
Vol.:(0123456789)

Journal of Network and Systems Management (2022) 30:38
https://doi.org/10.1007/s10922-022-09649-5

1 3

Explora‑VR: Content Prefetching for Tile‑Based Immersive
Video Streaming Applications

Leandro Ordonez‑Ante1  · Jeroen van der Hooft1 · Tim Wauters1 ·
Gregory Van Seghbroeck1 · Bruno Volckaert1 · Filip De Turck1

Received: 28 July 2021 / Revised: 21 December 2021 / Accepted: 24 February 2022 /
Published online: 14 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Despite the growing popularity of immersive video applications during the last
few years, the stringent low latency requirements of this kind of services remain
a major challenge for the existing network infrastructure. Edge-assisted solutions
compensate for network latency by relying on cache-enabled edge servers to bring
frequently accessed video content closer to the client. However, these approaches
often require historical request traces from previous watching sessions or adopt
passive caching strategies subject to the cold-start problem and prone to playout
freezes. This paper introduces Explora-VR, a novel edge-assisted content prefetch-
ing method for tile-based 360◦ video streaming. This method leverages the client’s
rate adaptation heuristic to preemptively retrieve the content that the viewer will
most likely watch in the upcoming segments, and loads it into a nearby edge server.
At the same time, Explora-VR incrementally builds a dynamic collective buffer for
serving the requests from active streaming sessions based on the estimated popular-
ity of video tiles per segment. An evaluation of the proposed method was conducted
on head movement traces collected from 48 unique users while watching three dif-
ferent 360◦ videos. Results show that Explora-VR is able to serve over 98% of the
client requests from the cache-enabled edge server, leading to an average increase
of 2.5× and 1.4× in the client’s perceived throughput, compared to a conventional
client-server setup and a least recently used caching policy, respectively. This ena-
bles Explora-VR to serve higher quality video content while providing a freeze-free
playback experience and effectively reducing network traffic to the content server.

Keywords  Virtual reality · Video streaming · Content prefetching · Collective
buffering · Edge-assisted streaming

 *	 Leandro Ordonez‑Ante
	 Leandro.OrdonezAnte@UGent.be

Extended author information available on the last page of the article

http://orcid.org/0000-0002-1215-9209
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-022-09649-5&domain=pdf

	 Journal of Network and Systems Management (2022) 30:38

1 3

38  Page 2 of 30

1  Introduction

The recent outbreak of the COVID-19 pandemic has forced a radical shift in real-
ity for a vast majority of the human population. Given the strict restrictions on
mobility and social contact, people were compelled to move several aspects of
their daily life into the digital world. These circumstances have boosted the inter-
est in 360◦ immersive video applications (augmented and virtual reality—AR/
VR) as a means to provide realistic and engaging user experiences, that make up
for the lack of presence and physical interaction [1–3]. However, the stringent
demands in terms of bandwidth and very low latency of AR/VR applications still
represent a major challenge for the existing network infrastructure [4].

For services relying on VR headsets for content delivery, the delay perceived
by the user is a critical factor for determining the overall experience. Research
on this topic signals that the motion-to-photon (MTP) latency for VR displays
should be less than 20 ms to prevent the perception of scene instability and cyber-
sickness [5, 6]. For on-demand tile-based 360◦ video streaming in particular,
many of the existing studies have focused on mitigating the effect of latency by
increasing viewport prediction accuracy and applying HTTP adaptive streaming
(HAS) methods to adapt the quality of the requested content to the network con-
ditions [7, 8]. While these approaches achieve a rational use of the bandwidth as
perceived at the client’s side, the network latency due to distant content servers
can still substantially degrade the viewer experience.

As an answer to this problem, network-supported solutions leveraging cache-
enabled edge servers have been proposed [8, 9]. The idea behind these approaches
consists of bringing frequently accessed video tiles closer to the client; this off-
sets the network delay, which in turn leads to a significant improvement in the
quality of the delivered content. This is, however, easier said than done: the high
variety of possible viewport configurations—due to the freedom of device orien-
tation, added to different network conditions—makes it hard to determine a priori
the set of tiles that should be cached. In this sense, network-supported solutions
often rely on log traces obtained from previous streaming sessions to estimate
the popularity of the content, and/or adopt passive caching strategies in which
only those tiles that are requested get cached at the edge server. These approaches
entail two fundamental problems: (i) historical request traces are not always avail-
able for every piece of content, and (ii) the cold-start problem: early users would
barely experience any improvement from having a cache nearby, due to the fact
that most of their requests for content end up being forwarded to the origin server.

To address these issues, in this paper we introduce Explora-VR, a content
prefetching mechanism for tile-based immersive video streaming. Our solu-
tion introduces two fundamental changes in the traditional workflow of content
consumption for this kind of services: (1) the early advertising of the outcome
of the viewport prediction and rate adaptation algorithm, running on the head-
mounted display (HMD), and (2) the incremental building of a collective buffer
that incorporates fixation patterns shared by the viewers. The rationale behind
this is two-fold:

1 3

Journal of Network and Systems Management (2022) 30:38	 Page 3 of 30  38

1.	 The information on the predicted user’s viewport is forwarded to the cache-ena-
bled edge server before the client’s device starts buffering content. The edge
server uses this information to preemptively retrieve—at a given quality level—
the video tiles that the user is likely to watch in the upcoming segments, and it
loads them into memory. Then the client starts consuming the video content
from a closer server. In these circumstances, a HAS client would perceive that
the content is downloaded with low latency, leading to a high network throughput
estimation, and consequently to an increase in quality of the requested video tiles.

2.	 Since having multiple clients consume the same VR content within a small time
window is a common use case (e.g., the on-demand, near-live scenario when a
content provider premieres a new release), we have devised a stream-processing
pipeline which enables combining the different user predicted viewports into a
dynamic collective buffer (henceforth referred to as DCoB) which is built and
refined incrementally as new users join the streaming session. The purpose of
this DCoB is to serve as a cache holding frequently accessed content, preventing
the edge server from flooding the content server with duplicate requests.

This paper presents the following three main contributions of the solution we pro-
pose: (1) an edge-assisted, content-agnostic mechanism that proactively down-
loads the video tiles that an individual viewer is likely to watch in the near future
(2) the formal definition of the data structure and stream processing pipeline
behind the DCoB, which enables low-latency delivery of 360◦ video content to
multiple users taking part of an on-demand, near-live streaming scenario, and (3)
the experimental evaluation of the proposed approach on a public dataset which
comprises the viewport traces from 48 users, collected throughout immersive
video sessions. We have benchmarked the Explora-VR prefetching mechanism
against a conventional client-server configuration (without caching/prefetching),
and a setup implementing a traditional least-recently used (LRU) caching replace-
ment policy. Results show that the devised prefetching mechanism substantially
improves the quality of experience (QoE) perceived by the viewer, in terms of
video quality, startup latency, and occurrence of playout freezes, while reducing
the backhaul traffic and content server’s load.

It should be pointed out that it is not in the scope of this paper to reach an
optimal trade-off between network resource consumption and video delivered
quality, as is the case for approaches in the literature such as [10] and [11]. Our
work is focused on investigating data processing methods for enabling preemp-
tive retrieval of immersive video content which are able to adapt to the fixation
patterns of multiple concurrent viewers. To achieve this, we leverage the comput-
ing resources of cache-enabled edge nodes, and we rely on existing methods for
client-side viewport prediction and tile-based rate adaptation such as those intro-
duced in [12] and [13].

The remainder of this paper is structured as follows. Section 2 discusses the
related work. Section 3 describes the detailed description of the techniques
behind the content prefetching mechanism for tile-based 360◦ video streaming.
Section 4 elaborates on the architecture of a proof-of-concept implementation of

	 Journal of Network and Systems Management (2022) 30:38

1 3

38  Page 4 of 30

the proposed approach. Section 5 presents the experimental setup and the results
derived from the evaluation. Finally, conclusions and perspectives for further
research are provided in Sect. 6. Table 1 below provides the list of acronyms used
throughout the paper.

2 � Related Work

Immersive video applications are typically bandwidth-hungry and highly sensitive
to latency. A large body of research in this field has been devoted to develop efficient
mechanisms of content delivery. Existing approaches can be grouped into three cat-
egories according to the main focus of their respective contribution, namely client-
driven, server optimization, and edge-assisted solutions.

