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Abstract 

Mobile Adhoc Network (MANET) is a decentralized and dynamically adoptable network. It is infrastructure less and 

hence can be used where a fixed configuration is not possible or required. MANETs have various real-life applications 

and hence have gained the attention of research community. Security is an integral part of any computer network 

system and MANETs are no different. This paper focuses on solving DoS attacks in MANET and shows that a general 

classification model might fail to identify this kind of attacks as these models fail to differentiate between network 

errors and a real DoS attack. A reputation-based node classification scheme is proposed to improve identification of 

real DoS attacks versus any other cause that might not be an attack. Results showed that our proposed reputation-

based approach when integrated with any classifier increases its accuracy by around 3.25%. Further, the combined 

model is able to block real DoS attacks and allow any other cause which is not an attack. 

Keywords – Mobile Adhoc Network (MANET), Node Reputation, Machine Learning, DoS attacks, Network 

security 

1 INTRODUCTION 

MANET is an infrastructure-less network on a purely temporary basis, connected by a set of mobile nodes without 

any centralized system. Applications of MANET have been seen in many fields. Mobile Ad hoc networking helps the 

military to maintain information networks between military personnel’s, vehicles, and military information 

headquarters. Ad hoc networks can be applied in emergency or rescue operations for disaster relief efforts for example 

in fire, flood, or earthquake and so on. Other commercial applications include for instance ship to ship Ad Hoc Mobile 

communication and so on. Ad hoc networks can autonomously link immediate and temporary multimedia networks 

by using notebook or palmtop computers to distribute and allocate information among conference or classroom 

participants. Besides, it can also be applied for home networks where devices can be linked. Another instance would 

be a sports arena, watercraft, or tiny aircraft. Short-range MANET can simplify the inter communication between a 

lot of mobile devices such as a PDA, a laptop, and a cellular phone and there are a lot of new devices in this for 

MANETs. MANET, though being very popular over a decade, is not available as a standard benchmark and has not 

received any application in either the business standard or the commercial field. The nature of the mobile environment 

makes it very vulnerable to an adversary’s malicious attacks [1]. The use of wireless links in the network is susceptible 

to attacks ranging from passive eavesdropping to active interfering. In wired networks, an adversary may gain physical 

access to the network wires whereas, wireless networks can come from all directions and can target any node. All of 

these indicate that a wireless ad-hoc network lacks a clear line of defence and that each node must be ready for direct 

or indirect combat with an attacker. Second, there are various reasons for packet losses in MANET: node-related, 

congestion-related, and mobility-related [2]. Node-related losses: A node in a forwarding path may refuse to forward 

routing or data traffic on purpose, either to conserve its limited resources (selfish behavior) or to cause network 

operation and performance to be disrupted (malicious behavior). Congestion-related losses: Packet losses in this 

category happen at the MAC layer for a variety of causes. Queuing problem: A forwarding node may drop an incoming 

packet due to high data rates and insufficient link bandwidth, which causes congestion and queue overflow. Busy 
channel: The forwarding node's data channel may be so busy that the number of back offs exceeds the limit, and the 

packet is discarded. Link interference: A data packet may be rejected or discarded due to transmission errors caused 

by link-related phenomena such as high bit error rate, hidden nodes, and interference. Mobility-related losses: In this 
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category, packet losses can occur at both the MAC and routing layers. MAC layer: Packet loss occurs when a packet's 

next hop is out of range. Because routing information becomes obsolete faster as node mobility increases, this 

phenomenon is more common in highly mobile networks than in low mobility networks. Routing layer: When a packet 

reaches the network layer, the routing protocol looks for a valid route and forwards it if one exists. The packet is 

buffered if there isn't a route to the destination available. A packet is dropped in one of two situations: when it remains 

in the buffer over the timeout limit, or when the buffer overflow prevents the packet from being buffered. 

Third, decision-making in the mobile computing environment is sometimes decentralized and some wireless network 

algorithms rely on the cooperative participation of all nodes and the infrastructure. Due to the lack of centralized 

control, the adversaries can take advantage of this weakness to launch new kinds of attacks aimed at destroying the 

cooperative algorithms. There are several Intrusion Identification and prevention measures [3] [4], such as encryption 

and authentication, that can be used in MANETs to reduce intrusions, but cannot eliminate them. There are well 

organized Intrusion Identification systems developed for wired networks. But there are no well-designed intrusion 

schemes for Ad hoc networks. The main difference between wired and Ad hoc networks is infrastructure. While most 

of today’s wired Intrusion Identification schemes depend on real time traffic analysis, they capture this information 
by relying on switches, routers, or gateways. This type of equipment is absent in ad hoc networks and causes the most 

difficult to design good identification schemes. Because of the selfish nature of mobile nodes, it is very difficult to 

build any scheme. The aim of this paper is to use machine learning techniques to provide an efficient classification of 

the node which is malicious and the node which is normal in MANET. 

1.1 DOS ATTACK 

The wireless nodes are quite prone to being compromised and are particularly weak to different denial of service 

(DoS) attacks performed by malevolent nodes or intruders. A DoS attack is called a distributed denial of service 

(DDoS) attack if it originates from multiple distributed sources. A DoS attack is regarded as an attempt to prevent the 

legitimate use of a service. The main goal of the attack was to temporarily or permanently deny authorized users access 

to the services and resources. It is commonly carried out by overloading the victim machine or resource with an 

enormous number of requests making the systems inaccessible [5]. DoS attacks have thus become a major security 

concern and have attracted the interest of many researchers. However, none of the remedies proposed so far have 

successfully curbed the impact of DoS attack in MANET in practical scenarios.  

1.2 MOTIVATION 

If we look at our problem statement from an overall perspective, it can be termed as a binary classification problem. 

The basic approach to solve this would be to classify each node in the network as malicious or normal. But this would 

be a very generic approach where we would try to apply any machine learning algorithm to solve this binary 

classification problem. Instead, we try to consider the history of a node before classifying it as malicious or normal. 

This can also be termed the reputation of a node. This reputation-based approach helps us maintain the reputation of 

all the nodes in the network and aids us in evaluating their trustworthiness. It helps us counter the various anomalies 

resulting due to the selfish and malicious nodes in the network. The intuition behind this idea is to provide an incentive 

or credit-based mechanism which helps the nodes to cooperate amongst each other while also improving the overall 

network performance and functionality by preventing the DoS and DDoS attacks. This can be compared to a real-life 

example of giving loans to people based on their credit score. A person is given a loan only if his/her credit score is 

above a certain value. Similarly, each node is assigned a value corresponding to its reputation, and the higher the 

value, the more would be the node’s credibility. Another point of similarity is that irrespective of whether that person 
has a high or low credit score, he always has an opportunity to increase his credit score and thus become eligible for 

higher loans. In our case, a node having a low value of reputation can increase its reputation by choosing to participate 

in ethical and non-malicious activities.  This approach helps us in minimizing the cases where a malicious node has 

been classified as normal, thus providing protection from the DoS and DDoS attacks which ultimately would increase 

the security of the network.  

