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A B S T R A C T

Connected cars offer safety and efficiency both for individuals as well as for fleets of vehicles, com-
panies and public transportation. However, equipping vehicles with information and communication
technologies also raises privacy and security concerns, which significantly threaten the user’s data and
life. Using a bot malware, a hacker may compromise a vehicle and control it remotely, for instance he
can disable breaks or start the engine remotely. In this paper, besides in-vehicle attacks existing in the
literature, we consider new zero-day bot malware attacks specific to vehicular context, WSMP-Flood
and Geo-WSMP Flood. Then, we propose AntibotV, a multilevel behaviour-based framework for
vehicular botnets detection in vehicular networks. The proposed framework combines two main mod-
ules for attacks detection, the first one monitors the vehicles activity at the network level, whereas the
second one monitors the in-vehicle activity. The two intrusion detection modules have been trained on
historical network and in-vehicle communication using decision tree algorithms. The experimental
results showed that the proposed framework outperforms existing solutions, it achieves a detection
rate higher than 97% and a false positive rate lower than 0.14%.

1. Introduction
With the proliferation of connected cars, the concept of

vehicular networks has moved to another new level. Ve-
hicular networks became a distributed transport fabric ca-
pable of making its own decisions about driving customers
to their destinations [1]. Applications of vehicular networks
vary from safety applications such as blind spot warning and
traffic light violations to entertainment such as streaming
media or convenience such as parking space identification.
Recently established standards such as the dedicated short-
range communication standard (DSRC) help achieve effec-
tive communications between vehicles and the infrastruc-
ture. DSRC is a communication technology that relies heav-
ily on several cooperatives and interoperable standards: IEEE
802.11p, IEEE 1609.x, SAE J2735 Message Set Dictionary,
and the emerging SAE J2945.1 standard. IEEE 802.11p and
IEEE 1609.4 are used to describe the physical and the Me-
dia Access Control (MAC) layer of the system respectively.
While IEEE 1609.3, with its two supported stacks (Internet
Protocol version 6 (IPv6) stack for non-safety applications
and WAVE Short Message Protocol (WSMP) stack for safety
applications) is used to describe the network and transport
layers. Security functions and services are described by an
IEEE 1609.2 standard protocol. While SAE J2735 and SAE
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J2945.1 standards are used to define the format of the mes-
sages exchanged over the network

Vehicular networks can help to increase transportation
safety and efficiency [2]. However, it raises privacy and
security concerns, which significantly threaten the network
operations and the user data. One of the most dangerous
cybersecurity threats is when the on board computer of a
connected vehicle get compromised and exploited by a re-
mote attacker. This cyberthreat is known as vehicular bot
malware. Unlike the other security threats, it can be used to
execute remotely multilevel malicious tasks: (1) distributed
network attacks (DDoS) [3]; (2) violating drivers personal
data (location privacy [4] or illegal GPS tracking and eaves-
drop drivers and passengers’ conversations) [5]; (3) control-
ling the bot vehicles remotely (opening the door, starting the
engine, turning on the lights, driving the vehicle away or
disabling breaks); (4) misleading the driver by giving him
wrong information about the vehicle state (falsifying the fuel
level, changing the speedometer reading and displaying fail-
ure information on the instrument panel cluster) [6].

Despite the harmful impact of vehicular bot malwares
on the driver’s privacy and safety, there are few researches
[7, 8], that have considered this issue. Garip et al. [8] pro-
posed SHIELDNET, a machine learning based botnets de-
tection mechanism. As botnet they considered GHOST [7],
a botnet communication protocol that uses Basic Safety Mes-
sages BSMs to dissimulate its communication over the con-
trol channel. SHIELDNET detects the use of GHOST, and
identifies vehicular botnet communication, by looking for
abnormal values of specific BSM fields, which are messages
used by security applications only in vehicular networks and
cannot be found in other types of networks. Although its
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effectiveness, SHIELDNET relies on a specific communica-
tion protocol (Ghost), thus it would not be effective if the bot
master changes the communication protocol.

In this paper, we propose a machine-learning botnet de-
tection approach that does not suppose a particular botnet
communication protocol. As vehicular bot malware is a cy-
ber threat operating within in-vehicle and network commu-
nication levels, we propose a multilevel behaviour-based frame-
work for botnets detection in vehicular networks (AntibotV).
The proposed framework monitors the vehicle’s interaction
with the outside by analyzing the network traffic. It also
monitors the in-vehicle activity to detect suspicious opera-
tions that may relate to bot malware activity. In addition,
this paper considers new zero-day bot malware attacks that
could be carried out exclusively against vehicular networks
communication stack: 1) wave short message protocol flood
(WSMP flood); 2) and geographic wave short message protocol-
Flood (Geo WSMP flood). Both attacks target the wave short
message protocol, which is used in vehicular networks for
safety and convenience packets transfer.

The contribution of this paper is two-fold:
(i) First, we identify a set of zero-day attacks that can be

executed by a hacker through compromising a vehi-
cles on-board computer using bot malwares. We pro-
vide a detailed description about two zero-day DDoS
attacks, and information theft attacks specific to ve-
hicular context.

(ii) Second, we propose a multilevel botnet detection frame-
work based on decision trees to detect zero-day and
existing attacks by monitoring the vehicles activity at
the network and in-vehicle level.

The rest of the paper is organized as follows. Section 2
provides a background related to vehicular networks archi-
tecture and botnets communication. Section 3 summarizes
the existing works in the literature related to botnet detec-
tion. In section 4 we describe the threat models. Section
5, describes in detail the proposed framework, AntibotV. In
section 6, we provide detailed description of the dataset gen-
eration steps and discuss the obtained results. Section 7 con-
cludes the paper and draws some line of future work.

2. Background
This section provides a description of network and in-

Vehicle architecture and communication, as well as a brief
state of the art about botnets detection.

2.1. Vehicular Networks Architecture
A vehicular network organizes and connects vehicles with

each other, and with mobile and fixed-locations resources
(Road Side Units). Many telematics architectures, including
navigation services, traffic information, location-based ser-
vices, entertainment services, emergency and safety services
have been provided. In these architectures, traffic informa-
tion and navigation services are generally provided by cen-
tral TSPs (Telematics Service Providers) through a vehicle-
to-infrastructure communication [9]. On the other hand, the

emergency and safety services are supplied by an Onboard
Unit (OBU) installed by the individual car manufacturers, in
ordre to allow the mutual communication among different
vehicular nodes (vehicle-to-vehicle) [10].

2.1.1. Network stack architecture
In order to ensure vehicle-to-vehicle and vehicle-to-infrastructure

communication, the automotive industry has developed the
dedicated short-range communication standard (DSRC) (Fig-
ure 1). A communication technology that relies heavily on
several cooperatives and interoperable standards [11]. At the
PHY and MAC layers, DSRC utilizes IEEE 802.11p Wire-
less Access for Vehicular Environments (WAVE). WAVE is
an approved amendment of the IEEE 802.11 standard that
enable secure wireless communication and physical access
for high speed (up to 27 MB/s), short range (up to 1000 m),
and low latency. The spectrum allocated to it is from 5.850 to
5.925 GHz, divided into seven 10 MHz channels [12]. Chan-
nel 178 is reserved for control information and the others six
channels are used for service applications (Figure 2).

At the MAC sublayer extension of DSRC, the IEEE 1609.4
standard is deployed. It is used for priority access, manage-
ment services, channel switching and routing [13] in order to
enable to operating efficiently on seven channels alternately
[14]. As regards the IEEE 1609.2 standard, it includes tech-
niques used to secure application messages and describe ad-
ministrative functions necessary to support the core security
functions [15].

At the Network Layer, DSRC uses the IEEE 1609.3 stan-
dard. A standard that supports two protocol stacks, Wave
Short Message Protocol (WSMP) and IPv6. The choice be-
tween using WSMP or IPv6+UDP/TCP depends on the re-
quirements of the application. For the ones that depend on
the routing capabilities to transmit multi-hop packets like
commercial applications, IPv6, UDP and TCP are used. How-
ever, the applications that require the transfer of single-hop
messages like security and convenience applications, WSMP
protocol is used. Unlike the IP, UDP and TCP protocols, the
WSMP is a WAVE network layer unique protocol and can be
found only in a vehicular networks. It is used only to support
high priority and time sensitive communication.

Finally, for the format of the messages exchanged over
DSRC, like data frames and elements used by the applica-
tions, they are defined in the SAE J2735 and SAE J2945.1
standards. SAE J2735 represents a dataset that contains mes-
sage syntax. It contains many types, we cite among them
the Basic Safety Message (BSM) (periodically transmitted
to provide current information and status) and the Common
Safety Request (CSR) [16]. Other messages norms for the
V2V safety applications are specified with the SAE J2945.1
standard.

