
J Sched (2008) 11: 59–69
DOI 10.1007/s10951-007-0034-8

Minimizing the number of late jobs in a stochastic setting using
a chance constraint

Marjan van den Akker · Han Hoogeveen

Published online: 21 September 2007
© Springer Science+Business Media, LLC 2007

Abstract We consider the single-machine scheduling prob-
lem of minimizing the number of late jobs. We omit here one
of the standard assumptions in scheduling theory, which is
that the processing times are deterministic. In this schedul-
ing environment, the completion times will be stochastic
variables as well. Instead of looking at the expected num-
ber of on time jobs, we present a new model to deal with
the stochastic completion times, which is based on using a
chance constraint to define whether a job is on time or late:
a job is on time if the probability that it is completed by
the deterministic due date is at least equal to a certain given
minimum success probability. We have studied this prob-
lem for four classes of stochastic processing times. The jobs
in the first three classes have processing times that follow:
(i) A gamma distribution with shape parameter pj and scale
parameter β, where β is common to all jobs; (ii) A negative
binomial distribution with parameters pj and r , where r is
the same for each job; (iii) A normal distribution with para-
meters pj and σ 2

j . The jobs in the fourth class have equally
disturbed processing times, that is, the processing times con-
sist of a deterministic part and a random component that is
independently, identically distributed for each job. We show
that the first two cases have a common characteristic that
makes it possible to solve these problems in O(n logn) time
through the algorithm by Moore and Hodgson. To analyze
the third and fourth problem we need the additional assump-

Supported by EC Contract IST-1999-14186 (Project alcom-FT).

M. van den Akker (�) · H. Hoogeveen
Department of Computer Science, Utrecht University, P.O Box
80089, 3508 TB Utrecht, The Netherlands
e-mail: marjan@cs.uu.nl

H. Hoogeveen
e-mail: slam@cs.uu.nl

tion that the due dates and the minimum success probabili-
ties are agreeable. We show that under this assumption the
third problem is NP-hard in the ordinary sense, whereas
the fourth problem is solvable by Moore and Hodgson’s al-
gorithm.

We further indicate how the problem of maximizing the
expected number of on time jobs (with respect to the stan-
dard definition) can be tackled if we add the constraint that
the on time jobs are sequenced in a given order and when
we require that the probability that a job is on time amounts
to at least some given lower bound.

Keywords Scheduling · Sequencing · Single machine ·
Number of late jobs · Stochastic processing times ·
Minimum success probability · Chance constraint ·
Dynamic programming · NP-hardness

1 Introduction

We consider the following single-machine scheduling prob-
lem. The machine is assumed to be continuously available
from time zero onwards, and it can perform at most one job
at a time. The machine has to execute n jobs, denoted by
J1, . . . , Jn. Performing job Jj requires a period of length
pj , and the execution of this job is preferably finished by its
due date dj . If job Jj is finished after its due date, then it is
marked as late. The objective is to minimize the number of
late jobs. Since it does not matter at which time a late job is
finished, such a job can just as well be skipped altogether;
the machine then only carries out the jobs that will finish
on time. Hence, the problem then ‘changes’ to selecting the
set of jobs that are executed by the machine, under the con-
straint that each selected job must be completed by its due
date. We assume that all jobs are available at time zero. We

60 J Sched (2008) 11: 59–69

want to do the selection process at time zero, such that a
rejected job can look for another machine to be executed by.

This is one of the classical problems from scheduling the-
ory. Moore (1968) has shown that this problem is solvable
in O(n logn) time by an algorithm that since then is known
as Moore–Hodgson’s algorithm. In this setting, each job
is equally important. In many applications, however, some
jobs are more important than others. This importance can be
measured by assigning a positive weight wj to each job Jj

(j = 1, . . . , n); the objective function then becomes to min-
imize the total weight of the late jobs. Lawler and Moore
(1969) show that this problem is solvable in O(n

∑
pj) time

by dynamic programming. Karp (1972) shows that pseudo-
polynomial running time is unavoidable for this problem
(unless P = NP) by establishing NP-hardness in the or-
dinary sense, even if all due dates are equal.

