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SUMMARY 

This paper presents a case-based heuristic selection approach for automated university course and exam 

timetabling. The method described in this paper is motivated by the goal of developing timetabling 

systems that are fundamentally more general than the current state of the art. Heuristics that worked well 

in previous similar situations are memorized in a case base and are retrieved for solving the problem in 

hand. Knowledge discovery techniques are employed in two distinct scenarios. Firstly, we model the 

problem and the problem solving situations along with specific heuristics for those problems. Secondly, 

we refine the case base and discard cases which prove to be non-useful in solving new problems. 

Experimental results are presented and analyzed. It is shown that case based reasoning can act effectively 

as an intelligent approach to learn which heuristics work well for particular timetabling situations. We 

conclude by outlining and discussing potential research issues in this critical area of knowledge discovery 

for different difficult timetabling problems. 
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1. INTRODUCTION 

1.1 Case based reasoning 

Case Based Reasoning (CBR) is a knowledge-based technique that solves new problems by 

employing previous experiences. It is described by Leake [44] as follows: 

“In CBR, new solutions are generated not by chaining, but by retrieving the most 

relevant cases from memory and adapting them to fit new situations.” 

In CBR, previous problems and their solutions are modelled as cases in a certain way (such as a list 

of feature-value pairs). They are defined by Kolodner and Leake [42] as follows: 

“A case is a contextualized piece of knowledge representing an experience that 

teaches a lesson fundamental to achieving the goals of the reasoner.” 

To build a CBR system, previous problems and their good solutions (the source cases) are collected 

and stored in a case base. The retrieval process compares the source cases with the new case in 

hand (the problem to be solved) by using a similarity measure (usually defined by a formula). The 

overall idea is to solve a new problem by reusing the good solutions of the source case(s) which is 

the most similar to the new problem. 

CBR has been applied successfully in a variety of research areas including diagnosis, legal 

advice, health and education (e.g. [46]). Such examples represent situations which are naturally 

easy to be modelled as cases using a list of features and which can be compared using a nearest 

neighbour approach as a similarity measure. Recent CBR research has been carried out with some 

success on more complex problem domains such as scheduling (e.g. [3, 8, 9, 14, 15, 16, 17, 32]). 

By remembering and reusing experience from previous similar problem solving, CBR is capable of 

providing reasonably good solutions within a limited amount of time, which is one of the most 

important requirements in dynamic scheduling. This has led to the situation where most 

applications studied in CBR for scheduling have been in the area of dynamic/reactive scheduling 

[33, 48, 56]. Other applications in scheduling, employing CBR, include travelling salesman 
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problems and single machine scheduling [32], nurse rostering [3, 57] and timetabling problems [14, 

15, 16]. Most of this research is largely concerned with attempting to solve scheduling problems 

directly. However, the work described in this paper is concerned with choosing the right heuristic 

to be employed in an attempt to raise the level of generality at which timetabling systems can 

operate. 

1.2 Timetabling problems 

Timetabling problems arise in many real-world circumstances (e.g. nurse rostering [6], sports 

timetabling [35] and university timetabling problems [26, 27, 55]). A general timetabling 

problem includes scheduling a certain number of events (exams, courses, meetings, etc) into a 

limited number of time periods, while satisfying as many of the required constraints as possible. 

Constraints are usually grouped in the following way: 

•  HARD CONSTRAINTS cannot be violated under any circumstances. For example, two 

events with common resources (such as students) cannot be assigned simultaneously. A 

solution with no violations of hard constraints is often called a feasible solution. 

•  SOFT CONSTRAINTS are desirable but not essential. Examples are that two events 

should not be scheduled consecutively, or that an event should be scheduled into a 

specific room if possible. 

Timetabling problems have been very well studied for more than 4 decades (e.g. see [12, 21, 49, 

55]). Approaches include graph heuristics (see [7]), integer linear programming (e.g. [25]) and 

constraint logic programming (e.g. [29]) Recently a large amount of successful research has 

been carried out which has investigated meta-heuristic approaches for a variety of timetabling 

problems (e.g. see [22, 4, 10, 5, 23]). These include tabu search (e.g. [31, 39]), simulated 

annealing (e.g. [34]) and evolutionary algorithms (e.g. [19, 24, 36, 53]). Extensive work has 

also been carried out to study and compare different heuristics on specific timetabling problems 

(e.g. [30, 34]). In addition, fuzzy methodologies have recently been explored for both course and 
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exam timetabling (see ([1, 2, 50]). The high level of recent research activity serves as a good 

starting point for employing knowledge-based techniques for timetabling problems [38, 43] as 

more and more experiences are obtained and collected. This also provided us with the motivation 

for exploring CBR methodologies for directly solving university timetabling problems (e.g. [14, 

15, 16]) as a large amount of data and problem solving experiences are available to be studied. 

Note that in this paper we are not attempting to directly solve timetabling problems. Instead we are 

concerned with underpinning the development of general timetabling systems by investigating 

CBR as a timetabling heuristic selector. 