2.1.2. In-Vehicle architecture
Nowadays, we see that the automotive industry is con-

verging to replace the mechanical components of the vehicle
with other electronic components labelled electronic con-
trol units (ECUs) (expected to reach 3.29 billion deployed
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Figure 2: WAVE radio channels

units by 2025 [17]). ECUs simplify the interior architec-
ture of vehicles, thus repair and diagnose even for those who
know nothing about vehicles. Each ECU contains its sensors
and actuators, it gets input from its sensors and implements
specific functions by its actuators. Communication between
these ECUs is ensured through a dedicated bus type espe-
cially for vehicular networks; called Controller Area Net-
work (CAN bus). ECUs and CAN buses together form the
In-vehicle network (Figure 3).

In this In-vehicle network, there are two types of CAN
bus (high-speed and low-speed) connected by a gateway [6].
For the communication of critical modules (power train, brake,
etc.), the high-speed CAN bus is used. For the other types of
modules (telematics, body control, etc.) we use low-speed
CAN bus. The transmission on CAN bus is done sequen-
tially. However, if more than one device transmits at the
same time, a media access control (MAC) protocol Carrier-
sense multiple access with Collision Resolution (CSMA-CR)
is used. CSMA/CR uses priorities in the frame header to
avoid collisions [18].

2.2. Botnets
A botnet is a collection of internet-connected devices

(computers, smartphones, IP cameras, routers, IoT equipements,
.. ) called bots, and which were infected by a malware,
in order to be controlled remotely by an operator (botmas-
ter) without users’ knowledge. The communication between

the botmaster and the bots is ensured through the Command
and Control (C&C) server. Botnets can be used to achieve
harmful attacks, such as: launching Distributed Denial-of-
Service (DDoS) on rival websites or services, send spam,
distribute malwares, stole user/equipment private informa-
tion, and applying interior activities on the infected devices.
For example, the Mirai botnet [19] in 2016, was able to carry
out a massive DDoS attack that brought down major sites
like Amazon, Netflix, Paypal, and Reddit [20].

3. Related Work
Researchers have worked on detecting botnets and to over-

come their negative impact. They proposed methods suited
to the characteristics of each type of network (communi-
cation stack, protocols, characteristic of equipment’s, etc).
Other worked on the protection against DDoS attacks that
can be caused by a botnet [21, 22, 23, 24]. We find also dif-
ferent anomaly detection, revolutionary and hybrid classifi-
cation techniques proposed to deal with new types of botnets
[25, 26, 27, 28].

In [21], the authors proposed an ML-based DDoS detec-
tion and identification approach using native cloud telemetry
macroscopic monitoring. A lightweight method and com-
pletely agnostic to specific protocols and services, which can
detect any kind of DDoS attack that target the resources with-
out the need for previous training. The authors in [22] have
worked on the detection of Low-Rate DDoS (LR-DDoS) at-
tack (exactly the Shrew attack). They proposed new mecha-
nism which not only detects and mitigates the shrew attack
but traces back the location of the attack sources as well. The
attack is detected using the information entropy variations,
and the attack sources are traced-back using the determinis-
tic packet marking scheme. If the DDoS attack is caused by
a botnet, the traceability mechanism can be used to identify
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Figure 3: In-vehicle network

bot nodes in the network. Approaches that deal with DDoS
can be used to mitigate the effects of botnets (and even to
identify botnodes), however, if the botnet is used for other
attacks (e.g. information theft), DDoS detection techniques
will not be effective.

In [25], the authors proposed a model (known as AS-
IDS) that combines two detection approaches (anomaly-based
and signature-based) to detect known and unknown attacks
in IoT networks. The proposed model has three phases: traf-
fic filtering, preprocessing and the hybrid IDS. The signature-
based IDS subsystem investigates packets by matching the
signatures, and categorized them as intruder, normal or un-
known. The anomaly-based IDS subsystem employs Deep
Q-learning to identify unknown attacks. In [29], The pro-
posed method attempts to identify those mallicious Botnet
traffic from regular traffic using novel deep learning approaches,
exactly Gatted Recurrent Units (GRU) model. In a second
step, they introduced adjusted hyper parameters to make the
computational complexity low and more accurate than the
existing models. However, the use of two detection approaches
could cause an unbearable overload, which does not suit the
type of network whose nodes have limited computing and
storage capacities.

In the case of traditional computer based botnet such
as Ebury botnet [19], network-based detection is one of the
most effective detection technique that has attracted the at-
tention of many researchers [30, 31, 32, 33, 34]. By analyz-
ing the rate of failed connection and network flow features,
network-based detection technique identifies the exchanged
traffic between the C&C server and the bots.

In regard to mobile networks such as WireX botnet [19],
it is the behavioral analysis methods that have caught the at-
tention of researchers [35, 36, 37]. Different level in the An-
droid OS stack gives completely different set of behavioural
data. Behaviour-based detection method aims to detect ma-
licious application by monitoring different layer of Android

OS (API calls, ...). We find also other researchers who have
used traditional detection methods such as rules-based [38],
and signature-based [39].

Recent researches [40, 41, 42] on IoT botnets detection
used unsupervised anomaly detection techniques in order to
detect unseen botnet attacks. Goebel et al. [43] proposed
a signature-based method to minimize false positive rate.
Also detection approaches using DNS related network traffic
method have been proposed [44, 45, 46, 47, 48].

The existing botnets detection mechanisms cannot be ap-
plied directly for vehicular networks due to differences in
terms of communication stack, protocols, frames format and
architecture. In the context of vehicular networks, to the
best of our knowledge, there is only one research [7] that
has tackled the problem of botnets detection. Garip et al.
[7] focused on the communication protocol between the bot-
master and the bot vehicles. They investigated the usage of
periodic basic safety message to transmit commands from
the bot master to the bot vehicles. This communication pro-
tocol called "Ghost" allows the hacker to hide its remote
communication with the infected vehicle. The authors con-
sidered two bot malware attacks feasible against vehicular
networks: Botveillance [49]; and Congestion attacks [50].
Botveillance is an adaptive cooperative surveillance attack
against pseudonymous systems in vehicular networks, which
is based on vehicular botnet and performed by vehicles them-
selves without depending on any additional hardware. It is
used to track vehicles of interest or violate the privacy of
drivers. On the other hand, the congestion attack is based
on the vehicular congestion avoidance application. It uses
bot vehicles to spread wrong congestion information to the
other legitimate vehicles, in order to cause congestion on a
specific roads or areas.

The same authors [8] proposed SHIELDNET, a vehic-
ular botnets detection mechanism that uses machine learn-
ing techniques to detect GHOST usage and identify the bot-
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net communication. SHIELDNET detects botnet activity by
looking for anomalous values of specific BSM fields. Al-
though the efficiency of the proposed solution, the Ghost
protocol is a single hop range, which makes the command of
the botmaster sent only to its neighbours, making the range
of communication very short and unreachable by far bot ve-
hicles. Moreover, if the botnet changes the communication
protocol, it will not be effective. Furthermore, the scenario
of botnet in vehicular networks is not real. Because trans-
mitting commands through V2V communication will make
the botmaster control capacity very limited and it need to be
on the road and near from other botnet nodes. Therefore, the
ideal way to imagine a botnet in vehicular networks is where
the botmaster is anywhere, and can control those vehicles
using V2I communication and send commands through in-
frastructure. On the other hand, if the installed malware is
used to apply in-vehicular activities, SHIELDNET will not
be able to detect any abnormal communication or behaviour.

To the best of our knowledge, no research on botnets in
vehicular networks has taken into account activities at the
network and in-vehicle levels together. In this paper, our re-
search aims to implement a botnet detection approach that
does not suppose a particular botnet communication proto-
col. A multilevel behavior-based framework (AntibotV) for
botnets detection in vehicular networks that monitors the ve-
hicle’s interaction with the outside by analyzing the network
traffic. It also monitors the in-vehicle activity to detect sus-
picious operations that may relate to bot malware activity.

4. Threat Models
In this section, we provide a detailed description of the

three categories of cyberattacks that can be executed against
a target vehicle using bot malwares. First, we provide a de-
tailed description about two zero-day DDoS attacks. Then
based on existing attacks on privacy, we consider new sce-
narios applicable to the vehicular context. Finally, we present
some in-vehicle attacks that exist in the literature. Figure 4
shows the different categories of cyberattacks that a hacker
may execute using a bot malware.

4.1. DDoS attacks
Due to the differences between DSRC stack and the TCPIP

stack, it is important to consider DDoS attack scenarios spe-
cific to the vehicle network, and not be limited to DDoS
attacks common to all IP networks. Therefore, in this pa-
per, we consider two zero-day attacks specific to vehicle net-
works. Both attacks exploit the WAVE Short Message Pro-
tocol (WSMP) which is used by security and traffic man-
agement applications for the transfer of critical data such as:
vehicle speed, kinematic state, etc. Both attacks can prevent
the transfer of safety messages between vehicles and thus
cause catastrophic damage.