We consider this problem in a stochastic setting: we as-
sume that the processing times are not deterministic but sto-
chastic variables. We consider four specific classes of in-
stances. In the first one the processing times are stochas-
tic variables that are distributed according to a gamma dis-
tribution with parameters pj (which varies per job) and β

(which is equal for all jobs). The gamma distribution is of-
ten applied to model the processing time of a job (see for in-
stance Law and Kelton 2000). The second class of process-
ing times is used to model a production process where items
are produced that work well with probability r and malfunc-
tion with probability (1 − r); a job Jj corresponds then to
an order of pj correctly functioning items. The correspond-
ing processing time then follows a negative binomial dis-
tribution with parameters pj and r . In the third class the
processing times consist of a deterministic component pj

and a random disturbance, which we assume to be identi-
cally distributed for each job. This can be used to model the
situation that the disturbances in the production process are
not job-related but due to some side-equipment that is used
by each job in the same way. In the last case, we assume
that the processing times follow a normal distribution with
known expected value pj and known variance σ 2

j .

We suppose that each due date is deterministic, which is
reasonable, as they are specified by the customer issuing the
request. More importantly, we further assume that this cus-
tomer is willing to accept a delayed completion of his/her
order, if the company can convince him/her that the planning
is such that the probability that the order is delayed is ‘small
enough’. This is achieved by guaranteeing that the probabil-
ity that the order is on time is at least equal to some given
lower bound value, which we define as the minimum success
probability, and which we denote by yj (j = 1, . . . , n). If
the customer prefers to be convinced by hard cash, then you
can agree that he/her will be compensated if the completion
is delayed; when the probability distribution of the comple-
tion time of job Jj is known, then working with a minimum

success probability boils down to specifying an upper bound
for the expected compensation payment, which corresponds
to a lower bound on the expected profit, and vice versa.

The remainder of the paper is organized as follows. In
Sect. 2 we review the problem of minimizing the number
of late jobs with deterministic processing times, and we ex-
plain Moore–Hodgson’s algorithm as a dynamic program-
ming algorithm. We developed this approach ourselves and
only found out recently that it has been described in an un-
published paper by Lawler (unpublished) for the more com-
plicated case with agreeable release dates rj (j = 1, . . . , n),
where ‘agreeable’ in this setting implies that the jobs can
be numbered such that ri ≤ rj implies that di ≤ dj , for all
i, j = 1, . . . , n (see van den Akker and Hoogeveen 2004).
In Sect. 3 we analyze four classes of stochastic process-
ing times. We first prove a general result by specifying a
number of constraints such that any problem with stochastic
processing times following a probability distribution satis-
fying these constraints can be reformulated as a determinis-
tic problem, which is solvable in O(n logn) time, irrespec-
tive of the minimum success probabilities; the first and sec-
ond class of processing times satisfy these constraints. For
the other two classes of processing times, we need the ad-
ditional assumption that the minimum success probabilities
and the due dates are agreeable, which here implies that the
jobs can be numbered such that i < j implies that di ≤ dj

and yi ≥ yj . We develop dynamic programming algorithms
that minimize the (weighted) number of late jobs for these
instances; these algorithms are based on the insight gained
in Sect. 2. We further discuss the problems that we face in
case of general minimum success probabilities. In Sect. 4,
we show that the problem with stochastic processing times
that follow a normal distribution is fundamentally more dif-
ficult than the problem with deterministic processing times
by establishing ordinary NP-hardness for the problem of
minimizing the number of late jobs. In Sect. 5, we address
a special case of the problem of minimizing the expected
number of late jobs under the standard definition. Finally,
we draw some conclusions in Sect. 6.