1.3 Case-based heuristic selection for timetabling problems 

In artificial intelligence and operational research, problems are often solved by employing a 

variety of heuristics to guide the problem solving towards high quality solutions in promising 

regions of the search space. However, experience/knowledge for problem solving that has been 

gained by employing different heuristics is usually discarded afterwards. This paper investigates 

a case based heuristic selection approach that collects and reuses previous experience of the 

heuristics that were employed successfully within particular situations onto current ‘similar’ 

situations in timetabling. The aim is to develop intelligent systems that can ‘guess’ at which 

heuristic will work well on which problem, and thus is capable of dealing with any problem 

efficiently. Success in this area would underpin the development of general systems that do not 

need to be tailored to the particular problem in hand. Such a system would be significantly cheaper 

to implement than current ‘problem specific’ systems because they could be applied to a far wider 

range of problems. The motivation behind CBR is that humans often solve new problems by re-

employing knowledge that has been collected from previous experience. 

Most of the timetabling research approaches employ specifically tailored heuristics which 

are operated directly on the problem (e.g. see [22, 4, 10, 5, 23]). However, it is often the case 

that a specific heuristic that worked well on a particular type of problem may not work well on 

other problems. In our case-based heuristic selection approach, timetabling problems are solved 
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by adaptively employing the best heuristics predicted for particular situations by utilising past 

experience. The idea is similar to that of a hyper-heuristic which refers to a “heuristic to choose 

heuristics” (e.g. see [11, 52]). Some recent research on hyper-heuristics for timetabling has been 

undertaken (e.g. [8, 13, 18, 40, 41, 47, 54]) in an attempt to raise the level of generality of 

timetabling systems. 

In our proposed case based heuristic selection approach, a list of feature-value pairs is 

employed to model the problems into cases. A knowledge discovery process on the features to 

represent the cases and on the case base in the system is presented in Section 2. We are 

concerned with both university course timetabling and university exam timetabling, which are 

usually very different problems with different possible constraints and problem characteristics. 

In total, we collected four different sets of potential features, simple features, and a combination 

of simple and complex features for both the course and exam timetabling problems. We study 

them separately in two different heuristic prediction approaches, but within a unified case based 

heuristic selection framework. They are presented in Section 3, for course timetabling, and 

Section 4, for exam timetabling, respectively. Finally Section 5 presents some discussions on 

research issues concerning data preparation and source case selection on this case based 

heuristic selection approach together with some concluding comments and future work. 

 

2. KNOWLEDGE DISCOVERY IN CASE-BASED HEURISTIC SELECTION 

The basic assumption behind CBR is that “similar problems will have similar solutions” [44]. 

The retrieval is a similarity-driven process that finds the solution by assessing the similarities 

between source cases and new cases. The key issue in tackling the development of a case based 

heuristic selector for timetabling is how to model the knowledge of which specific heuristics 

work well for particular problems and problem solving situations. A successful method should 

allow us to find the most similar source cases that give good predictions of the best heuristics 

for the new cases. This may be obtained in two ways: 
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1) Proper features need to be employed to model the problems into cases so that they can be 

compared to make good predictions of heuristics. That is, only those features that can 

affect and contribute to good suggestions of heuristics are needed to be used to 

represent cases; 

2) Source cases need to be selected carefully so that the ‘right’ one can be retrieved for 

suggesting the appropriate heuristic for a specific range of new cases. 

Our work studies a two-stage knowledge discovery process on the case representation and the 

source cases selection. Knowledge discovery is a process of “identifying valid, novel, potentially 

useful, and ultimately understandable patterns in data” [37]. It is usually carried out within ill-

structured domains, which is exactly what timetabling problems are. In our approach, 

knowledge discovery techniques and strategies are employed to obtain the knowledge of 

modeling problems, comparing cases to choose heuristics and refining the case base. CBR 

serves as the base that stores the discovered knowledge and provides good heuristics for the 

problem in hand. 

Particular features of the CBR system that we have developed can be itemised as follows: 

•  Cases (either overall problems or partial situations during problem solving) are represented 

by a list of feature-value pairs. Knowledge discovery is carried out to search for the feature 

list to be employed in the system. 

•  The case base is a database of problems with the best two heuristics from the heuristic sets 

(presented in Section 3 and Section 4, respectively) for each problem. Knowledge 

discovery is carried out to refine the source cases that should be retained in the case base. 

•  Training cases are a set of cases whose best heuristics are obtained beforehand. They are 

used in the knowledge discovery process to carry out the search for features and selection 

of source cases. 
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•  The similarity measure presented in formula (a) employs a nearest-neighbour approach that 

calculates the weighted sum of differences between each pair of features within the two 

cases being compared. 

 1)(1),(
1

2 +−×= ∑
=

j

i
iiits ftfswCCS    (a) 

The notations in formula (a) are described as follows: 

 j is the number of features employed in the case representation 

 wi is the weight of the ith feature indicating its relevance to the comparison 

 fsi, fti are the values of the ith feature in the source case Cs and the new case Ct in hand, 

respectively 

The higher the similarity measure S(Cs, Ct) is, the more similar Cs and Ct are. The source 

cases with the highest similarity are retrieved and their best heuristics are suggested for 

the new case. 