Traditional approaches that are used for DDoS attack detection like Firewalls, filtering techniques, and traceback have 

many inherent limitations. Machine learning approaches have been used in the recent past to overcome the limitations 

of traditional approaches while DoS and DDoS attack detection. A node misclassification may happen mainly due to 

two reasons. The possibility of an ML model being a weak learner and thus giving more number of false positives is 
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one of the reasons. Network difficulties impede the different nodes in a MANET design from interacting successfully 

with one another. This is also one of the possible causes for a node being misclassified. The concern with classifying 

a normal node as malicious is that we are effectively excluding a possible good node from the network and thus 

making the MANET network more resource-constrained. On the other hand, when a malicious node gets classified as 

normal, it can have serious implications on the network and can turn out to be counterproductive for the MANET 

architecture. 

1.3 LIMITATIONS OF TRADITIONAL APPROACHES 

MANETs are high in demand and application in today’s world owing to its many advantages. One of the main reasons 

is that its deployment does not require any centralized administration. Even after all that, there are a few challenges 

like open network architecture, strict constraints for resources and its highly dynamic network topology which make 

it vulnerable to external attacks like DoS and DDoS. A system offering security for a MANET architecture should 

ensure that the services offered to a mobile user are confidential, maintain integrity and are authenticated. One of the 

common defense attacks against DoS attacks is a firewall. It is a system for network security that keeps track of and 

manages all incoming and outgoing network traffic in accordance with pre-established security standards. 

Firewalls cannot distinguish between normal traffic and DoS attack traffic. Simple rules are followed like 

allowing some ports or IP addresses which can be counter-productive in case of a resource constrained environment. 

Other disadvantages are that it is client-dependent. Firewalls do not prove to be much effective in case they are not up 

to date. Moreover, many small devices are not computationally adept in employing firewalls.  

Filtering is another primary concept which is used to mitigate DoS and DDoS attacks in MANETs. It could 

be local, global, or statistical. A filter in the local router is installed in case of local filtering to stop the malicious 

nodes. But if the victim’s local network can be jammed with enough traffic, the local router can be compromised thus 

overloading the local filtering. In case of global filtering, the idea is to prevent any accumulation of malicious packets 

in each time frame. Filters are installed all over the Internet and when any victim detects an attack, it shares this 

information with all the other nodes. This can result in the malicious nodes being stopped early. However, this attack 

cannot be considered reliable since sometimes the router can get compromised by the continuous flow of packets, thus 

causing a DoS attack. Another filtering approach is through Statistical filtering. Here in this approach, the statistics 

of a packet are observed closely to classify its behavior as normal or malicious. The packets that are classified as 

malicious are dropped by the filter. This again can be a problem in a resource-constrained environment. Another major 

limitation of it is that it is a cluster-based routing protocol filtering mechanism. 

Traceback is another approach to detect DoS attacks. Here the main aim is to trace the intruder back to the 

zombie computers and thus help in identifying the source of the attacker. Cost management, low accuracy of results, 

and slow tracking speeds are some of the drawbacks of these traceback schemes. This becomes ineffective since the 

attacker moves to another position, owing to the high mobility of nodes in the MANET before the attacker is traced. 

Pushback is another approach where routers are enabled to identify the high bandwidth aggregates that contribute to 

the high congestion rate and help limit it. But the pushback approach is unable to work in non-contiguous deployment 

and thus unable to stop the DoS attacks that do not overcrowd the core routers. 

1.4 WHY LIMITATIONS OF TRADITIONAL APPROACHES CAN BE MITIGATED USING MACHINE LEARNING APPROACHES 

Currently a lot of research has been done to mitigate DoS and DDoS attacks using various traditional machine learning 

algorithms. Since detecting malicious nodes in a manet architecture is predominantly an anomaly detection-based 

problem, machine learning algorithms perform well in such scenarios.  

P. Xiao et al. [6] presented a detection approach that exploits correlation information of the training data to improve 

the classification accuracy and reduce the overhead caused by the density of training data. The approach is based on 

cknn (k-nearest neighbours traffic classification with correlation analysis) and performs efficiently to detect DDoS 

attacks. P.K. Agarwal et al. [7] proposed a machine learning approach using support vector machine (SVM) to predict 

the number of zombies in a DDoS attack. S. Saad et al. [8] applied and compared the performance of five different 

machine learning algorithms - support vector machine (SVM), artificial neural network (ANN), nearest neighbours 
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classifier (NNC), gaussian-based classifier (GBC) and naïve bayes classifier (NBC) to detect p2p bots which are used 

to generate spam and carry out DDoS attacks. Here the command-and-control phase for detecting DDoS attacks before 

they are launched, was studied. S. Sambang et al. [9] studies the problem of DDoS attack detection in cloud 

environments and builds a machine learning model using multiple regression analysis to predict DDoS and bot attacks 

by choosing the most important features in cicids 2017 research dataset. A. Fadlil et al. [10] proposed a DDoS attack 

detection method based on network traffic activity that was statistically analyzed using gaussian naïve bayes method. 

This approach predicted the existence of DDoS attacks based on the average and standard deviation of the network 

packets according to the gaussian method. Yi-Chi Wu et al. [11] proposed another DDoS detection system which uses 

a decision tree algorithm on 15 different attributes to detect abnormal traffic flow. It also traces back the attacker’s 
locations with a traffic-flow pattern matching technique. M Suresh et al. [12] studies one of the major limitations in 

statistics based detections is that they can only be simulated as a uniform distribution and it is not possible to find out 

the normal network packet distribution.  

In traditional approaches, the whole dataset is used to make a prediction, whether there is a DDoS attack or not. In 

case of machine learning approaches, the whole dataset is divided into two parts, the training data which is used to 

train the model and the testing data which is used to observe the performance of the model on unseen data. This 

ensures that the model is less biased. Machine learning models offer a new glimmer of hope as it can address the gaps 

in traditional DoS and DDoS detection algorithms, by performing well on even new and unseen DDoS attacks. 

1.5 LIMITATIONS OF MACHINE LEARNING APPROACH 

Although the advantages of Machine learning approaches are discussed in the previous section, it becomes particularly 

difficult to extract and select a valid number of independent features for building an efficient machine learning model 

to identify DDoS attacks. Many variables can be used to characterize network traffic patterns, and if the task of feature 

reduction and extraction is not done properly, it may affect the time required in to train and test the model. Thus, the 

task of feature engineering holds special importance in this domain as it can help in differentiating between the normal 

and the malicious nodes. As already discussed previously, S. Saad et al. [8] had used a machine learning approach to 

detect P2P botnets before they are even launched. The major limitation that came along with this work is that it can 

only detect a single compromised host and is unable to detect a whole BotNet. We have already seen that machine 

learning algorithms perform exceptionally well while detecting DoS and DDoS attacks and produce high degrees of 

accuracy. But they have their own set of limitations. Often, most machine learning algorithms require a lengthy 

training period and even if they give good results, they cannot be used in real time. Moreover, these algorithms are 

highly demanding in terms of computational expenses.  

Due to all these limitations, there is a high chance of misclassifications. And, as per the general implementation 

of these algorithms misclassification will result in eliminating either a good node or accepting an attack. Further, when 

considering real time implementation, where the number of processes keeps on increasing, makes these techniques 

infeasible for machine learning algorithms to be used. 

1.6 SCOPE 

We identified the following scope of research for mitigating DoS Attack 

1 As per the literature survey, every work done in this domain is based on the generalized nature of the security, 

i.e., they assume that every system has similar security needs. But, in fact, security of a system has a very 

personalized aspect with varying requirements. Considering a methodology for a highly secured system is 

missing in the literature. 

2 A methodology that can be adopted on any system is still not available. 

3 Most of the work in the literature has directly classified the node, which in fact poses a severe problem in case 

of a mis-classification. 

