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Abstract

In recent years, the SDN (Software-Defined Networking) paradigm emerged as
an easy way to manage large-scale network infrastructures through programma-
bility brought out and its control plane/data plane decoupling logic. This enables
infrastructure and service providers to have a global view of the network and
track traffic flows from a remote controller. However, congestion control remains
a concern due to the evolution of increasingly complex and resource-intensive
user requirements (virtual reality, metaverse, Internet of Things (IoT), Artificial
Intelligence (AI), Cloud, ...) on network infrastructures. This server state leads
to high latency in request processing and data loss. This paper proposes in such
controller-supervised environment, a congestion management scheme within net-
work service servers to maintain acceptable quality of service. The strategy relies
on work stealing to ensure better workload balancing. Simulations show that
the proposed solution can reduce congestion load into the servers by up to 22%,
depending on request grain size, within a shorter latency than other works in the
literature. Moreover, the proposed solution allows stolen tasks to be completed
within a shorter timeframe.
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1 Introduction

Most of the modern network services offered by large-scale network operators require
very low response times to user requests, whatever the state of the infrastructure (IoT,
5G, gaming, ...) [1]. As a result, infrastructure providers must constantly focus on
developing architectures and management policies to meet these high responsiveness
targets. But this requires greater control of the infrastructure, allowing changes to be
detected quickly (link failure, congestion, etc.) and relevant measures to be taken in a
real timeframe. Over recent years, SDN has gained a firm foothold in this area. SDN
assigns the definition of network control rules to a controller through the control plane,
and the implementation of these rules to managed equipment (openflow switches)
through the data plane [2, 3]. All these features provide a global view of network
device activities, including the servers receiving user requests. Figure 1 shows the SDN
paradigm.
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Fig. 1: SDN architecture.

Because of the high added value of the services offered to users, requests are increas-
ingly numerous and difficult to satisfy by the servers, resulting in frequent congestion.
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While the controller can quickly detect congestion, it is harder to end it immediately
[4]. To achieve this, other servers in the relevant domain are usually involved. To this
end, [5–7] proposed, in a virtualized environment supervised by a controller, a server
replacement scheme, which replace a congested server to another with more available
resources. But this approach requires migrating a lot of data, which overloads the
links during migration. Nevertheless, response times after repositioning are better than
the load balancing proposed by Seddiki [8]. Seddiki’s load balancing algorithm con-
stantly looks for a balance of requests between virtualized servers. This method keeps
these servers working continuously to process requests and execute the load balancing
algorithm.

Our motivation is to provide a solution to server congestion in SDN environments
by overcoming the limitations of the work cited above [5, 7, 8]. The proposed solution
uses work stealing [9, 10] to mitigate workload on congested servers to the benefit of
other servers. Work stealing involves an idle processor stealing one or more tasks from
its neighbor’s waiting list [9, 11, 12]. This method already proved its ability to achieve
lower latencies in single parallel job execution on multiple processors [9, 10, 13]. But the
work-stealing strategies presented in previous work are still to our knowledge largely
unused in server congestion scenarios in SDN networks. We describe our contribution
in three points:

• A task selection method : we define some key metrics that we use to identify a
”stealable” task, such as independence, priority and work weight.

• A server selection algorithm allowing execution of stolen tasks. We rely on the
network overview provided by the SDN controller [1, 14] to identify these server(s).

• An automated task transfer algorithm to the execution server, enabling low transfer
time and task’s queue consistency.

The remainder of this paper is organized as follows : in Section 2, we present a
brief review of congestion management in SDN networks, then describe our solution
for allocating tasks to servers in Section 3; next, our simulation results and discussion
are presented in Section 4. Finally, Section 5 presents our conclusions and directions
for future work.

2 State of the art

Congestion refers to the state of a system whose capacity to handle incoming user
requests has been exceeded [15, 16]. This situation is recurrent in single or multi-service
environments shared between several users, such as in the SDN-Based Clouds [17, 18].