2 Moore–Hodgson’s algorithm reviewed

In this section, we take a closer look at the problem with
deterministic processing times; we will use this insight in
Sect. 3. We start with some simple, well-known observa-
tions. As mentioned before, the completion time of job Jj ,
which we denote by Cj , has become unimportant once it is
greater than the due date. Hence, the late jobs are executed
after all the on time jobs (if the late jobs are executed at
all). The second observation is that the jobs that are marked
as on time are executed in order of nondecreasing due date,
which is known as the EDD-order; this is due to Jackson

J Sched (2008) 11: 59–69 61

(1955), who showed that executing the jobs in EDD-order
minimizes the maximum lateness, where the lateness of a
job j is defined as Cj − dj (this maximum lateness is at
most equal to zero if all jobs are on time). Hence, instead
of specifying the whole schedule, we can limit ourselves to
specifying the set E (for early) containing the on time jobs,
as it can be checked whether the jobs in E can be all on time
together by putting them in EDD-order. A set E of jobs that
are selected to be on time is called feasible if none of them
is late when executed in EDD-order. The goal is therefore
to find a feasible set E of maximum cardinality. From now
on, we will use the following notation. By |Q| and p(Q) we
denote the number and total processing time of the jobs in
a given set Q, respectively. Since the EDD-order is crucial
in the design of the algorithm, we assume from now on that
the jobs are numbered such that

d1 ≤ d2 ≤ · · · ≤ dn.

We want to show that Moore–Hodgson’s algorithm is in fact
a dynamic programming algorithm with a special structure;
we need this in Sect. 3. For this dynamic programming al-
gorithm, the following dominance rule is crucial.

Dominance Rule 2.1 Let E1 and E2 be two feasible subsets
of the jobs {J1, . . . , Jj } with |E1| = |E2|. If p(E1) < p(E2),
then any solution E with E ∩ {J1, . . . , Jj } = E2 can be ig-
nored.

Proof Let E correspond to an optimal solution, and suppose
that E ∩ {J1, . . . , Jj } = E2. We will show that replacing the
jobs in E ∩ E2 by the jobs in E1 yields a feasible subset
Ē of {J1, . . . , Jn}; since |Ē| = |E|, the subset Ē must then
correspond to an optimal solution, too.

To show that Ē is a feasible subset, we must show that in
the EDD-schedule of Ē all jobs are on time. Let σ and π de-
note the EDD-schedule of the jobs in Ē and E, respectively.
Due to the numbering of the jobs, we know that the jobs in
E1 precede the remaining jobs of Ē in σ ; as E1 is a feasible
subset, these jobs are on time in σ . The remaining jobs in Ē

start p(E2) − p(E1) > 0 time units earlier in σ than in π ,
and hence these jobs are on time as well. �

As a consequence of the dominance rule, the only feasi-
ble subsets of {J1, . . . , Jj } with cardinality k that we have
to care about are the ones with minimum total processing
time. We define zj (j = 1, . . . , n) as the maximum number
of jobs in the set {J1, . . . , Jj } that can be on time together;
the value of zj will be determined through the algorithm.
We further define E∗

j (k) (j = 1, . . . , n; k = 0, . . . , zj) as a
feasible subset containing exactly k jobs from {J1, . . . , Jj }
with minimum total processing time. We derive a dynamic
programming algorithm to solve the problem of minimiz-
ing the number of late jobs as follows. We add the jobs one

by one in EDD-order. For each combination (j, k), where j

(j = 1, . . . , n) refers to the number of jobs that have been
considered and k (k = 0, . . . , zj) denotes the number of on
time jobs, we introduce a state-variable fj (k) with value
equal to p(E∗

j (k)). As an initialization, we define z0 = 0
and put fj (k) = 0 if j = k = 0 and fj (k) = ∞, otherwise.
Suppose that we have determined the values zj and fj (k)

for a given j and all k = 0, . . . , zj . We first determine zj+1

by checking whether job Jj+1 can be on time given that it
succeeds the jobs in E∗

j (zj). Hence, we get the recurrence
relation

zj+1 =
{

zj + 1 if fj (zj) + pj+1 ≤ dj+1,

zj otherwise.
(1)

We put fj+1(0) = 0 and determine fj+1(k) (k = 1, . . . ,

zj+1) through the recurrence relation

fj+1(k) = min
{
fj (k), fj (k − 1) + pj+1

}
. (2)

Here the first term in the minimand corresponds to the op-
tion of leaving Jj out of the early set, whereas the sec-
ond term refers to the option of including Jj . Note that
f (j, zj+1) = ∞ if zj+1 = zj + 1. We can compute the val-
ues fj (k) in O(n2) time altogether, from which we im-
mediately determine the minimum number of late jobs as
(n − zn), whereas the optimum schedule can be determined
through backtracking.