2.1 � Client‑Driven HAS Streaming for Tile‑Based 360◦ Video

To improve transmission efficiency, approaches in this category divide an equirec-
tangular projection of the spherical video into several rectangular areas of the same
size, referred to as tiles. By implementing said tiling scheme, the client can opt to
prioritize the tiles that overlap with the viewer’s viewport and request them in a
higher quality representation than the tiles that are not visible to the user. Repre-
sentative approaches of these tile-based viewport-dependent adaptive video stream-
ing solutions include those by Hosseini [14], Xie et al. [15], Graf et al. [16], Nguyen
et al. [17], and van der Hooft et al. [13]. These works are fundamentally focused
on addressing two main challenges: (i) viewport prediction: anticipate user move-
ments to ensure content is timely displayed following the field of view (FoV) of the

Table 1   List of acronyms used
in this paper

Acronym Description

CDN Content delivery network
CRF Constant rate factor
CTF Center tile first
DCoB Dynamic collective buffer
DNN Deep neural networks
DRL Deep reinforcement learning
FoV Field of view
FPS Frames per second
GOP Group of pictures
HAS HTTP adaptive streaming
HEVC High efficiency video coding
HMD Head-mounted device
LRU Least-recently used
QoE Quality of experience
RTT​ Round trip time
VR Virtual reality

1 3

Journal of Network and Systems Management (2022) 30:38	 Page 5 of 30  38

user; and (ii) quality of experience (QoE): providing a smooth, responsive view-
ing experience at the highest possible video quality that the best-effort network can
deliver [8]. In essence, these approaches adopt traditional HTTP adaptive streaming
techniques, and augment them to support tile-based content delivery, while meeting
the stringent demands in terms of latency and interactivity of omnidirectional video
streaming. Although these solutions allow for an efficient use of the link capacity,
they are still highly sensitive to network latency due to content servers situated in
distant locations which severely degrades the user experience.

2.2 � Server Optimization Solutions

This category comprises works mainly focused on maximizing viewer’s QoE while
optimally allocating server and network resources. Long et al. [10] propose a solu-
tion to the problem of optimal transmission resource allocation on the server side
given a specific requirement of video quality from the viewer, as well as the optimal
encoding rate for each video tile given a certain transmission energy budget. The
solution contemplates exploiting several multicast opportunities that involve balanc-
ing trade-offs between video quality, computation, and consumption of communica-
tion resources. One of the implications of the proposed multicasting mechanisms
is that the server might transmit video tiles at a higher quality representation than
requested by a certain client. In such a case, the client application would incur a pro-
cessing cost in order to scale down the received video tile to the appropriate qual-
ity representation. Building upon [10], the work by Zhao et al. [11] investigates the
impact of viewport prediction on adaptive streaming of tiled 360◦ video in a multi-
carrier wireless system. The authors consider a setup with a multi-antenna base sta-
tion from which video content is transmitted to one or multiple single-antenna cli-
ents. Within the scope of said setup, the authors propose a framework that optimizes
the downlink subcarrier allocations as well as the encoding rates for tiles and FoVs
at the server side. The solution proposed in [11] aims at maximizing the video qual-
ity delivered to the clients, while controlling the rebuffering time for different levels
of certainty about the outcome of the viewport prediction. It is noteworthy that the
optimization investigated in [11] relies on methods that operate on the radio link
layer, which is out of the scope of the work we present in this paper.

Another approach that fits within this category is introduced by Shi et al. [5],
who propose a remote rendering solution in which the server is able to stream only
the scenes within the user’s FoV plus a margin area around it whose width depends
on the perceived system latency. Instead of a tiling scheme, the server uses an adap-
tive cropping filter that adjusts the delivered content to the fraction of the VR video
overlapping with the current user viewport. A design decision made by the authors
consists of minimizing the use of video buffering to reduce the system’s response
latency. As a consequence, the proposed remote rendering solution is sensitive to
network jitter and prone to frame dropping. Furthermore, the authors do not provide
a clear indication concerning the performance of the proposed solution under high
server load (i.e., serving multiple concurrent viewers).

	 Journal of Network and Systems Management (2022) 30:38

1 3

38  Page 6 of 30

2.3 � Edge‑Assisted Solutions

Thanks to the recent availability of public datasets on Virtual Reality (VR) video
streaming —such as those by Lo et al. [18], David et al. [19], Fremerey et al. [20],
and Wu et al. [21], among others— there has been an increasing interest in investi-
gating methods for mining behavioral patterns from user movement traces. Accord-
ing to the study by Rossy et al. [22], navigation trajectories followed by viewers
with high affinity exhibit patterns that can be used for optimizing the content deliv-
ery in streaming systems. Approaches aligned with this idea are often labelled as
edge-assisted or network-supported solutions. Papaioannou et al. [23] addressed
the problem of optimal caching for tile-based VR video streaming in the wireless
edge network. Specifically, the solution introduced in [23] formulates a tile and tile
resolution caching policy that aims at minimizing the error between the cached and
requested content. The authors studied a static caching scenario in which the cach-
ing decision is made upfront, based on statistical data of the tile resolution demands
from past watching sessions. Similarly, Mahzari et al. [24] explored the application
of edge caching as a measure to compensate for network latency, and offload the
content servers and backhaul network. The authors of this work conceived a FoV-
aware caching policy based on a bayesian model which takes in the sequence of
requests made by previous viewers. The proposed model gauges the popularity of
individual tiles, and makes decisions on which content to cache/evict based on said
metric. Similarly, Maniotis and Thomos [25] devised a cache replacement strategy
for tile-based omnidirectional video, supported by a deep reinforcement learning
(DRL) framework. This strategy takes into account the popularity of both videos
and individual tiles. The authors introduced the concept of virtual viewports defined
as the most popular video tiles resulting from the overlapping FoV of multiple users.
To learn the optimal policy for tile placement in the cache, the DRL framework first
requires to train a deep neural network (DNN) on past user requests.

These approaches (and related proposals such as [26–29]) have proven the perti-
nence and substantial benefit of edge caching to improve QoE in 360◦ video services,
while reducing the load on the core network. However, these solutions often require
an offline stage in which they fit a certain data model to traces of user requests.
Afterward, in a subsequent online stage, this model is used to make decisions on
which content to cache/evict, according to the demands from new users consum-
ing the streaming service. In addition, the studies discussed above adopt a passive
approach to caching, i.e. tiles are stored into the edge-server memory only after they
have been requested. Under these circumstances, early viewers would experience lit-
tle benefit from the caching strategy in place, an issue that is commonly referred to
in the literature as the cold-start problem [30]. Using a cold cache translates into
cache miss events, which in turn increases the likelihood of playback freezes, since
user requests have to be relayed back to the content server, thus incurring additional
latency. To counter this issue, we propose a new FoV-aware content prefetching
approach for tile-based adaptive 360◦ video streaming. This approach takes advan-
tage of existing viewport prediction techniques to preemptively retrieve and cache
the video content that the viewer is most likely to consume in the upcoming seg-
ments. Additionally, this mechanism does not rely on training data from historical

1 3

Journal of Network and Systems Management (2022) 30:38	 Page 7 of 30  38

traces as it is able to learn a collective viewport on the fly, out of the requests made
by viewers with active streaming sessions. The content inside the collective view-
port dynamically adapts in response to the content that is most demanded by the
audience at a given point in time, which makes this approach specially appealing for
near-live immersive video streaming applications.

3 � Explora‑VR: Approach Overview

Figure 1 illustrates the components that make up the content prefetching mechanism
we propose. This mechanism is deployed on a cache-enabled edge server acting as a
transparent proxy between the client and the content server. In this section we elabo-
rate on the techniques that lay the foundation of our solution, namely (1) the early
advertising of the outcome of the viewport prediction and rate adaptation algorithm,
and (2) the dynamic collective buffer (DCoB).

3.1 � Viewport Prediction Advertising and Prefetching

In immersive video applications based on 360◦ video, it is common for content to
be segmented not only in time but also in the spatial dimension. The HEVC/H.265
standard, for instance, allows to split an equirectangular projection of the content
into m × n tiles of the same resolution. By adding this spatial dimension, clients
can prioritize the content within the user’s field of view, assigning a higher quality
to specific regions of the video, hence making more optimal use of the bandwidth
resources [31, 32].

To prevent buffer starvation and ensure a smooth playback in these highly inter-
active applications, traditional HAS methods need to be augmented. HAS clients for
VR applications rely on techniques for predicting the users’ target field of view or
viewport, and rate adaptation heuristics to fine-tune the quality level of the requested
content in response to the users’ movements and network conditions [7, 16, 32].

Several methods have been introduced for viewport prediction in tile-based VR
video streaming over the last years. On the one hand, content-agnostic approaches
estimate the trajectory the viewer is likely to follow based on the viewport center
locations of the last few milliseconds. To do so, some of these approaches use linear

Fig. 1   High-level component view of the VR content prefetching scenario. The link between Content and
Prefetch servers features a larger capacity and higher latency than the one between Prefetch server and
Client 

	 Journal of Network and Systems Management (2022) 30:38

1 3

38  Page 8 of 30

projection on the previous viewport positions [13, 31, 33, 34], while others rely on
machine learning models trained on user movement traces [35, 36]. Content-aware
techniques on the other hand, attempt to anticipate user movements based not only
on an estimation of the viewer’s trajectory, but also on specific features derived from
the video content itself such as image saliency, fixation density and object motion
maps [37–40].

In this work, we adopt the content-agnostic method proposed by van der Hooft
et al. in [12] for predicting the user’s viewport. In contrast to other content-agnos-
tic solutions that assume the user moving on a path in the two-dimensional space
defined by the equirectangular projection of the video, the method proposed in
[12] models the viewer’s movement as a trajectory on the unit sphere’s surface. In
this way, the future location of the viewport center is estimated by unidirection-
ally extending the path covered by the viewer thus far across the surface of the unit
sphere (spherical walk). This approach to viewport prediction provides a more natu-
ral approximation of the viewer’s motion within the 360◦ video scene. This allows
for a more accurate prediction compared to alternative content-agnostic solutions
using linear extrapolation of the user’s trajectory over the equirectangular projection
of the video.

