Sleep time, Active time, Average packet size,

Mean data rate, and Peak/Mean rate. Table 4.1 shows clustering of real IoT attributes,

and Table 4.2 describes the measure of attribute clusters. In the topology, all IoT devices

are connected to the edge device wirelessly, and the edge device is connected to the cloud

gateway on P2P link. The gateway transmits the received packets to destination cloud

servers through carrier-sense multiple access (CSMA) channel. For the camera category

of IoT attributes, we set User Datagram Protocol (UDP) assuming real-time monitoring

traffic, and for other categories, we set Transmission Control Protocol (TCP) assuming

widely used HTTPS protocol for IoT to generate traffic. In terms of TCP congestion control

algorithm, TCP CUBIC [35] and Proportional Rate Reduction (PRR) recovery algorithm [36]

are deployed which are implemented and used by default in Linux kernels. Figure 4.1 depicts

our topology design.

4.3 Assumptions and Parameter Setting

Due to the traffic characteristics of IoT such as periodic packet transmission and small size

of packets, the queuing delay or packet loss rarely happens in the normal operation of mean

data rate. We assume that IoT devices burst with sending packets in peak transmission

rate to occur queuing delay and packet loss, and the distance from each IoT device to the

edge device is equal and constant. We regulate the round-trip time (RTT) by controlling the

baseline delay of P2P link and set the low link capacity between the edge device and cloud

gateway to measure the performance of AQM schemes from various perspectives assuming

the narrow bandwidth for IoT devices.

All tested AQM schemes are deployed on the interface of edge node connected to the

24

Figure 4.1: Overview of the IoT testbed

cloud gateway since the P2P link between them is set as a bottleneck link. Priority-FIFO-

fast queuing discipline (P-FIFO), which has three priority bands based on the packet priority

and is the default priority queue on Linux systems, is deployed on all other interfaces. To

conduct the experiments, we set different RTTs, P2P link capacity, reward scaling factor

δ, and the number of IoT devices connected to the edge device. The basic number of IoT

devices that will be tested on the experiment is 21, which is the number of clustered real IoT

devices. Also we test on three times the basic number of IoT devices which is 63, to observe

the performance of each AQM on more extreme congestion. The testbed is implemented

25

on ns-3 network simulator [37], and we apply tiny-dnn which is a C++ based open source

deep learning framework to ns-3 [38]. Tables 4.3 and 4.4 describe the environmental setup

parameters and comparison AQM setup parameters respectively. Mainly we set default

parameters for the AQM schemes, but we only adjust PIE's mean packet size and dequeue

threshold parameters adapting to the IoT testbed. In Table 4.4, maxSize is maximum queue

size, meanPktSize is mean packet size set by user to determine each AQM's behaviours, and

delay ref is the desired queuing delay in common. In RED, the parameter LInterm is the

maximum probability of dropping a packet. In PIE, dq threshold is the dequeue threshold

that indicates if there are sufficient data in queue to calculate dequeue rate. Because PIE's

authors recommend dq threshold to be set 10 times of higher size than meanPktSize, we

set dq threshold to 3500 [12]. In CoDel, minByte is the minimum bytes in queue to allow

a packet drop. In FQ-CoDel, the variable Flows is the number of sub-queues for classifying

flows. Table 4.5 indicates the DQN based AQM algorithm setup parameters.

Table 4.1: Clustering of IoT attributes.

IoT Device
Category

Hubs Cameras Switches & triggers Air quality
sensors

Healthcare
devices

Light
Bulbs

Electronics

IoT Device

S
m

a
rt

T
h

in
g
s

A
m

a
zo

n
E

ch
o

N
e
ta

tm
o

W
e
lc

o
m

T
P

-L
in

k
D

a
y

N
ig

h
t

C
lo

u
d

ca
m

e
ra

S
a
m

su
n

g
S

m
a
rt

C
a
m

D
ro

p
ca

m

In
st

e
o
n

C
a
m

e
ra

W
it

h
in

g
s

S
m

a
rt

B
a
b
y

M
o
n

it
o
r

B
e
lk

in
W

e
m

o
sw

it
ch

T
P

-L
in

k
S

m
a
rt

p
lu

g

iH
o
m

e

B
e
lk

in
w

e
m

o
m

o
ti

o
n

se
n

so
r

N
E

S
T

P
ro

te
ct

sm
o
k
e

a
la

rm

N
e
ta

tm
o

w
e
a
th

e
r

st
a
ti

o
n

W
it

h
in

g
s

S
m

a
rt

sc
a
le

B
li

p
ca

re
B

lo
o
d

P
re

ss
u

re
m

e
te

r

W
it

h
in

g
s

A
u

ra
sm

a
rt

sl
e
e
p

se
n

so
r

L
iF

X
S

m
a
rt

B
u

lb

T
ri

b
y

S
p

e
a
k
e
r

P
IX

-S
T

A
R

P
h

o
to

-f
ra

m
e

H
P

P
ri

n
te

r

Sleep time 1 1 1 2 1 1 2 1 1 3 2 1 1 1 1 5 1 1 1 1 2

Active time 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 3 1 1 1 1 1

Avg. Pkt Size 1 2 4 1 4 2 2 1 4 2 1 3 3 3 3 2 2 1 2 3 1

Mean data rate 1 1 2 1 2 1 1 1 3 1 1 3 2 1 1 1 1 1 1 1 1

Peak / Mean rate 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1

4.4 Summary

In this chapter, we introduced our IoT testbed by explaining which inherent characteristics