The WSM packets (Figure 5) exchanged between vehi-
cles are composed of the following fields: WSMP version
that gives the version of the protocol, channel number and
data rate to specify which channel and data rate are used for
the transmission, WAVE element ID represents the WSMP

header, WAVE Length to specify the length of the packet,
and the WSM Data field contains the payload data. The
Provider Service Identifier field (PSID), identifies the ser-
vice that the WSM payload is associated with. For exam-
ple, if an application tries to get access to the WAVE ser-
vice, it should be registered with its unique Provider Service
Identifier (PSID). The WAVE provider devices use PSID in
its announcement messages to indicate that a certain appli-
cation is provided by this device. On the other hands, as
the vehicle passing the road side device, user devices, which
may host such application, upon reception of such announce-
ment, compares to check if there is a match between the
PSIDs in the announcements and PSIDs in its own tables,
then the vehicle establish communication with that road side
unit [11, 12].

In both attacks the hacker attempts to misuse the WSMP
protocol. In the first attack, WSMP flood, the hacker sends
to the victim vehicle a WSM packets with unknown PSID
field values (not associated to any WAVE service). Upon the
reception of the forged WSM packet, the target vehicle at-
tempts to check (lookup) for the corresponding entry within
its PSID/Service table. Checking the PSID of one WSMP
frames will not be a problem. However, checking the PSID
of huge amount of WSM packets at the same time will ex-
haust the resources of the target vehicle and make it unable
to respond or receive legitimate security and convenience
applications packets.

The second attack, geographic WSMP flood, has the same
operating mode as WSMP flood, but wider impact. The
hacker broadcasts the forged WSMP messages to all its neigh-
bours within a specific geographic area. Thus, it exhausts the
resources of several vehicles, and it consumes the bandwidth
of an entire geographic area.Before validating AntibotV with
the WSMP flood attack, we tested it, and we found that it
can decrease the throughput with 63% (the number of secu-
rity and convenience frames arrived), which make the attack
very effective (as shown in figure 6). Regarding the imple-
mentation of the scenario, the simulators used, as well as
the details of the simulation (number of nodes, time of sim-
ulation, MAP, traffic collection, etc.), all these details are
discussed in the subsection 6.1.1.

4.2. Theft of information
A team of academics from the University of California

at San Diego and the University of Washington have found
out that the audio surveillance inside the vehicles is possi-
ble [51]. In such situation, the attacker indirectly uses vir-
tual assistance tools (like Siri [52]) by giving it malicious
commands hidden in recorded music, innocuous-sounding
speech [53] or a low-powered laser [54]. Siri begins record-
ing the conversations using the vehicle’s internal microphones,
and sends them to a remote server belonging to the hacker
every 10 or 20 seconds[55].

In the case of GPS tracking, the hacker may attempt to
track the vehicle’s location on real time, check the location or
retrieve the complete trajectory. For the real time tracking,
the GPS information must be sent every second (streaming)
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Table 1
Threat models

Category Attack Objective

DDoS WSMP Flood
Exhausting the resources of the target vehicle and make it unable
to respond or receive legitimate security and convenience
applications packets.

Geo-WSMP Flood Exhausting the resources of several vehicles, and consuming
the bandwidth of an entire geographic area.

Theft of
information

GPS Tracking Tracking the vehicles location on real time.

Audio Surveillance Recording the conversations using the vehicles internal microphones,
and sends them to the botmaster.

In-vehicle
Frame Falsifying Fabricate fake frames that contain erroneous data to mislead the driver:

falsifying the fuel level, changing the speedometer reading

Replay Attack Replaying captured frames. Could be used to: opening the door, starting
the engine

DoS Attack Monopolize the transmission channel to delay or prevent the transmission
of legitimate CAN frames. Example: disable the brakes.

Figure 5: WSM frame

to the botmaster. For the other two types of GPS tracking,
the information are sent periodically or on-demand. In this
paper, we consider the real time GPS tracking scenario. The

bot vehicle sends the latitude (4 bytes), longitude (4 bytes),
speed (2 bytes), time (2 bytes) and direction coordination in
streaming to the botmaster [56].

4.3. In-Vehicle attacks
The in-vehicle networks brought convenience to man-

ufacturers, drivers and after-sales services. However, they
raise vulnerabilities [6] that can be exploited by a hacker to
conduct the following attacks:

1. Frame Falsifying and injection: CAN frames are
sent in plaintext, which allows the bot malware within
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the vehicle to retrieve and analyze their contents. Us-
ing the captured data, the bot malware can fabricate
fake frames that contain erroneous data to mislead the
ECUs. Subsequently, the fabricated frames are in-
jected in CAN bus to carry out malicious activities
such as: falsifying the fuel level, changing the speedome-
ter reading or displaying failure information that may
mislead the driver.

2. Replay Attack: The frames are transmitted through
CAN bus using broadcast and without authentication.
Thus, CAN frames can be easily captured by the bot
malware to be analyzed and replayed in a second step.
In [57], Koscher et al. found that the range of valid
CAN frames is small. Hence, by iteratively testing
CAN frames (i.e., the fuzzing test mentioned in [57]),
adversaries are able to discover many functions of se-
lected ECUs. The replay attack could be used to open
the door, start the engine, turn on the lights or remotely
drive the vehicle.

3. DoS Attack: messages transmitted with the smallest
identifier are the messages with the highest priority.
The bot malware could use this vulnerability to mo-
nopolize the transmission channel, and thus delay or
prevent the transmission of legitimate CAN frames.
For instance the bot malware can prevent a CAN frame
from being transmitted to the ECU of brakes, which
could lead to accident [6].

Table 1 provides a summary of the different security threats
discussed earlier.

5. AntibotV Framework
In this section, we describe in detail the AntibotV, a multi-

level framework to detect vehicular botnets. Moreover, we
describe the detection process based on machine-learning al-
gorithms.

5.1. AntibotV overview
We suppose that a network traffic generated by a bot mal-

ware is different from legitimate traffic, in other words the
bot malware alters the traffic pattern of the vehicle. This
hypothesis comes from the fact that connected cars run spe-
cialized applications related to safety and convenience, such
as: cooperative collision warning, V2V post crash notifica-
tion, congested road notification, etc... Running specialized
and particular applications, makes connected vehicles’ net-
work traffic pattern regular as long as it is not compromised.
Thus, we believe bot malware that compromises a connected
vehicle should alter its network traffic pattern. Likewise, at
the in-Vehicle level, because of the regularity of communica-
tion pattern, it is possible to identify a legitimate in-Vehicle
traffic pattern, and thus, detect malicious bot activity.

The AntibotV is a host-based intrusion detection system,
running the system in a vehicle, rather than at some point
of the network. The proposed system monitors communi-
cation with outside through analyzing network traffic, and it
monitors in-vehicle communication by analyzing CAN bus
frames. The two-level monitoring allows an effective de-
tection of bot malware activity which consists in sending
data and receiving commands from bot master, at network
level, and executing control commands, falsify the fuel level,
change the speedometer reading or display failure informa-
tion at in-vehicle level.

The network traffic is characterized using a set of sta-
tistical features such as flow duration, total packets sent in
forward direction, minimum packet length, etc ( detailed de-
scription of used features is provided in the next section).
To characterize the in-vehicle communication a set of twelve
features is used including timestamp (recorded time), CAN
ID (identifier of CAN message in HEX), DLC (number of
data bytes, from 0 to 8), DATA[0 7] (data value in byte).

Regarding network traffic, it is independent of the type of
vehicle, model, or year and it depends only on the protocol
stack used, which implies that AntibotV is applicable in all
vehicles that use DSRC standard as wireless access technol-
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Table 2
List of network features