Overcoming server congestion in SDN networks has been tackled in several direc-
tions. Some of these works have investigated the load balancing direction [8, 17] over
several servers in order to avoid congestion as long as possible. To ensure this balanc-
ing, [17, 18] prioritizes specific requests over others. The metric used is the type of
service and the number of incoming requests. A service with higher bandwidth require-
ments (multimedia [17], games [19], etc) deserves higher priority. It is the same for a
large number of requests [18]. These works highlight the importance of load balancing
across multiple servers, based on shortest-path flow routing policies, in order to achieve
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lower latency. Such policy biases light services against heavy ones. Server replacement
[5–7] solves this problem with a migration of the hosted service to another server
with more resources, thereby enhancing the processing ability of the congested server.
Thus, all requests related to different services can be quickly processed, regardless of
the task’s granularity. However, this result can only be achieved once the service has
been completely replaced. A more cost-effective approach would be to execute queries
while minimizing the number of data migrations. Work stealing could be the solution.

So far, work stealing has been used to provide better task management between the
different cores of a processor in multiprocessor systems. For event-driven systems, [20]
proposed task stealing algorithms such as Cache-aware stealing, Batch stealing and
Handler pinning which can improve web data server performance by 15% compared
with previous algorithms. In the Libasync-smp algorithm [21], each user request is
saved in an event list. Event processing refers to task execution. One or more tasks
can be executed in a thread. When a thread is out of tasks to execute, it checks
if any other threads still have events in their queue. If this is the case, unoccupied
threads try to steal some of them: it starts by choosing a color (group of requests)
to steal (excluding those currently running) and moves all events of this color into
its queue. In this way, the mutual exclusion guaranteed for events of the same color
is preserved. When several threads are potentially stealable, the stealing algorithm
chooses the one with the most events in its queue. However, the major drawback of
this algorithm lies in its significant drop in performance when scaling up in multi-core
environments and, by extension, in multiserver environments. [20] solves the scaling
problem by integrating the ability to steal multiple tasks, even if the number does
not exceed 50% of available tasks. For task processing in a network environment,
[20] selects any server that accepts TCP (Transmission Control Protocol) connections
easily. The ”Handler pinning” version with the worker accepting TCP connections
produces a higher acceptance rate (+12%) than the original version of task stealing
(-8.5%). However, the TCP incoming connection acceptance metric is not sufficient
on its own to successfully process stolen tasks.

[9] focuses on task weights and avoids capturing lightweight tasks in the stealing
process. This trick reduces the number of work steals and subdivisions. Each server
self-assesses the priorities and weights of the competing tasks. This algorithm uses
these two metrics (priority and weight) to determine the victim. However, a restric-
tion is placed on the number of tasks that can be stolen from an external node. In
multiprocessor systems, this restriction can be useful for reducing power consumption,
which is a major requirement for improving battery life, reducing cooling costs and
improving overall system scalability and reliability.

Concerning the task processing order for congested data centers, [4] show that this
problem stems from the scheduling policy used on the one hand for packet transfer by
switches, and on the other hand for request processing within servers. [22] previously
addressed congestion control and task scheduling only at the switch level for better
packet routing. [22] focused on bandwidth usage and hop count as key criteria for
good scheduling. To improve control on servers, [4] proposes to prioritize tasks with
the shortest remaining execution time (Shortest Remaining-Processing-Time (SRPT))
when scheduling, as opposed to a FIFO (First In First Out) or Fair Queeing approach,
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and to progressively move tasks out of the queue of tasks to be processed. However,
heavier tasks may never be executed, or executed very late.

In section 3 we present our task stealing scheduling scheme to solve this balancing
problem in query processing in SDN environment, which is at the best of our knowl-
edge the first one using this approach with a SDN controller. Most previous work on
task stealing has been carried out in unsupervised distributed environments. Table 1
compares the theoretical approach of our solution with the literature.