It is worth noting that the content prefetching mechanism we propose does not
involve any substantial modification to the adopted viewport prediction scheme.
Besides, while we favor the use of spherical-walk based viewport prediction—
mainly due to its enhanced accuracy—the devised prefetching mechanism is eas-
ily compatible with other alternative content-agnostic viewport prediction methods
such as those proposed by Petrangeli et al. [31] and Xu et al. [34].

Along with the viewport prediction scheme based on spherical walks, we also
adopt the Center Tile First (CTF) rate adaptation heuristic proposed in [13]. The
intent behind this heuristic is to maximize the quality level for the video tiles located
closer to the viewport center. In doing so, tiles from an equirectangular VR video
are ranked according to the great-circle distance between their center and the view-
port predicted location. The closer a certain tile is to the viewport center, the higher
its priority and the quality representation that gets assigned to it.

As illustration, consider the example in Fig. 2 for a 4 × 4 tiling scheme and two
quality levels. The diagram outlines both the viewport (circular area on the sphere
in Fig. 2a) and viewport center (indicated as a cross mark). In this example, the CTF
heuristic has prioritized the six tiles that lie closer to the viewport center, assigning
them a high quality representation.

The output of the rate adaptation heuristic is represented as an array that encodes
the tile ranking, along with the quality level assigned to each of the tiles. Tradition-
ally, a VR client would take said array and download each of the tiles, at the speci-
fied quality level, into the playout buffer. The prefetching mechanism we propose
contemplates an extra step: forwarding the rate adaptation result to the cache-ena-
bled edge server as soon as it is generated, before the client starts buffering video
content for a given segment.

Returning to the example introduced earlier, the output of the CTF rate adaptation
heuristic in that case comprises six high-quality plus ten low-quality tiles, follow-
ing the order indicated below in Fig. 3. As the diagram illustrates, the client relays

1 3

Journal of Network and Systems Management (2022) 30:38	 Page 9 of 30  38

this output array to the Prefetch server. With this information, the specified tiles are
requested concurrently from the Content server, taking advantage of a high-capacity
link between them. Then, the corresponding video files are loaded into the cache
memory, which serves the forthcoming requests from the client with low latency.
This in turn should lead to an increase in the bandwidth perceived by the client, and
as consequence, also in the quality of the content requested for subsequent video
segments.

Clearly, conducting such a prefetching procedure for each individual user would
entail a misuse of the cache memory resources and a substantial increase in the
backhaul traffic and the content server’s load. To address this issue, we propose a
stream processing method for estimating the most salient tiles according to the view-
ers fixation patterns, on a per-video segment basis. Said set of per-segment salient
tiles is then stored into the data structure we refer to as DCoB.

3.2 � Dynamic Collective Buffer (DCoB)

The DCoB can be understood as a common playout buffer shared by active viewers
consuming the same VR content at a certain point in time. Think about the scenario

(a) (b)

Fig. 2   Example of the application of the CTF rate adaptation heuristic for a setup with a 4 × 4 tiling
scheme and two quality levels: The highest quality representation gets assigned to the blue-shaded tiles,
while the remaining ones are requested in the lowest quality. The number of high/low quality tiles in this
example is arbitrary as it depends on the network conditions between client and server

Fig. 3   VR content prefetching: The output of the rate adaptation algorithm is fed to the prefetch server
before the client’s buffer starts filling up

	 Journal of Network and Systems Management (2022) 30:38

1 3

38  Page 10 of 30

in which a content provider premieres a new episode of a popular show. Many viewers
are likely to start a streaming session soon after the episode has been released. In such
scenario, clients can benefit greatly from a nearby cache serving content that has been
previously requested by other users. Of course, to make the most of the limited mem-
ory resources, only a subset of the tiles per segment should be stored into this cache, i.e.
those that are most likely to be consumed in ongoing streaming sessions. Arranged in
this way, the data in the cache configures a per-segment collective viewport or collec-
tive buffer keeping content from the last N video segments consumed thus far.

This collective buffer has been modeled as a FIFO queue of limited size, backed by
a hash table to allow for instantaneous retrieval (Fig. 4 below). Once the configured
capacity is exceeded, the tiles corresponding to the least recently requested segment are
evicted, freeing up space in memory for new segments.

The set of video tiles contained within each of the segments of the collective buffer
should be dynamically adjusted in response to viewers’ fixation patterns. In Sect. 3.1,
a tile ranking was obtained as output of the CTF rate adaptation heuristic. This ordered
list of tiles encodes the estimated fixation map of an individual user when watching a
particular video segment. In this sense, we have devised an incremental procedure that
enables merging the ordered preferences of all the users with an active streaming ses-
sion, into a single list of video tiles per segment, composing a collective fixation map.

Let us represent a viewer’s fixation map for video v and segment s as:

where t represents each of the m ⋅ n tiles per segment in the tiling scheme ( m × n ),
while � is a function that returns the position in the viewer’s tile ranking of the tile
passed as argument. Considering the running example from the previous section
(Fig. 3), the corresponding fixation map can be expressed in the following terms:

Now, to combine the fixation maps of K viewers watching segment s of video v, we
start by computing the average position, � , for each video tile over all K-fixation
maps. The collective fixation map ( 𝜙̄v,s ) is defined as follows:

(1)�v,s = {⟨t, �(t)⟩ ∶ t ∈ {1, ...,m ⋅ n}}

(2)
�v,s = {⟨�, ��⟩, ⟨�, �⟩, ⟨�, �⟩, ⟨�, �⟩, ⟨�, ��⟩, ⟨�, �⟩, ⟨�, �⟩, ⟨�, �⟩, ⟨�, ��⟩,

⟨��, �⟩, ⟨��, �⟩, ⟨��, �⟩, ⟨��, ��⟩, ⟨��, ��⟩, ⟨��, ��⟩, ⟨��, ��⟩}

Fig. 4   Collective buffer as a FIFO queue. Each item in the queue corresponds to one segment of a given
video and contains the most relevant tiles prefetched from the content server

1 3

Journal of Network and Systems Management (2022) 30:38	 Page 11 of 30  38

The order of the tiles in 𝜙̄v,s is determined by their average position, i.e. the smaller
this value is for a certain tile, the higher the precedence the tile has for the given
video segment.

As stated earlier, only a subset of these tiles should make it to the corresponding
segment of the collective buffer. We refer to this subset as collective viewport, defined
as the top-k tiles of the collective fixation map. To determine the value of k we first
estimate the correlation between the viewers’ fixation maps. High correlation between
these maps would imply that users are looking at the same sections of the display, i.e.
a few specific tiles. We estimate said correlation by using the Kendall’s tau coefficient
( K� ) [41], which measures the correspondence between two ordered sequences in the
range [−1, 1] : the closer to 1 (resp. −1 ) the higher (resp. lower) the correspondence.
Finally, the value of k is set to be proportional to the complement of this correlation
coefficient, which we refer to as Kendall’s tau distance ( K�dist ). Let us take 𝜙̄

currv,s
 as the

current collective fixation map for segment s of video v, and �
uv,s

 as a new fixation map
corresponding to user u, for the same video segment. The collective viewport size, k, is
computed as follows:

From the equations in 4, note that in case of perfect correlation ( K� = 1 ), the dis-
tance between the fixation maps is zero ( K�dist = 0 ), and therefore the viewport size,
k, is equal to zero as well. In these circumstances, since both the collective and new
fixation maps contain the same collection of tiles, the collective viewport stored into
the DCoB for the given segment and video should remain unmodified.

The collective fixation map is incrementally refined as new viewers show up.
For this, the prefetch server keeps track of the number of viewers (nViews) that have
watched a given video segment, along with the per-segment cumulative Kendall’s tau
distance ( aggK�dist ) computed across all the fixation maps received thus far. This data
is kept in a key-value store with the tuple ⟨v, s⟩ being designated as key:

The formal procedure for processing the stream of fixation maps coming from con-
nected VR clients is specified below in Algorithm 1. The process starts by first
initializing F as an empty key-value store (line 7). Then the fixation maps �v,s are
taken in, one after the other (line 8). Each fixation map updates its corresponding
entry on the collective buffer. The mergeFixationMaps function in line 16 represents
the incremental application of the operation referred earlier in Eq. 3. The output of
this function is the collective fixation map modified by the fixation map being cur-
rently processed. The size of the collective viewport, k, is determined as the closest

(3)𝜙̄v,s =

��
t,
1

K

K�

i=1

𝜌⟨i⟩(t)

�
∶ t ∈ {1, ...,m ⋅ n}

�

(4)
k =

⌈
m ⋅ n ⋅ 𝜅𝜏dist(𝜙̄curr𝜐,s ,𝜙u𝜐,s

)

⌉
;

𝜅𝜏dist(𝜙̄curr𝜐,s ,𝜙u𝜐,s
) = 1 −

𝜅𝜏(𝜙̄curr𝜐,s ,𝜙u𝜐,s
) + 1

2

(5)F ∶ (⟨v, s⟩) ↦
�
𝜙̄v,s, nViews, aggK𝜏dist

�

	 Journal of Network and Systems Management (2022) 30:38

1 3

38  Page 12 of 30

integer to the product of the average Kendall’s tau distance ( aggK�dist

nViews
 ) times the total

number of tiles ( m ⋅ n ). This way the input from previous viewers is weighted and
taken into account (line 19). Finally, the tiles belonging to the collective viewport
are obtained (i.e. the first k tiles from the collective fixation map), the corresponding
video files are retrieved from the content server, and the up-to-date data is stored
into the collective buffer (DCoB) and the key-value store ( F  ) (lines 25–29), after
ensuring that the maximum configured capacity (N) is not exceeded (lines 21–24).

