
ar
X

iv
:c

s/
04

10
04

6v
2

 [
cs

.D
S]

 1
2

M
ay

 2
02

1

A Note on Scheduling Equal-Length Jobs

to Maximize Throughput

Marek Chrobak∗ Christoph Dürr† Wojciech Jawor∗ Lukasz Kowalik ‡

Maciej Kurowski‡

Abstract

We study the problem of scheduling equal-length jobs with release times and deadlines, where

the objective is to maximize the number of completed jobs. Preemptions are not allowed. In

Graham’s notation, the problem is described as 1|rj ; pj = p|
∑

Uj. We give the following results:

(1) We show that the often cited algorithm by Carlier from 1981 is not correct. (2) We give an

algorithm for this problem with running time O(n5).

1 Introduction

We study the following scheduling problem: We are given n jobs numbered 1, 2, . . . , n. For each job

j, a release time rj and a deadline dj are given. All jobs have the same processing time p. (We

assume that all numbers are positive integers.) We want to find a non-preemptive schedule of the

given set of jobs that maximizes the throughput, where the throughput is defined as the number of

completed jobs. (Equivalently, we can minimize the number of late jobs.) In Graham’s notation, the

problem is described as 1|rj ; pj = p|
∑

Uj .

The feasibility version of this problem, where we ask whether all jobs can meet their deadlines, has

been studied thoroughly. Polynomial time algorithms for this version were first found, independently,

by Simons [4] and Carlier [2]. A faster algorithm, with running time O(n log n), was subsequently

given by Garey et al [3]. Interestingly, all three algorithms use quite different techniques.

The elegant feasibility algorithm of Carlier [2] is based on a dynamic programming approach that

processes jobs from left to right (in order of release times). For each time t, it constructs a partial

∗Department of Computer Science, University of California, Riverside, CA 92521. {marek,wojtek}@cs.ucr.edu.

Supported by NSF grants CCR-9988360, CCR-0208856, and NSF/CNRS grant INT-0340752.
†Laboratoire de Recherche en Informatique, Université Paris-Sud, 91405 Orsay, France. durr@lri.fr. Supported by

the EU 5th framework programs QAIP IST-1999-11234, the NSF/CNRS grant 17171 and the CNRS/STIC 01N80/0502

and 01N80/0607 grants.
‡Instytut Informatyki, Uniwersytet Warszawski, Banacha 2, 02–097, Warszawa, Poland.

{kowalik,kuros}@mimuw.edu.pl. Supported by KBN grant 4T11C04425.

1

http://arxiv.org/abs/cs/0410046v2

schedule with jobs that complete execution at or before time t. Carlier also considers a certain

dominance relation on partial schedules. Intuitively, one partial schedule dominates another if this

other schedule cannot be extended to produce an overall better schedule, independently of the jobs

that are to be released after time t. The schedule computed for each time has the property that it

dominates all other partial schedules up to this time.

In [2], Carlier also attempted to extend his technique to the maximization problem, and proposed

a polynomial-time algorithm. This result is now widely cited in the literature. However, in Section 3

we present an example of an instance on which Carlier’s algorithm produces a sub-optimal schedule,

proving that this algorithm is not correct. We then extend our construction to show that even

the general approach from [2] does not work. To this end, we show that any left-to-right dynamic

programming algorithm needs to keep track of an exponential number of partial schedules. (See

Section 4 for a more rigorous statement of this claim.) This result reveals an interesting feature of

scheduling equal-length jobs, as it shows that the maximization problem is structurally more difficult

than the feasibility problem.

Finally, in Section 5, we present an O(n5)-time algorithm for 1|rj ; pj = p|
∑

Uj. Our technique is

based on the approach developed by Baptiste [1], who gave an O(n7)-time algorithm for the weighted

version of this problem.

2 Preliminaries

In the rest of the paper J denotes a set of n jobs, rj and dj the integer release time and deadline of

a job j, and p a fixed processing time. Typically, we assume J = {1, 2, . . . , n}, although in the next

section we also use capital letters A,B, . . . , to denote jobs (possibly with indices.)

We order the jobs according to the deadlines, breaking the ties arbitrarily, that is, i < j implies

di ≤ dj , for all i, j. Without loss of generality, we assume that dj ≥ rj + p for all j. We can further

assume that mini ri = 0, and by dmax = dn we denote the latest deadline.

We say that a job j is executed in time interval [t, t′] if it is started and completed in [t, t′].

(Equivalently, the job j is started after or at t, but no later than at t′ − p.) Thus all the scheduled

jobs must be executed in the interval [0, dmax].