3 A new congestion management algorithm

In this section, we present WoS-CoMS, our task stealing-based server congestion man-
agement algorithm. We consider a set S of servers providing homogeneous services
in an infrastructure supervised by a SDN controller. Our work stealing scheme inves-
tigates three key points: the granularity of stolen works, the stealing strategy (job
request or snatch) and the selection of the runtime server.

3.1 Works granularity

Queries which cause congestion on a Si server can be either dependent or independent.
We consider both levels of granularity. Let’s consider a set of tasks Ji, i ∈ 1..3. We
consider the dependency types shown in figure 2. Singletons are tasks that have no
dependencies on each other. They are therefore the easiest to steal, as their granularity
level is null.

Fig. 2: Types of Dependencies.

Queries dependent on each other have weights according to the number of linked
queries [24]. So, stealing a task that depends on other tasks must be followed by stealing
those tasks as well. When the steal is completed, the requesting tasks are removed
from the source server’s queue and placed on the processing target server’s queue.
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Table 1: Comparison of congestion control schemes.

Issues Scheduling criteria Application field Optimization Environment
Authors CC Sched. BW. Hops RRT Weight Switch Server CPU SR TCP Acc. Dist. Cent.

WoS-CoMS ✓ ✓ ✓ × ✓ ✓ × ✓ × ✓ ✓ × ✓

ERASE [23] ✓ ✓ × × × ✓ × × ✓ ✓ × ✓ ×

Nakashima et al. [9] ✓ ✓ × × × ✓ × × × ✓ × ✓ ×

Mushtaq et al. [4] ✓ ✓ × × ✓ ✓ ✓ ✓ × × × ✓ ×

D. Shah and Q. Xie [22] ✓ ✓ ✓ ✓ × × ✓ × × × × × ✓

Handler pinning [20] × ✓ × × × ✓ × ✓ × × ✓ ✓ ×

Legend
1- CC : Congestion control 4- Hops : number of Hops 7- SR : Stealing Rate
2- Sched. : Scheduling 5- RRT. : Running Remaining Time 8- TCP Acc. : TCP Acceptation
3- BW : Bandwidth 6- Weight : task weight 9- Dist. : Distributed environment
10- Cent : Centralised environment
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A stealing log is kept at server level in order to preserve the related task processing
consistency.

Concerning independent requests, we can steal them anytime an execution plat-
form is available. However, this availability is not a sufficient condition to perform a
successful steal. The source server may deny the task to another server.

3.2 Stealing strategy

The work stealing strategy starts as soon as a server’s congestion threshold (80%
according to [10]) is reached. We propose two stealing strategies : the supervised
approach and the unsupervised one.

3.2.1 Supervised Work stealing method

The Sinit server sends a STB REQUEST (Stealing-Task Broadcast Request) to the
controller looking for a backup server. The controller broadcasts the request in the
network in search of an available server, and retrieves the offers ST OFFER (Stealing
Task Offer) submitted by the applicant servers. Figure 3 present the proposed structure
of these packets. Based on the network configuration, the controller selects the first
valid offer and links Sinit and Si. Si can then initiate task stealing. Algorithm 1
describe our backup server selection strategy perform by the controller with a time
complexity of m×O(k+n log n), where m is the offers queue size, k is the number of
arcs in the network and n is the number of vertices. If the controller previously saved
the computed shortest paths from any source to any destination, the algorithm 1 will
achieve a time complexity of O(m).

Algorithm 1: Controller’s backup server selection algorithm.

input : List of ST OFFER LO,
Task to Steal ST ,
network graph G

output: A valid ST OFFER
1 Let P be an empty routing path;

Let SO be an empty ST OFFER;
if empty(LO) then

2 return SO;
3 else

4 foreach SOi ∈ LO do

5 if SOi → proposed runtime ≈ 0 then

6 P ← G→ Shortest path from Sinit to SOi Server; /* Using

Dijkstra’s algorithm */

7 if P¡¿null then
8 return SOi;
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Fig. 3: STB REQUEST and ST OFFER packets structure.