We will show that by looking at the dynamic program-
ming algorithm in the right way we can obtain Moore–
Hodgson’s algorithm. Here we need the close relation be-
tween the sets E∗

j (k) and E∗
j (k − 1) expressed in the fol-

lowing lemma.

Lemma 2.2 A set E∗
j (k − 1) is obtained from the set E∗

j (k)

by removing a job from E∗
j (k) with largest processing time.

Proof Suppose that the lemma does not hold for some
combination of j and k. Let Ji be a job in E∗

j (k) with
maximum processing time. According to our assumption,
p(E∗

j (k − 1)) < p(E∗
j (k)) − pi . Determine Jq as the job

with maximum due date that belongs to E∗
j (k) but not to

E∗
j (k − 1). Now consider the subset Ē∗

j (k) = E∗
j (k − 1) ∪

{Jq}; we will prove that this subset is feasible, which contra-
dicts the optimality of E∗

j (k), since p(E∗
j (k)) > p(E∗

j (k −
1)) + pi ≥ p(E∗

j (k − 1)) + pq = p(Ē∗
j (k)). We have to

check the EDD-schedule for the jobs in Ē∗
j (k), which is

obtained from the EDD-schedule for the jobs in E∗
j (k − 1)

by inserting Jq at the correct spot. Due to the feasibility of
E∗

j (k − 1), the only jobs that may be late are Jq and the
jobs after Jq . Observe that the choice of Jq implies that
from Jq onwards the EDD-schedule of Ē∗

j (k) consists of
exactly the same jobs as the EDD-schedule of E∗

j (k), but

62 J Sched (2008) 11: 59–69

they are started p(E∗
j (k)) − p(Ē∗

j (k)) > 0 time units earlier
now. Since E∗

j (k) is a feasible subset, the same holds for

Ē∗
j (k). �

As a consequence, if we know the set E∗
j (zj) (and

not just its total processing time), then fj (zj) is equal to
p(E∗

j (zj)) and we can compute fj (zj − 1) as the total
processing time of E∗

j (zj) minus the processing time of the

longest job in E∗
j (zj). Plugging this in our recurrence rela-

tion (2), then we get

• If p(E∗
j (zj)) + pj+1 ≤ dj+1, then E∗

j+1(zj+1) ←
E∗

j (zj) ∪ {Jj+1}.
• If p(E∗

j (zj)) + pj+1 > dj+1, then find the longest job in
E∗

j (zj) ∪ {Jj+1} and set E∗
j+1(zj+1) equal to E∗

j (zj) ∪
{Jj+1} minus this job.

But this leads exactly to Moore–Hodgson’s algorithm,
which is defined as follows:

MOORE–HODGSON

STEP 1. Set σ equal to the EDD-schedule for all jobs
J1, . . . , Jn.
STEP 2. If each job in σ is on time, then stop.
STEP 3. Find the first job in σ that is late; let this be job Jj .
Find the largest job from the set containing Jj and all its
predecessors in σ and remove it from σ . Remove the idle
time from the resulting schedule by shifting jobs forward;
call this new schedule σ , and go to STEP 2.

Hence, the Moore–Hodgson’s algorithm can be regarded
as a dynamic programming algorithm that works with state-
variables gj (zj) only, where the state-variable gj (zj) then
contains the subset of the jobs that lead to fj (zj). Since the
number of state-variables is O(n), it can be implemented to
run in O(n logn) time, whereas our dynamic programming
algorithm requires O(n2) time.

Note that our dynamic programming algorithm immedi-
ately carries over to the weighted case, since the dominance
rule holds true (with total weight of the on time jobs in-
stead of the cardinality of the set of on time jobs). The state-
variables fj (k) are defined as before, but k then assumes the

values 0,1, . . . ,
∑j

i=1 wi . Hence, the running time of the dy-
namic programming algorithm becomes O(n

∑
wi). Note

that we have to change the recurrence relation to

fj+1(k) = min
{
fj (k), fj (k − wj+1) + pj+1

}
.