Features
Nb Name Description

1 Flow Duration Duration of the flow in microsecond
2 Flow IAT Mean Mean time between two packets sent in the flow
3 Flow IAT Std Standard deviation time between two packets sent in the flow
4 Flow IAT Max Maximum time between two packets sent in the flow
5 Flow IAT Min Minimum time between two packets sent in the flow
6 Fwd IAT Tot Total time between two packets sent in the forward direction
7 Fwd IAT Mean Mean time between two packets sent in the forward direction
8 Fwd IAT Std Standard deviation time between two packets sent in the forward direction
9 Fwd IAT Max Maximum time between two packets sent in the forward direction
10 Fwd IAT Min Minimum time between two packets sent in the forward direction
11 Down/Up Ratio Download and upload ratio
12 Idle Mean Mean time a flow was idle before becoming active
13 Idle Std Standard deviation time a flow was idle before becoming active
14 Idle Min Minimum time a flow was idle before becoming active
15 Tot Fwd Pkts Total packets in the forward direction
16 Flow Pkts/s Number of flow bytes per second
17 Fwd Pkts/s Number of forward packets per second
18 Bwd Pkts/s Number of backward packets per second
19 total_Bwd_Packets The total number of packet in the bwd direction.
20 total/min/max/mean/std_f/b_Pktl The size of packets and the standard deviation size in fwd or bwd direction.
21 Avg_Packet_Size The mean packets size.
22 f/b_AvgSegmentSize The median noticed size in the fwd or bwd direction.
23 f/b_AvgPacketsPerBulk The mean number of packets bulk rate in the fwd or bwd direction.
24 f/b_AvgBulkRate The average number of bulk rate in the fwd or bwd direction
25 act_data_pkt_forward The number of packets with at least 1 byte of TCP data payload in the fwd direction
26 min_seg_size_forward The smallest segment size noticed in the fwd direction.
27 Total_f/b_headers The total number of bytes used for headers in fwd or bwd direction
28 f/b_AvgBytesPerBulk The mean number of bytes bulk rate in the fwd or bwd direction.
29 Init_Win_bytes_forward/backward The total number of bytes sent in initial window in the fwd or bwd direction.
30 total/min/max/mean/std_Bwd_iat The total, max, min, mean, and standard time between packets for the bwd direction.
31 f/b_psh/urg_cnt The number of the PSH or URG flags were set in packets in the fwd or bwd direction.
32 Min/mean/max/std_active The min, max, mean, and std time a flow was active before becoming idle.
33 Flow_Byts_PerSecond The number of a flow bytes per second.
34 min/max_flowpktl The length (min, max) of flow.
35 Flow_fin/syn/rst/psh/ack/urg/cwr/ece The number of packets with flags.
36 Sflow_f/b_Packet The average number of packets in a sub flow for the fwd or bwd direction.
37 Sflow_f/b_Bytes The average number of bytes in a sub flow for the fwd or bwd direction.

ogy. Concerning CAN bus standard, it consists of two ver-
sions based on the length of the arbitration field. CAN bus
2.0A defines an 11-bit standard frame format while CAN bus
2.0B is compatible with data messages in a standard frame
and extended frame format. Our framework mainly focuses
on CAN ID, DLC and the DATA fields (Table [3]), and the
three fields are found in both versions (2.0A and 2.0B) of
CAN bus protocol and they have the same length. This im-
plies that AntibotV is a general framework for all vehicles
that uses the standard DSRC as wireless access technology
and CAN bus protocol with its two versions, regardless the
model of the vehicle.

Being a host-based system, AntibotV should not con-
sume a large amount of the vehicles resources, because that
would impact its other operations. For that reason, we move
the computational load of training classification model to a

centralised server on the cloud. Thus, the vehicle runs an
already trained classification model, which would minimize
the resources consumption of vehicle. Additionally, unlike
signature-based models, AntibotV is a behavior-based model
based on machine learning algorithms, which means there
is no overhead to maintain a signature database up to date,
nor huge computational resources like deep learning-based
models. In addition, it does not require any hardware modi-
fication.

AntibotV has a modular architecture inspired by the ID-
MEF (Intrusion Detection Message Exchange Format) ar-
chitecture proposed by the IDWG group [58]. The architec-
ture is mainly composed of three modules: traffic collection
module, analyzer module, and manager module. The first
module collects network traffic and in-Vehicle CAN frames.
The analyzer module is responsible for analysing the vehi-
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cles traffic data. The manager module handles alerts, send
notifications, and updates classification model for both traf-
fic. Detailed description of these modules is provided in the
next sections.

5.2. Traffic collection module
Used to collect and process the vehicle traffic and apply

several pre-treatment operations in order to extract from the
raw data a vector of features, which will be used by the an-
alyzer module. It collects two types of traffic:network flow
and CAN bus frames.

5.2.1. Network traffic collector
This module collects information about network traffic

form exchanged packets. Each packet is mapped to a net-
work flow identified by five attributes namely source IP, des-
tination IP, source Port, destination port and Protocol. The
RFC 3697 [59] defines traffic flow as "a sequence of packets
sent from a particular source to a particular unicast, anycast,
or multicast destination that the source desires to label as
a flow. TCP flows are usually terminated upon connection
teardown (by FIN packet) while UDP flows are terminated
by a flow timeout. Table 2 shows the list of network flow-
based features extracted for each network flow. At the end,
the network traffic collector generates a vector of calculated
features, then transfers it to the analyzer module.

5.2.2. In-vehicle traffic collector
The in-vehicule traffic collector module analyses frames

exchanged on CAN bus. Unlike the network traffic, which
is processed as flows, the in-vehicle traffic is analysed us-
ing deep frames inspection technique. The analysis is car-
ried out through real time observation of frames as they tra-
verse CAN bus links. A CAN bus frame contains the fol-
lowing fields: the Start of Frame (1b), Message ID (an 11b
identifier that represents the message priority), Control fields
(3b), Data Length (number of data bytes, 4b, from 0 to 8),
Data[0 7] (Data to be transmitted, 0-64b), CRC (15b), ACK
fields (3b), End of Frame Delimiter (7b) [60].

The in-vehicule traffic collector generates a features vec-
tor with the following fields: timestamp (recorded time),
CAN ID, DLC and the DATA, as illustrated in table 3. The
timestamp and CAN ID fields could be used to detect DoS
and replay attacks, which exploits the vulnerability of ID pri-
ority as described previously in section 4. The DLC and
DATA fields could be used to detect falsified and injected
frames. Then, the feature vector is transferred to the ana-
lyzer module.

Both network and in-vehicle features vectors are pre pro-
cessed before their transfer to the analyzer module. Pre-
processing operations concern mainly removing missing val-
ues and scaling feature values using z-transformation. The
pseudo codes algorithm 1 summarizes the different steps of
the traffic collection module.

5.3. Analyzer module
It is the most important module of the framework. Since

this module handles two types of independent traffic, it uses

Table 3
CAN bus frames feature vector attributes

Features Description
Timestamp Recorded time (s)
CAN ID Identifier of CAN message
DLC Number of data bytes, from 0 to 8
DATA[0]
DATA[1]
DATA[2]
DATA[3]
DATA[4]
DATA[5]
DATA[6]
DATA[7]

Data value (byte)

Algorithm 1: Traffic Collection Module
1 BEGIN
2 Input : 𝐶𝐵𝐹 (CAN bus frame), 𝑁𝐹 (Network flow)
3 Variables :: 𝑁𝐹𝑤 (Network flow feature vector),

𝐶𝐵𝐹𝑤 (CAN bus frame feature vector)
4 if (𝑁𝐹 is captured) then
5 Extract Features from (𝑁𝐹 );
6 Generate (𝑁𝐹𝑤);
7 Preprocess (𝑁𝐹𝑤);
8 Send (𝑁𝐹𝑤) to Analyzer Module;
9 end if

10 if (𝐶𝐵𝐹 is captured) then
11 Extraction of (Timestamp, CAN ID, DLC, DATA)

from 𝐶𝐵𝐹 ;
12 Generate (𝐶𝐵𝐹𝑤);
13 Preprocess (𝐶𝐵𝐹𝑤);
14 Send (𝐶𝐵𝐹𝑤) to Analyzer Module;
15 end if
16 END

two analyzers. The first analyzer is responsible of analyzing
network traffic, the second one to analyze CAN bus frames.
The network analyzer is a classifier trained using supervised
machine learning algorithms on legitimate and malicious net-
work traffic. The legitimate network traffic is generated by
running specialized vehicular application related to safety
[61], convenience [62] and commercial [63] applications.
The malicious network traffic is related to typical bot mal-
ware’s activities such as DOS and information theft attacks.
The in-Vehicle analyzer is a classifier trained using super-
vised machine learning algorithms on legitimate and mali-
cious (DoS, Fuzzy, RPM and Gear) CAN frames. Both clas-
sifiers are generated in a central server then integrated into
the framework. Within the vehicle, the two classifiers are
used for continuous monitoring of network traffic and CAN
bus traffic.

The network analyzer uses the calculated network fea-
tures to classify the received network flow in one of three
classes: normal, DOS, or information theft. The in-Vehicle
analyzer classifies CAN bus frames based on the calculated
features into four classes: normal, DOS, frames injection
or Replay attack. If a malicious network flow or CAN bus
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frame is detected, then the analyzer module sends an alert
to the manager module to take an immediate action. Other-
wise, it will be ignored.

To train both analyzers we use the following supervised
machine learning algorithms. For each analyzer we choose
the algorithm that gives the best performances. The follow-
ing algorithms are selected for their known efficiency and
classification performances:

1. Naive Bayes Algorithm: It is a probabilistic clas-
sifier that makes classifications using the maximum a
posteriori decision rule in a Bayesian setting. It op-
erates on a strong independence assumption, which
means that the probability of one attribute does not
affect the probability of the other.