A schedule S is a function that assigns starting times to some of the jobs in J , such that the

scheduled jobs are executed between their release times and deadlines and no two jobs overlap.

Define a schedule S to be canonical if it has the following two properties:

(c1) S is left-shifted, in the following sense: for any job j ∈ S, the starting time of j is either rj or

the completion time of the job in S that precedes j.

(c2) S is earliest-deadline, that is, if i, j ∈ S and i is scheduled before j, then either i is scheduled

2

before rj or i < j.

It is quite easy to see that each schedule can be converted into a canonical schedule without changing

the set of completed jobs. For suppose that there are two jobs i, j ∈ S that violate condition (c2).

This means that i > j, but i is scheduled at or after time rj and before j. We can then swap i with

j in the schedule. We continue this process until we obtain a schedule that satisfies (c2). Then, to

achieve condition (c1), we modify the schedule from left to right by shifting all jobs leftward, either

to their release times, or to the completion time of the previous job, whichever is greater. Note that

this shifting cannot violate property (c2).

For simplicity, we will slightly abuse the terminology above and treat a schedule simply as a

sequence of jobs. The actual schedule corresponding to this sequence is a left-shifted schedule that

executes the jobs in the given order. Further, we will sometimes treat a schedule S as a set of

scheduled jobs, and write i ∈ S, etc.

Denote by C(S) the makespan of a schedule S (that is, the latest completion time of a job in S.)

If m 6∈ S and dm ≥ C(S) + p, then by S ⊕m we denote the schedule obtained from S by scheduling

m at time max {C(S), rm}. The schedule S ⊕m is called an extension of S.

3 Carlier’s Algorithms

Feasibility algorithm. In [2] Carlier presented two algorithms for scheduling equal-length jobs.

The first algorithm was for determining feasibility, and the second for maximizing throughput.

The feasibility algorithm for each time x = 0, 1, . . . , dmax computes a schedule Sx of jobs to be

executed in the interval [0, x]. We call Sx active if it contains all jobs with deadlines at most C(Sx).

The schedules Sx are computed incrementally, from left to right, as follows. At time x, we consider

the set H = {j ∈ J : rj ≤ x− p} − Sx−p, namely the jobs that were released at or before x− p and

have not been scheduled in Sx−p. If H = ∅, we take Sx = Sx−p. Otherwise, pick the earliest-deadline

job m ∈ H. If Sx−p⊕m is active, let Sx = Sx−p⊕m, otherwise Sx = Sx−1. After we compute Sdmax
,

if Sdmax
= J , we are done, otherwise report that J is not feasible. To achieve polynomial time, we

can modify the algorithm, so that it only considers the time values x = rj + lp, for some j ∈ J and

l ∈ {0, . . . , n}.

To justify correctness of this algorithm, Carlier considers a certain dominance relation on par-

tial schedules. Intuitively, one partial schedule dominates another if this other schedule cannot be

extended to produce an overall better schedule, independently of the jobs that are to be released in

the future. It turns out that, under the assumption that J is feasible, at each step x, schedule Sx

dominates all other schedules in the interval [0, x]. In particular, this implies that, for x = dmax, the

resulting schedule Sdmax
will contain all jobs from J . It should be noted that this algorithm, as well

as the next maximization algorithm, does not take into account the values of the deadlines of the

non-expired jobs, when choosing the next job to schedule, only their ordering.

3

Maximization algorithm. In [2], Carlier also attempted to extend his technique to the maxi-

mization problem, and proposed the following algorithm:

Algorithm 1

Initialize S0
x = ∅ for all x and Sk

x undefined for k ≥ 1

for k = 1, 2, . . . , n do

for x = p, p+ 1, . . . , dmax do

H ← {j ∈ J : rj + p ≤ x} − Sk−1
x−p

H ′ ← {j ∈ H : dj ≥ x}

if H ′ = ∅

then Sk
x ← Sk

x−1

else

m← earliest deadline job in H ′

Sk
x ← Sk−1

x−p ⊕m

return Sk
dmax

for the largest k such that Sk
dmax

is defined

The algorithm does not specify the start times of the jobs in the schedule, only their ordering. As

explained in the introduction, the actual schedule is obtained by left-shifting the jobs in this sequence.

A counter-example. We now show that the above algorithm is not correct. Consider the instance

J = {A,B,C} given in Fig. 1. Each job j is represented by a rectangle of length equal to the

processing time (in this case p = 2), extending from its release time rj to rj + p, and by a line

segment extending from rj + p to dj . For example, rC = 1 and dC = 7.