Along with the collective buffer, we also defined a short-lived buffer into
which the prefetch server stores the set of outstanding tiles, namely those tiles
in the viewer’s fixation map that remain outside the collective viewport. This in
order to avoid the client having to wait for the content server to deliver these tiles
during querying time, preventing playout freezes from happening. The entries in
this ephemeral buffer are volatile and expire over a period of time equivalent to
one video segment to minimize their memory footprint. Having both the collec-
tive and ephemeral buffers in place ensures that the client can always find relevant
content loaded into the prefetch server memory. This way we manage to bypass
the cold-start problem typical of traditional caching solutions. Figure 5 illustrates

1 3

Journal of Network and Systems Management (2022) 30:38	 Page 13 of 30  38

a typical sequence of interactions that take place between client, servers and data
stores for a single viewer.

3.3 � Analysis of Computational Cost

The procedure in charge of conducting content prefetching has been conceived as
a stateful streaming algorithm (see Algorithm 1). The input of said procedure con-
sists of regular array structures representing the viewer’s fixation maps (consider the
example in Eq. 2). The length of these arrays is fixed and determined by the number
of tiles of the tiling scheme in use, i.e., m ⋅ n . The proposed algorithm processes
each array on an individual basis, and the output of such a processing alters the state
of a collective fixation map and the collective and ephemeral buffers, for a given
video v and segment s. These data structures represent the state being managed by
the algorithm. Let us consider the cost incurred in this procedure both in terms of
space and time.

3.3.1 � Space Cost

As described earlier in Sect. 3.2, the data structures that maintain the state in the
proposed algorithm are all arranged into hash tables persisted in memory to allow
for fast read and write operations. The hash tables of both the key-value store hold-
ing the per-segment collective fixation maps ( F  ), and the collective buffer ( DCoB )
have a fixed capacity in terms of the number of segments they can contain. Said
capacity is set upfront via a configuration parameter N. In this sense, the space cost
due to these two data structures is proportional to O(N).

The hash table backing the ephemeral buffer stores individual tiles which are
not part of the collective viewport for a given video and segment. In these circum-
stances, the space cost is proportional to the number of tiles the viewer is likely to

Fig. 5   Timeline of a typical interaction between the entities composing the VR content prefetching
approach. At prefetching time the collective viewport and outstanding tiles are downloaded into the
prefetch server memory. These tiles are served to the client with low latency at querying time 

	 Journal of Network and Systems Management (2022) 30:38

1 3

38  Page 14 of 30

watch in the upcoming segment that fall outside the collective viewport. Said num-
ber is never greater than m ⋅ n (worst-case scenario). Additionally, the video content
persisted in this ephemeral buffer is short-lived by design, which further reduces its
memory footprint.

3.3.2 � Time Cost

At the core of the procedure for maintaining the collective buffer lie two operations:

i.	� the function that updates the collective fixation map ( 𝜙̄v,s ) for a certain video
v and segment s, taking in a new unseen fixation map ( �v,s ) (see line 16 in
Algorithm 1)

ii.	� the function that incrementally computes the Kendall’s tau distance ( K�dist )
between the current 𝜙̄v,s and the incoming �v,s (see line 18 in Algorithm 1)

The first operation consists of computing the element-wise average of two
indexed arrays of size m ⋅ n , and subsequently sorting the resulting array on the
obtained values. By using an algorithm such as mergesort, the time it takes for this
operation to run is proportional to O(mn logmn).

The Kendall’s tau distance in the second operation is computed using the method
by Knight [42], implemented in the SciPy Python library. This method is known
to have linearithmic time complexity, which in this particular case translates to
O(mn logmn) , just as with the above-mentioned operation.

Since m and n values are fixed and typically small (consider for instance a 4 × 4
tiling scheme), the proposed algorithm is expected to feature a low and fairly con-
sistent execution time. Figure 6 shows an example of the computation times meas-
ured on an experimental setting with 48 viewers watching the first 30 segments of

Fig. 6   Experimental determination of the time required to compute the collective viewport. An in-depth
description of the setup is provided in Sect. 5.1

1 3

Journal of Network and Systems Management (2022) 30:38	 Page 15 of 30  38

three different 360◦ videos, using a 4 × 4 tiling scheme. In said setting (described in
detail later in Sect. 5.1), the devised operations for computing the collective view-
port run under 20 milliseconds 80% of the time. This is only 1

50
 to 1

200
 of the video

segment length used in tile-based omnidirectional video streaming applications,
which typically ranges between one to four seconds [16].

Note that the computational cost of the proposed mechanism largely depends
on configuration parameters such as the collective buffer capacity (N) and the til-
ing scheme ( m × n ). This suggests that, as the number of users increases, memory
use will not surge out of control and processing time will remain consistent, which
accounts for the scalability of our content prefetching approach.

4 � Architecture and Proof‑of‑Concept Implementation

The system that implements the content prefetching mechanisms we introduced in
the previous section adopts an architecture featuring highly configurable container-
ized components. This system supports the emulation of multiple VR video stream-
ing scenarios—with and without prefetching enabled—under different network and
load conditions. A diagram of the components and submodules that make up the
system is presented in Fig. 7. Next, we address the description of the components of
this architecture.

4.1 � Prefetch Server

This is the core component of the system. In devising the functional submodules of
this server, we have drawn inspiration from the data processing pipeline presented
by Ordonez et al. in [43], which decouples stream data ingestion/preprocessing from
data storage and content retrieval. The prefetch server features three main mod-
ules: (1) the prefetching component, (2) the content buffers, and (3) the retrieval
component.

Fig. 7   VR content prefetching architecture: inspired by the Explora framework by Ordonez et al. [43]

	 Journal of Network and Systems Management (2022) 30:38

1 3

38  Page 16 of 30

The prefetching component provides an event bus which collects the viewers’ fixa-
tion maps fed by the VR client. A stream processor in this component consumes said
fixation maps and runs the procedure specified earlier in Algorithm 1 to incrementally
build the collective viewports. The stream processor is also in charge of fetching video
content from the Content server, and does this by issuing multiple concurrent HTTP
requests. We relied on the Publish/Subscribe pattern readily available in the Redis in-
memory data store [44] to implement the event bus. As for the stream processor, we
implemented it as a Python application running continuously in background, along
with the HTTP API in charge of handling the interaction with the client.

The video content fetched from the content server by the stream processor is loaded
into the data buffers. The collective buffer hosts the arrangement of video tiles lying
inside the incrementally computed viewports, while the ephemeral buffer stores the
outstanding tiles as defined at the end of Sect. 3.2. Both buffers are backed by key-
value databases implemented in Redis.

The retrieval component implements the querying handler submodule in charge
of processing clients’ requests for video content. Upon receiving a query, this handler
looks up the corresponding video tile file into both the collective and ephemeral buff-
ers. In case the video file is not available yet in none of the prefetch buffers (e.g., due
for instance to quality mismatch or network delay), the handler would relay the request
to the content server.

The implementation of the prefetch server is available online at https://​github.​com/​
Leand​roOrd​onez/​explo​ra-​vr-​cache.

4.2 � Content Server

This component plays the role of one of the nodes from a content delivery network
(CDN). The content server consists of a containerized Web server publishing the tiled
video content through a HTTP API. Video files are served from the local file system of
this component in response to regular HTTP/1.1 GET requests matching the follow-
ing the URL pattern:

where t_hor and t_vert stand for the number of tiles in the horizontal and verti-
cal axes respectively, according to the applied tilling scheme.

This content server component was implemented as a Python Web application
using the Flask framework and NGINX+uWSGI as application server. The code of this
implementation is available online as well at https://​github.​com/​Leand​roOrd​onez/​explo​
ra-​vr-​server.

4.3 � Client

This component is a containerized adaptation of the headless Virtual Reality cli-
ent developed by van der Hooft et al. [32]. The headless VR client is an adaptive

https://github.com/LeandroOrdonez/explora-vr-cache
https://github.com/LeandroOrdonez/explora-vr-cache
https://github.com/LeandroOrdonez/explora-vr-server
https://github.com/LeandroOrdonez/explora-vr-server

1 3

Journal of Network and Systems Management (2022) 30:38	 Page 17 of 30  38

streaming application written in Python which is able to recreate video streaming
sessions from prerecorded head movement traces. By deploying this component as
an independent containerized application, we were able to spawn multiple concur-
rent video streaming sessions, allowing us to assess the response of the proposed
VR video content prefetching mechanism under different network and load condi-
tions. The code of the original implementation of the headless VR client is avail-
able at https://​github.​com/​jvdrh​oof/​VRCli​ent, while our adaptation can be found at
https://​github.​com/​Leand​roOrd​onez/​explo​ra-​vr-​dash-​client.