4 Existing work does not consider different costs associated with the misclassifications. They assign equal 

weightage for all the misclassification errors. A non-malicious node that has been correctly classified and a 

malicious node that has been incorrectly classified are given equal importance.  

https://www.inderscienceonline.com/author/Wu%2C+Yi-Chi
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1.7 OBJECTIVE 

The objective of the paper is outlined below: 

1. Design a reputation-based scheme for MANET environment. 

2. To find variation in the model performances for general algorithms i.e., SVM and DNN versus the integration 

of reputation schemes with those algorithms i.e., RSVM and RDNN.  

3. To minimize the most significant error based on different costs associated with the misclassification errors. 
 

2 LITERATURE REVIEW 

2.1 OLD METHODOLOGIES TO OBSTRUCT DOS ATTACKS IN MANET  

Mobile ad-hoc networks (MANETs) are particularly vulnerable to denial of service (DoS) attacks originated through 

compromised nodes or intruders. Goals of DoS attack is to degrade or deny normal facilities for legitimate nodes 

through distribution of huge traffic to victims which affects the network, host, and resources in different ways. There 

are many approaches to handle this attack such as traditional methods and other specific methods. Here we survey 

papers that presented various techniques on how to obstruct DOS attacks in MANET. 

 
Table I Survey in considering to obstruct DoS attacks in MANET in old methodologies 

Title Name Description Approach/ 

Mechanism 

Drawback 

Fully distributed 

dynamically 

configurable firewall to 

resist DOS attacks in 

MANET [13] 

Presented a distributed dynamically 

configurable firewall architecture that 

uses ingress and egress filtering to 

resist the DOS attacks. 

Firewalls Firewalls cannot distinguish 

between normal traffic and DoS 

attack traffic. Next, due to the 

mobility of node firewall cannot 

be sufficient for MANETs. 

A Cooperative Approach 

for Understanding 

Behavior of Intrusion 

Detection System in 

Mobile Ad Hoc Networks 

[14] 

IDS collects, monitors, and analyses 

audit data in order to find any 

anomalous attempts. 

Intrusion 

detection 

system (IDS) 

Many false alarm, fidelity 

problem, overhead problem. 

Framework for Statistical 

Filtering Against DDoS 

Attacks in MANETs [15] 

Statistical filtering is proposed by 

using traffic profiling for the purpose 

of filtering and DDoS attacks 

detection. 

Filtering Not reliable as sometimes the 

packets can overwhelm the 

router and cause a DoS attack. 

A review on different 

Intrusion Detection 

Systems for MANET and 

its Vulnerabilities [16] 

Watchdog tagged the node as a 

misbehaving node if it fails to 

forward the packet to the next node. 

Watchdog/ 

Pathrater 

Watchdog cannot detect 

malicious nodes in the presence 

of receiver collisions, limited 

power for transmission, and false 

misbehavior reports. 

Hotspot-based Traceback 

for Mobile Ad Hoc 

Networks [17] 

This method helps to identify the 

source of an attack i.e. physical 

location of the attacker. 

Traceback Since nodes are moving so the 

attacker could move to another 

position before the tracing the 

process is finished. 

DoS Pushback. 

Encyclopedia of 

In this mechanism routers are 

enabled to identify the high 

Pushback Pushback is unable to work in 

non-contiguous deployment and 
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Cryptography and Security 

[18] 

bandwidth aggregates that participate 

in the congestion rate and help to 

limit them. 

unable to compromise attacks 

that do not overcrowd the core 

routers. 

Detection and Prevention 

of Denial of Service (DoS) 

Attacks in Mobile Ad Hoc 

Networks Using 

Reputation-based Incentive 

Scheme [19] 

This method helps to prevent DDoS 

attacks by providing cooperation 

among nodes based on incentive 

mechanisms. 

Reputation-

based incentive 

mechanism 

The cluster heads were assumed 

to be stationary and only the 

nodes of the cluster could move 

freely. In addition, scalability is 

not considered by this approach. 

Security through 

Collaboration and Trust in 

MANETS [20] 

The main objectives of this 

framework are to support 

localized control and relationships by 

binding public keys to allow the 

access control process without 

complex security authentication 

procedures. 

Trust 

management 

A trust calculation done on a 

certain node by another node 

raises the resource cost. 

Unfortunately, these resources 

are limited in MANETs. 

Mitigating denial-of-

service attacks in MANET 

by distributed packet 

filtering: A game-theoretic 

approach [21] 

This method is based on 

using the digital signatures to apply 

verification of legitimate packets. 

There is a penalty to the forwarders 

of bad packets and also a reward 

system to the forwarders that verify 

packets which is gained as a credit. 

Game theoretic 

approach 

The signature-based defense is 

prone to the replay attack. 

2.2 MACHINE LEARNING APPROACH 
Table II  Survey in considering DDoS attack detection using machine learning approach 

Title Name Description Approach/ 

Mechanism 

Drawback 

The DDoS attacks 

detection through machine 

learning and statistical 

methods in SDN [22] 

To detect DDoS attacks in an SDN 

environment that depends on three 

parts collector, entropy-based and 

classification sections based on 

machine learning algorithms (Random 

Tree, REPTree). 

Dataset used ISCX-

SlowDDos-2016 and 

machine learning 

algorithm used Random 

Tree. 

Setting a threshold 

value that involves 

several statistics is 

challenging. 

Detection of known and 

unknown DDoS attacks 

using artificial neural 

networks [23] 

based on study of each 

TCP/UDP/ICMP protocol's features 

through training of an ANN algorithm 

to identify DDoS attacks. 

Dataset used UNB-

ISCX and machine 

learning algorithm used 

Neural Network 

the method needs to 

distinguish packet 

protocol, which is 

complex and inefficient. 

Detection of distributed 

denial of service using deep 

learning neural network 

[24] 

It reduces the classification error with 

minimal cost and it improves the 

accuracy of detection. 

Dataset used KDD Cup 

and machine learning 

algorithm used deep 

learning neural network. 

This model cannot 

adopt SVM and KMC 

for real time 

applications. 
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Mining based detection of 

botnet traffic in network 

[25] 

Compare several different machine 

learning algorithms in the context of 

network traffic classification. 

Dataset used CTU-13 

and machine learning 

algorithm used SVM, 

naive bayes, decision 

trees and neural 

networks. 

Being aimed at a 

comparison rather than 

to the optimization of a 

specific approach, lacks 

an accurate feature 

selection. 

Anomaly-based intrusion 

detection through k-means 

clustering and Naive Bayes 

classification [26] 

Semi-supervised learning (halfway 

between classification and clustering) 

is used here. The additional 

information from the labelled data is 

combined with the unlabeled data. 

Dataset used UNB-

ISCX and machine 

learning algorithm used 

k-means clustering + 

Naïve Bayes 

High false-alarm rates 

and lack of accuracy in 

detection procedure 

A Flexible SDN-Based 

Architecture for Identifying 

and Mitigating Low-Rate 

DDoS Attacks Using 

Machine Learning [27] 

The IDS implemented in the proposed 

architecture was trained with a set of 

machine learning algorithms. 

Dataset used CIC DoS-

2017 and machine 

learning algorithm used 

RT, REP Tree, Random 

Forest and SVM. 

The collection of traffic 

features in small- time 

intervals increase 

processing and 

communication 

overhead. 