3 Stochastic processing times

From now on we assume that the processing times are sto-
chastic variables, which we denote by πj (j = 1, . . . , n); we
stick to deterministic due dates. Since the completion times
are stochastic variables then, we work with a sequence of

accepted jobs instead of a schedule with fixed completion
times. We further must change the definition of a job being
on time, since otherwise we would have to run the sched-
ule first and conclude whether it met its due date afterwards.
This definition is based on a chance constraint.

Definition 3.1 Given the sequence in which the jobs are to
be executed, a job is considered to be on time if the proba-
bility that it is completed by its due date is at least equal to
some given probability, which we call the minimum success
probability. We call this version of on time stochastically on
time.

The objective function is then to minimize the number of
late jobs. We solve this problem at time zero and dismiss
all nonselected jobs; any rejected costumer will have time to
look for an alternative. This approach differs from the well-
known maximization of the expected number of on time
jobs. This model has the disadvantage that any job which
positively contributes to the expected value will remain in
the planning, until it has become impossible to meet the due
date; for instance, for the gamma-distribution, in which the
processing times can get arbitrarily close to zero, a job will
only be removed from the planning at the due date. This ob-
jection can be partly overcome by working with a deadline
on the starting time, as suggested by Dean (2005). We will
come back to this problem in Sect. 5.

We will consider four classes of instances of stochas-
tic processing times; in all cases we assume that the corre-
sponding stochastic variables are independent. We further
assume that the job-specific parameters are integral. The
four classes are defined as follows:

• The processing time πj of job Jj (j = 1, . . . , n) follows
a gamma distribution with shape parameter pj and scale
parameter β , which is equal for all jobs. The expected
processing time is then equal to pjβ . Since the scale pa-
rameter β is equal for all jobs, the total processing time∑

i∈S πi follows a gamma distribution with parameters∑
i∈S pi and β .

• The processing time πj of job Jj (j = 1, . . . , n) is distrib-
uted according to a negative binomial distribution with
parameters pj and r , which is equal for all jobs. The
negative binomial distribution can be used to model the
process of picking pj correctly functioning items, where
each item has a probability of r to function well. The ex-
pected number of items that have to be produced such
that exactly pj ones are okay is then equal to pj/r . As
r is equal for each job, the total processing time

∑
i∈S πi

follows a negative binomial distribution with parameters∑
i∈S pi and r .

• The processing time πj of job Jj (j = 1, . . . , n) con-
sists of a deterministic part pj and a random disturbance,
where the disturbances are independently, identically dis-
tributed random variables.

J Sched (2008) 11: 59–69 63

• The processing time πj of job Jj (j = 1, . . . , n) follows
a normal distribution with known expected value pj and
known variance σ 2

j . Hence,
∑

i∈S πi follows a normal
distribution with expected value

∑
i∈S pi and variance∑

i∈S σ 2
i .

We will show in Sect. 3.1 that the first two classes in fact
boil down to deterministic problems. The other two classes
require a more intricate approach, where we use the in-
sight gained in the previous section to solve these prob-
lems through dynamic programming; this is described in the
Sects. 3.2 and 3.3.

3.1 Gamma and negative binomial distributed processing
times

In this subsection we show that these two distributions sat-
isfy the properties of the theorem below, which implies that
these problems can be solved in O(n logn) time irrespective
of the minimum success probabilities. Before stating the the-
orem, we need some notation. Given an order of the jobs, the
completion time of some job Jj is equal to the total process-
ing time of Jj and all its predecessors, which set we denote
by Qj (this set includes Jj).

Theorem 3.2 A class of instances of the problem of maxi-
mizing the number of stochastically on time jobs is solvable
in O(n logn) time if the following conditions are satisfied:

• The processing times are independently distributed sto-
chastic variables that are described by one job-specific
parameter pj .

• The probability distribution is additive in the job-specific
parameter, that is, the sum of the processing times of the
jobs Ji and Jj follows the probability distribution with
parameter pi + pj .

• P [Cj ≤ dj] ≥ yj does not increase when p(Qj) in-
creases, irrespective of yj .