5 � Experimental Evaluation

To determine the strengths, costs and limitations of the content prefetching mecha-
nism, we have conducted a benchmark evaluation on various VR video streaming
setups, with and without the prefetch mechanism in place. The prefetching approach
presented in this article was also compared to a caching strategy with a traditional
least-recently used (LRU) replacement policy which is a common baseline used for
evaluating the performance of existing edge-assisted solutions. A description of the
environment configuration and the covered test scenarios is presented next, along
with the results obtained from this evaluation.

5.1 � Experimental Setup

The experimental testbed we used in this evaluation is depicted in Fig. 8. Each of
the components in this diagram were deployed as an isolated Docker container, run-
ning on a single host machine with 20GB RAM, Intel E5645s @ 2.4GHz processor,
and 54GB Hard Disk, using the infrastructure provided by the imec/IDLab Virtual
Wall environment [45]. As is typically the case, we assume the link between the
content server and the cache-enabled edge server to have higher capacity/higher
latency than the one between the prefetch server and the VR clients. To emulate
these conditions, we have run traffic control (tc) [46] on each of the containers.
This way, we have provisioned a connection between content and prefetch server

Fig. 8   Experimental testbed for evaluating the VR content prefetching mechanism

https://github.com/jvdrhoof/VRClient
https://github.com/LeandroOrdonez/explora-vr-dash-client

	 Journal of Network and Systems Management (2022) 30:38

1 3

38  Page 18 of 30

with 1 Gbps bandwidth capacity and 25 milliseconds latency. On the client’s end,
we set the latency to 5 milliseconds for the setup with prefetching enabled, and 30
milliseconds in the setup without prefetching—i.e. we kept the same round trip time
(RTT) between client and content server in both setups. We gradually increased the
bandwidth in the clients link from 10 Mbps to 50 Mbps, and estimated the impact
the devised prefetching mechanism has on the quality of experience (QoE) per-
ceived by the user, measured in terms of delivered video quality, startup delay, and
occurrence of playout freezes, as reported by the VR client on a per-segment basis.
Finally, these results are contrasted to those obtained from a setup implementing a
traditional LRU replacement policy in the cache-enabled edge server.

As for the video content we used the dataset created by Wu et al. [21], which
provides head movement traces recorded from 360◦ video streaming sessions. This
dataset comprises the traces collected from 48 unique users while watching nine dif-
ferent VR videos. The tests run in this evaluation consider three representative vid-
eos out of the original nine: Sandwich features a fragment of a talk show in which
most of the motion concentrated in the center of the display; Spotlight presents a
more dynamic sequence typical for an action movie; Surf displays a compilation of
video clips recorded with a GoPro camera in an open environment. A tiling scheme
of 4 × 4 was applied to each of these videos at 4K resolution and 30 FPS, using
the same encoder and parameters discussed in [32] and listed in Table 2. We used
two quality levels to encode each of the three videos, corresponding to constant rate
factors (CRF) of 15 (High quality) and 35 (Low quality). Table 3 summarizes the
resulting bitrates for both quality representations.

With this setup in place, we proceeded to emulate a scenario with multiple users
connecting to a video streaming event. In this scenario, each of the 48 viewers in the
dataset by Wu et al. [21] would start a streaming session to watch the first 30 seg-
ments—this is 32 seconds for a segment duration of 1.067 seconds—of each of the
three considered videos. In order to approximate the dynamics of such near-live

Table 2   Overview of encoding
parameters

Parameter Value

Encoder HEVC test model (HM)
Tiling scheme 4 × 4 at 4K resolution and 30 FPS
GOP 32
Segment duration ≈ 1.067s
CRF [15, 35]

Table 3   Quality levels and
corresponding bitrates for the
three videos

Video Bitrate [Mbps]

High quality Low quality

Sandwich 21.9 ± 6.6 1.2 ± 0.3
Spotlight 20.8 ± 13.9 1.4 ± 1.3
Surf 26.4 ± 12.7 2.4 ± 1.4

1 3

Journal of Network and Systems Management (2022) 30:38	 Page 19 of 30  38

on-demand streaming scenario serving multiple users, we set up the experiment so that
viewers arrive to their watching session in quick succession with a 5 second separation
between each other. This means there were no more than six users watching the same
video at a given time.

We have run this simulation for three different configurations: (i) NO_PRE-FETCH:
no prefetching/cache enabled, (ii) PREFETCH: prefetching enabled with a collective
buffer of 30 segments in size, and (iii) LRU: caching with LRU replacement strategy
and cache size limited to 70MB, which is slightly above the maximum value of mem-
ory used by the prefetching mechanism throughout the experiment, as shown below in
Table 4. For each configuration, we measured the performance of the system in terms
of segment download time, user’s QoE (i.e., video quality, startup time, and occurrence
of playback freezes), network traffic between content and edge server, and accuracy of
the prefetch buffer/cache.

Finally, the versions of the software tools used in this evaluation are listed in Table 5.

5.2 � Results

The playout buffer size in VR video streaming is limited to a few segments
to allow for fast adaptation to viewport changes. In this sense, these kind of

Table 4   Memory consumed
by the prefetching and caching
strategies

Bandwidth client’s link
(Mbps)

Edge server memory use (MB)

LRU (%) PREFETCH (%)

10 70 57.91
15 70 59.25
20 70 61.11
25 70 62.69
30 70 67.04
35 70 64.01
40 70 67.30
45 70 67.46
50 70 66.29

Table 5   Versions of
the software used in the
experimental setup

Software Version

Docker 20.10.6, build 370c289
Docker compose 1.17.1
Operating system Ubuntu 18.04.4 LTS
Redis server 5.0.3
NGINX (content and prefetch servers) 1.14.2
uWSGI (content and prefetch servers) 2.0.17.1
Flask (content and prefetch servers) 1.0.2

	 Journal of Network and Systems Management (2022) 30:38

1 3

38  Page 20 of 30

streaming applications are particularly susceptible to buffer starvation and play-
out freezes. In a setup with a cache-enabled edge server placed between clients
and the content server, the rate adaptation heuristic might be tricked into believ-
ing that content is closer than it actually is, which leads it to request video tiles in
high-quality representations. In case of cache misses (i.e. the requested content is
not found in the cache’s memory) the request has to be relayed back to the server,
which entails additional processing and network latency. In said cases, the seg-
ment download time might take longer than the segment playback duration. When
such conditions persist for several segments during a watching session, buffer
draining-out and playout freezes are bound to happen.

Figure 9 shows the empirical cumulative distribution function (ECDF) of the
per-segment download time for the three configurations under evaluation (NO_
PREFETCH, PREFETCH, and LRU), measured for multiple values of bandwidth
on the client’s end. Note that both the setup with the proposed prefetching mecha-
nism, as well as the one with the LRU cache replacement policy manage to keep
download times under the segment duration limit (SEG_DUR line in Fig. 9) for
most of the segments across all bitrates and videos. However, for the LRU setup,
there is in general a larger proportion of segments taking longer to download than
the segment duration: on average 14% of the segments in the LRU configuration,
compared to only 7.6% of the segments in the PREFETCH setup. As the capac-
ity on the client’s link increases, those segments can take as much as 3.9 seconds
to download, which is far higher than the comparable download times from the
PREFETCH setup which do not surpass 1.8 seconds in any of the cases. This sig-
nals a higher likelihood of cache misses for the LRU configuration, and a more

Fig. 9   ECDF of the per-segment download time for the three tested configurations. The larger the num-
ber of segments taking longer than SEG_DUR to download, the more likely playout freezes are to occur

1 3

Journal of Network and Systems Management (2022) 30:38	 Page 21 of 30  38

frequent occurrence of playout freezes in this setup, specially for large values of
bandwidth on the client’s connection.