of IoT devices we bring in for the experiments, and parameters we set for the network

simulation. In the following chapter, we analyze the empirical results of the simulation, and

verify the outstanding performance of our DQN based AQM scheme.

26

Table 4.2: Measure of attribute clusters.

Clusters
Sleep time

(Sec)

Active time

(Sec)

Avg. Pkt

Size (B)

Mean rate

(Bps)

Peak/

Mean rate

1 4 1 94 462 11

2 66 2 144 2,461 66

3 241 8 234 11,388 229

4 7,985 25 327 42,493 474

5 24,832 34 699 516,540 1,253

Table 4.3: Environmental setup parameters.

Parameter Value

Number of servers in cloud 2

CSMA channel data rate in cloud 100Mbps

P2P link data rate 0.5, 1Mbps

Base RTT on P2P link 0, 10, 20, 50, 100ms

Number of IoT devices 21, 63

Wi-Fi standard IEEE 802.11n 5GHz

Distance between IoT devices and edge device 30m

Simulation time 100s

27

Table 4.4: Comparison AQM setup parameters.

AQM Parameters

P-FIFO maxSize = 1000

RED

maxSize = 25p

meanPktSize = 500

thmin = 5

thmax = 25

LInterm = 50

PIE

maxSize = 25p

meanPktSize = 350

dq threshold = 3500

α = 0.125

β = 1.25

Tupdate = 0.03

delay ref = 20ms

Bmax = 0.1

CoDel

maxSize = 50000bytes

delay ref = 5ms

Tint = 100ms

minByte = 50

FQ-CoDel
maxSize = 10240p

F lows = 1024

Table 4.5: DQN based AQM algorithm setup parameters.

Parameter Value

Number of hidden layers 2

Number of neurons in each hidden layer 64

Learning rate α 0.01

Mini-bacth size 32

Reward discount factor γ 0.99

Periodic target network update step C 5

Maximum queue size 50 packets

Action selection interval Tint 1ms

Desired queuing delay 30ms

Reward scaling factor δ 0.4, 0.5, 0.6

28

Chapter 5

Results and Analysis

In this chapter, we analyze and discuss the results of experiments described in chapter

4. We compare our proposed AQM algorithm with P-FIFO and various AQM schemes

including RED, PIE, CoDel, and FQ-CoDel on different environments by adjusting RTT

and bandwidth of P2P link between the edge node and cloud gateway.

5.1 Comparison on Queuing Delay and Occupancy

In this section, we study the queuing delay and queue occupancy of each AQM scheme.

Figure 5.1 shows the empirical cumulative distribution function (CDF) of delay which is

induced RTT that the IoT devices' flows suffer during the simulation time, and comparison

of each AQM scheme. We can observe that P-FIFO mostly experiences high delay of over

one second from both cases of the 21 and 63 IoT devices scenarios because it just classifies

packets, but does not work actively on the fluctuating congestion. In both cases, DQN

based AQM performs better than other AQM schemes. RED and PIE adapt their queue for

delay smaller or slightly larger than 500ms. Comparing with them, DQN based AQM has

higher probability of queuing delay under 500ms than other AQM schemes' probabilities as

well as maintaining less than 500ms in total. If queuing delay of 500ms is required under

1Mbps bandwidth, P-FIFO, RED, PIE, CoDel, FQ-CoDel and DQN based AQM provide

29

such guarantee with 4.11%, 99.83%, 99.99%, 73.87%, 79.48%, and 100% respectively for 21

IoT devices, and 1.09%, 100%, 100%, 47.27%, 48.79%, and 100% respectively for 63 IoT

devices. Alternatively, in 99% of probability, maximum delays increased for 21 IoT devices

are 3332ms, 472ms, 478ms, 696ms, 2301ms, and 388ms respectively for P-FIFO, RED, PIE,

CoDel, FQ-CoDel, and DQN based AQM schemes.

Figure 5.2 depicts the queue occupancy of each AQM schemes during the simulation time

of 100s. We can observe that DQN based AQM does not exceed its maximum queue size of

50 packets as an optimal behaviour for maximum future cumulative reward.