•  Retrieval uses the similarity measure to compare each source case and the new case in 

hand. During the knowledge discovery process, a set of training cases is used to 

discover the feature list and source cases. If the best heuristic of the training case 

obtained beforehand is within one of the best two heuristics of the retrieved source case, 

the retrieval will be seen as a successful retrieval. This criterion is set this way as we 

found that sometimes the qualities of the timetables produced by different heuristics are 

very close or even equal to each other. To have the best heuristic stored while still 

having some randomness for exploitation, we choose to store the best two heuristics for 

each source case. 

•  System performance is evaluated during the knowledge discovery process to guide the 

training on the features selected and the source cases retained in the system. It is defined 

as the percentage of successful retrievals for all of the training cases. 
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•  In total, we studied 5 heuristics in our case-based heuristic selection approach for course 

and exam timetabling problems. They are described below: 

1. h1 = Largest degree first – All of the events that are not yet scheduled are scheduled 

one by one in the descending order of the number of constraints the event has with 

the others. 

2. h2 = Largest degree with tournament selection – This heuristic tries to schedule the 

most constrained events first but still has an element of randomness [20]. Every time 

the most constrained event is selected from a subset (we use 30%) of the events that 

are not yet scheduled. 

3. h3 = Colour degree – Events that are not yet scheduled are ordered by the number of 

constraints they have with those that are already scheduled in the timetable. 

4. h4 = Saturation degree – Events that are not yet scheduled are ordered by the number 

of periods available for them in the timetable. 

5. h5 = Hill climbing – The initial timetable is randomly constructed and improved by 

this method. 

2.1 The first stage of knowledge discovery for case representation 

A schematic diagram of the knowledge discovery process for case representation is presented in 

Figure 1. Firstly an initial feature list with the same weights is randomly chosen. Search methods 

(such as tabu search and hill climbing) are employed to search for the feature vector that provides 

the best system performance (highest number of successful retrievals for all the training cases). For 

each feature list selected, retrieval compares the best heuristics obtained beforehand for all of the 

training cases with those best heuristics for the source cases retrieved for them. The system 

performance upon the feature list selected will be fed back for the next step of knowledge discovery 

in case representation. 
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Figure 1 Schematic diagram of knowledge discovery process on features and their weights 

 

In the searching process to discover the features and their weights, the search space includes all of 

the possible enumeration of features that describe the situations represented by timetabling 

problems. Possible moves include changing one of the features or their weights, removing 

irrelevant features and introducing new features. The fitness function is the system performance 

(percentage of successful retrievals on all of the training cases) obtained. Our current work aims to 

investigate the manipulation of ‘knowledge’ of heuristics for solving timetabling problems with the 

goal of raising the generality of the timetabling system. We thus employed tabu search and hill 

climbing which work relatively fast in obtaining reasonably good results. In tabu search, the length 

of the tabu list is set as 9 from a series of tests and the value recommended from the literature [51]. 

This process is carried out iteratively until the stopping condition is met (here a pre-set time for 

searching). The feature vector that gives the highest system performance will be employed in the 

next stage of knowledge discovery on the case base. 

2.2 The second stage of knowledge discovery on the case base 

Source case selection is one of the key elements that contribute to the good performance of a CBR 

system. Irrelevant source cases may contain wrong or redundant information, which confuses the 

retrieval process and decreases the system performance. Knowledge discovery on the case base 

uses the “Leave-One-Out” strategy that removes one source case at a time from the case base and 

checks its effect on the system performance. If the system performance is decreased (the number of 

successful retrievals for all of the training cases is decreased), the removed source case will then be 
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added back as it may contribute to a higher system performance on providing the best heuristics for 

certain types of timetabling cases. Otherwise, it will be removed permanently as either it contains 

wrong information in terms of predicting the best heuristics, or it is redundant in the system and 

thus is harmful to system performance. The aim is to obtain a case base of only the relevant and 

representative source cases. 

 

3. CASE-BASED HEURISTIC SELECTION FOR OVERALL COURSE 

TIMETABLING PROBLEMS 

We firstly investigate the case-based heuristic selection approach to predict the best heuristic for 

solving course timetabling problems. Two sets of features are collected to represent the 

problems and are employed within the knowledge discovery process. Fcs includes 10 simple 

features (presented in Table 1) and Fcc includes combinations of each pair of features in Fcs. Hc 

is a set which includes a selection of good timetabling heuristics. The three sets are listed below: 

•  Hc = {h1, h2, h3, h4, h5} 

•  Fcs = {f0, f1, f2, f3, f4, f5, f6, f7, f8, f9} 

•  Fcc = {fi, fm/fn}, fi, fm, fn ∈  Fcs, i, m, n = 0, … 9, m ≠ n 

To guarantee the complete coverage of the heuristics in our set, all of the heuristics need to have at 

least one instance in the case base for knowledge discovery. We build up two case bases which 

consist of a different number of source cases with different best heuristics. They are: 

•  CB1 – a database of 45 source cases with 10, 15, … 50 courses (9 different sizes) in the 

problem. For each size there is a set of 5 cases, each of which have one of the heuristics in 

Hc as its best heuristic. The second best heuristic of each case may be any of the other 

heuristics from Hc. 
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•  CB2 – a database of 90 source cases with 9 different sizes, each has a set of 10 cases. Each 

two of the 10 cases have one of the heuristics from Hc as their best heuristic. Compared 

with CB1 it is more likely that more knowledge may be discovered from CB2 for heuristic 

prediction. 