The foregoing is confirmed by measuring the number and duration of the playout
freezes by streaming session. Figure 10 reports on these measurements as a func-
tion of the client’s bandwidth, for each of the considered videos. Note that the setup
with the proposed prefetch mechanism offers a freeze-free playback experience to
the user, in contrast to the LRU counterpart. According to Fig. 10a, the average
number of freezes per streaming session on the LRU configuration is always greater
than zero, and the number increases for the three videos as the bandwidth grows
larger. We can observe a similar behavior for the total freeze duration. Figure 10b
presents this measurement as a proportion of the length of a streaming session, i.e.
32 seconds. These results are clearly inconvenient and counterintuitive from the cli-
ent’s perspective, and can be attributed to the occurrence of cache misses. Table 6
below shows the cache hit ratio measured across the streaming sessions of all 48
users in the dataset, for both LRU and PREFETCH configurations. For the setup with

(a) (b)

Fig. 10   Occurrence and duration of playout freezes: The PREFETCH and NO_PREFETCH configura-
tions manage to deliver a freeze-free watching experience to the viewer. For the LRU setup, both fre-
quency and duration of playout freezes increase as the bandwidth on the client’s link grows larger

Table 6   Hit ratio for different
values of bandwidth in the
client’s link

Bandwidth client’s link
(Mbps)

Hit ratio

LRU (%) PREFETCH (%)

10 94.62 98.44
15 93.84 98.43
20 92.56 98.36
25 91.65 98.51
30 89.40 98.52
35 88.17 98.60
40 87.37 98.69
45 87.27 98.97
50 87.02 99.13

	 Journal of Network and Systems Management (2022) 30:38

1 3

38  Page 22 of 30

content prefetching enabled, the hit ratio stays above 98% through the entire range of
bandwidths, while for the configuration with LRU cache replacement it consistently
decreases from 94.6% to 87% as the bandwidth increases. As the bandwidth in the
client’s link grows larger, the quality of the requested content tends to increase, as
does the size of the video tiles stored in the cache. In these circumstances, the LRU
cache is only able to accommodate a few items, which in consequence increases the
frequency of eviction cycles and cache misses.

Cache misses also occur as a consequence of the cold-start problem that affects
passive caching strategies such as LRU. Requests issued against a cold cache are
likely to be cache misses and therefore result in retrieval from the origin server.
This leads to longer startup delays which degrade the QoE mainly for early view-
ers. Figure 11 presents the startup delay observed across all the streaming ses-
sions as a function of the client’s link capacity. Delay values remain relatively
invariable as the bandwidth on the client’s connection increases for all the consid-
ered configurations. Note that for both PREFETCH and LRU setups (left and right
side in Fig. 11, respectively), the majority of the values are clustered around 200
milliseconds approximately. This represents a reduction of nearly 3 × the startup
delay viewers experience in the setup without prefetching/caching enabled (mid-
dle chart in Fig. 11). However, a large number of outliers is observed for the LRU
configuration lying beyond the segment duration limit. This indicates that many
viewers would experience more than one second latency from the moment they
initiate the streaming session to the moment the video playback starts. These out-
liers represent the startup delay perceived by the first users as a consequence of
their request hitting a cold cache and being relayed back to the content server. By
forwarding said requests to the origin server, early users of the LRU setup incur an
extra network hop which leads to startup delay times higher than those observed
for the NO_PREFETCH setup. In Fig. 12 only the startup latency measured for the
group of early viewers is plotted. On average, early users in the LRU configura-
tion would observe around 2 × and 6 × longer delay times compared to viewers

Fig. 11   Startup delay distribution as a function of the client’s link capacity. Observations for PREFETCH
and LRU configuration are largely concentrated around comparable values. However, outliers for the LRU
setup lie farther apart from the bulk of the data, beyond the segment length in many cases. In compari-
son, the PREFETCH configuration offers a more consistent experience for all viewers

1 3

Journal of Network and Systems Management (2022) 30:38	 Page 23 of 30  38

in the NO_PREFETCH and PREFETCH setups, respectively. These results show
that the proposed content prefetching mechanism is able to bypass the cold-start
problem and offer not only shorter startup delay times but also a more consistent
experience across all viewers compared to the alternative configurations.

So far, the proposed prefetching mechanism has proven able to deliver a user
experience that outperforms that of the alternative setups in terms of segment
download time, frequency/duration of playout freezes and startup latency. Let us
now look into the perceived video quality. In the HAS client, quality level for
each tile in a video segment is determined based on the perceived bandwidth,
estimated as the quotient between the amount of bits downloaded per segment
and the per-segment download time:

In the expression above, the size of the segment ( si ) is proportional to the quality
level of the tiles it comprises. This way, the perceived bandwidth provides a reliable
indication of the video quality as observed by the user. Figure 13 shows the average
perceived bandwidth over all watching sessions per video, as a function of the actual
bandwidth on the client’s link. The configuration with content prefetching enabled
outperforms the LRU setup, most remarkably along the largest values of bandwidth.
With the proposed mechanism running on a cache-enabled edge server, clients per-
ceive on average up to 2.5× more link capacity in comparison to the configuration
without prefetching, and up to 1.4× compared to the LRU configuration. This results
in a higher number of tiles being downloaded in high quality.

(6)perceived_bandwidth(si) =
size(si)

download_time(si)

Fig. 12   Startup delay times observed by early users: On average viewers in the PREFETCH configura-
tion would experience 6.5× and 3.4× lower latency than those in the LRU and NO_PREFETCH setups,
respectively

	 Journal of Network and Systems Management (2022) 30:38

1 3

38  Page 24 of 30

Figure 14 presents the distribution of the amount of high-quality tiles per seg-
ment across the three videos. The mass of the distributions corresponding to each
of the setups shifts towards the right (higher number of HQ tiles) as the bandwidth
increases. Note that for the configuration with prefetching enabled, the distribution
tends to gravitate around 16 tiles/segment at a faster pace than the other two con-
figurations. This proves that across all tested scenarios, the mechanism we propose
consistently delivers higher quality of experience for the viewer, compared to the
LRU cache alternative, and the plain vanilla client-server configuration.

Another appealing effect of prefetching and caching video content into an edge
server is the reduction of network traffic to and from the content site. Table 7

Fig. 13   Client perceived bandwidth as a function of the actual link capacity. User experience greatly
benefits from prefetching VR video content into a nearby server

Fig. 14   Distribution of the number of HQ tiles per segment: In comparison to the LRU and NO_
PREFETCH configurations, the number of tiles retrieved in HQ from the prefetch setup increases more
rapidly as the bandwidth grows larger. Bitrate values in the charts are in Mbps

1 3

Journal of Network and Systems Management (2022) 30:38	 Page 25 of 30  38

presents the network traffic (in gigabytes) measured in the content server interface
for the configuration without prefetching/caching enabled, along with the relative
change of this metric for the LRU and PREFETCH setups, and how these measure-
ments vary as the bandwidth on the client’s link increases (Fig. 15 for the absolute
values). Note that, thanks to the reuse enabled by the LRU and prefetching con-
figurations, there is an important reduction in traffic to the content server: from 75
to 84% for LRU caching, and from 36 to 83% for the prefetching server. Also, it is
worth noting that the setup with the proposed prefetching mechanism enables these
network traffic savings while serving the highest video quality among the tested

Table 7   Network traffic between
content and prefetch servers for
different values of bandwidth in
the client’s link

Bandwidth
client’s link
(Mbps)

NO_PREFETCH
network traffic (GB)

% network traffic reduction

LRU (%) PREFETCH (%)

10 1.11 − 75.68 − 36.04
15 1.64 − 78.66 − 44.51
20 2.24 − 80.36 − 48.21
25 2.82 − 82.27 − 53.90
30 3.43 − 80.76 − 64.14
35 3.89 − 81.75 − 64.78
40 4.24 − 82.31 − 67.45
45 4.57 − 83.15 − 80.96
50 5.01 − 84.23 − 83.03

Fig. 15   Network traffic to the content server for the three considered configurations, as a function of the
bandwidth in the client’s link: Both the LRU and PREFETCH setups manage to induce a notable decline
in network traffic. The prefetching mechanism enables this while delivering the highest quality of experi-
ence among the considered configurations

	 Journal of Network and Systems Management (2022) 30:38

1 3

38  Page 26 of 30

configurations. That is to say, serving a comparable video quality directly from the
content server—without any prefetch/cache capabilitites—would require several
times the network traffic reported in Table 7.

To understand why the LRU configuration results in a higher reduction of net-
work traffic with respect to the implementation of the proposed prefetching mech-
anism, consider the fact that the latter setup is able to consistently deliver higher
video quality levels than the former one throughout the entire range of bandwidth
values. An increase in the capacity of the client’s connection leads to a correspond-
ing increase in the network throughput. This in turn prompts the client to request
video tiles in higher quality representations, which consequently drives up the net-
work traffic consumption. Figure 16 portrays the relation between bandwidth at the
client side, network traffic in the content server’s link, and video quality in terms of
the number of high-quality tiles per segment delivered to the client. Note that while
the setup with the LRU cache replacement strategy gets the upper hand with regard
to network traffic reduction, the enhanced video quality added to the smooth play-
back offered by the proposed prefetching mechanism, makes for a far superior QoE
for the viewer. In this sense, the increase in network traffic to the content server for
this configuration can be regarded as a reasonable price to pay.

6 � Conclusions

Immersive video applications are known for having an immense potential in sec-
tors such as entertainment, education, healthcare, and digital services, among oth-
ers. However, the existing network infrastructure still struggles to meet the stringent

Fig. 16   Relation between client’s link bandwidth, network traffic in the backhaul link, and video quality.
Both LRU and PREFETCH setups drive backhaul traffic down while increasing the number of tiles per
segment served in high quality. The increase in network traffic use for the PREFETCH setup in relation to
the LRU configuration obeys to a corresponding increase in the delivered video quality

1 3

Journal of Network and Systems Management (2022) 30:38	 Page 27 of 30  38

latency and bandwidth requirements of these kind of services, which remains a bar-
rier to enable their broad adoption. In this paper we presented Explora-VR, an edge-
assisted solution that allows for low-latency video streaming for tile-based immer-
sive content.