3 PROPOSED METHODOLOGY 

When initially a node is created, it is assigned with a neutral reputation (0.5RP), where the reputation value 

ranges between 0 and 1. Since every system is different in terms of security requirements, we provide a filter 

hyperparameter (ranging between 0.25RP to 0.75RP) that can control the incoming packet from a node. For example, 

a system that does not care much about security can lower this hyperparameter and allow packets with low reputation 

nodes. In contrast, a sensitive system with a requirement of high security should take a higher value of this 

hyperparameter to wait for the node to achieve a higher reputation. From the perspective of the nodes, their reputation 

is decided by the host that they are interacting with, making this scheme dynamic. e.g., consider a situation where the 

system (A) threshold is 0.55RP and a new node (B) arrives in the network with a reputation 0.50RP. Now, B tries to 

send some packets to A, but due to a higher threshold, instead of accepting or rejecting the packet directly, A holds 

the packet in a secure buffer and pings B for updated reputation score. From here two things can happen. First, if the 

reputation score of B’s is not able to cross the threshold, then after the timeout the packet is discarded. Secondly, if B 

in the meantime sends some packet to system C with 0.45RP requirement, the packets after getting accepted will 

increase the reputation of B. After these increments, if the reputation of B is equal or more than 0.55RP then the packet 

is accepted by A and forwarded to next firewalls. 

3.1 JUSTIFY THE RATIONALE BEHIND OUR APPROACH 

Our approach is based on a reputation-based framework where nodes maintain the reputation of other nodes and use 

it to evaluate their trustworthiness. This is done for detecting anomalies arising from a few malicious and selfish nodes 

in a MANET architecture. The reputation value of a node shows how reliable it is, based on its history and aids in the 

process of decision making. The anomalies can arise from mainly two kinds of activities – selfish behavior, for 

example nodes wanting to save power. The other activity is malicious behavior where the node is primarily concerned 

with attacking and damaging the network, as in the case of DoS and DDoS attacks. To counter these misbehaviors, an 

incentive should be provided to all the nodes, so that they can co-operate amongst each other. This mechanism ensures 

that even the selfish nodes, which behave in a way to maximize their benefits, also make the most out of the 

cooperation among the various nodes in the MANET architecture. The main intent with this reputation-based approach 

is to enable the nodes to distinguish between the trustworthy and the untrustworthy nodes. The approach encourages 

the nodes to refrain from malicious activities and thus collaborate with the other nodes in the architecture to build on 

its reputation value. The type of supervised machine learning algorithm used to classify between a normal and a 

malicious node is irrelevant, since this approach is independent of the classifier used. There can be various ways of 
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initialization of the reputation values of the nodes. It can be initialized to zero, meaning that all the nodes are 

considered untrustworthy in the beginning. They can also be assigned maximum value of reputation at the start, 

meaning that all the nodes are considered trustworthy. In our approach we have tried to take the middle ground by 

assigning a neutral value of reputation to each node, which signifies that the nodes are neither considered trustworthy 

nor untrustworthy in the beginning. 

3.2 ADVANTAGES OF THE PROPOSED REPUTATION BASED SCHEME: 

The packet is temporarily held in a secure buffer because this method does not accept or reject it directly. The message 

is buffered when an attacker node sends a packet to the system. The packet is discarded after the timeout because the 

attacker node's reputation score is gradually decreasing and the attacker node can not let its reputation value dip below 

the threshold value. 

This scheme doesn't instantly reject a packet from a non-attacker node due to misclassification. Since the non-attacker 

node's reputation score increases over time, the value may surpass the threshold, allowing the packet to be accepted 

later. In this scheme if a packet is rejected or accepted due to network traffic errors, they will be remedied later since 

the reputation value of nodes will not be harmed. 

4 EXPERIMENT 

In the following sections, the experimental setup has been mentioned followed by the description of the Kitsune 

Network Attack Dataset. The steps undertaken to clean the dataset has also been mentioned where we talk about the 

various preprocessing steps which includes filtering, missing value handling and how different anomalies have been 

dealt with. The dataset obtained is then split into the training and the testing data using the train test split function of 

the sklearn library. Further, all the classification algorithms (namely Support Vector Machine, Deep Neural Network, 

Reduced Support Vector Machine, and the Reduced Deep Neural Network) that have been applied to the dataset, have 

been discussed in detail. Finally, the results obtained from each of these machine learning models have been analyzed 

which led us to a few conclusions.  

 

Fig. 1 Experimental flow diagram 

4.1 EXPERIMENTAL ENVIRONMENT 

The hardware specification of the system used is as follows:  

OS-Windows 10 Professional, CPU-AMD® Ryzen™ 7-3700X Processor, RAM-32GB DDR4, GPU-NVIDIA 

GeForce® GTX 1080 Ti.  

The software and APIs of the experiment are given below:  
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The Windows version of the Python-64 Bit with IPython notebook [28]    is used for building the models. Important 

APIs used in the experiment include TensorFlow [29], packages from NumPy [30], scikit-learn [31] and Matplotlib 

[32]. NVIDIA CUDA Version 9.1 for Windows environment is used for enabling GPU computing. 

4.2 DATASET DESCRIPTION 

We have used Kitsune Network Attack Dataset [33] for our experiment. Kitsune is an online, unsupervised, and 

efficient ANN-based network intrusion detection system (NIDS). Kitsune is made up of a collection of tiny neural 

networks (autoencoders) that have been trained to replicate (reconstruct) network traffic patterns and whose 

performance increases over time. These are cybersecurity dataset containing nine distinct network attacks on a 

commercial IP-based surveillance system and an IoT network. The dataset contains attacks including botnets, MitM, 

DoS, and reconnaissance. These datasets are downloaded from UCI. Number of instances of these datasets are 

27170754 and the number of attributes is 115. For our experiment we have used 2771275 number of instances and 

115 attributes. 

 

 

Fig. 2  Dataset scatter plot 

This scatter plot (Fig. 2) represents the attacker and the non-attacker data at k-th dimension. From the visual inspection, it is clearly 
visible that there is a possibility of classification using a hyperplane. Hence, machine learning classifiers like SVM can be used to 
solve this problem. Further, deep learning classifiers can also be implemented to check for improvements. 

4.3  PREPROCESSING 

In the preprocessing phase, we analyzed the entire dataset for  

1. Any missing values: Values not captured in a dataset are known as missing data. They can range from a 

single value missing from a single cell to an entire observation being lost (row). 

2. Header anomaly: Data preprocessing requirements are reduced by anomaly detection based solely on 

header information. Because headers make up a tiny portion of overall network data, they take fewer 

resources (CPU, memory, and storage) to process than entire packet payloads. 

3. Specification anomaly: Anomaly detectors based on specifications take advantage of the fact that protocols 

change far more slowly than attackers. As a result, modeling protocols rather than constantly establishing 

signatures for the latest malicious code should be easier. 

After anomaly detection is done and the dataset is optimized for any anomaly or sparsity, we use sampling 

techniques to sample the labeled data. 

4.4 CLASSIFICATION 

1. Support Vector Machine (SVM): 

SVM is a supervised machine learning algorithm which is used for classification, regression and outliers 

detection. SVM works well in high dimensional spaces; it is still effective when the number of dimensions exceeds 

the number of samples. It is memory efficient because it uses a subset of training points (called support vectors) in the 

https://scikit-learn.org/stable/modules/svm.html#svm-regression
https://scikit-learn.org/stable/modules/svm.html#svm-outlier-detection
https://scikit-learn.org/stable/modules/svm.html#svm-outlier-detection
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decision function. The decision function can use a variety of Kernel functions. Common kernels are included, however 

custom kernels can also be specified according to the data. 