B

C

A

5 60 1 3 42 7
Sk
x x = 0 1 2 3 4 5 6 7

k=1 - - A C C B C C

k=2 - - - - AC CB CB BC

k=3 - - - - - - - -

Figure 1: Counter-example for Carlier’s maximization algorithm. The instance is shown on the left,

and the schedules Sk
x are shown in the table on the right.

In the loop for k = 1 the algorithm constructs the schedules (A), (C), and (B). Then, for k = 2,

it computes the schedules (A,C), (C,B), (B,C), and for k = 3 it finds no schedules. The optimal

schedule is (A,B,C). The algorithm fails simply because the schedules computed for k = 2 do not

include (A,B), which is the only schedule of 2 jobs that can be extended to (A,B,C) by adding a

job at the end.

4 A Better Counter-Example

The example above still leaves open the possibility that the algorithm can be corrected with some

minor modifications. We now give another construction showing that even the general strategy from

4

[2], namely a left-to-right dynamic programming approach, as defined later in this section, will not

work. In this approach we associate with every time t a set St of partial schedules, which are idle

after t. Every set St is computed by adding more jobs to schedules in sets St′ for some earlier times

t′ < t. Further, the decisions of the algorithm at time t can only depend on the values of the release

times and deadlines that are smaller or equal t and comparisons involving deadlines that are greater

than t.

To illustrate this concept, consider the instances shown in Figure 2, where p = 4. Up to time 9

the two instances are indistinguishable. The overall optimal schedules are (A,C,D,B) for the upper

instance, and (B,D,A) for the lower instance. So a left-to-right dynamic program must store the

partial schedules (B,D) and (A,C) at time 9.

C

18140 1 3 42 12 1311105 6 7 98 15 16 17

A

D

B

91 3 42 5 760 108

A

B

C

D

11 12 13

Figure 2: An example of two instances where a left-to-right dynamic programming algorithm must

store two schedules at time t = 9.

We now amplify this construction by telescoping n instances of this kind. As a result, we get an

exponential number of partial schedules in some initial interval [0, t0] that are “indistinguishable”

from each other by any left-to-right dynamic programming algorithm. Since the optimal solutions to

those instances in [0, t0] are different, any such algorithm would have to keep track of exponentially

many partial schedules.

For every m-bit string x̄ = x0x1 . . . xm−1 we define an instance Jx̄ that consists of 4m jobs. The

instance is partitioned into m sub-instances, with sub-instance i ∈ {0, . . . ,m− 1} containing jobs

Ai, Bi, Ci, and Di. We take p, the processing time, to be a sufficiently large integer (as explained

later, any p ≥ 2m+ 3 will work). For i = 0, . . . ,m, let

ui = i(2p + 1) and vi = m(2p + 1) +
m−1∑

j=i

(p+ (p+ 1)xi).

Let t0 = um = vm. The time-scale is divided into intervals [ui, ui+1] for the left part and into intervals

[vi+1, vi] for the second part. The release times and deadlines of the jobs are given in the following

table.

5

u0 2v v0v1u1 u2

A 0
B 0

C 0
D 0

1D

1B
A 1

1C

 u = vm m

Figure 3: The instance Jx̄ defined by a bit string x̄ starting with 10.

job Ai Bi Ci Di

release time ui ui + 1 ui + p ui + p+ 1

deadline if xi = 0 vi+1 + p vi+1 + 2 ui + 2p vi+1 + 1

deadline if xi = 1 vi+1 + 2p + 1 vi+1 + 2p ui + 2p vi+1 + p

Figure 3 shows an example of an instance Jx̄, for x̄ = 10....

For any given m-bit string x̄ = x0x1 . . . xm−1, we define a schedule Rx̄ of Jx̄ as follows for all

0 ≤ i ≤ m− 1:

• If xi = 0, Bi and Di are scheduled at their release times and Ai right before its deadline (that

is, at time vi+1.) Ci is not scheduled.

• If xi = 1, Ai and Ci are scheduled at their release times and Di, Bi right before their deadlines

(that is, at times vi+1 and vi+1 + p, respectively.)

Lemma 1 Let x̄ = x0x1 . . . xm−1 be an m-bit string. Then Rx̄ is an optimal schedule for Jx̄.

Moreover, any optimal schedule S for Jx̄ contains the same job sequence as Rx̄.