Explora-VR thrives on prefetching the tiles that users are likely to watch in the
upcoming segments by advertising the outcome of the viewport prediction and rate
adaptation algorithms, before the client starts consuming the content. Prefetched
video tiles are downloaded to a cache-enabled edge server located in close proximity
to the user, allowing for low-latency content retrieval. This in turn increases the link
capacity perceived at the client’s end, and in consequence also the quality level of
the requested video tiles.

Additionally, the proposed solution supports content prefetching for an on-
demand, near-live scenario, i.e. serving multiple active watching sessions streaming
the same content within a narrow time window. To prevent the system from over-
flowing the content server with duplicate requests while doing this, Explora-VR fea-
tures a stream processing mechanism that incrementally builds a collective playout
buffer to serve the requests from active users. This collective buffer is an in-memory
data structure storing a fixed number of collective viewports, namely the group of
tiles viewers tend to fixate the most on a per-segment basis. The per-segment col-
lective viewports are continuously updated as new viewers arrive to dynamically
accommodate to changes in the current preferences from the audience.

We evaluated the performance of Explora-VR against a conventional client-
server setup with no support for caching or prefetching, and an edge-assisted con-
figuration implementing a regular LRU cache replacement strategy. Our solution
proved to be effective in providing a smooth video playback, while also increas-
ing the quality of the delivered content. Under equivalent network conditions, the
devised prefetching mechanism leads to an average increase of 2.5× and 1.4× in the
effective bandwidth perceived at the client’s device compared to the conventional
client-server and LRU setups, respectively. This in turn results in a proportional
increase in the number of viewport tiles served in high quality. Moreover, in contrast
to the alternative LRU configuration, our solution can consistently serve more than
98% of the content requests from the edge server. This means that only a minor pro-
portion of the client requests get relayed to the origin content server, resulting in a
freeze-free playback experience for the user. The foregoing also signals the ability of
the proposed approach to bypass the cold-start problem that typically affects passive
caching strategies. The observed startup delay times show that Explora-VR con-
sistently provides low startup latency for all users, including early viewers. These
results also hint at the potential of the proposed solution to aid in the recovery from
eventual playback freezes. The proximity of the edge server coupled with the high
prefetch hit ratio ensures that viewers can quickly resume the playback with a delay
we expect to be comparable with the observed startup latency. Additional evalua-
tions with real network traces are needed to confirm this assumption. The devised
collective buffer also proved efficient in reducing the load on the content server
network. Even though the LRU cache replacement policy outperforms the prefetch-
ing mechanism regarding this metric, the superior quality of experience that our
approach can offer to the viewer reasonably outweighs this drawback.

	 Journal of Network and Systems Management (2022) 30:38

1 3

38  Page 28 of 30

In developing Explora-VR, we assumed a number of conditions that will be
relaxed in future work to make this solution more suitable for a production-level
VR video streaming service. In this sense, further research is going to explore the
effect of working with a lossy wireless network in the performance of the content
prefetching mechanism. Likewise, the proposed solution will be extended to support
multiple intermediate quality representations, instead of only low-quality and high-
quality levels. We expect the results of this work will motivate further studies on
edge-assisted prefetching techniques for omnidirectional video streaming.

References

	 1.	 Yépez, J., Guevara, L., Guerrero, G.: AulaVR: virtual reality, a telepresence technique applied
to distance education. In: 2020 15th Iberian conference on information systems and technologies
(CISTI), pp. 1–5. IEEE (2020)

	 2.	 Kwok, A.O., Koh, S.G.: COVID-19 and extended reality (XR). Current Issues Tour. 1, 6 (2020).
https://​doi.​org/​10.​1080/​13683​500.​2020.​17988​96

	 3.	 Singh, R.P., Javaid, M., Kataria, R., Tyagi, M., Haleem, A., Suman, R.: Significant applications of
virtual reality for covid-19 pandemic. Diabetes Metab. Syndr. 14(4), 661–664 (2020)

	 4.	 Khan, W.Z., Ahmed, E., Hakak, S., Yaqoob, I., Ahmed, A.: Edge computing: A survey. Future
Gener. Comput. Syst. 97, 219–235 (2019). https://​doi.​org/​10.​1016/j.​future.​2019.​02.​050. URL
https://​www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​S0167​739X1​83199​03

	 5.	 Shi, S., Gupta, V., Hwang, M., Jana, R.: Mobile vr on edge cloud: a latency-driven design. In: Pro-
ceedings of the 10th ACM multimedia systems conference, pp. 222–231 (2019)

	 6.	 Stauffert, J.P., Niebling, F., Latoschik, M.E.: Latency and cybersickness: Impact, causes and meas-
ures. a review. Front. Virtual Real. 1, 31 (2020)

	 7.	 Torres Vega, M., Liaskos, C., Abadal, S., Papapetrou, E., Jain, A., Mouhouche, B., Kalem, G.,
Ergüt, S., Mach, M., Sabol, T., et al.: Immersive interconnected virtual and augmented reality: a 5g
and iot perspective. J. Netw. Syst. Manag. 28(4), 796–826 (2020)

	 8.	 Yaqoob, A., Bi, T., Muntean, G.M.: A survey on adaptive 360◦ video streaming: Solutions, chal-
lenges and opportunities. IEEE Commun. Surv. Tutor. 22(4), 2801–2838 (2020)

	 9.	 He, D., Westphal, C., Garcia-Luna-Aceves, J.: Network support for ar/vr and immersive video appli-
cation: a survey. In: ICETE (1), pp. 525–535 (2018)

	10.	 Long, K., Cui, Y., Ye, C., Liu, Z.: Optimal wireless streaming of multi-quality 360 vr video by
exploiting natural, relative smoothness-enabled and transcoding-enabled multicast opportunities.
IEEE Transactions on Multimedia (2020)

	11.	 Zhao, L., Cui, Y., Liu, Z., Zhang, Y., Yang, S.: Adaptive streaming of 360 videos with perfect,
imperfect, and unknown fov viewing probabilities in wireless networks. IEEE Trans. Image Process.
30, 7744–7759 (2021)

	12.	 van der Hooft, J., Vega, M.T., Petrangeli, S., Wauters, T., De Turck, F.: Optimizing adaptive tile-
based virtual reality video streaming. In: 2019 IFIP/IEEE symposium on integrated network and
service management (IM), pp. 381–387. IEEE (2019)

	13.	 van der Hooft, J., Vega, M.T., Petrangeli, S., Wauters, T., De Turck, F.: Tile-based adaptive stream-
ing for virtual reality video. ACM Trans. Multimed. Comput. Commun. Appl. (2019). https://​doi.​
org/​10.​1145/​33621​01

	14.	 Hosseini, M.: View-aware tile-based adaptations in 360 virtual reality video streaming. In: 2017
IEEE virtual reality (VR), pp. 423–424. IEEE (2017)

	15.	 Xie, L., Xu, Z., Ban, Y., Zhang, X., Guo, Z.: 360probdash: Improving qoe of 360 video streaming
using tile-based http adaptive streaming. In: Proceedings of the 25th ACM international conference
on Multimedia, pp. 315–323 (2017)

	16.	 Graf, M., Timmerer, C., Mueller, C.: Towards bandwidth efficient adaptive streaming of omnidirec-
tional video over http: Design, implementation, and evaluation. In: Proceedings of the 8th ACM on
multimedia systems conference, pp. 261–271 (2017)

https://doi.org/10.1080/13683500.2020.1798896
https://doi.org/10.1016/j.future.2019.02.050
https://www.sciencedirect.com/science/article/pii/S0167739X18319903
https://doi.org/10.1145/3362101
https://doi.org/10.1145/3362101

1 3

Journal of Network and Systems Management (2022) 30:38	 Page 29 of 30  38

	17.	 Nguyen, D.V., Tran, H.T., Pham, A.T., Thang, T.C.: An optimal tile-based approach for viewport-
adaptive 360-degree video streaming. IEEE J. Emerg. Sel. Top. Circuits Syst. 9(1), 29–42 (2019)

	18.	 Lo, W.C., Fan, C.L., Lee, J., Huang, C.Y., Chen, K.T., Hsu, C.H.: 360 video viewing dataset in
head-mounted virtual reality. In: Proceedings of the 8th ACM on multimedia systems conference,
pp. 211–216 (2017)

	19.	 David, E.J., Gutiérrez, J., Coutrot, A., Da Silva, M.P., Callet, P.L.: A dataset of head and eye move-
ments for 360 videos. In: Proceedings of the 9th ACM multimedia systems conference, pp. 432–437
(2018)

	20.	 Fremerey, S., Singla, A., Meseberg, K., Raake, A.: Avtrack360: An open dataset and software
recording people’s head rotations watching 360◦ videos on an hmd. In: Proceedings of the 9th ACM
multimedia systems conference, pp. 403–408 (2018)