Various papers have been published where detection of malicious attacks in MANET using machine learning 

approaches are being used. Some of them used SVM based methods. SVM has been used to detect black hole attacks 

in MANETs using the AODV protocol [34]. Three performance indicators, namely PDR, packet modification rate, 

and packet misroute rate, are used in the proposed SVM-based technique to classify the type of nodes. The numbers 

of sent, modified, and misrouted packets are used to produce these metrics. The SVM-based strategy outperformed 

the previous method, according to the findings. However, the proposed SVM's explanation is ambiguous. Aside from 

that, the simulation outcomes are ambiguous. The SVM-based algorithm discovers more harmful nodes than the 

previous method, but no explanation is provided. A new architecture for intrusion detection in MANETs has been 

suggested that maximizes the detection accuracy by employing a machine learning technique [35]. They proposed a 

feature selection technique namely rough set and SVMs were utilized in this study for data reduction and classification, 

respectively. To lower the complexity of SVM, the rough set reduces the size of features. 

Although SVM works well in many domains, it is not suited for extremely large data sets. When there is 

more noise in the data set, such as when target classes overlap, SVM does not perform well. The SVM will 

underperform when the number of features for each data point exceeds the number of training data samples.  

SVM classifies nodes either attacker or normal. Thus, class label yi ∈ {attack, normal}. Given the training 

datasets (xi, yi),1 ≤ i ≤ n, xi is used for the training. The objective is to find the hyperplane that offers a maximum 

margin between the two classes. 

 

Fig. 3 Support Vector Machine (SVM) 

Equation of hyperplane is given as follows: 𝑔(𝑥) = 𝑤𝑇𝑋 +  𝑏 1 

where, X is the input feature vector, w is the weight vector which represents the orientation of the hyperplane in space. 

And, b is the bias vector which represents the position of the hyperplane in space. 

The equation g(x) given above divides the space into two subspaces. For a binary classification problem, where there 

are two classes (let us assume them to be class C1 and class C2), one of the subspaces denote the space for C1 and the 

other subspace is for the class C2. Mathematically for a point x1 it can be written as: 𝑔(𝑥1) = 𝑤𝑇𝑥1 +  𝑏 >  0   2 

such that: x1 ∊ C1 
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𝑔(𝑥1) = 𝑤𝑇𝑥1 +  𝑏 <  0 3 

such that: x1 ∊ C2 

Let d be the measure of distance X to the separating plane. So, we can say that 𝑤𝑇𝑥 + 𝑏  ≥  𝑑 4 

or, 𝑤. 𝑥 + 𝑏||𝑤|| ≥ 𝑑 5 

where, ||w|| is the norm of w. such that, 𝑤. 𝑥 + 𝑏 ≥  𝑑 ∗  ||𝑤|| 6 

We know that the value of d * ||w|| is 1. Therefore, the equation can be rewritten as: 𝑤. 𝑥 + 𝑏 ≥  1 7 

if x ∊ C1 𝑤. 𝑥 +  𝑏 ≤ −1 8 

if x ∊ C2 

To reduce the expression down to one term, we introduce another term yi which represents the class of the ith point. 

So, 𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥  1 9 

We can rewrite the above equation as  𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) = 1 10 

This equation is only valid for support vectors. Support Vectors are the data points or vectors that are closest to the 

hyperplane which affect the position of the hyperplane. The margin d needs to be maximized in Eq. 5. This is because 

our main objective is to find the hyperplane that offers maximum margin between the two classes. Maximizing the 

margin prevents over-fitting in high dimension input spaces, which ultimately leads to good generalization 

capabilities. This can be achieved by the maximization of the value of bias vector (b) or the minimization of the norm 

of w (||w||). 

The equation which needs to be minimized is given as: 

𝛷(𝑤) = 12 ||𝑤||2 
11 

The above optimization needs to be achieved under a given constraint, given by the Eq. 10: 𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) =  1 12 

Since this is a constraint optimization problem, it can be converted into an unconstrained optimization problem by 

using the Lagrangian Multiplier 
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𝐿(𝑤, 𝑏) = 12 ||𝑤||2 − ∑ 𝛼𝐼[𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) − 1] 13 

αi in Eq. 13 denotes the Lagrangian Multiplier. 

𝐿(𝑤, 𝑏) = 12  ||𝑤||2 − ∑ 𝛼𝑖  𝑦𝑖(𝑤. 𝑥𝑖) − ∑ 𝛼𝑖𝑦𝑖𝑏 + ∑ 𝛼𝑖  14 

To minimize the above expression, we find the gradient of L, by taking the partial derivatives of L w.r.t. the variables 

b and w and equating them to be zero. 𝜕𝐿𝜕𝑏 = − ∑ 𝛼𝑖𝑦𝑖 = 0 
15 

 

∑ 𝛼𝑖𝑦𝑖𝑚
𝑖=1 = 0 

16 

Here m is the number of training samples. 𝜕𝐿𝜕𝑤 = 𝑤 − ∑ 𝛼𝑖𝑦𝑖 . 𝑥𝑖 = 0 
17 

 𝑤 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖𝑚
𝑖=1  

18 

Substituting Eq. 16 and Eq. 18 in Eq. 13: 

𝐿(𝑤, 𝑏) = ∑ 𝛼𝑖𝑚
𝑖=1 − 12 ∑ 𝛼𝑖𝛼𝑗𝑦𝑖 . 𝑦𝑗(𝑥𝑗𝑥𝑖) 19 

The above Lagrangian expression needs to be maximized with different values of α. 

Lagrangian multipliers are always non-negative. 

So, ⍶i   ≥ 0, which satisfies the condition  

∑ 𝛼𝑖𝑦𝑖𝑚
𝑖=1 = 0 20 

For an unknown feature vector Z: 

𝐷(𝑍) = ∑ 𝛼𝑗𝑦𝑗𝑥𝑗 . 𝑍𝑚
𝑗=1 + 𝑏 21 

Only the sign of the above expression is important for finding out which class it belongs to. 

𝐿(𝑤, 𝑏) = ∑ 𝛼𝑖𝑚
𝑖=1 − 12 ∑ 𝛼𝑖𝛼𝑗𝑦𝑖 . 𝑦𝑗𝐾(𝑥𝑖𝑥𝑗) 22 
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Since the dataset used in this experiment is non-linear and cannot be directly used in SVM, we need to use a 

kernel function. For most of the non-linear data, polynomial and RBF kernels are used. For our experiment, we tested 

with both polynomial and RBF kernels and found that the RBF kernel results were around 37% more accurate. This 

means that the polynomial kernel was unable to transform data properly in the hyperplane. So, we selected and used 

the RBF kernel function for SVM for the rest of the work. 

The Radial Basis Function kernel or the RBF kernel is the most powerful form of kernel since it contains an exponent 

term. The exponentiation of a value gives a polynomial term of infinite dimensions. It helps in fitting a generalized 

form of a curve on the most complex datasets. Mathematically it is represented as follows: 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (− ||𝑥𝑖 − 𝑥𝑗||2𝜎2 ) 23 

|| xi - xj || represents Euclidean distance between the two points xi and xj. 𝛔 is the variance which can also be treated as a hyperparameter. 