 

Table 1 Possible features of course timetabling problems 

feature ID description 

f0 number of courses 

f1 number of time periods 

f2 number of constraints 

f3 number of rooms 

f4 number of hard constraints 

f5 number of soft constraints 

f6 number of courses that should be scheduled to a fixed time period 

f7 number of courses that should not be scheduled to a fixed time period 

f8 number of courses that should be scheduled to consecutive time periods 

f9 number of courses that should not be scheduled to consecutive time periods 

 

We try to obtain the best feature set in the knowledge discovery process by comparing the 

heuristics that generate the best quality timetables with the least number of violations on all 

types of soft constraints. In the case based heuristic selection approach, our main concern is to 

compare and study the heuristics that generate the best schedule for a range of problems. In this 

phase of the research, for comparison purposes we start with feasible solutions where there is no 

violation of hard constraints during the training phase on the system. When an infeasible 

solution is generated, we either run the heuristics with random elements (h2 and h5) again to 

obtain a feasible solution, or simply discard the data tested. 

3.1 Knowledge discovery on features and weights 

We employ the relatively simple and fast search methods of tabu search and hill climbing, to search 

for the features from Fcc for case representation and to study the characteristics of different search 
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methods within the knowledge discovery process presented in Figure 1. The investigation of other 

search methods within the knowledge discovery process for feature selection will be a future 

research issue. 

In total 100 training cases are used to carry out the knowledge discovery on features and 

their weight on the system with CB1 as the case base. The best system performance (the highest 

number of successful retrievals on all of the training cases) on employing different numbers of 

features from feature set Fcc is presented in Figure 2. For each number of features, 10 runs of the 

system are carried out and the average system performance is obtained and presented. 
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Figure 2 System performance on different numbers of features from Fcc by tabu search and hill climbing 

 

We can see that (not surprisingly), in general, tabu search operates better than hill climbing. Both 

tabu search and hill climbing show that the system performs the best with 5 features in the case 

representation. With the 5 features obtained by tabu search, around 77 out of 100 training cases 

obtain the correct best heuristics from the retrieved source cases. We can also observe that the 

system performance is decreased when more than 5 features are employed in the case 

representation. We studied the similarities between the source cases and the training cases upon 

different numbers of features. It is observed that when there are more features being assessed in the 
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similarity measure, the similarities between many source cases and the training case are too close to 

each other. The similarity measure thus may not distinguish the most similar source cases for 

heuristic prediction as they may have just a slightly higher similarity value than the others and thus 

may not be the ‘right’ one to be retrieved. The retrieval is thus confused with these less-relevant 

features that make the similarities between cases too close. In general, employing more less-

relevant features than needed decreases the system performance. 

We also found that with the features chosen from a feature set (Fcc) that contains a higher 

number of complex features generated from simple features, the best system performance is always 

obtained when their weights are the same. This means that, moves that adjust the weights of the 

features in both tabu search and hill climbing do not contribute to better system performance. We 

thus test the knowledge discovery on the system with the features chosen from another feature set 

Fcs (presented above) which contains a smaller number of 10 simple features. The weights of the 

features are studied to detect the effect of different feature sets. Table 2 presents the simple features 

and their weights discovered when the highest system performance is obtained. The third and 

fourth row present the weights in brackets for the features presented in the second row discovered 

by tabu search and hill climbing, respectively. 

 

Table 2 Weights discovered for features from Fcs by tabu search and hill climbing 

no. of features 3 5 7 9 

features {f1, f4, f6} {f3, f4, f7, f8, f9} {f0, f1, f3, f4, f5, f6, f7, f8} {f0, f1, f3, f4, f5, f6, f7, f8, f9} 

weights by tabu search {7, 8, 9} {1, 1, 1, 1, 1} {6, 10, 2, 5, 1, 2, 7} {1, 9, 4, 3, 7, 5, 9, 4, 3} 

weights by hill climbing {6, 7, 7} {1, 1, 1, 1, 1} {1, 2, 1, 3, 3, 7, 1} {2, 2, 3, 3, 4, 5, 9, 1, 9} 

 

We can see that with Fcs, where there are a lower number of simple features to choose from for the 

case representation, the weights for features discovered by tabu search and hill climbing are 

different except when 5 features are employed. This may be because, with simple features, the 
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similarity measure cannot get enough information to compare the cases, and thus the weights of 

these features need to be adjusted to obtain better assessments between cases during retrievals. 

With more complex features from Fcc, the similarity measure may have enough information for 

comparison and thus adjusting the weights of features does not make much contribution to better 

system performance. Another explanation may be that different complex features that are generated 

from simple features may contain the same simple features more than once in the similarity 

measure. For example, fi/fj and fi/fk in the feature list contribute to the weight of 2 for fi in the 

similarity measure. So the similarity measure may in some way be affected by the importance of 

certain features.  