� ��� ��� ��� 	�� ����
������������������

���

���

���

���

��	

���

��
��

���
��

�

�

�����������
�����

��
���
�����
��������
��	����������

(a) 21 IoT devices

� ��� ��� ��� 	�� ����
������������������

���

���

���

���

��	

���

��
��

���
��

�

�

�����������
�����

��
���
�����
��������
��	����������

(b) 63 IoT devices

Figure 5.1: Empirical CDF of queuing delay for flows of IoT devices; P2P link data rate =
1Mbps; Baseline RTT = 0ms; Reward scaling factor δ = 0.5

5.2 Comparison on Different Bandwidth

Here, we analyze the performance of AQM schemes on the topology consisting of 21 IoT

devices using 1Mbps and 0.5Mbps P2P link capacity between the edge device and cloud

gateway. Figure 5.3 is a boxplot of the throughput for each flow. Since the IoT devices

deployed in our testbed vary and transmit packets stochastically, a large number of outlier

points are observed comparing with related works and the boxplot could be inconspicuous,

but this graphical measurement is relatively efficient. In Figure 5.3, medians of throughput

for each AQM schemes are relatively similar. FQ-CoDel shows higher median throughput

on 0.5Mbps bandwidth, but also undergoes the second highest delay depicted in Figure 5.4

30

� �� �� �� �� ���
�������������

�

���

���

���

���

����

��

��
�	

��
��

�
��

���

�

��
��
�

(a) P-FIFO

� �� �� �� 	� ���

������������

�

�

��

��

��

��

�
��

��
�

��
��

��
��

���
��

��
��
�

(b) RED

� �� �� �� 	� ���

������������

�

�

��

��

��

��

�
��

��
�

��
��

��
��

���
��

��
��
�

(c) PIE

� �� �� ��
� ���
�����
�������

�

��

��

	�

���

���

���

�	�

�
��

��
��
��
��

��
��
���

��
��
��
�

(d) CoDel

� �� �� 	�
� ���
�����
�������

�

���

���

���

���

���

�
��

��
��
��
��

��
��
���

��
��
��
�

(e) FQ-CoDel

� �� �� 	� �� ���
�������������

���

���

���

��

����

����

����

�
��

��

��
��

��
��

��
��

���
��

��
��
�

(f) DQN based AQM

Figure 5.2: Comparison of queue occupancy of AQM schemes; P2P link data rate = 1Mbps;
Baseline RTT = 0ms; Number of IoT devices = 21; Reward scaling factor δ = 0.5

although the shape of all other delay boxplots AQM schemes' delay is too flat due to the

P-FIFO. DQN based AQM shows the lowest median delay maintaining usual throughput

comparing with other AQM schemes on 1Mbps bandwidth, and tenable performance of both

throughput and delay on 0.5Mbps bandwidth.

5.3 Comparison on Different Baseline RTT

In this section, we compare the AQM schemes on different baseline RTTs: 0, 10, 20, 50,

100ms. Also, we set 63 IoT devices consisting of three duplicated devices from 21 distinct

devices. Figure 5.5 shows each of boxplot of throughput for different baseline RTTs. We can

observe that the inter-quartile range of boxplot is decreasing as the baseline RTTs become

larger. The intriguing point is that the median of FQ-CoDel maintains higher throughput

on every tested case. However, as a trade-off, FQ-CoDel shows high delay on every case as

shown in Figure 5.6. We also investigate the maximum delay time and most frequent delay

time that each flow suffers to clarify the degree of delay in Figures 5.7 and 5.8. We can

see that DQN based AQM experiences low delays w.r.t. frequency and maximum values,

31

�	
�� ���	
��

�
����������������	
���

����

����

����

����

����

����

����

����

��
��
��
��
��
��	

�
��

�����

��
���
�����
��������
��	����������

Figure 5.3: Throughput per flows of 21 IoT devices; Baseline RTT = 0ms; Reward scaling
factor δ = 0.5

����� ��	����
����������
�
�
���������

�

�

�

�

�

	

�
�

��

��

�
���
��
��

��
�

�����

��
���
�����
��������
��	����������

Figure 5.4: Mean delay per flows of 21 IoT devices; Baseline RTT = 0ms; Reward scaling
factor δ = 0.5

32

and outperforms other AQM schemes in terms of queuing delay on all given cases except for

50ms of RTT in that our approach is delay-aware learning algorithm. And generally, queuing

delay of AQM schemes are not affected by different RTTs a lot on each delay-related figures.

� �� �� 	� ���
��������

���

���

���

���

���

��	

��
��
��

��
��
��

�
��

�����

��
���
�����
��������
��	����������

Figure 5.5: Throughput per flows of 63 IoT devices; P2P link data rate = 1Mbps; Reward
scaling factor δ = 0.5

5.4 Analysis on Different IoT Categories

Depending on the IoT categories, we set different transport layer protocols. For smart

cameras, we set UDP protocol assuming the real-time monitoring and surveillance and store

streaming data into cloud servers. For other categories consisting of Hubs, Switches &

Triggers, Air quality sensors, Healthcare devices, Light bulbs, and Electronics, we set TCP

protocol assuming HTTPS protocol which is mostly used for IoT devices in [33] and the

reliable communication.