2. Deep Neural Network (DNN): 

Neural Networks have been designed to imitate the working of the human brain. They consist of simple processing 

units called nodes. A collection of nodes together consists of a layer of a neural network. The number of layers of a 

neural network denotes its depth. Any neural network with more than two hidden layers (except the input payer and 

the output layer) is called a Deep Neural Network (DNN). Each layer in a DNN is basically a function (also called an 

activation function). Activation functions play a very crucial role in determining the output of a node, given a set of 

inputs. Some of the most popular activation functions are tanh (hyperbolic tangent function), relu (rectified linear 

unit), sigma (sigmoid function), etc. 

The fundamental difference between any traditional Machine learning algorithm and a Deep Neural Network is that 

the former works better on smaller datasets. As the amount of data keeps on increasing, the performance of DNNs 

also keep getting better. 

There are various kinds of neural networks that are available and they have their own set of applications. Some of the 

widely used neural networks are Radial Basis Function Neural Networks (RBFNN), Convolutional Neural Network 

(CNN), Recurrent Neural Network (RNN), Generative Adversarial Network (GAN) and many more. CNNs are mostly 

used for image processing, classification, segmentation, recognition, etc. It mainly comprises a few convolution layers 

and a few other layers like pooling layer and softmax layer. RNNs are the go-to algorithm for all kinds of sequential 

data. It is mainly used for sentiment classification, sequence labeling, predicting the next word and other language 

modeling tasks. We have used simple Feed Forward Neural Networks in our experiments to predict whether a given 

node is malicious or not. 

Literature review of DNN for similar problem: 

[36] applied four different deep learning approaches for Intrusion Detection System (IDS) in MANET architectures 

and then compared their results. These 4 approaches were - Convolutional Neural Networks (CNN), Inception 

Convolutional Neural Networks, Bidirectional Long Short-Term Memory (Bi-LSTM) and Gated Recurrent Units 

(GRU). The first two were CNN based Intrusion Detection Systems and the last two were RNN based Intrusion 

Detection Systems. All these four models were tested on the NSL-KDD dataset and their Precision, Recall and 

Accuracy values were compared to determine which model performed better. 

[37] uses a hybrid model approach for the exact classification of malicious network flow from the packets. The main 

idea behind the approach is to use an autoencoder based deep neural network algorithm to separate malicious nodes 

from the non-malicious ones. The model relies on sampled network flow data. The autoencoder based approach helps 

in avoiding overfitting to pre-defined malicious patterns, 
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[38] uses a hybrid deep neural network approach to detect Low-rate Denial of Service (DoS) attacks in the fluctuating 

legitimate traffic. It uses a one-dimensional Convolutional Neural Network and a Gated Recurrent Unit to detect DDoS 

attacks in fluctuating HTTP traffic. 

[39] incorporates a DDoS detection framework, a Bidirectional Long Short-Term Memory (Bi-LSTM), a Gaussian 

Mixture Model (GMM) and incremental learning. This framework helps to counter the Open Set Recognition (OSR) 

problem in DDoS attacks. The Bi-LSTM layer helps in capturing the essential characteristics of the DDoS traffic, 

especially the time domain correlations whereas the GMM in the architecture helps to differentiate between the trained 

samples and the novel instances. 

[40] combines a Long Short-Term Memory (LSTM) and Bayes approach and refer to the as LSTM-BA to propose a 

novel DDoS detection algorithm. The LSTM layer in the model helps identify parts in the DDoS attack which possess 

high confidence outputs and for those outputs with low-confidence the Bayes method is used to improve the accuracy.  

The above-mentioned papers and all the related work that has been done in building Intrusion Detection Systems using 

deep learning approach use the same concept of increasing the model accuracy by making correct predictions which 

is achieved by building a more complex architecture or by introducing some new deep learning-based model. Our 

approach differs from these approaches by not just focusing on increasing model accuracy but also considering the 

history of a node while making a prediction. 

Like ML models, DNN models will also suffer from the fact that classifications will be instantaneous without 

consideration of the history of any node. It is unlike our approach where the reputation of a node is considered to 

determine whether a given node has malicious intent or not. In this Deep Neural Network approach, we feed data 

about a node to the input layer and after passing through many hidden layers or abstractions it finally passes through 

a softmax layer which gives a probabilistic output ranging between 0 and 1. More the value, more would be the 

chances of the node being malicious in nature. 

Let us consider a set of inputs <x1 x2 x3 … xm> of size m. A weight is assigned to each connection between 

an input vector and a single neuron of the hidden layer. For example, the weight assigned to the connection between 

the first input vector and the first neuron of the first hidden layer would be denoted as w11. Similarly, the weight 

assigned to the connection between the second input vector and the first neuron of the hidden layer would be denoted 

as w12, and so on and so forth.  

The output of a single neuron in a hidden layer is calculated by the matrix multiplication between the input feature 

vector and the weights. Let us denote the output by z. 

Therefore,  𝑧 =  𝑤11𝑥1 + 𝑤21𝑥2 + 𝑤31𝑥3 + ⋯ + 𝑤𝑚1𝑥𝑚  24 

The result of this calculation would give us the output of the first neuron of the first hidden layer. We can also denote 

it by the matrix multiplication between the weight vector and the input feature vector. 𝑧 = 𝑤𝑇 . 𝑥 + 𝑏  25 

Here W represents the feature vector representation of the weight vectors. 

W: < <w11. w12,.....w1n>, <w21. w22,.....w2n>, <w31.w32,.....w3n>,.........<wm1.wm2,.....wmn>> 

X represents the input feature vector. 

X: <x1 x2 x3 … xm> 

b is nothing but the bias vector. 

The neuron calculates the weighted average of the values using the current value of input vector X. The values of the 

weight vector and the bias vector in each layer keeps getting updated in each iteration and thus the predicted output 

from the neural network also gets more accurate after every iteration. To keep the output of a neural network relevant 
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we need to introduce non linearity into the architecture, otherwise it just becomes like any other linear regression 

model. Therefore, we need to introduce the concept of activation function. It’s role is to calculate the weighted sum 
of its inputs and add the bias term. The most frequently used activation functions are: 

I) Step Function 𝑓 (𝑥) = 1  26 

if   x >= 0 𝑓 (𝑥) = 0  27 

if    x<0 

Gives an output of either 0 or 1. 

II) Sigmoid Function 𝑓 (𝑥) = 1/(1 + 𝑒−𝑥)  28 

Gives an output in the range of 0 to 1. 

III)ReLU (Rectified linear Unit) 𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥)  29 

IV)Hyperbolic tangent Function 𝑓 (𝑥) = 𝑡𝑎𝑛 ℎ(𝑥) =  ( 2(1+ 𝑒−2𝑥)) − 1  30 

Gives an output in the range -1 to 1. 

There are many other mathematical functions that are used as activation functions in neural networks. The above 

mentioned ones are only a few of them. For the sake of clarity let us denote the activation function being used in a 

hidden layer of a neural network as g. Thus, the output coming out of a neuron in a hidden layer can be given as: 𝑎𝑖 = 𝑔(𝑧𝑖)  31 

Since there are many other hidden layers in a neural network, Eq. 25 and Eq. 31 can be generalized for all the layers 

as follows: 𝑧𝑖[𝑙] = 𝑊𝑖𝑇𝑎𝑖[𝑙−1] + 𝑏𝑖[𝑙]
  32 𝑎𝑖[𝑙] = 𝑔[𝑙](𝑧𝑖 [𝑙])  33 

The superscript l here denotes the lth layer of the neural network. a[
i
0] can also be written as xi. 