𝑃 (𝑐 ∣ 𝑥) =
𝑃 (𝑥 ∣ 𝑐) ∗ 𝑃 (𝑐)

𝑃 (𝑥)
(1)

𝑃 (𝑐 ∣ 𝑥) = 𝑃 (𝑥1 ∣ 𝑐) ∗ 𝑃 (𝑥2 ∣ 𝑐) ∗ ... ∗ 𝑃 (𝑥𝑛 ∣ 𝑐) ∗ 𝑃 (𝑐)
(2)

𝑃 (𝑐|𝑥) is the posteriori probability of class (target)
given predictor (attribute). 𝑃 (𝑐) is the prior proba-
bility of class. 𝑃 (𝑥|𝑐) is the likelihood, which is the
probability of predictor given class. 𝑃 (𝑥) is the prior
probability of predictor.

2. Support Vector Machine(SVM): Each data item is
plotted as a point in n-dimensional space (where n is
number of features) with the value of each feature be-
ing the value of a particular coordinate. Then, the
classification technique is performed to differentiate
the classes and define which one the data points be-
longs to.

3. K-Nearest Neighbour: the k-nearest neighbors al-
gorithm (k-NN) is a non-parametric method used for
classification and regression [64]. It works based on
minimum distance from the query instance to the train-
ing samples to determine the K-nearest neighbours.
After gathering the K nearest neighbours, it take sim-
ple majority of these K-nearest neighbours to be the
prediction of the query instance. Formally:

𝑠𝑐𝑜𝑟𝑒(𝐷,𝐶𝑖) =
∑

𝐷𝑗∈𝐾𝑁𝑁𝑑

𝑆𝑖𝑚(𝐷,𝐷𝑗)℘(𝐷𝑗 , 𝐶𝑖) (3)

Above, KNN(d) indicates the set of K-nearest neigh-
bors of the query instance

𝐷 ∗ ℘(𝐷𝑗, 𝐶𝑖) (4)

with respect to class Ci, that is:

℘(𝐷𝑗, 𝐶𝑖) =

{
1, 𝐷𝑗 ∈ 𝐶𝑖
−0, 𝐷𝑗 ∉ 𝐶𝑖

(5)

Sim(D, Dj) : represent the similarity score of each
nearest neighbor document to the test document. More-
over, it is used as the weight of the classes of the neigh-
bor document.
For test document d, it should be assigned the class
that has the highest resulting weighted sum.

4. Decision Trees: to build a decision tree, in this paper
we used the ID3 (Iterative Dichotomiser 3) algorithm
that uses entropy and information gain as metrics. En-
tropy characterizes the impurity of an arbitrary collec-
tion of examples, it can be defined formally as follow:

𝐻(𝑠) =
∑
𝑐∈𝐶

−𝑃 (𝑐) ∗ 𝑙𝑜𝑔2𝑃 (𝑐) (6)

where S is the current data set for which entropy is
being calculated, C is the set of classes in S, and P(c)
represents the proportion of elements in class c to the
number of elements in set S.

5. Random Forest: like its name implies, consists of a
large number of individual decision trees that operate
as an ensemble. Each individual tree in the random
forest spits out a class prediction and the class with
the most votes becomes our models prediction.

6. Neural Networks: is one of the most known machine
learning algorithms. It works based on several layers
in order to analyze the data. Each layer tries to detect
patterns on the input data. When one of the patterns
is detected, the next hidden layer is activated and so
on [65]. In this paper, we use Multi layer perceptron
(MLP), a supplement of feed forward artificial neural
network. It consists of three types of layers: the input
layer, output layer and hidden layer. The input layer
receives the input signal to be processed. The required
task such as prediction and classification is performed
by the output layer. An arbitrary number of hidden
layers that are placed in between the input and output
layer are the true computational engine of the MLP
[66].

The pseudo codes algorithm 2 summarizes the different
steps of the analyzer module.

5.4. Manager module
The manager modules handles alerts and triggers ade-

quate response measures according to the detected attacks.
Whenever the analyzer module detects a botnet activity, it
sends an alert to the manager module. The latter logs the
traces of the corresponding event and notify the driver. If a
DoS attack is detected the manager module terminates net-
work session with the victim vehicle. In the case of theft of
information, the manager saves logs and notifies the driver.
If the driver does not approve the transfer, the connection
to the destination address will be blocked. Otherwise, the
flow will be ignored. At the in-vehicle level, when the ana-
lyzer detects a CAN frame as belonging to a botnet activity,
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Algorithm 2: Analyzer Module
1 BEGIN
2 Input : 𝐶𝐵𝐹𝑤 (CAN bus frame feature vector), 𝑁𝐹𝑤

(Network flow feature vector)
3 Output : 𝐶𝐵𝐹𝑤_𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (CAN bus frame feature

vector Decision), 𝑁𝐹𝑤_𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (Network flow
feature vector Decision)

4 if (𝑁𝐹𝑤 is Received) then
5 𝑁𝐹𝑤_𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 <- Network_Analyzer_SubModule

(𝑁𝐹𝑤);
6 Send (𝑁𝐹𝑤, 𝑁𝐹𝑤_𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛) to Manager Module;
7 end if
8 if (𝐶𝐵𝐹𝑤 is Received) then
9 𝐶𝐵𝐹𝑤_𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 <-

In-Vehicle_Analyzer_SubModule (𝐶𝐵𝐹𝑤);
10 Send (𝐶𝐵𝐹𝑤, 𝐶𝐵𝐹𝑤_𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛) to Manager

Module;
11 end if
12 END
13 Function Network_Analyzer_SubModule(𝑁):
14 Local Variable : 𝑁_𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (Network Traffic

Prediction)
15 𝑁_𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = Machine Learning Algorithm(𝑁);
16 return 𝑁_𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛;
17 End Function
18 Function In-Vehicle_Analyzer_SubModule(𝐹 ):
19 Local Variable : 𝐹_𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (Frame Prediction)
20 𝐹_𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = Machine Learning Algorithm(𝐹 );
21 return 𝐹_𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛;
22 End Function

it sends an alert to the manager, which will notify the driver.
To avoid interrupting wrongly vehicle’s services, whatever
the type of detected attacks, the manager module asks for
driver’s approval before undertaking any response measures.
When the driver is notified depends on the attack. The most
serious cases (disabling brake attacks) require direct notifi-
cation. However, in other scenarios that do not have an im-
pact on the driver’s life, the notification is not done while
driving, but in the moments when the vehicle is completely
stopped, in order to avoid unnecessary shocks. The pseudo
codes algorithm 3 summarizes the different responses mea-
sures.

Terminating malicious processes running on the vehicle
does not mean that it will not be executed again. To get rid of
this inappropriate malware that was detected, the system of
the vehicle must be reset. The resetting process removes the
applications and files installed on the system, which might
be the carriers of the malware. The manager module has to
ask the permission of the driver before the reset operation.

Finally, in order to keep the trained model updated (in
the face of new zero-day bot malware attacks), a new train-
ing session is initiated automatically whenever the accuracy
of the model starts degrading. The manager module begins
to send the incoming traffic collected by the collection mod-
ule to a remote server on the cloud, which is used to perform
the exhaustive calculation operations. A combination of the
new collected data and old training data are used together to

Algorithm 3: Manager module response measures
1 BEGIN
2 Input: 𝐶𝐵𝐹𝑤 (CAN bus frame feature vector),𝑁𝐹𝑤

(Network flow feature vector), 𝐶𝐵𝐹𝑤_𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (CAN
bus frame feature vector Decision), 𝑁𝐹𝑤_𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛
(Network flow feature vector Decision)

3 if (𝐶𝐵𝐹𝑤_𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 classified as malicious) then
4 Send an alert to the driver about 𝐶𝐵𝐹𝑤
5 Ask driver’s approval for system reset
6 end if
7 if (𝑁𝐹𝑤_𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 classified as DoS attack) then
8 Save detailed logs of 𝑁𝐹𝑤
9 Send alert to the driver

10 Terminate network session
11 Ask driver’s approval for system reset
12 else
13 if (𝑁𝐹𝑤_𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 classified as theft of information)

then
14 Save detailed logs of 𝑁𝐹𝑤
15 Send an alert to the driver
16 if (information theft confirmed) then
17 Terminate network session
18 Ask driver’s approval for system reset
19 else
20 Ignore 𝑁𝐹𝑤 ;
21 end if
22 end if
23 Ignore 𝑁𝐹𝑤;
24 end if
25 END

build and deploy the new model. In the first phase, the gath-
ered new data sets are been analyzed. In the second phase,
a correlation algorithm could be used to correlates the rela-
tionships between the old training data and would be able to
predict the new collected malware variants data. In the fi-
nal phase, the analyzer module uses the old and new data for
training, so it can be able to detect the malware traffic and
give appropriate output. The benefit of such update tech-
nique is that it is completely automated.