33

� �� �� �� ���
��������

���

���

���

���

���

���

���

�

��
	
��

�
���

��
��

��
�

�����

��
���
�����
��������
��	����������

Figure 5.6: Mean delay per flows of 63 IoT devices; P2P link data rate = 1Mbps; Reward
scaling factor δ = 0.5

� �� �� �� ���
��������

�

����

����

����

����

�
�	
��

�
���

�� �����

��
���
�����
��������
��	����������

Figure 5.7: Maximum delay per flows of 63 IoT devices; P2P link data rate = 1Mbps; Reward
scaling factor δ = 0.5

34

� �� �� �� ���

�������

�

���

����

����

����

����

����

����

	�

�

�

��
��

�
��

���
��

�����

��
���
�����
��������
��	����������

Figure 5.8: Most frequent delay per flows of 63 IoT devices; P2P link data rate = 1Mbps;
Reward scaling factor δ = 0.5

5.4.1 UDP based IoT flows

We classify UDP based IoT flows generated by smart cameras from the experiment of section

5.3, and Figures 5.9, 5.10, and 5.11 are boxplots of throughput, mean delay, and mean

jitter per UDP flows respectively. In previous experimental results, FQ-CoDel has shown

fine performance in terms of throughput in boxplots, however considering only UDP flows,

FQ-CoDel shows deficient performances on all testbeds and metrics. In order to measure

QoS to end users in networking, jitter is also an useful metrics for UDP based real-time

communication such as video streaming and Voice over IP (VoIP). In Figure 5.11, we can

observe that DQN based AQM sustains the low jitter regardless of RTTs.

5.4.2 TCP based IoT flows

TCP based packet transmission is one of the main reasons that causes traffic congestion

due to the three-way handshake referred to ”SYN-SYN-ACK”. On this testbed, Figures

35

� �� �� �� ���
	

�����

����

����

����

����

����

��
��

�
��
���

��
��

�����

��
���
�����
��������
��	����������

Figure 5.9: Throughput per UDP flows of 18 IoT devices; P2P link data rate = 1Mbps;
Reward scaling factor δ = 0.5

� �� �� �� ���
��������

���

���

���

���

���

���

�

��
	
��

�
���

��
��

��
�

�����

��
���
�����
��������
��	����������

Figure 5.10: Mean Delay per UDP flows of 18 IoT devices; P2P link data rate = 1Mbps;
Reward scaling factor δ = 0.5

36

� �� �� �� ���

�������

����

����

����

���	

���

����

�
��

��
��
���
���
��
��
��

��

�����

��
���
�����
��������
��	����������

Figure 5.11: Mean Jitter per UDP flows of 18 IoT devices; P2P link data rate = 1Mbps;
Reward scaling factor δ = 0.5

5.12 and 5.13 show the throughput and delay on 48 TCP flows of IoT devices. Unlike UDP

flows, FQ-CoDel shows better throughput and DQN based AQM's throughput is analogous

to other AQM schemes. But with regard to the delay, DQN based AQM shows notable

performance as compared with targeted AQM schemes.

5.5 Analysis on Reward Trajectory for Model Opti-

mization

In this section, we focus on our reward function and how it effects to the results. Figure

5.14 shows the comparison of rewards on non-trained/trained network model, and we can

see that cumulative reward of the trained model is much higher than that of the non-trained

model. However, the non-trained model's cumulative reward increases linearly as well, since

it is being trained in parallel through the simulation time step. In Figure 5.14(b), non-

37

� �� �� 	� ���
��������

���

���

���

���

���

��	

��
��
��

��
��
��

�
��

�����

��
���
�����
��������
��	����������

Figure 5.12: Throughput per TCP flows of 45 IoT devices; P2P link data rate = 1Mbps;
Reward scaling factor δ = 0.5

� �� �� �� ���
��������

���

���

���

���

���

���

�

��
	
��

�
���

��
��

��
�

�����

��
���
�����
��������
��	����������

Figure 5.13: Mean Delay per TCP flows of 45 IoT devices; P2P link data rate = 1Mbps;
Reward scaling factor δ = 0.5

38

� ����� ����� ����� �����
�������������

�

���

���

���

���

���

	
��

��

�
��
��

��

�
�

��
�
���
�������	
����
�������	

(a) Cumulative reward

� ����� ����� ����� �����
�������������

�����

����	

����

���	

����

��
��
��
�

��

�
�

��
�
���
�������	
����
�������	

(b) Single reward

Figure 5.14: Comparison of reward on non-trained/trained model; P2P link data rate =
1Mbps; Baseline RTT = 0ms; Number of IoT devices = 63; Reward scaling factor δ = 0.5

trained model shows the unstable behaviour because its action has randomness. Comparing

with the non-trained model, trained model performs 22.362ms and 0.57841ms shorter in

delay and jitter respectively. Table 5.1 tabulates the sensitivity depending on the reward

scaling factor δ. Higher scaling factor stands for that the reward is more weighted towards

delay reward than enqueue reward by the agent. Since we use drop-tail function when the

queue is filled with packets, packets are dropped by either exceeded queue size or packet-

dropping action, and that is why the packet drop-rate is not in inversely proportion of the

mean delay. However, we can also observe that depending on the higher scaling factor, mean

delay is decreased.