The result generated from the output layer is interpreted using a softmax layer. If it is a binary classification problem, 

like ours, the softmax layer gives an output of either 0 or 1 meaning attacker or non-attacker. 

But even so, the above mentioned steps only constitute the forward propagation part of the neural network. Let us 

denote the output generated after an iteration to be ŷ. While training the neural network we already have the original 
result with us. Let us denote it by y. By determining how different the predicted output is from the original output, we 

can calculate the loss incurred. Using this loss value we can update the weight and bias vector parameters of each 

layer. By doing that we are ensuring that in the next iteration the loss incurred would be comparatively lower. This 

whole process is termed as backpropagation and this is what makes the neural network architecture so effective. 
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The loss between the predicted output (ŷ) and the correct output (y) is calculated using binary cross entropy function. 

It is given as follows: 𝐿(ŷ, 𝑦) = −(𝑦 𝑙𝑜𝑔 ŷ + (1 − 𝑦) 𝑙𝑜𝑔 ŷ))  34 

It is not mandatory to use binary cross entropy as our cost function. We can also use Mean Absolute Error (MAE) or 

Root Mean Square Error (RMSE) as our loss functions. 

Suppose there are t training samples. The Cost function is synonymous with the loss function. Only difference is that 

the Cost Function (let us denote it by J) is the average of the loss errors of all the training samples. It can also contain 

a regularization term. It is a function dependent on two variables - W and b. Therefore, mathematically it can be 

expressed as: 

𝐽 (𝑊, 𝑏) = 1𝑡 ∗  ∑ 𝐿 (ŷ(𝑖), 𝑦(𝑖))𝑡
𝑖=1  

35 

The next step in backpropagation involves the calculation of the gradient of cost function J with respect to its 

dependent variables W and b. The objective of this step is to update parameters W and b such that the loss function is 

minimised in each iteration. This is done by the help of gradient descent method that proceeds by calculating the 

partial derivative of the cost function with respect to the parameters W and b. By finding the partial derivative of Eq. 

35 with respect to W we get the following result: - 𝑑𝑊 [𝑙] = ꝺ𝐽
ꝺ𝑊[𝑙] = 1𝑡 ∗ 𝑑𝑧[𝑙]𝑎[𝑙−1]𝑇 

36 

The partial derivative of Eq. 35 with respect to b is :- 

𝑑𝑏[𝑙] = ꝺ𝐽
ꝺ𝑏[𝑙] = 1𝑡 ∗ ∑ 𝑑𝑧𝑖 [𝑙]𝑡

𝑖=1  
37 

Using Eq. 36 and Eq. 37 we can update parameters W and b as follows: - 𝑊 [𝑙] = 𝑊[𝑙] − 𝛼. 𝑑𝑊 [𝑙] 38 𝑏[𝑙] = 𝑏[𝑙] − 𝛼. 𝑑𝑏[𝑙] 39 

α is just a scalar constant in these equations. Technically, it is termed as the learning rate whose value determines how 

fast the neural network learns and updates its parameters W and b. It is a hyperparameter and more optimized its value, 

faster will it hit the minimum. It shouldn't be either too high or too low. 

 

Fig. 4   Deep neural network architecture 
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The DNN architecture is given in Fig. 4. In this architecture, the input layer consists of 115 neurons for each of the 

attributes. Then, the total number of hidden layers are selected as two. Both the hidden layer consists of 57 neurons 

(approximately half of the input neurons) of Relu activation units. Finally, the output neurons consist of the two 

classes, one for classifying attackers and the other for non-attacker. 

3. Reputation based classifiers 

 

Fig. 5  Classification including reputation 

In our proposed approach, in addition to the existing fields of a node, we introduce two additional fields RP 

in Fig. 5. The figure represents the outline of the model formation when using a reputation scheme. The reputation 

strategies are maintained by Reputation Processing System (RPS), while the basic classification is done using the 

standard node metadata MD in Fig. 5. First field is the reputation threshold (Tm). The value of this field might be 

modified by the node itself as per its requirements. The value ranges from 0 to 1. In a place where we need more 

security, then reputation threshold may be enhanced. Vice versa in a place where we need less security, then reputation 

threshold may be diminished.  Second field stores reputation score of the node. The value of this field might be 

modified by the behavior of the node in the networks not by node itself. Through simulation we try to find how this 

reputation score changes and that has been shown in the given three graphs with different 3 reputation threshold 0.25, 

0.50 and 0.75. 

In our proposed method when a node with lower reputation want to send a packet to a node with higher 

reputation would not be able to send packet and furthermore this attempt would lower the reputation of the sender 

node. In next case, when a node with higher reputation want to send a packet to a node with lower reputation would 

able to send packet and by this process it would increase the reputation of itself.  

 This system has two-fold benefits. First benefit is to improve classification goodness. Second benefit is to 

improve the reputation of good nodes in the overall network and other hand lowering the reputation of bad nodes. 

 In the given three graphs we compare three cases with different node threshold value (Tm). These graphs 

show the dynamic nodes reputation assignment ‘Rn*’ based on current reputation assignment ‘Rn’. These graphs are 
plotted with Example nodes with increasing reputation vs Reputation score (RP). In the graph (Fig. 6) we take the 

threshold value (Tm) 0.25 which shows node acceptance is highest with ‘Green markers’ than other two graphs. In the 

graph (Fig. 7) we take the threshold value (Tm) 0.50 which shows node acceptance is higher with ‘Green markers’ than 
last graph (Fig. 8) (where threshold value 0.75) but lower than the graph (Fig. 6) (where threshold value 0.25). In the 

graph (Fig. 8) we take the threshold value (Tm) 0.75 which shows node acceptance is lowest with ‘Green markers’ than 
other two graphs. 
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The reputation formula is given below in Eq. 40: 𝑅𝑛∗ = 0 𝑖𝑓 𝑅𝑛 + (𝑅𝑛 − 𝑇𝑚) ∗ 𝑇𝑚 ≤ 0  40 = 1 𝑖𝑓 𝑅𝑛 + (𝑅𝑛 − 𝑇𝑚) ∗ 𝑇𝑚 ≥ 1  = 𝑅𝑛 + (𝑅𝑛 − 𝑇𝑚) ∗ 𝑇𝑚, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

When the number of acceptances of a node are increased then reputation of that node will also increase and 

vice versa, which has been depicted in these given graphs. In first graph, we consider the threshold value is 0.25. This 

has been shown that the upper triangle of this point made by the lines Rn(Green line) and Rn*(Blue lines) and shaded 

by green lines (which depicts reputation has been increased) is bigger in size than the triangle below of this point made 

by the same lines and shaded by red colour (which depicts reputation has been decreased). In 2nd graph, we consider 

the threshold value is 0.50. Here the number of acceptances of node are decreased than before. In this case upper 

triangle and lower triangle are same in size. In 3rd graph, we consider the threshold value is 0.75. Here the number of 

acceptances of node is lowest among these three cases. In this case upper triangle is smaller than lower triangle means 

that acceptance of a node lowest in this case among three cases we consider. 