Si sends a job request to Sinit. If Sinit accepts the incoming TCP request, it scans
its job queue and performs the job release. The IP packet generated by Sinit is then
routed to the nearest OpenFlow switch. The packet header contains the address of the
destination server in the destination field. This switch uses the routing information
(FIB) previously provided by the controller to redirect the packet to the appropriate
output port. Figure 4 illustrates this process.

If Sinit rejects the TCP connection, WoS-CoMS allows Si to abort the request
and notify the controller. As a result, the controller can retrieve the task without any
authorization from Sinit. This steal cannot be performed by Si due to its accredita-
tion level, which is similar to Sinit. The controller, because of its high privilege levels
on supervised switches and terminals, can forcibly recover the task even in different
environments and operating systems. Thus, the steal takes place asynchronously with-
out disturbing Sinit, which may be running user tasks. Figure 5 shows our stealing
strategy details.

3.2.2 Unsupervised Work stealing method

The congested server (Sinit) sends a STB REQUEST to all the servers in the network,
looking for a valid candidate. Each server receiving a STB REQUEST message builds
and sends a ST OFFER response message detailing its offer. Each received ST OFFER
are queued. After a delay, the source server Sinit launches algorithm 2 to select a valid
offer among those received. At the same time, the same server Sinit keeps processing
the user requests queue in order to reduce latency, disrupted by the congestion state.
When a server Si is selected, Sinit opens a TCP port enabling tasks to be stolen, and
notifies Si. Then, Si performs the stealing process of figure 6.

8



Fig. 4: Our global task stealing process

Algorithm 2: Sinit’s unsupervised backup server selection algorithm.

input : List of ST OFFER LO,
Task to Steal ST ,
network graph G

output: A valid ST OFFER
1 Let SO be an empty ST OFFER;

if empty(LO) then

2 return SO;
3 else

4 foreach SOi ∈ LO do

5 if SOi → proposed runtime ≈ 0 then

6 return SOi;

3.3 Server lookup area

A stolen task can be processed by the server to which it is assigned, or recursively
by another server. However, recursivity in the allocation of a stolen task to another
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Fig. 5: Detailed stealing process between two servers in supervised method.

can compromise the performance the task process performance [9]. Therefore, before
stealing any task, the stealing algorithm executed by the controller checks that the
following constraints are met:

• there is at least one server with an empty execution queue;
• there is at least one available routing path for the task;
• the runtime server has enough resources for tasks processing;
• Once a stolen task has been received, it must be prioritized over subsequent ones;
• only servers with a positive previous performance record can receive newly stolen
tasks.

In the runtime server lookup, we consider two areas: the intra-server level and
the inter-server level. At the intra-server level, theft takes place between the physical
server and its virtual machines, or between virtual machines on the same physical
server. At this level, the virtual servers are all located at the same hop and their
activity is supervised by the hypervisor, enabling to observe the performance metrics
of each virtual server. A stolen task is assigned to the virtual server with the lowest
additional resource requirements (CPU, RAM, storage).
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Fig. 6: Detailed stealing process between two servers in unsupervised method.

At the inter-server level, the controller needs to find the server that meets the
above criteria, as well as the best path to transfer the job. The best path is the
one which provides the minimum transfer time through the fewest possible hops. A
minimum number of hops reduces the number of switches involved in the process, and
also potentially limits cases of traffic congestion within OpenFlow switches.

4 Simulation results and discussion

In order to investigate the effectiveness of our stealing strategy, we carried out simu-
lations in the OMNet++ version 5 environment running on an Intel Inspiron 2.70Ghz
quad-core processor computer with 16GB of memory and a Linux 21.10 operating sys-
tem. We assumed topologies with two(02), four(04), eight(08), twenty(20), thirty(30)
and fifty(50) servers for scalability requirements.