Table 5.1: Reward scaling factor sensitivity; P2P link data rate = 1Mbps; Baseline RTT =
0ms; Number of IoT devices = 63

Scaling factor Throughput Packet drop-rate Mean delay Mean jitter

0.4 0.954097Mbps 24.23% 0.267s 0.008s

0.5 0.953510Mbps 24.17% 0.197s 0.007s

0.6 0.954050Mbps 23.1% 0.195s 0.0068s

39

5.6 Summary

In this chapter, we analyzed the experimental results on different testbeds. In general, P-

FIFO performed inferior since the P-FIFO enabled queue works passively, and FQ-CoDel

showed fine throughput performance, but suffers from the trade-off with high delay. The

proposed DQN based AQM scheme verified low queuing delay on most cases preserving above

the average throughput. In summary, Appendix B tabulates average throughput, packet

drop-rate, delay, and jitter for each AQM schemes in various experimental environments, and

DQN based AQM performs competitively trading off between mean delay and throughput, as

well as low jitter. In the next chapter, we conclude this thesis by providing overall summary

with future work to enhance efficient network management in IoT based networks.

40

Chapter 6

Conclusion

6.1 Conclusion and Summary

In this thesis, we proposed the design of Deep Reinforcement Learning based Active Queue

Management. As a baseline model of the design, we selected Deep Q-Network since the state

transition in networking is discrete and it is able to be expressed as a finite Markov Decision

Process which is the fundamental principle of reinforcement learning. From the state setup

to the reward function design, we implemented them on ns-3 network simulator by applying

deep learning framework tiny-dnn. Along with fog/edge computing architecture, we also

constructed the IoT testbed by reflecting real IoT devices' characteristics including periodic

operating cycle, actual transmission rate, packet size, and peak rate in wireless communi-

cation environment. We deployed the AQM scheme at the interface of the fog/edge device

connected to the cloud gateway, and our proposed scheme achieved substantial performances

such as low queuing delay and jitter on the stochastic IoT environment simultaneously main-

taining good throughput comparing with widely used AQM schemes.

41

6.2 Future Work

6.2.1 Energy Efficient AQM Design

Although the fog/edge device has sufficient computation capability, energy efficient design

plays a significant role for ideal future Internet infrastructure due to the fact that the number

of devices of tier-1 is increasing exponentially in our life. In terms of energy efficient AQM,

we expect that it can be achieved by increasing the interval of packet-drop probability

calculation and optimizing memory usage. For DL based AQM, the light neural network

model such as Binarized Neural Network (BNN) [39] can be used for the energy efficient

AQM design. And applying optimal model and tuning hyper-parameters are always huge

challenges for deep learning applied work. Deep learning field is growing extremely fast,

and performance of the algorithms are being improved day by day. Optimal model can

be achieved using model compression techniques such as weight pruning. Hyper-parameter

tuning of selected model is also capable of improving the performance as well as selecting

a good model, and even it has been extended as a new field which is Automatic Machine

Learning (AutoML).

6.2.2 Construction of IoT-realistic Simulation Environment

In our experiment, we used IEEE 802.11n 5GHz as a Wi-Fi standard, and TCP and UDP

protocols for transmission. If we set lightweight and resource limited protocol such as Con-

strained Application Protocol (CoAP) and message queue telemetry transport (MQTT) on

the 6LoWPAN which is designed for low power and narrow bandwidth for IoT specified by

IEEE 802.15.4, we would conduct more ideal experiments and get more accurate results [3].

42

Appendix A

Dequeue Rate Calculation in PIE

1. Upon packet departure, decide to be in a measurement cycle if :

qlen > dq threshold;

2. If the above is true, update the departure count in bytes dq count :

dq count = dq count+ dq pktsize;

3. Update dequeue rate once dq count > dq threshold with averaging parameter ε, set

to 0.5 by default, and reset counters :

dq int = timenow − timestart;

dq rate =
dq count

dq int
;

avg drate = (1− ε) ∗ avg drate+ ε ∗ dq rate

timestart = timenow.

dq count = 0;

43

Appendix B

AQM Performance Comparison in

Various Environments

Table B.1: Performance comparison for all flows of 21 IoT devices; P2P link data rate =
1Mbps; Baseline RTT = 0ms; Reward scaling factor δ = 0.6.