6. Experimentation
In this section, we provide the evaluation results of the

proposed framework. First, we describe in details the datasets
used in this research, and the pre-processing operations we
have carried out. Since the proposed framework monitors
the in-vehicule and network communication, we have used
two datasets to evaluate its performance, the first one con-
tains vehicular network traffic, the second one in-vehicule
traffic [67]. A detailed description of the two datasets is pro-
vided below.

6.1. Network traffic dataset
6.1.1. Generating network traffic data

To the best of our knowledge, no real vehicular network
traffic dataset including botnet traffic is publicly available.
Thus, we simulate vehicular botnet activity discussed in sec-
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Table 4
Vehicular Networks applications

Type Abbreviation Description

safety
oriented

BSM Basic Safety Message: a packet transmitted approximately 10 times per second. It contains
vehicle’s state information, like speed, GPS coordination, etc.

CCW Cooperative Collision Warning: an application that aims to help the driver to avoid collisions
by giving him the kinematics status messages collected from the vehicles around.

CVW Cooperative Violation Warning: roadside units send to drivers the necessary information
when approaching to a signal phase or a red light.

EEBL Emergency Electronic Brake Light: If a vehicle braking hard, it broadcasts a message to inform
the other vehicles.

PCN V2V Post Crash Notification: If a vehicle is involved in a crash, it broadcasts a message to inform
the other vehicles.

RFN Road Feature Notification: if a vehicle detects an advisory road feature (acute turn), it broadcasts
a message to inform the other vehicles.

RHCN Road Hazard Condition Notification: if a vehicle detects a road hazard (rocks, animals, ice), it
broadcasts a message to inform the other vehicles.

SVA Stopped or Slow Vehicle Advisor: If a vehicle reduces its speed or stops, it broadcasts a message
to inform the other vehicles.

convenience
oriented

CRN Congested Road Notification: If a vehicle detects a collision, it sends a message to alert the
other vehicles so that they can take another lane.

PAN Parking Availability Notification: this application is used to request the road side unit to
provide the closest parking and if they contain free parking spaces.

PSL Parking Spot Locator: It is an exchange of information between a vehicle and the Parking
Space Locator roadside unit. It is used to provide free parking places in a parking lot.

TOLL Free Flow Tolling: it permits to apply an e-payment while passing through a highway toll gates.

TP Traffic Probe: The kinematics status messages are collected and transmitted through road side
units to the traffic management center.

commercial
oriented

CMDD Content, Map or Database Download: a vehicle connect to a wireless hot-spot to download
content (maps, multimedia, or web pages).

RTVR Real-time Video Relay: a vehicle may initiate transfer of real-time video that may be
useful to other drivers in the area.

RVP/D Remote Vehicle Personalization/Diagnostics: the drivers can connect to a hot-spot to download
the latest personalized vehicle settings.

SA Service Announcement: Fast food or restaurant use an infrastructure that send periodically
Hello messages to announce the vehicles of its presence.

Figure 7: Dataset generation flow chart

tion 4. To generate realistic benign vehicular network traffic,
we have implemented 17 applications including safety, con-
venience and commercial applications, the list of applica-
tions (inspired from [68]) with their brief description is pro-
vided in table 4, and the simulation parameters and scenarios
are described further in this section. To ensure that the gen-
erated traffic is representative of real benign traffic and cov-
ers diverse types of application, we have considered the fol-
lowing factors for choosing applications: 1) physical-layer
channel (CCH & SCH); 2) transfer protocols (IP & WSMP);
3) message TTL (single-hop & multi-hop); 4) routing proto-
col (geocast, broadcast & unicast); 5) trigger Condition (On-
demand & event-triggered); 6) and communication technol-
ogy (V2V & V2I). Table 5 provides a categorization of the
benign applications based on the aforementioned factors.

To generate malicious network traffic related to a bot
malware activity, we have simulated the following bot ac-
tivity scenarios: 1) WSMP flood; 2) geo WSMP Flood; 3)
GPS tracking; 4) and information theft, through eavesdrop-
ping on drivers and passenger’s conversations.

To simulate the aforementioned benign vehicular net-
work applications and the bot malware activity, we imple-
mented different scenarios based on nodes ID. Four scenar-
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Table 5
Vehicular networks applications classified based on network attributes

Application Channel Protocol Message TTL Routing Protocol Trigger
Condition Participants

CCH SSH WSMP IP Multi-hop Single-Hop Geocast Broadcast Unicast Beaconing Event-
triggred On-demand V2V V2I Internet

safety
oriented

BSM 7 7 7 7 7 7 7 7 7

CCW 7 7 7 7 7 7 7 7 7

CVW 7 7 7 7 7 7 7 7 7

EEBL 7 7 7 7 7 7 7 7 7

PCN 7 7 7 7 7 7 7 7 7

RFN 7 7 7 7 7 7 7 7 7

RHCN 7 7 7 7 7 7 7 7 7

SVA 7 7 7 7 7 7 7 7 7

convenience
oriented

CRN 7 7 7 7 7 7 7 7 7

PAN 7 7 7 7 7 7 7 7 7

PSL 7 7 7 7 7 7 7 7 7

TOLL 7 7 7 7 7 7 7 7 7

TP 7 7 7 7 7 7 7 7 7

commercial
oriented

CMDD 7 7 7 7 7 7 7 7 7

RTVR 7 7 7 7 7 7 7 7 7

RVP/D 7 7 7 7 7 7 7 7 7

SA 7 7 7 7 7 7 7 7 7

ios to simulate the bot activity, and six scenarios to simulate
the benign vehicular network traffic. In every scenario, the
simulation runs for 500 seconds with 40 nodes moving ac-
cording to the random way point model with a speed of 20
m/s and no pause time within the Manhattan map (down-
loaded it from OpenStreetMap [69]). The WiFi is 802.11p,
the transmit power is set to 20 dBm, and the default propa-
gation model is Two-Ray Ground.

The first and second scenarios correspond to zero-day
DDoS attacks applicable only in vehicular networks envi-
ronment (highlighted earlier in section 4). In these scenar-
ios, the victim nodes are node 0, node 6, and node 10; while
the other nodes are the attackers. As regards the GPS track-
ing and theft of information scenarios, node 20 represent the
bot master, and nodes 7, 8, and 9 are the victims. In the GPS
tracking scenario, victim nodes send theirs GPS information
to the bot master in real time, while in the information theft
scenario, victim nodes send the recorded audio files period-
ically. For the benign traffic scenarios, we have simulated
in each scenario the applications that have common features
according to their characteristics, and in which the 40 nodes
participate.

We used Network Simulator version 3 (NS3) [70], and
the Simulation of Urban MObility (SUMO) package [71].
SUMO is responsible for simulating realistic vehicular traffic
while NS3 is used to simulate the communication capabili-
ties of the vehicles with IEEE 802.11p integration. Table 6
summarizes the simulation parameters, and table 7 presents
the samples distribution of the network traffic dataset.

6.1.2. Features extraction
After collecting the network traffic generated during sim-

ulation (as PCAP files), we have extracted a set of 79 net-
work features (see table 2). To extract features we have used
CICFlowMeter [72], a network traffic flow generator dis-
tributed by the Canadian Institut for Cyber Security (CIC).
It generates bidirectional flows, where the first packet deter-
mines the forward (source to destination) and backward (des-
tination to source) directions. Note that TCP flows are usu-

Table 6
Simulation parameters

Network Simulator NS3
Traffic Generator SUMO
Simulation Area Manhattan Map
Simulation Time 500 seconds
Number of Nodes 40
Max Speed 20 m/s
MAC/PHY Standard IEEE802.11p
Traffic Type WSMP, IP
Bandwidth Channel CCH, SCH
Propagation Model Two-ray ground-reflection model
Transmission Power 20 dBm
Packets Size Depend on the application and protocol
Packets Data Rate Depend on the application

ally terminated upon connection teardown (by FIN packet)
while UDP flows are terminated by a flow timeout. The flow
timeout value can be assigned arbitrarily by the individual
scheme e.g., 600 seconds for both TCP and UDP.

The list of network flow-based features extracted for each
network flow is composed of three categories of features:
time, bytes, and packets based features. We believe that
time-based features (Flow IAT, Fwd IAT and Idle Time) are
useful to detect DoS attacks because time interval between
successive packets is too short. Also time-based features al-
low detection of periodic events such as periodic transfer of
collected information in the case of theft of information. The
bytes/packets based features allow the detection of large and
abnormal traffic increases, which are symptomatic of DoS
attacks.