The feature list that gives the highest system performance in the first stage will be employed 

in the CBR system for the second stage of knowledge discovery on the case base. It is shown 

below: 

F = {f2/f1, f9/f1, f2/f7, f1/f0, f2} 

3.2 Knowledge discovery on the case base 

Knowledge discovery on the case base is carried out on the two case bases CB1 and CB2 by using 

the “Leave-One-Out” strategy. The system performance before and after the “Leave-One-Out” 

strategy is presented in Table 3. The number of cases left in the case bases and the corresponding 

system performance after the “Leave-One-Out” strategy is presented in the column of refined CB1 

and refined CB2. We can see that the sizes of the refined CB1 and refined CB2 are vastly reduced 

but a higher system performance is obtained compared with that of case bases before the “Leave-

One-Out” strategy (presented in the second column and the third column). This is obtained by 

retaining only the more relevant cases in the case base. The refined CB2 provides a better system 

performance than the refined CB1, as more source cases are trained in CB2 and thus more 

knowledge is discovered for solving more types of problems. 
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Table 3 System performance before and after the knowledge discovery on case bases 

case base CB1 CB2 refined CB1 refined CB2 

no. of source cases 45 90 6 8 

system performance 40% 56% 60% 66% 

 

This section presented an approach using CBR for predicting the best heuristic for course 

timetabling problems. Experimental results show that the feature selection is more important than 

feature weights in the retrieval process to compare the cases if the features are good enough to give 

necessary information. This gives us an indication that the current features we are using to select 

from are reasonably good for case representation in timetabling problems. Employing more less-

relevant features in case representation confuses the retrieval and thus decreases the system 

performance. Source case selection, which removes the redundant cases and retains only the 

representative cases, is also a key issue in this approach. 

Knowledge discovery techniques in this approach employ relatively simple methods and 

just a few training processes lead to satisfying results. By providing the best or reasonably good 

heuristics without trying to tailor particular heuristics for specific course timetabling problems, 

this heuristic selection framework indicates the advantages of employing knowledge discovery 

techniques to develop a much more flexible approach for general timetabling problems. 

 

4. CASE-BASED HEURISTIC SELECTION DURING PROBLEM SOLVING 

FOR EXAM TIMETABLING PROBLEMS 

We also investigated the case-based heuristic selection approach to suggest the heuristics to be 

employed for constructing the exam timetables. The aim is that, by employing specific good 

heuristics in particular situations adaptively we can generate high quality schedules. Once again, 

we are motivated by the goal of developing more general timetabling systems. Cater and Lapore 

in 1996 [26] said (of examination timetabling), “there have been hundreds of research papers 

on the subject and probably thousands of computer programs written (mostly by amateurs at 
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each of the schools) to ‘solve’ their own particular variation on the theme”. Our goal is to move 

away from this tendency to develop methods to solve one particular instance. 

Two sets of possible features are collected. They are Fes that describes the characteristics 

of the problems and partial solutions (presented in Table 4), and Fec that includes the 

combinations of features from Fes. They are listed below as: 

•  Fes = {f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11} 

•  Fec = {fi, fm/fn}, fi, fm, fn, ∈  Fes, i, m, n = 0, … 11, m ≠ n 

 

Table 4 Possible features of exam timetabling problems and partial solutions during problem solving 

feature ID description 

f0 number of exams 

f1 number of time periods 

f2 number of hard constraints 

f3 number of rooms 

f4 density of the conflict matrix 

f5 number of exams that are already scheduled in the partial solution 

f6 number of times that exams with common students are scheduled in consecutive time 

periods in the partial solution 

f7 number of times that exams with common students are scheduled one time periods apart in 

the partial solution 

f8 penalty of the partial solution 

f9 cost of scheduling the next exam into the partial solution 

f10 number of the most constrained exams 

f11 the number of constraints with the most constrained exams 

 

4.1 The overall case based reasoning system 

The CBR system developed for exam timetabling problems can be characterised by the 

following features: 
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•  Possible heuristics investigated in the case-based heuristic selection approach include 4 

well-studied sequential and well-established sequential methods for solving exam 

timetabling problems. They order the exams to be scheduled one by one into the draft 

timetable. The heuristic set He containing these 4 heuristics is presented below: 

He = {h1, h2, h3, h4} 

•  Source cases are different possible partial solutions obtained during the previous problem 

solving using sequential heuristics from He. For each of the partial solutions, the two 

heuristics that make the least violations in the next step schedule are stored and are the 

suggested “good” heuristics to be employed next. 

•  The penalty function is proposed in the same way as the fitness function that was 

employed in [28], where cost is given for exams that are scheduled too close to each 

other, aiming at spreading the exams out in the timetables. Note that, the lower the 

penalty of the timetable, the better is the quality of that timetable. The penalty function 

for the timetable t is presented in formula (b) to evaluate the quality of solutions 

produced by the heuristics. 