The simulations focused on congested servers and the controller’s workload ramp-
up during stealing (number of instructions executed). We also compared our WoS-
CoMS task stealing solution with the server replacement scheme proposed by [7] and
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the Handler pinning stealing algorithm [20]. Each server uses a 1MB list (queue) to
store excessive requests, sources of congestion.

4.1 Server performance

To appreciate the performance of the different data servers, we ran the simulations
sequentially on a 60-nodes network under the following respective conditions: without
a stealing algorithm, in the presence of the Handler pinning algorithm, in the pres-
ence of the FSB-DReViSeR bandwidth replacement algorithm and finally with our
WoS-CoMS task stealing algorithm. Traffic was generated according to a Poisson dis-
tribution to highlight the randomness of users’requests. Five servers were selected to
study their reaction.

Figure 7 shows that WoS-CoM performs better than other approaches in reducing
the activity of a congested server from 12% to 22% of the exceeding requests that
cause congestion. This is achieved because of the lower granularity of stolen works than
those involved in server replacement. Indeed, repositioning moves all user requests and
service data to a faster working server with more resources.

Fig. 7: Individual server performances.

4.2 Stealing ratio

Figure 8 shows that WoS-CoMS steals more jobs on average than Handler pinning
[20] on a large number of servers. This is because the controller’s presence enable to
perform some stealing instances that can’t take place only between a source server
and a target server. This is the case, for example, when the sender’s TCP connections
to retrieve the task are not accepted by the source host. In many stealing cases, the
Controller’s involvement can be used to forcibly retrieve resistant tasks. However, this
action does not always end with the task processing.

Evaluation of the stealing ratios provide the data in table 2. Figure 9 shows the
results of successful steals compared with predictions. Globally, the stolen job losses
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Fig. 8: Performed Stealing ratio.

are almost nil in the presence of a low number of servers, against the case where there
are higher. Indeed, a large number of servers potentially implies a higher number of
users and traffic. As a result, incoming TCP connection failures become significant.
However, the number of stealing failures with WoS-CoMS in the presence of a large
number of servers is still lower (0-5%) than with the Handler pinning heuristic (0-
9%), thanks to controller involvement. The counterpart of this action is an increase in
controller latency in the overall request processing, as shown in figure 10.

Table 2: Stealing performance ratio

Stealing Schemes WoS-CoMS Handler pinning

Workers Brute Forced Ratio (%) Brute Forced Ratio (%)

2 67 65 0 42 42 0
4 190 180 5 163 163 0
8 521 517 1 414 385 8
20 1604 1584 2 1323 1270 4
30 2015 1936 0 1890 1713 9
50 2367 2321 2 2100 2011 4

4.3 Impact of task granularity

We evaluated the influence of granularity on our stealing strategy using the following
grain levels: 5, 25 and 35. Figures 11a, 11b and 11c show the congestion rate reduc-
tion within a few servers with granularities 5, 25 and 35 respectively. We note that
under mixed congestion conditions with non-zero granularity requests, the different
decongestion approaches offer performance close to that of servers in the absence of
task stealing or replacement strategy. This convergence increases when granularity is
important. Indeed, multiple interdependent requests reduces the number of stealing
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Fig. 9: Completed steals vs. confirmed steals

Fig. 10: Increasing controller workload.

instances performed and the ability to find suitable servers with enough resources
supporting the weight of these dependent requests.

5 Conclusion and future work

The main motivation for this work was to provide a solution to server congestion
in SDN-based network architectures. This network paradigm is highly sought-after
today by major operators for their large-scale network management. The key feature
of this approach is the ability to successfully mitigate some task stealing rejections,
which are often behind low decongestion rates. This is achieved through a controller-
based approach to these rejection cases, which easily outperforms other works in the
literature by reducing rejection rates to a maximum of 5% and congestion rates to
22%. In the future, we intend to include a machine learning feature in our protocol
to predict server availability.
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(a) Server performance with granularity=5. (b) Server performance with granularity=25.

(c) Server performance with granularity=35.

Fig. 11: Server performance vs Granularity factor.
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