AQM scheme Total throughput Packet drop-rate Mean delay Mean jitter

P-FIFO 0.9537Mbps 5.36% 1.736s 0.0192s

RED 0.9512Mbps 23% 0.222s 0.0073s

PIE 0.9513Mbps 23.79% 0.23s 0.0072s

CoDel 0.9539Mbps 18.81% 0.284s 0.0099s

FQ-CoDel 0.9538Mbps 18.72% 0.379s 0.0151s

DQN based AQM 0.9541Mbps 23.1% 0.195s 0.0068s

44

Table B.2: Performance comparison for all flows of 21 IoT devices; P2P link data rate =
0.5Mbps; Baseline RTT = 0ms; Reward scaling factor δ = 0.5.

AQM scheme Total throughput Packet drop-rate Mean delay Mean jitter

P-FIFO 0.4766Mbps 17.24% 4.69s 0.0329s

RED 0.4755Mbps 43.3% 0.5326s 0.0174s

PIE 0.4755Mbps 43.1% 0.5231s 0.0179s

CoDel 0.4767Mbps 36.52% 0.7242s 0.0228s

FQ-CoDel 0.4769Mbps 44.55% 0.7997s 0.032s

DQN based AQM 0.4767Mbps 39.94% 0.5919s 0.0185s

Table B.3: Performance comparison for all flows of 63 IoT devices; P2P link data rate =
1Mbps; Baseline RTT = 0ms; Reward scaling factor δ = 0.5.

AQM scheme Total throughput Packet drop-rate Mean delay Mean jitter

P-FIFO 0.9535Mbps 46.97% 2.1559s 0.0245s

RED 0.9524Mbps 53.72% 0.2944s 0.0092s

PIE 0.9524Mbps 54.24% 0.3044s 0.095s

CoDel 0.9535Mbps 50.5% 0.3712s 0.0103s

FQ-CoDel 0.9543Mbps 63% 0.5015s 0.0707s

DQN based AQM 0.9538Mbps 54.04% 0.2709s 0.0076s

Table B.4: Performance comparison for all flows of 63 IoT devices; P2P link data rate =
1Mbps; Baseline RTT = 10ms; Reward scaling factor δ = 0.5.

AQM scheme Total throughput Packet drop-rate Mean delay Mean jitter

P-FIFO 0.9532Mbps 46.5% 2.616s 0.0238s

RED 0.9522Mbps 53.35% 0.3065s 0.0093s

PIE 0.9522Mbps 53.55% 0.3067s 0.0093s

CoDel 0.9532Mbps 50.41% 0.4754s 0.0104s

FQ-CoDel 0.954Mbps 63.03% 0.7458s 0.071s

DQN based AQM 0.9534Mbps 53.99% 0.2773s 0.0076s

45

Table B.5: Performance comparison for all flows of 63 IoT devices; P2P link data rate =
1Mbps; Baseline RTT = 20ms; Reward scaling factor δ = 0.5.

AQM scheme Total throughput Packet drop-rate Mean delay Mean jitter

P-FIFO 0.9527Mbps 46.04% 2.601s 0.0238s

RED 0.9521Mbps 53.54% 0.3138s 0.0094s

PIE 0.9521Mbps 53.6% 0.3142s 0.0094s

CoDel 0.9519Mbps 50.22% 0.4784s 0.0102s

FQ-CoDel 0.9535Mbps 62.74% 0.7493s 0.07s

DQN based AQM 0.953Mbps 54.14% 0.2831s 0.0078s

Table B.6: Performance comparison for all flows of 63 IoT devices; P2P link data rate =
1Mbps; Baseline RTT = 50ms; Reward scaling factor δ = 0.5.

AQM scheme Total throughput Packet drop-rate Mean delay Mean jitter

P-FIFO 0.9522Mbps 45.86% 2.604s 0.0236s

RED 0.9503Mbps 53.41% 0.3279s 0.0093s

PIE 0.9516Mbps 53.87% 0.3286s 0.01s

CoDel 0.9513Mbps 49.89% 0.4908s 0.0104s

FQ-CoDel 0.9531Mbps 62.6% 0.7702s 0.0702s

DQN based AQM 0.9518Mbps 53.1% 0.3781s 0.0102s

Table B.7: Performance comparison for all flows of 63 IoT devices; P2P link data rate =
1Mbps; Baseline RTT = 100ms; Reward scaling factor δ = 0.5.

AQM scheme Total throughput Packet drop-rate Mean delay Mean jitter

P-FIFO 0.9518Mbps 45.67% 2.621s 0.0234s

RED 0.9492Mbps 53.11% 0.3487s 0.0098s

PIE 0.9495Mbps 53.49% 0.3473s 0.0101s

CoDel 0.9455Mbps 49.48% 0.509s 0.0107s

FQ-CoDel 0.9526Mbps 62.38% 0.7957s 0.0714s

DQN based AQM 0.9516Mbps 54.06% 0.3155s 0.0086s

46

Bibliography

[1] IDC, “Worldwide Internet of Things Forecast Update, 20172021,”

in document US43304017, IDC, February 2018. [Online]. Available:

https://www.idc.com/getdoc.jsp?containerId=US43304017.

[2] Gartner, “Gartner says a typical family home could contain more than

500 smart devices by 2022,” September 2014. [Online]. Available:

https://www.gartner.com/newsroom/id/2839717.