P(t) = ∑
= 5,4,3,2,1s

sw  × Ss     (b) 

The notations in formula (b) are described as follows: 

Ss is the number of situations where students have exams scheduled s time periods apart; 

ws are the weights that reflect the importance of violations of different soft constraints, 

i.e. the number of times that exams are scheduled s time periods apart. It is set as w1 = 

16, w2 = 8, w3 = 4, w2 = 2, w5 = 1. 

For the purpose of comparing the quality of solutions produced by different heuristics, we 

do not consider the infeasible solutions with violations of hard constraints during the 

training stage of the system. 
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Figure 3 represents an overview of the case based heuristic approach for exam timetabling 

problems. To solve a problem that has been input into the system, in each step (where one exam 

is scheduled to the draft partial timetable) the heuristic selector chooses the specific sequential 

heuristics from the case base to construct the partial solution obtained at that time. In the 

retrieval, the heuristic selector uses the similarity measure presented in formula (a) to compare 

the current partial solution being constructed with all of the source cases, which are partial 

solutions obtained during the solving of previous problems. The best heuristic stored with the 

most similar case is suggested and employed in the next step of the construction of the partial 

solution. This process is carried out step by step and is terminated when the stopping condition 

is met, namely when all of the exams are scheduled. 

 

 

 

 

Figure 3 The case based heuristic selection approach 

 

4.2 Data preparation for knowledge discovery 

In this stage of system development, we want to evaluate the system performance on as many 

timetabling problems as possible to give a systematic analysis of this heuristic selection 

framework. There are just a few real-world benchmark timetabling problems that are widely 

available to the scientific community (see [28]). For this study, we require a large number of 

timetabling problems so we generated a large number of timetabling problems with as many 

different feature values as possible. Once we have a deeper understanding of the system 

performance on a variety of problems with good coverage of any possible features, more real-

world timetabling data can be added into the system for further evaluation. These data sets are 
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publicly available to the scientific community at 

http://www.cs.nott.ac.uk/~rxq/publications.htm. 

All exam timetabling problems are generated randomly by constructing a conflict matrix 

that defines the hard constraints between exams. Each element marked with ‘1’ in the matrix 

denotes a conflict between the exams that are indicated in the corresponding row and column. 

The density (which is the number of ‘1’s to the number of overall elements in the matrix) takes 

values from 0.65 to 0.85. The size of the problems ranges from 100 to 300 exams. 

To carry out knowledge discovery, a case base is built up which consists of a set of cases 

with their best heuristics. All of the heuristics being studied are implemented to construct 

solutions step by step for the set of exam timetabling problems generated using the conflict 

matrix as an input. At each step (to schedule one exam) during the problem solving, the 

heuristic that makes the least number of violations of constraints on the partial solutions at that 

time is seen as the best heuristic for the corresponding partial solution. These particular partial 

solutions, modeled by a list of features, and their best heuristics are then stored as source cases. 

If on some partial solutions all or most of the heuristics perform the same, these cases will then 

not be stored in the case base as they are not good representatives for a class of specific problem 

solving situations. 

Figure 4 presents an example of the heuristics that work the best during the solution 

process for an exam timetabling problem as a source case within the data preparation process. 

We found that, to construct the timetable, the best heuristic within a number of steps (usually to 

schedule more than 10 exams) is always the same. After a number of steps, the best heuristics 

chosen for the source cases are switched from one to another. To keep the case base within a 

certain small size, we only sample partial solutions (after each 10 steps of the timetable 

construction) as the source cases. We also store those cases that are near to the switching points 

of the heuristics (indicated by S in Figure 4). This is done to help the knowledge discovery 

process to detect the most important features in the case representation by distinguishing the key 
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information of the heuristics chosen within these cases (e.g. what differences in feature values 

generate which differences in choices of heuristic). By considering all of the heuristics on a set 

of timetabling problems, we obtained 95 potential source cases in total to build the case base. 

A set of training cases (with their best heuristics) is also obtained using the same process 

as that used for producing the source cases. For each partial solution generated during the 

solution process for this set of training cases, the best heuristic that makes the least violations of 

the constraints is obtained. This heuristic will be the one that the heuristic selector should 

suggest during the knowledge discovery process. In total, 95 training cases are produced and 

used in the knowledge discovery process on our system. 
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Figure 4 Best heuristics during the solution process of a source case 

 

4.3 Knowledge discovery for the heuristic selector 

Tabu search and hill climbing are employed (as they were for course timetabling) to discover 

the feature list that models the partial solutions to give the highest system performance on all of 

the training cases. The searching is reinforced to find a feature list within the system so that the 

best heuristics can be selected to make the least violations in the next steps of the solution 

construction. 
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For each of the training cases, the heuristic selector finds the most similar source case, 

whose best heuristic is then checked to see if it is a successful retrieval upon the particular 

feature list. All of the training cases are input into the system to check the suggested heuristics 

that the heuristic selector makes upon the feature list used. The feature list that gives the highest 

system performance on all of the training cases will be used in the heuristic selector to solve 

problems by employing the heuristics suggested during the problem solving. After the 

knowledge discovery on feature lists, the case base is then refined by using the “Leave-One-

Out” strategy to remove redundant source cases. 