6.1.3. Data pre-processing and features selection
For the data pre-processing step, we did the cleaning and

the normalization. To check missing values and deal with
them, we used one of the python programming language
functions named Dropna(). Dropna removes a row or a col-
umn from a data frame, which has a NaN or no values in it.
Moreover, to deal with the huge differences between magni-
tude, units, and range in the generated dataset, we used the
feature scaling. The feature scaling aims to put all the values
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Table 7
Statistics of normal and attack samples of network traffic dataset

Samples Nb %
Train Test Total Train Test Total

Benign 909 606 1515 31.14% 20.76% 51.90%

Malicious

GPS Tracking 295 197 492 10.11% 6.74% 16.85%
Phishing Attack 191 128 319 6.55% 4.37% 10.92%
WSMP-Flood 182 121 303 6.23% 4.15% 10.38%

Geo-WSMP-Flood 174 116 290 5.96% 3.97% 9.93%
Total 1751 1168 2919 60% 40% 100%

Table 8
List of selected network features

Forward selection features set LinearSVC features set

Flow Duration, Tot Fwd Pkts, Flow Pkts/s,
Flow IAT Mean, Flow IAT Std, Flow IAT Max,
Flow IAT Min, Fwd IAT Tot, Fwd IAT Mean,
Fwd IAT Std, Fwd IAT Max, Fwd IAT Min,
Fwd Pkts/s, Bwd Pkts/s, Down/Up Ratio,

Idle Mean, Idle Std, Idle Min.

Tot Fwd Pkts, Tot Bwd Pkts, TotLen Fwd Pkts,
Flow Byts/s, Flow Pkts/s, Flow IAT Mean,

Flow IAT Std, Flow IAT Max, Flow IAT Min,
Fwd IAT Mean, Fwd IAT Std, Fwd IAT Max,
Fwd IAT Min, Fwd Header Len, Fwd Pkts/s,

Bwd Pkts/s, Pkt Size Avg, Bwd Blk Rate Avg,
Init Fwd Win Byts, Init Bwd Win Byts,

Active Mean, Active Max.

in the data set between 0 and 1, in order to make the features
more consistent with each other and to make the training step
less sensitive to this problem.

We have used in this research two types of feature se-
lection algorithms. The first one is forward selection [73],
which belongs to the wrappers class. Forward selection is
an iterative algorithm that starts with an empty set of fea-
ture. In each iteration, it adds the best feature that improves
the model until the addition of a new feature does not im-
prove the performance of the model. The Forward feature
selection algorithm has reduced the number of features from
37 to 18 features as shown in table 8. The second feature
selection algorithm is the Linear Support Vector Classifier
LinearSVC [74], which belongs to the embedded features se-
lection algorithms. LinearSVC is an algorithm that gives to
each feature a coef_ or feature_importances_ attribute. All
the features are considered unimportant at the beginning and
it gives them values under a threshold parameter. After that,
it uses built-in heuristics for finding the threshold of every
feature using a string argument. LinearSVC has reduced the
number of features from 37 to 22 as shown in table 8. The
best results were achieved when using the subset of features
giving by the Forward selection algorithm (as shown in the
results section).

6.2. In-vehicule traffic dataset
We have used in our experimentation the dataset built by

Song et al. [67]. The authors used Hyundais YF Sonata as a
testing vehicle. They connected a Raspberry Pi3 with CAN
bus through the OBD-II port (Figure 3), and connect the
Raspberry to a laptop computer through WiFi. They gener-
ated an in-Vehicle dataset that contains normal CAN frames
and other malicious (DoS frames, Fuzzy attack, RPM and
Gear). The dataset is available online [75], labelled and in
CSV format. We carried the same preprocessing operation

of cleaning and normalization described in the previous sec-
tion. Table 9 presents samples distribution of the in-vehicle
traffic dataset.

6.3. Results and discussion
To build the classification models for both analyzers (net-

work and in-vehicule), we apply the supervised machine learn-
ing algorithms described in section 5.3 with their default
paramaters. For each analyzer we choose the algorithm that
gives the best performances. We train, validate and test the
two classification models separately (network and in-vehicule
analyzer). From each dataset, we take 60% of the dataset
to train and validate the classification model through a 10-
fold cross-validation, and the remainder 40% for testing the
model. Six common metrics, Accuracy, Precision, Recall,
F1_score, False Positive rate and false negative rate have
been selected to evaluate the classification performances, the
aforementioned metrics can be calculated as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 +𝑇𝑁)∕(𝑇𝑃 +𝐹𝑃 +𝐹𝑁 +𝑇𝑁) (7)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑃 ) (8)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁) (9)

F1_score =(2*(precision*recall))/(precision+recall) (10)

𝐹𝑃𝑅 = 𝐹𝑃∕(𝑇𝑁 + 𝐹𝑃 ) (11)
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Table 9
Statistics of normal and attack samples of in-vehicle traffic dataset

Samples Nb %
Train Test Total Train Test Total

Benign 1239 826 2065 26.93% 17.95% 44.88%

Malicious

DoS Attack 504 336 840 10.95% 7.3% 18.25%
Fuzzy Attack 304 203 507 6.61% 4.40% 11.01%
Gear Attack 264 176 440 5.74% 3.82% 9.56%
RPM Attack 449 300 749 9.76% 6.51% 16.27%

Total 2760 1841 4601 60% 40% 100%

Table 10
Network traffic binary classification using AntibotV

Algorithm Classe Precision Recall F1-score FPR FNR Accuracy

KNN
Benign traffic 98,5% 99,6% 99,0% 2,3% 0,3%

98,70%Malicious traffic 74,53% 72,15% 73,23% 0,05% 27,83%
Average Value 86,5% 85,9% 86,1% 1,2% 14,1%

Neural Netowrks
Benign traffic 97,20% 98,60% 97,90% 4,30% 1,30%

97,30%Malicious traffic 77,30% 74,94% 75,94% 1,04% 25,02%
Average Value 87,25% 86,77% 86,92% 2,67% 13,16%

Decision Tree
Benign traffic 99,50% 99,60% 99,50% 0,70% 0,30%

99,40%Malicious traffic 82,88% 79,70% 80,88% 0,03% 20,28%
Average Value 91,19% 89,65% 90,19% 0,36% 10,29%

Random Forest
Benign traffic 99,30% 99,50% 99,40% 1,00% 0,40%

99,30%Malicious traffic 74,80% 74,70% 74,75% 0,05% 25,28%
Average Value 87,05% 87,10% 87,08% 0,53% 12,84%

SVM
Benign traffic 96,40% 99,40% 97,80% 5,80% 0,50%

97,20%Malicious traffic 74,28% 66,75% 69,68% 0,13% 33,23%
Average Value 85,34% 83,08% 83,74% 2,96% 16,86%

Naive Bayes
Benign traffic 96,60% 83,60% 89,60% 4,50% 16,30%

87,70%Malicious traffic 65,95% 86,23% 71,48% 2,73% 13,73%
Average Value 81,28% 84,91% 80,54% 3,61% 15,01%

𝐹𝑁𝑅 = 𝐹𝑁∕(𝑇𝑃 + 𝐹𝑁) (12)

where TP, FP, TN and FN denote true positive, false pos-
itive, true negative, and false negative, respectively.

6.3.1. Malicious network traffic detection
In this experiment, we evaluate the performances of An-

tibotV on classifying a network connection as legitimate or
as a malicious. As we can see from table 10, all the clas-
sifiers show high accuracy (> 85%), the highest accuracy is
achieved by decision tree (99.4%) followed by random for-
est (99.3%), while naive bayes presents the lowest accuracy.
However, accuracy is not enough to evaluate and select the
best classification model. Therefore, other important metrics
such as recall (detection rate), precision, false negative rate
(FNR) and false positive rate (FPR) need be taken into con-
sideration. Figure 8 compare between the recall, F1-score,
FNR, and FPR for benign and malicious traffic.

Decision tree presents the best average recall, however,
the malicious detection rate is found to be 79,70%, which
represents an intolerable false negative rate (>20 %). Al-
though, the decision tree is able to recognize the legitimate

traffic with high precision, the malicious traffic detection per-
formance is not promising. The poor detection rate of mali-
cious traffic is due to heterogeneity of legitimate traffic. Un-
like the other types of networks, in vehicular networks there
are two types of network traffic: IP and WSMP. The two
network traffic show different traffic patterns influenced by
several factors such as: context of use, duration, size of pack-
ets, etc. This difference represents a challenge on training the
classification model, and subsequently mislead the classifier
on differentiating between legitimate WSMP and malicious
traffic.