[3] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A Survey on Internet of

Things: Architecture, Enabling Technologies, Security and Privacy, and Applications,”

IEEE Internet of Things Journal, vol. 4, pp. 1125–1142, March 2017. [Online]. Available:

https://doi.org/10.1109/JIOT.2017.2683200.

[4] M. Mukherjee, L. Shu, and D. Wang, “Survey of Fog Computing: Funda-

mental, Network Applications, and Research Challenges,” IEEE Communications

Surveys Tutorials, vol. 20, pp. 1826–1857, March 2018. [Online]. Available:

https://doi.org/10.1109/COMST.2018.2814571.

[5] N. Kuhn, P. Natarajan, N. Khademi, and D. Ros, “Characterization Guidelines for

Active Queue Management (AQM),” in Internet Engineering Task Force (IETF), RFC

7928, July 2016. [Online]. Available: https://tools.ietf.org/html/rfc7928.

47

[6] F. Baker and G. Fairhurst, “IETF Recommendations Regarding Active Queue Man-

agement,” in Internet Engineering Task Force (IETF), RFC 7567, July 2015. [Online].

Available: https://tools.ietf.org/html/rfc7567.

[7] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, “Deep Learn-

ing for IoT Big Data and Streaming Analytics: A Survey,” IEEE Com-

munications Surveys Tutorials, June 2018. [Online early access]. Available:

https://doi.org/10.1109/COMST.2018.2844341.

[8] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT Press,

second ed., 2018.

[9] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and D. I. Kim,

“Applications of Deep Reinforcement Learning in Communications and Networking:

A Survey,” in arXiv preprint arXiv:1810.07862, October 2018. [Online]. Available:

https://arxiv.org/abs/1810.07862.

[10] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion Avoid-

ance,” IEEE/ACM Transactions on Networking, vol. 1, pp. 397–413, August 1993.

[Online]. Available: https://doi.org/10.1109/90.251892.

[11] K. Nichols and V. Jacobson, “Controlling Queue Delay,” Communica-

tions of the ACM, vol. 55, pp. 42–50, July 2012. [Online]. Available:

https://doi.org/10.1145/2209249.2209264.

[12] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian, F. Baker, and

B. VerSteeg, “PIE: A lightweight control scheme to address the bufferbloat problem,” in

2013 IEEE 14th International Conference on High Performance Switching and Routing

(HPSR), July 2013. [Online]. Available: https://doi.org/10.1109/HPSR.2013.6602305.

48

[13] A. Sungur, “Tcp – random early detection (red) mechanism for congestion con-

trol,” Master’s thesis, Rochester Institute of Technology, 2015. [Online]. Available:

https://scholarworks.rit.edu/theses/8904.

[14] T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys, and E. Dumazet, “The

Flow Queue CoDel Packet Scheduler and Active Queue Management Algorithm,” in

Internet Engineering Task Force (IETF), RFC 8290, January 2018. [Online]. Available:

https://tools.ietf.org/html/rfc8290.

[15] N. Bouacida and B. Shihada, “Practical and Dynamic Buffer Sizing using LearnQueue,”

IEEE Transactions on Mobile Computing, September 2018. [Online early access]. Avail-

able: https://doi.org/10.1109/TMC.2018.2868670.

[16] S. K. Bisoy, P. K. Pandey, and B. Pati, “Design of an active queue management tech-

nique based on neural networks for congestion control,” in 2017 IEEE International

Conference on Advanced Networks and Telecommunications Systems (ANTS), Decem-

ber 2017. [Online]. Available: https://doi.org/10.1109/ANTS.2017.8384104.

[17] N. Vucevic, J. Perez-Romero, O. Sallent, and R. Agusti, “Reinforcement Learning for

Active Queue Management in Mobile All-IP Networks,” in 2007 IEEE 18th Interna-

tional Symposium on Personal, Indoor and Mobile Radio Communications, September

2007. [Online]. Available: https://doi.org/10.1109/PIMRC.2007.4394713.

[18] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized Computation

Offloading Performance in Virtual Edge Computing Systems via Deep Reinforcement

Learning,” IEEE Internet of Things Journal, October 2018. [Online early access]. Avail-

able: https://doi.org/10.1109/JIOT.2018.2876279.

[19] S. Chinchali, P. Hu, T. Chu, M. Sharma, M. Bansal, R. Misra, M. Pavone, and S. Katti,

“Cellular Network Traffic Scheduling With Deep Reinforcement Learning,” in Thirty-

49

Second AAAI Conference on Artificial Intelligence, February 2018. [Online]. Available:

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16638.

[20] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang, “Experience-

driven Networking: A Deep Reinforcement Learning based Approach,” in IEEE INFO-

COM 2018 - IEEE Conference on Computer Communications, April 2018. [Online].

Available: https://doi.org/10.1109/INFOCOM.2018.8485853.