Proof: By routine inspection, Rx̄ is a correct schedule. We claim that Rx̄ is optimal. Let

ξ =
∑

i xi. Then schedule Rx̄ contains 3m+ ξ jobs. In this schedule each interval [ui, ui+1] has idle

time 1, and each interval [vi+1, vi] has idle time xi. So the total idle time is m+ ξ ≤ 2m, and thus,

for p ≥ 2m+ 3, Rx̄ is an optimal schedule.

It remains to show that every optimal schedule has the same job sequence as Rx̄. For this purpose

let S̄ be an optimal schedule and let S be a schedule obtained from S̄ by left-shifting the jobs before t0

and right-shifting the jobs after t0. Formally every job scheduled before t0 either starts at its release

time or at the completion time of another job, and every job scheduled at t0 or later completes either

at its deadline or at a time where another job is started. Clearly the order in which the jobs appear

in S̄ and S is the same.

6

By induction, we show for every 0 ≤ i ≤ m− 1 that S is identical with Rx̄ in [ui, ui−1]∪ [vi+1, vi].

By induction hypothesis these intervals can contain no job from Aj, Bj , Cj ,Dj for j < i. It shows

that the only available jobs in [ui, ui−1] ∪ [vi+1, vi] are Ai, Bi, Ci,Di.

When xi = 0, the interval [vi+1, vi] must contain the job Ai, otherwise the idle time would be

more than p − 2 > 2m, which contradicts the optimality of S. Then the interval [ui, ui+1] cannot

contain Ci, since this would imply that the period [ui, ui + p] is idle. Therefore this interval must

contain the jobs Bi,Di, in that order.

When xi = 1, the intervals [ui, ui+1] and [vi+1, vi] must contain all four jobs, at least portions

of it, otherwise the idle time would be at least p > 2m. Job Ci is tight. Therefore job Ai must

be scheduled at its release time. This in turn shows that Di, Bi must be scheduled in the interval

[vi+1, vi] in that order. ✷

A left-to-right dynamic algorithm is an algorithm A with the following properties:

• It processes the jobs from left to right on the time axis, and for each time t it constructs a

collection St of partial schedules in the interval [0, t]. The schedules in St are obtained by

extending schedules from St′ , for t
′ < t, by appending new jobs at the end. The final schedule

is chosen from St for t = dmax.

• At each step t, A decides which non-expired jobs should be added to previous schedules. This

decision is based on values of the release times and deadlines which are smaller or equal t and

on pairwise comparisons between deadlines that are greater than t.

Consider now the behavior of A on instances Jx̄. Until t0, all these instances are indistinguishable

to A, since all jobs expired by time t0 are identical, and the deadline ordering for the jobs. (For each

i, the deadline ordering of Ai, Bi,Di, does not depend on whether xi = 0 or 1.) Thus at time t0, for

each x̄, A would need to store a partial schedule that consist of the first 2m jobs from Rx̄. So A

would need to keep track of exponentially many partial schedules.

It should be noted that the maximization algorithm proposed by Carlier does fall into the frame-

work described above. Although the algorithm, as shown, makes n left-to-right passes along the time

axis, each schedule Sk
t depends only on schedules Sk′

t′ for k′ ≤ k and t′ ≤ t. So the algorithm could

be equivalently reformulated to compute all these schedules in just a single pass.

One may also ask what happens if some bounded look-ahead, say ℓp, is allowed in the algorithm.

Our construction can be easily modified to show that this will also not work. To see this, simply

add ℓ “tight” jobs to the instances, with release times t0, t0 + p, . . . , t0 + (ℓ − 1)p, and deadlines

t0+ p, . . . , t0+ ℓp, respectively, and shift the right half of the instances by ℓp. The same result holds,

if the algorithm is granted the ability to verify if the schedules in St are feasible or not. The details

are left to the reader.

7

5 A Maximization Algorithm

Our algorithm is based on a technique developed by Baptiste [1] for solving the weighted version of

the problem. We show how to improve Baptiste’s O(n7) time complexity exploiting the fact that

the jobs have equal weights. Our algorithm can be thought of as a dual to the one in [1]. While

Baptiste’s algorithm computes maximum weight schedules for a certain family of sub-instances, our

algorithm considers similar sub-instances, but for given weights computes minimum makespans of

schedules with given weights. In our case, the weight of a schedule is the number of jobs, and thus

is bounded by n. This gives us a desired reduction in running time.

Theorem 1 The scheduling problem 1|rj ; pj = p|
∑

Uj can be solved in time O(n5).

Proof: Our algorithm uses dynamic programming and it runs in n phases. During the k-th phase

we take under consideration only jobs 1, 2, . . . , k. (Recall that jobs are ordered by their deadlines.)