	21.	 Wu, C., Tan, Z., Wang, Z., Yang, S.: A dataset for exploring user behaviors in vr spherical video
streaming. In: Proceedings of the 8th ACM on multimedia systems conference, MMSys’17, p. 193-
198. Association for Computing Machinery, New York, NY, USA (2017). https://​doi.​org/​10.​1145/​
30831​87.​30832​10

	22.	 Rossi, S., Ozcinar, C., Smolic, A., Toni, L.: Do users behave similarly in vr? investigation of the
user influence on the system design. ACM Trans. Multimed. Comput. Commun. Appl. (2020).
https://​doi.​org/​10.​1145/​33818​46

	23.	 Papaioannou, G., Koutsopoulos, I.: Tile-based caching optimization for 360◦ videos. In: Proceed-
ings of the Twentieth ACM international symposium on mobile ad hoc networking and comput-
ing, Mobihoc ’19, p. 171-180. Association for Computing Machinery, New York, NY, USA (2019).
https://​doi.​org/​10.​1145/​33236​79.​33265​15

	24.	 Mahzari, A., Taghavi Nasrabadi, A., Samiei, A., Prakash, R.: Fov-aware edge caching for adaptive
360 video streaming. In: Proceedings of the 26th ACM international conference on Multimedia, pp.
173–181 (2018)

	25.	 Maniotis, P., Thomos, N.: Viewport-aware deep reinforcement learning approach for 360 video
caching. IEEE Transactions on Multimedia (2021)

	26.	 Carlsson, N., Eager, D.: Had you looked where i’m looking? cross-user similarities in viewing
behavior for 360-degree video and caching implications. In: Proceedings of the ACM/SPEC inter-
national conference on performance engineering, ICPE ’20, p. 130–137. Association for Computing
Machinery, New York, NY, USA (2020). https://​doi.​org/​10.​1145/​33589​60.​33791​29

	27.	 Dai, J., Zhang, Z., Mao, S., Liu, D.: A view synthesis-based 360◦ vr caching system over mec-
enabled c-ran. IEEE Trans. Circuits Syst. Video Technol 30(10), 3843–3855 (2019)

	28.	 Liu, K., Liu, Y., Liu, J., Argyriou, A., Ding, Y.: Joint epc and ran caching of tiled vr videos for
mobile networks. In: International conference on multimedia modeling, pp. 92–105. Springer (2019)

	29.	 Wang, S., Tan, X., Li, S., Xu, X., Yang, J., Zheng, Q.: A qoe-based 360◦ video adaptive bitrate
delivery and caching scheme for c-ran. In: 2020 16th International conference on mobility, sensing
and networking (MSN), pp. 49–56. IEEE (2020)

	30.	 Chang, Z., Lei, L., Zhou, Z., Mao, S., Ristaniemi, T.: Learn to cache: machine learning for network
edge caching in the big data era. IEEE Wirel. Commun. 25(3), 28–35 (2018)

	31.	 Petrangeli, S., Swaminathan, V., Hosseini, M., De Turck, F.: An http/2-based adaptive streaming
framework for 360◦ virtual reality videos. In: Proceedings of the 25th ACM international conference
on multimedia, MM ’17, p. 306-314. Association for Computing Machinery, New York, NY, USA
(2017). https://​doi.​org/​10.​1145/​31232​66.​31234​53

	32.	 van der Hooft, J., Torres Vega, M., Petrangeli, S., Wauters, T., De Turck, F.: Quality assessment for
adaptive virtual reality video streaming: a probabilistic approach on the user’s gaze. In: 2019 22nd
conference on innovation in clouds, internet and networks and workshops (ICIN), pp. 19–24 (2019).
https://​doi.​org/​10.​1109/​ICIN.​2019.​86859​04

	33.	 Qian, F., Ji, L., Han, B., Gopalakrishnan, V.: Optimizing 360 video delivery over cellular networks.
In: Proceedings of the 5th workshop on all things cellular: operations, applications and challenges,
ATC ’16, p. 1–6. Association for Computing Machinery, New York, NY, USA (2016). https://​doi.​
org/​10.​1145/​29800​55.​29800​56

	34.	 Xu, Z., Zhang, X., Zhang, K., Guo, Z.: Probabilistic viewport adaptive streaming for 360-degree
videos. In: 2018 IEEE international symposium on circuits and systems (ISCAS), pp. 1–5. IEEE
(2018)

	35.	 Zhang, Y., Zhao, P., Bian, K., Liu, Y., Song, L., Li, X.: Drl360: 360-degree video streaming with
deep reinforcement learning. In: IEEE INFOCOM 2019-IEEE conference on computer communica-
tions, pp. 1252–1260. IEEE (2019)

https://doi.org/10.1145/3083187.3083210
https://doi.org/10.1145/3083187.3083210
https://doi.org/10.1145/3381846
https://doi.org/10.1145/3323679.3326515
https://doi.org/10.1145/3358960.3379129
https://doi.org/10.1145/3123266.3123453
https://doi.org/10.1109/ICIN.2019.8685904
https://doi.org/10.1145/2980055.2980056
https://doi.org/10.1145/2980055.2980056

	 Journal of Network and Systems Management (2022) 30:38

1 3

38  Page 30 of 30

	36.	 Vielhaben, J., Camalan, H., Samek, W., Wenzel, M.: Viewport forecasting in 360◦ virtual reality
videos with machine learning. In: 2019 IEEE international conference on artificial intelligence and
virtual reality (AIVR), pp. 74–747. IEEE (2019)

	37.	 Fan, C.L., Lee, J., Lo, W.C., Huang, C.Y., Chen, K.T., Hsu, C.H.: Fixation prediction for 360 video
streaming in head-mounted virtual reality. In: Proceedings of the 27th workshop on network and
operating systems support for digital audio and video, pp. 67–72 (2017)

	38.	 Zhu, Y., Zhai, G., Min, X.: The prediction of head and eye movement for 360 degree images. Signal
Process. 69, 15–25 (2018)

	39.	 Sitzmann, V., Serrano, A., Pavel, A., Agrawala, M., Gutierrez, D., Masia, B., Wetzstein, G.: Sali-
ency in vr: How do people explore virtual environments? IEEE Trans. Vis. Comput. Gr. 24(4),
1633–1642 (2018)

	40.	 Chen, X., Kasgari, A.T.Z., Saad, W.: Deep learning for content-based personalized viewport predic-
tion of 360-degree vr videos. IEEE Netw. Lett. 2(2), 81–84 (2020)

	41.	 Prematunga, R.K.: Correlational analysis. Aust. Crit. Care 25(3), 195–199 (2012)
	42.	 Knight, W.R.: A computer method for calculating Kendall’s tau with ungrouped data. J. Am. Stat.

Assoc. 61(314), 436–439 (1966)
	43.	 Ordonez-Ante, L., Van Seghbroeck, G., Wauters, T., Volckaert, B., De Turck, F.: Explora: interac-

tive querying of multidimensional data in the context of smart cities. Sensors 20(9), 2737 (2020)
	44.	 Gutierrez, F.: Messaging with redis. In: Gutierrez, F. (ed.) Spring Boot Messaging, pp. 81–92.

Springer, Berlin (2017)
	45.	 imec/IDLab: Virtual wall: Perform large networking and cloud experiments. (2021). URL https://​

doc.​ilabt.​imec.​be/​ilabt/​virtu​alwall/​index.​html
	46.	 Brown, M.A.: Traffic control howto. Guide IP Layer Netw. 49, 36 (2006)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Leandro Ordonez‑Ante1  · Jeroen van der Hooft1 · Tim Wauters1 ·
Gregory Van Seghbroeck1 · Bruno Volckaert1 · Filip De Turck1

	 Jeroen van der Hooft
	 Jeroen.vanderHooft@UGent.be

	 Tim Wauters
	 Tim.Wauters@UGent.be

	 Gregory Van Seghbroeck
	 Gregory.VanSeghbroeck@UGent.be

	 Bruno Volckaert
	 Bruno.Volckaert@UGent.be

	 Filip De Turck
	 Filip.DeTurck@UGent.be

1	 Department of Information Technology, IDLab, Ghent University - imec, Technologiepark
Zwijnaarde 126, 9052 Gent, Belgium

https://doc.ilabt.imec.be/ilabt/virtualwall/index.html
https://doc.ilabt.imec.be/ilabt/virtualwall/index.html
http://orcid.org/0000-0002-1215-9209

	Explora-VR: Content Prefetching for Tile-Based Immersive Video Streaming Applications
	Abstract
	1 Introduction
	2 Related Work
	2.1 Client-Driven HAS Streaming for Tile-Based 360 Video
	2.2 Server Optimization Solutions
	2.3 Edge-Assisted Solutions

	3 Explora-VR: Approach Overview
	3.1 Viewport Prediction Advertising and Prefetching
	3.2 Dynamic Collective Buffer (DCoB)
	3.3 Analysis of Computational Cost
	3.3.1 Space Cost
	3.3.2 Time Cost

	4 Architecture and Proof-of-Concept Implementation
	4.1 Prefetch Server
	4.2 Content Server
	4.3 Client

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Results

	6 Conclusions
	References