Another set of 195 testing cases, which are different from the training cases used for the 

knowledge discovery process, is generated to test the heuristic selector with the feature lists 

discovered by the knowledge discovery process presented above. The lengths of the feature 

lists, the number of cases left in the refined case bases, the feature list discovered and the system 

performance on both the training cases and testing cases (percentage of successful retrievals on 

all of the training cases and testing cases) are presented in Table 5. 

From the system performance on both the training cases and testing cases (presented in 

the second and fourth column) we can obtain similar observations to those that were drawn from 

Section 3. The system performs the best (almost 9 out of 10 testing cases obtain the expected 

heuristics) with a relatively smaller number of features in the heuristic selector (namely from 3 

to 7). In order to get good system performance, less relevant features should not be employed in 

the case representation. 

Compared with the system performance for course timetabling problems (which is 

presented in Section 3), we can observe that higher system performance is obtained here (on 

both the training cases and testing cases). This is due to the fact that the exam timetabling 

problems studied in the system have fewer types of constraints than the course timetabling 

problems presented in Section 3. Knowledge discovery on the problems with a smaller number 

of possible characteristics is more likely to obtain higher system performance. Also we can see 



Journal of Scheduling, 9: 99-113, 2006. 

 22 

that a relatively lower number of source cases are removed from the case base for exam 

timetabling problems (presented in the third column in Table 5) compared with that of course 

timetabling. The reason for this may be that there is a higher number of possible problem 

solving situations (for exam timetabling) than the possible problem characteristics (for course 

timetabling). And thus more source cases need to be retained in the approach presented in 

Figure 3 to provide the knowledge of heuristics which the new problem situations require. 

 

Table 5 System performance on different feature lists for training and testing cases 

no. of 

features 

system 

performance on 

training cases 

feature list 

no. of cases in the 

refined case base 

(originally 95) 

system 

performance on 

testing cases 

2 97% f3/f2, f9 95 87% 

3 100% f1, f1/f2, f2/f9 93 91% 

4 100% f3/f0, f1/f9, f3/f2, f4/f7 93 91% 

5 100% f6/f1, f9/f0, f9/f6, f1, f2/f8 93 91% 

6 92% f4/f7, f5, f3/f7, f9, f3/f0, f4/f9 89 89% 

7 100% f6/f2, f1/f9, f2/f6, f1/f6, f6/f9, 

f1/f9, f2 

93 89% 

8 87% f1/f0, f2/f9, f2/f1, f3/f9, f9/f8, 

f1/f2, f9/f0, f4/f7 

95 86% 

9 87% f9/f2, f6, f1/f8, f6/f0, f8/f7, f7, 

f1/f0, f2/f0, f7/f6 

95 85% 

10 85% f9/f7, f6, f9, f2/f7, f2, f1/f2, 

f9/f6, f8/f1, f5/f7, f6/f2 

93 84% 

 

4.4 Case-based heuristic selection 

To test the case based heuristic selection approach, another 100 test exam timetabling problems 

with different sizes (100 to 300 exams) is generated by using conflict matrices with densities of 

values from 0.65 to 0.85. These problems are solved using the approach presented in Figure 3, 

employing the feature lists discovered on the refined case base. Due to the observation that the 
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heuristics switch from one to another after a certain number of scheduling steps, we set each 

step as scheduling 10 exams in the problem solving stage within the case-based heuristic 

selection approach presented in Figure 3. This may save a lot of retrieval time during the 

solution process while still ensuring that high quality solutions are obtained by employing the 

heuristics suggested from the case base. The average penalties of the solutions obtained by 

individual sequential heuristics, and by the case based heuristic selection with feature lists of 

different lengths discovered are presented in Table 6 and Table 7, respectively. 

 

Table 6 Average penalties of solutions by individual sequential heuristics 

sequential 

heuristics 

color 

degree 

saturation 

degree 

largest 

degree 

largest degree with 

tournament selection 

penalty of solutions 328 202 245 252 

 

Table 7 Average penalties of solutions by using case based heuristic selection with different features 

no. of features 2 3 4 5 6 7 8 9 10 

penalty of solutions 182 199 193 195 196 203 197 200 203 

 

The results shown in Table 7 indicate that, our approach provides solutions that have better 

average penalties than those obtained by using only the individual sequential heuristics shown 

in Table 6. Just in two cases, namely with 7 and 10 features, slightly worse solutions are 

obtained by the case based heuristic selection approach comparing with the best solutions 

obtained by individual heuristics. By comparing the results with those presented in Table 5, we 

can see that roughly the higher the system performance during the knowledge discovery, the 

better the case based heuristic selection approach performs in the problem solving stage. By 

choosing good heuristics adaptively during the problem solving, better solutions can be obtained 

compared with those generated by only using individual heuristics. 
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In this section, a case based heuristic selection approach for exam timetabling problem 

solving has been developed and tested. The knowledge of selecting the best heuristics within 

different problem solving situations is stored within the source cases, which are refined to 

provide a guide during the problem solving to construct higher quality timetables. It is shown 

that, by employing this approach, better or competitive results are produced compared with the 

best results obtained from a set of specific heuristics on a range of exam timetabling problems. 