Let Θ′ = {ri + lp : i = 1, . . . , n; l = −1, 0, . . . , n}. It is easy to see that |Θ′| = O(n2). For each

α ∈ Θ′ and each u ∈ {1 . . . k} we define:

J k
α = the set of all jobs j ∈ {1, 2, . . . , k} with rj ≥ α.

Bk
α,u = the minimal value β ∈ Θ′ such that it is possible to execute exactly u jobs from J k

α in the

interval [α+ p, β].

If a schedule in the definition of Bk
α,u does not exist, we assume that Bk

α,u = +∞. It is convenient

to extend this notation by setting Bk
α,0 = α + p for all k ∈ {0, . . . , n}, α ∈ Θ′, and Bk

α,u = +∞ for

k ∈ {0, . . . , n}, α ∈ Θ′ and u > k.

Now we show how Bk
α,u depends on the values computed during the previous phase, i.e. Bk−1

α′,u′ ,

for α′ ∈ Θ′ and u′ ∈ {0, . . . , n}. Let k > 0, α, u > 0 be fixed, and let us consider a canonical schedule

S that satisfies the conditions defining Bk
α,u:

(s1) exactly u jobs from J k
α are executed in S,

(s2) all jobs are executed in the interval [α+ p, β],

(s3) β is minimal,

where β = Bk
α,u. If k /∈ S then we have Bk

α,u = Bk−1
α,u . So from now on we will assume that k ∈ S,

which implies rk ≥ α. We will denote the number of jobs executed in S before and after k by x and

y, respectively. The starting time of job k is denoted by γ. (See Fig 4.)

Since the jobs are ordered by their deadlines, and S is canonical, we conclude that S must satisfy

the following conditions:

(s4) all the jobs executed after job k are in J k−1
γ and are executed in the interval [γ + p, β],

8

x jobs y jobs

+pα α γ γ β

k

+p

Figure 4: Notation

(s5) all the jobs executed before job k are in J k−1
α and are executed in the interval [α+ p, γ],

(s6) γ = max(rk, B
k−1
α,x),

(s7) β = Bk−1
γ,y .

Notice that, if we knew the value of x, we could easily derive γ using property (s6), and then derive β

using property (s7). As we do not know x, we have to iterate over all possible values x = 0, 1, . . . , u−1,

and choose the schedule with minimal β. Finally, we set Bk
α,u to min(Bk−1

α,u , β).

The algorithm is summarized in the pseudo-code below:

Algorithm 2

Let Θ′ be the set of values ri + pl where i ∈ {1, 2, . . . , n} and l ∈ {−1, 0, . . . , n}

for α ∈ Θ′, k ∈ {0, . . . , n}, and u ∈ {k + 1, . . . , n} do Bk
α,u ← +∞

for α ∈ Θ′ and k ∈ {0, . . . , n} do Bk
α,0 ← α+ p

for k ← 1, 2, . . . , n do

for α ∈ Θ′ and u ∈ {1, . . . , k} do

βmin ← Bk−1
α,u

if rk ≥ α then

for x← 0, 1, . . . , u− 1 do

y ← u− x− 1

γ ← max(rk, B
k−1
α,x)

if γ + p ≤ dk then

β ← Bk−1
γ,y

βmin ← min(βmin, β)

Bk
α,u ← βmin

After the completion of the algorithm, the number of jobs executed in the optimal schedule is equal

to the maximal value of u such that Bn
−p,u 6= +∞. (Recall that, by our convention, min(Θ′) = −p.)

The optimal schedule itself can also be easily derived from the values stored in the array B with the

use of standard techniques.

The overall complexity of our algorithm is O(n5), because each of O(n4) values Bk
α,u is computed

in linear time. ✷

9

References

[1] P. Baptiste. Polynomial time algorithms for minimizing the weighted number of late jobs on a

single machine with equal processing times. Journal of Scheduling, 2:245–252, 1999.

[2] J. Carlier. Problèmes d’ordonnancement à durées égales. QUESTIO, 5(4):219–228, 1981.

[3] M. Garey, D. Johnson, B. Simons, and R. Tarjan. Scheduling unit-time tasks with arbitrary

release times and deadlines. SIAM Journal on Computing, 10(2):256–269, 1981.

[4] B. Simons. A fast algorithm for single processor scheduling. In Proceedings IEEE 19th Annual

Symposium on Foundations of Computer Science (FOCS’78), pages 246–252, 1978.

10

	1 Introduction
	2 Preliminaries
	3 Carlier's Algorithms
	4 A Better Counter-Example
	5 A Maximization Algorithm