[21] J. Kua, S. H. Nguyen, G. Armitage, and P. Branch, “Using Active Queue Man-

agement to Assist IoT Application Flows in Home Broadband Networks,” IEEE In-

ternet of Things Journal, vol. 4, pp. 1399–1407, July 2017. [Online]. Available:

https://doi.org/10.1109/JIOT.2017.2722683.

[22] Y. Zhang, B. Feng, W. Quan, G. Li, H. Zhou, and H. Zhang, “Theoreti-

cal Analysis on Edge Computation Offloading Policies for IoT Devices,” IEEE

Internet of Things Journal, October 2018. [Online early access]. Available:

https://doi.org/10.1109/JIOT.2018.2875599.

[23] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On Reducing IoT Service Delay

via Fog Offloading,” IEEE Internet of Things Journal, vol. 5, pp. 998–1010, January

2018. [Online]. Available: https://doi.org/10.1109/JIOT.2017.2788802.

[24] S. Zhao, Y. Yang, Z. Shao, X. Yang, H. Qian, and C.-X. Wang, “FEMOS: Fog-

Enabled Multitier Operations Scheduling in Dynamic Wireless Networks,” IEEE In-

ternet of Things Journal, vol. 5, pp. 1169–1183, February 2018. [Online]. Available:

https://doi.org/10.1109/JIOT.2018.2808280.

[25] X. Zheng, Z. Cai, J. Li, and H. Gao, “Scheduling Flows With Multiple Service Frequency

Constraints,” IEEE Internet of Things Journal, vol. 4, pp. 496–504, June 2016. [Online].

Available: https://doi.org/10.1109/JIOT.2016.2577630.

50

[26] S. Bhandari, S. K. Sharma, and X. Wang, “Latency Minimization in Wireless IoT

Using Prioritized Channel Access and Data Aggregation,” in GLOBECOM 2017 -

2017 IEEE Global Communications Conference, December 2017. [Online]. Available:

https://doi.org/10.1109/GLOCOM.2017.8255038.

[27] H. A. A. Al-Kashoash, H. M. Amer, L. Mihaylova, and A. H. Kemp, “Optimization-

Based Hybrid Congestion Alleviation for 6LoWPAN Networks,” IEEE Internet

of Things Journal, vol. 4, pp. 2070–2081, September 2017. [Online]. Available:

https://doi.org/10.1109/JIOT.2017.2754918.

[28] L. Zhao, W. Sun, Y. Shi, and J. Liu, “Optimal Placement of Cloudlets for Ac-

cess Delay Minimization in SDN-Based Internet of Things Networks,” IEEE Inter-

net of Things Journal, vol. 5, pp. 1334–1344, March 2018. [Online]. Available:

https://doi.org/10.1109/JIOT.2018.2811808.

[29] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, pp. 279–292, May

1992. [Online]. Available: https://link.springer.com/article/10.1007/BF00992698.

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,

I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-

level control through deep reinforcement learning,” Nature, pp. 529–533, February 2015.

[Online]. Available: https://www.nature.com/articles/nature14236.

[31] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward

neural networks,” in Proceedings of the Thirteenth International Conference on Artifi-

cial Intelligence and Statistics, vol. 9, pp. 249–256, March 2010. [Online]. Available:

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf.

51

[32] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-

tion,” in arXiv preprint arXiv:1412.6980v9, January 2017. [Online]. Available:

https://arxiv.org/abs/1412.6980.

[33] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wijenayake,

A. Vishwanath, and V. Sivaraman, “Characterizing and classifying IoT traffic

in smart cities and campuses,” in 2017 IEEE Conference on Computer Com-

munications Workshops (INFOCOM WKSHPS), May 2017. [Online]. Available:

https://doi.org/10.1109/INFCOMW.2017.8116438.

[34] Y. Amar, H. Haddadi, R. Mortier, A. Brown, J. Colley, and A. Crabtree, “An Analysis of

Home IoT Network Traffic and Behaviour,” in arXiv preprint arXiv:1803.05368, March

2018. [Online]. Available: https://arxiv.org/abs/1803.05368.

[35] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed TCP variant,” ACM

SIGOPS Operating Systems Review, vol. 42, pp. 64–74, July 2008. [Online]. Available:

https://doi.org/10.1145/1400097.1400105.

[36] M. Mathis, N. Dukkipati, and Y. Cheng, “Proportional Rate Reduction for TCP,” in

Internet Engineering Task Force (IETF), RFC 6937, May 2013. [Online]. Available:

https://tools.ietf.org/html/rfc6937.

[37] “ns-3.” https://www.nsnam.org/. Accessed: 2018-12-12.

[38] “tiny-dnn.” https://github.com/tiny-dnn/tiny-dnn. Accessed: 2018-12-12.

[39] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized Neural

Networks,” in 30th Conference on Neural Information Processing Systems (NIPS 2016),

December 2016. [Online]. Available: https://papers.nips.cc/paper/6573-binarized-

neural-networks.pdf.

52