This paper is aiming at investigating the learning ability of selecting different heuristics 

within a general problem solving framework for a variety of possible timetabling problems. The 

results obtained showed that it is capable of solving various problems by adaptively employing 

appropriate heuristics during the solution construction and thus naturally has higher generality 

than other specifically proposed approaches/heuristics for particular problems in the timetabling 

domain. 

5. DISCUSSIONS AND FUTURE WORK 

In this paper we investigated a case based heuristic selection approach within a general problem 

solving framework, aiming at producing reasonably good solutions quickly for a variety of 

timetabling problems by reusing previous experience of good heuristics in similar problem solving 

situations. We studied a knowledge discovery approach for case-based heuristic selection to predict 

the best heuristics for course timetabling problems, and the best sequential heuristics during the 

solution process for exam timetabling problems. The observations obtained from the experimental 

results showed that the knowledge of heuristics discovered helps in solving problems by using the 

best heuristics and guides the problem solving process to construct higher quality solutions. The 

heuristic selector in the approach for exam timetabling during the problem solving has the 

ability to use heuristics adaptively according to the problem solving situations, which is more 

flexible for solving a wider range of problems. Our aim is to develop a problem solving 

approach which can learn from the heuristics for problem solving and which is, thus much more 

flexible in solving a range of timetabling problems, and which can provide competitive results 
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over a range of specifically tailored heuristics for particular problems. Note that we are not 

aiming at competing with the best results reported in the literature by bespoke special purpose 

specific approaches. Our goal is to generate competitive results across a wider range of 

problems. We are attempting to underpin the next generation of timetabling systems which are 

more general and not specific to certain problems or problem instances. 

The knowledge discovery process employs relatively simple techniques to carry out the 

training on case representation and the case base. Currently we are using tabu search and hill 

climbing to study the performance of the knowledge discovery within the case based heuristic 

selection framework. More other possible meta-heuristics, of course, can be investigated in a 

further investigation within this general framework. Experimental results showed that feature 

selection is a very important task and is more important than feature weights if the features are 

good enough to provide necessary information in the retrieval. More relevant features will be 

studied for a more precise case representation to improve the system performance. As irrelevant 

features in the case representation confuse the retrieval, refining the features selected is also an 

important task. Source case selection is another important issue in this case base heuristic 

selection approach. Knowledge and problem solving experiences in timetabling need to be 

continuously discovered and stored. More comprehensive data analysis will be carried out and 

employed in our approach. Our current work investigated knowledge discovery on a number of 

artificially produced problems to study the performance of the system on as many problem 

situations as possible. Higher performance may be obtained by studying a larger number of 

cases for the case base. After we have obtained a deeper understanding of the system and 

approach on the data structure of a variety of types of problems, collection and training on a 

higher number of real-world data will be carried out to obtain a wider range of knowledge in the 

timetabling domain. 

In the knowledge discovery process for exam timetabling problems, we found that a large 

amount of time is needed on the data preparation and analysis within the case based heuristic 
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selection approach. The potential source cases greatly affect the knowledge discovery process and 

problem solving, and thus should be carefully selected. Firstly, all of the cases need to be checked 

to remove duplication. Cases that are similar (with close values for each feature) and have the same 

best heuristics are also removed. Secondly, we found that during certain steps of solution 

construction, it is often the same best heuristic that is selected for the next step. In the current 

system, not all of the partial solutions during the data preparation are stored in the case base. 

Instead, we sample the cases after every 10 steps of scheduling to reduce the redundancy in the case 

base. Also, only those cases that are near to the point of switch between heuristics are chosen as the 

potential source cases for the knowledge discovery process. 

As we know, knowledge discovery is a ‘non-trivial process’ and it takes significant time to 

process the raw data collected. Data analysis, which is a very important step in knowledge 

discovery, aims to obtain and organise the knowledge to allow us to select appropriate heuristics. 

Burke et al [9] investigated similarity measures for exam timetabling by running simulated 

annealing on a set of benchmark exam timetabling problems with different similarities and studied 

the data in detail. It is shown that after removing certain redundancies (e.g. students with just one 

enrolment, which do not affect the end result in terms of hard constraints), two problems which 

originally seem similar are actually quite different, or vice versa. It was seen that some enrolments 

are subsets of others and thus can be excluded as far as the similarity is concerned from the point of 

view of determining a purely feasible solution. More elaborate techniques, either manually or 

automatically, may need to be employed for source cases collection in data preparation in future 

work. 
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Figure 1 Schematic diagram of knowledge discovery process on features and their weights 

Figure 2 System performance on different numbers of features from Fcc by tabu search and hill climbing 

Figure 3 The case based heuristic selection approach 

Figure 4 Best heuristics during the solution process of a source case 
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Table 1 Possible features of course timetabling problems 

Table 2 Weights discovered for features from Fcs by tabu search and hill climbing 

Table 3 System performance before and after the knowledge discovery on case bases 

Table 4 Possible features of exam timetabling problems and partial solutions during problem solving 

Table 5 System performance on different feature lists for training and testing cases 

Table 6 Average penalties of solutions by individual sequential heuristics 

Table 7 Average penalties of solutions by using case based heuristic selection with different features 