 

Fig. 6 Impact of node’s behavior on its reputation for threshold:0.25 

 

Fig. 7 Impact of node’s behavior on its reputation for threshold:0.50 
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Fig. 8 Impact of node’s behavior on its reputation for threshold:0.75  

5 RESULTS AND DISCUSSION 

5.1 RESULT OBJECTIVES 

Following are the objectives of the results section: 

1. Identification of the evaluation metrics used for comparison of the algorithms. 

2. To find variation in the model performances for general algorithms i.e., SVM and DNN versus the integration of 

reputation schemes with those algorithms i.e., RSVM and RDNN. 

3. To compare the proposed models with the current state of the art techniques. 

5.2 EVALUATION METRICS 

Confusion Matrix: A classification issue prediction outcome summary is known as a confusion matrix. Confusion 

matrices are used to depict the counts of predicted and actual values. The Confusion Matrix serves as the foundation 

for all other measurements. True Negative (TN): This indicator displays the number of correctly identified negative 

cases. 

True Positive (TP): This represents the number of correctly classified positive cases. 

False Positive (FP): This metric displays the number of genuine negative examples that have been misclassified as 

positive. 

False Negative (FN): It is the number of true positive examples categorized as negative 

Precision: It's the number of correct positive outcomes divided by the classifier's anticipated positive results. The Eq. 

41 is provided that is used to calculate Precision. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃)  =  𝑇𝑃𝑇𝑃 + 𝐹𝑃 41 

In our proposed scheme no attacker is allowed to intrude in the system. So our objective is to reduce the false negative 

(FN), which is intended to increase false positive (FP). So precision should be decreased. 
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Recall: It is calculated by dividing the number of accurate positive findings by the total number of relevant samples 

(all samples that should have been identified as positive). The Eq. 42 is used to calculate Recall. 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅)  =  𝑇𝑃𝑇𝑃 + 𝐹𝑁 42 

In our proposed scheme we are trying to decrease the false negative (FN). So, we must increase the recall. 

F1 Score: The Harmonic Mean of accuracy and recall is used to get the F1 Score. F1 Score is in the [0, 1] range. It 

indicates both the precision and the robustness of the classifier. F1 Score attempts to strike a compromise between 

recall and accuracy. The Eq. 43 is provided that is used to calculate F1 Score. 𝐹1 = 2 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 43 

Since in our proposed scheme precision should be lesser and recall should be higher and F1 score is the harmonic 

mean of both so this is an important metric to measure. 

Accuracy: This metric measures the proportion of accurate predictions to all input samples. The Eq. 44 is provided 

that is used to calculate Accuracy. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴)  =  𝑇𝑁 + 𝑇𝑃𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 44 

5.3 MODEL VARIANCE EVALUATION 

The Bar chart of Fig. 9 depicted that precision is higher than recall in SVM and DNN. But when we introduce 

the reputation of nodes in our system i.e., in RSVM and RDNN the value of recall has become higher than precision 

which is our objective.      

The Line chart of Fig. 10 depicted that with the increment of threshold, precision also increased.  The 

precision of RDNN is always higher than from RSVM by 1.5% on average. 

The Line chart of Fig. 11 also depicted that with the increment of threshold, recall also increased.  The recall 

of RDNN is always higher than from RSVM by 0.96% on average. 

The Line chart of Fig. 12 depicted F1 score, which is the harmonic mean of precision and recall. The F1 score 

of RDNN is always higher than from RSVM by 1.26% on average. 

The Line chart of Fig. 13 depicted Accuracy. Initially Accuracy of RSVM is higher than RDNN, but with the 

increment of threshold Accuracy of RDNN would become higher. We can conclude that accuracy is not so consistent.

 

Fig. 9  Different evaluation metrics comparison of four classifiers 
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Fig. 10   Line chart of Precision of RSVM and RDNN 

 

Fig. 11  Line chart of Recall of RSVM and RDNN 

 

Fig. 12  Line chart of F1 Score of RSVM and RDNN 

 

 

 

 

 

  

Fig. 13  Line chart of Accuracy of RSVM and RDNN 
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5.4 COMPARISON WITH EXISTING APPROACHES 

Table III Comparisons of accuracy 

State of the Art Techniques Used Dataset Accuracy 

RSVM 
Kitsune Network Attack 

Dataset 
97.51% 

RDNN 
Kitsune Network Attack 

Dataset 
98.91% 

Naïve Bayes [41] 

CCIDS2017 

75.31% 

SVM [41] 99.68% 

Random Tree [22] ISCX-SlowDDos-2016 99.95% 

k-NN [42] 

UNSW-NB15 92% 

NSL-KDD 96% 

Neural Network [23] UNB-ISCX 98% 

Deep learning neural network [24] KDD Cup 97.10% 

REPTree + SVM [25] CTU-13 98.40% 

RNN neural network [43] CTU-13 98.39% 

k-means clustering + Naïve Bayes [26] UNB-ISCX 99% 

Random Forest [27] 

CIC DoS-2017 

94.41% 

SVM [27] 93.10% 

 

We consider accuracy when evaluating a model, but we are more concerned with how resilient it is, how it 

will perform on diverse datasets, and how much flexibility it provides. Without a question, accuracy is a crucial statistic 

to evaluate, but it does not always provide a whole picture. 

Accuracy is a useful metric for evaluating a model's performance in a problem setting. This can also be used 

to rank and compare different models. Some of the metrics are helpful in explaining how the model captures the 

problem and interprets the data. 

The proportion of correct predictions to all input samples is known as accuracy. From here, we cannot deduct 

false positives or false negatives. 

A false positive is an outcome when a model incorrectly predicts the positive class and a false negative is an 

outcome when the model incorrectly predicts the negative class. A false positive in a real life scenario can prove to be 

quite damaging.  

In Intrusion Detection System, a false negative case happens when an action is classified as normal, even 

though it is malicious. 
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A confusion matrix is a specific table layout of dimensions 2*2, that helps us visualize the performance of 

any Machine Learning algorithm. It helps us to calculate values like Precision, Recall, Specificity, F-1 score and ROC-

AUC curve. These metrics, in addition to accuracy, let us understand a model's performance even better. 

 

Dataset in machine learning doesn’t matter when we train a model if the model is a generalized model or a good 

model. Because a generalized model works on unknown data. Then which dataset we would select for our experiment 

depends on our requirements. We selected the Kitsune Network Attack (KNA) dataset for our experiment since the 

number of instances of these datasets are 27170754 and the number of attributes is 115 and many attributes are required 

for MANET attacks in the network. We try to make the model generalized so that it not only works on KNA but works 

for any unknown dataset. 

6 CONCLUSIONS

MANETs advantages like dynamic and decentralized nature also brings a lot of disadvantages when compared to any 

wired network technology. We identified the challenges that the state-of-the-art machine learning models faces when 

classifying a real DoS attack versus false classification due to a network error. A reputation-based approach is 

proposed assuming that nodes past history plays a very important role in determining whether the node is an attacker 

or not. This proposed approach in a lab environment simulation shows that it is able to improve the classification 

accuracy of existing machine learning models to a large extent. The reputation-based method is able to stop classifiers 

from discarding a node directly when a node has a good reputation and vice versa. The minimum increment in accuracy 

is 2.8%, which increases till 3.25% for other models. Further, the model recall is increased by a mean of 1% for all 

the tested models, which is a significant improvement considering the cost associated with the false classifications. 

The only limitation identified of the proposed approach is the cold start issue; as the dynamic nature of the MANETs 

does not allow a centralized system to handle the reputation system.  
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