To overcome the aforementioned issue, we create two
classes of legitimate traffic by separating WSMP and IP traf-
fic. We believe training the classification model with two
separated categories of legitimate traffic, will reduce the false
negative rate, and thus improve the malicious traffic detec-
tion rate. In addition, to provide a suitable response mea-
sure, the detection framework needs to identify the type of
attacks. Therefore, we separate the malicious traffic into dif-
ferent classes: GPS tracking, WSMP flood, phishing, and
Geo flood. From table 11, we can see a significant improve-
ment in malicious traffic detection rate, the recall has in-
creased from 79.7% to 97.59%. Figure 9 compare between
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Figure 8: Network traffic binary classification results: Left - Accuracy and F1-score. Right
- FPR and FNR

Table 11
Network traffic multiclass results: AntibotV based on Decision Tree classifier

Classes Precision Recall F1-score FPR FNR Accuracy

Benign WSMP Traffic 99,06% 97,70% 98,38% 0,16% 2,29%

99,40%

IP Traffic 99,57% 99,71% 99,64% 0,39% 0,28%

Malicious

GPS Tracking 99,61% 100,00% 99,80% 0,08% 0,00%
Phishing Attack 99,47% 100,00% 99,73% 0,07% 0,00%
WSMP Flood 97,43% 98,70% 98,06% 0,14% 1,29%

GeoFlood 100,00% 91,66% 95,65% 0,00% 8,30%
Average Value 99,19% 97,96% 98,54% 0,14% 2,03%

the recall, F1-score, FNR, and FPR for each traffic class sep-
arately. We see that decision tree achieves the best perfor-
mances. Although, the slight decrease, the recall of the be-
nign class remains high (>98). The detection rate of Geo
flood attack is not as good as the other attacks. This can be
explained by the fact that the majority of security applica-
tions on the WSMP protocol use broadcast, which is quite
similar to Geo flood attack.

According to the aforementioned results, it is important
to note that Geo WSMP flood attack represent the most chal-
lenging attack to detect. The Decision Tree achieved the

highest detection rate with the lowest false positive rate. Be-
sides detecting malicious traffic, it also delivers high perfor-
mances on identifying the type of benign (WSMP, IP) and
malicious traffic (GPS tracking, phishing, WSMP flood, Geo
flood). Therefore, the decision tree is the best classifier to be
selected for the network analyzer module.

6.3.2. Malicious in-vehicle traffic detection
We evaluate the performance of AntibotV on detecting

and identifying in-vehicle attacks that can be carried out by
a bot malware. First, we carry out a binary classification
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Figure 10: In-Vehicle Binary classification results: Left:Accuracy and F1-score. Right:
FPR and FNR

Table 12
In-Vehicle traffic binary classification using AntibotV

Algorithm Classe Precision Recall F1-score FPR FNR Accuracy

KNN
Benign frames 99,90% 100,00% 99,90% 0,10% 0,00%

91,40%Malicious frames 61,30% 60,58% 60,55% 2,20% 39,33%
Average value 80,60% 80,29% 80,23% 1,15% 19,66%

Neural Networks
Benign frames 100,00% 100,00% 100,00% 0,00% 0,00%

83,60%Malicious frames 12,48% 24,85% 13,40% 4,30% 75,10%
Average value 56,24% 62,43% 56,70% 2,15% 37,55%

Decision Tree
Benign frames 100,00% 100,00% 100,00% 0,00% 0,00%

100,00%Malicious frames 100,00% 100,00% 100,00% 0,00% 0,00%
Average value 100,00% 100,00% 100,00% 0,00% 0,00%

Random Forest
Benign frames 100,00% 100,00% 100,00% 0,00% 0,00%

99,90%Malicious frames 99,83% 99,83% 99,80% 0,01% 0,15%
Average value 99,91% 99,91% 99,90% 0,00% 0,08%

SVM
Benign frames 100,00% 100,00% 100,00% 0,00% 0,00%

83,50%Malicious frames 23,33% 24,33% 23,35% 4,33% 75,58%
Average value 61,66% 62,16% 61,68% 2,16% 37,79%

Naive Bayes
Benign frames 100,00% 100,00% 100,00% 0,00% 0,00%

99,90%Malicious frames 99,68% 99,65% 99,65% 0,00% 0,33%
Average value 99,84% 99,83% 99,83% 0,00% 0,16%

(benign / malicious) using the supervised machine learning
algorithms described earlier in section 5.3, then the best clas-
sification algorithm is assessed on identifying the type of at-
tack. The accuracy barcharts of the figure 10 clearly show
that the proposed framework gives high performances on de-
tecting and identifying the in-vehicle traffic, with over than
90% for the KNN, decision tree, random forest, and naive
bayes algorithms. The results of binary classification are
presented in table 12. The decision tree is found to deliver
the maximum detection rate for both benign and malicious
frames. KNN, Neural Networks and SVM algorithms failed
to detect the class of malicious traffic, with a poor detec-
tion rate (between 25% and 61%). From table 13, we ca see
that decision tree can perfectly identify the different types
of in-vehicle attacks. These results confirm the efficiency
of tree based algorithms for intrusion detection. Therefore,
the decision tree is the best classifier to be selected for the
in-vehicle analyzer module.

6.4. Discussion and comparison
We compared our solution against the solution presented

in [7] that tackled the detection of vehicular botnets, the au-
thors used anomaly detection technique to allow detection
of new forms of injected BSMs messages. The detection
solution assumes a specific botnet communication protocol
(GHOST), which makes it unable to detect botnet using dif-
ferent communication protocol. The proposed framework
AntibotV does not suppose a particular botnet communica-
tion protocol, so the detection approach works independently
of the botnet communication protocol. Limiting detection
to monitoring only network communication, makes [7] un-
able to detect in-vehicle attacks. Thanks to two level mon-
itoring, AntibotV can also detect in-vehicle attacks. Com-
pared to [7], AntibotV delivers better accuracy and lower
false positive rate (see table 14). Seo et al. [67] consid-
ered in-vehicle threats, they proposed an anomaly detection
framework based on convolutional neural network and deep
neural network. Although, AntibotV delivers better perfor-
mances, the proposed approach [67] can detect unseen at-
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Table 13
In-Vehicle multiclass results: AntibotV based on Decision Tree classifier

Classes Precision Recall F1-score FPR FNR Accuracy
Benign frames 100,00% 100,00% 100,00% 0,00% 0,00%

100,00%Malicious frames

DoS Attack 100,00% 100,00% 100,00% 0,00% 0,00%
Fuzzy Attack 100,00% 100,00% 100,00% 0,00% 0,00%
Gear Attack 100,00% 100,00% 100,00% 0,00% 0,00%
RPM Attack 100,00% 100,00% 100,00% 0,00% 0,00%

Average Value 100,00% 100,00% 100,00% 0,00% 0,00%

Table 14
Comparison among vehicular botnets detection systems

AntibotV (our work) [7] [67] [22]
Threat level Network & In-vehicle Network In-vehicle Network

Machine learning technique Classification Anomaly detection Anomaly detection Time-series analysis
Algorithm Decision Tree 3D DBSCAN CNN & DNN XGBoost

Dataset Our own network traffic dataset,
and [67] in-vehicle traffic dataset Their own dataset Their own dataset Their own dataset

Ressources requirement Low Low High Low
Accuracy 99.40% & 100% 77% 97.53% 97.6%

Detection rate (Recall) 97.96% & 100% NA 98.65% NA
Precision 99.19% & 100% NA 97.63% NA

FPR 0.14% & 0% NA NA 3.29%

tacks, but to the detriment of false alerts. Furthermore, deep
learning techniques requires large amount of computational
and memory resources, which could be constraining in ve-
hicular context. The authors in [22] have proposed a mech-
anism which, detects, mitigates and traces back the location
of a Low-Rate DDoS attacker. If the DDoS attack is caused
by a botnet, the traceability mechanism can be used to iden-
tify bot nodes in the network. However, if the botnet is used
to apply other threats (e.g. information theft), the proposed
detection techniques will not be effective anymore, unlike
our proposed framework (Antibotv), which is able to deal
different types of botnet threats at different levels. Table
14 provides a qualitative comparison between AntibotV and
[7, 22] (different databases), and a quantitative comparison
with [67] (the same in-vehicular traffic database).

7. Conclusion
In this paper, we have proposed AntibotV, a multilevel

behaviour-based framework to detect vehicular botnets. We
have considered new zero day attacks, as well as a wide
range of DoS and in-vehicle attacks. The proposed frame-
work monitors the vehicles activity at network and in-vehicle
levels. To build the detection system, we have collected net-
work traffic data of legitimate and malicious applications.
Then, training using decision tree a new classifier with a set
of features that we have extracted and selected. Likewise,
we have trained a decision tree with in-vehicle data. The
experimental results showed that AntibotV outperforms ex-
isting solutions, it achieves a detection rate higher than 97%
and a false positive rate lower than 0.14%. To add a realistic
dimension to our framework, the ideal was to do the train-
ing and validation with a dataset generated from a realistic
testbed. In our futur work, we will work on the generation of

a realistic dataset, which takes into account different factors,
such as the impact of the environment (urban, rural and high-
way), plus the implementation of different malicious behav-
ior of a bot vehicle. In a second step, we can use AntibotV
generated from real data to design a simple system to report
feedback from the driver, instead of using only raw features
directly. Moreover, AntibotV has a fundamental limitation
in detecting unlearned types of attacks because it is based
on supervised learning. To solve this problem, additional
research on unknown attack detection is required using ad-
vanced learning techniques.
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