Proof Because of the first two properties, we know that
Cj = ∑

i∈Qj
πi follows a distribution that is fully described

by p(Qj) and possibly some common parameters. Given
the value of p(Qj) we can compute P [Cj ≤ dj], and be-
cause of the third property, we can compute the maximum
value of p(Qj) for which P [Cj ≤ dj] ≥ yj , for example by
applying binary search. We use Dj to denote this maximum
value.

We construct an instance of the deterministic version of
the problem of maximizing the number of on time jobs,
where each job Jj (j = 1, . . . , n) has processing time pj

and due date Dj . Then any feasible solution to this deter-
ministic problem corresponds to a feasible solution of the
stochastic problem of equal value and vice versa, since

p(Qj) ≤ Dj ⇐⇒ P [Cj ≤ dj] ≥ yj

This problem is solved in O(n logn) time, assuming that we
can find all Dj values in that time. �

Note that we have assumed that the values Dj can be de-
termined in O(n logn) time altogether. Note further that the
on time jobs are executed according to the order of the ad-
justed due dates Dj , which does not have to coincide with
the order of the original due dates dj , as the minimum suc-
cess probabilities do not have to be equal.

Both the gamma distribution and the negative binomial
distribution satisfy the properties of Theorem 3.2. The nor-
mal distribution is characterized by two parameters, and it
cannot be solved in polynomial time, as we show in Sect. 4.
If the expected value and the variance are related, for in-
stance, if for each job the variance is equal to some constant
times the expected value, then the problem can be solved in
O(n logn) time again.

A similar approach can be used when we do not work
with minimum success probabilities but with some kind of
reward function per job: a lower bound on the expected
profit then leads to an upper bound Dj on p(Qj), after
which the resulting problem of deciding which jobs to carry
out can be solved by the algorithm of Moore–Hodgson with
deterministic processing times pj and due dates Dj .

If we look at the weighted problem, where wj is the
reward of completing Jj on time, then we can follow the
same approach if the properties of Theorem 3.2 are satis-
fied, since the determination of the adjusted due dates Dj

is independent from the weights. Hence, we can solve the
weighted case in time O(n

∑
pj) through the algorithm of

Lawler and Moore (1969) or in time O(n
∑

wj) through the
dynamic programming algorithm of Sect. 2, given the val-
ues Dj (j = 1, . . . , n). By applying Karp’s reduction (Karp
1972), we can show that the weighted case is NP-hard in
the ordinary sense.

3.2 Equally disturbed processing times

Again, we use Cj to denote the stochastic completion time
of Jj (j = 1, . . . , n), and we let Qj denote the set contain-
ing all jobs that have been accepted up to and including Jj .
Hence, we have that Cj = ∑

i∈Qj
πi follows a distribution

that is described by p(Qj) and the joint disturbance of the
jobs in Qj . This implies, however, that the second condition
of Theorem 3.2 is not satisfied, as the number of jobs in Qj ,
which we denote by |Qj |, is crucial. Hence, we return to the
basics of our dynamic programming approach.

The crux behind the dynamic programming algorithm
of Sect. 2 was that a fixed order was known in which the
jobs could be added without running the risk of missing
the optimum, namely the EDD-order based on the dj val-
ues. We will show in Theorem 3.3 below that adding the

64 J Sched (2008) 11: 59–69

jobs in EDD-order, where ties are settled according to non-
increasing yj value, will permit us to find an optimal solu-
tion if the minimum success probabilities are agreeable with
the due dates, with which we mean that the jobs can be num-
bered such that i < j implies that di ≤ dj and yi ≥ yj , for
all i, j = 1, . . . , n. We assume from now on that the jobs
have been renumbered in this way; with we a little abuse of
notation, we call this order the EDD-order again.

To compute the probability P [Cj ≤ dj] we need to know
p(Qj) and |Qj |. If |Qj | is given, then P [Cj ≤ dj] is maxi-
mized by choosing for Qj \{Jj } the subset of {J1, . . . , Jj−1}
of minimum total deterministic processing time from among
the sets with cardinality |Qj | − 1 that is feasible; in this
respect a subset is feasible if the corresponding jobs can
be scheduled such that each job is stochastically on time.
Therefore, the required knowledge to compute P [Cj ≤ dj]
is captured by the information stored in the state-variables
fj (k) of the previous section. Hence, we can apply the
analysis of the previous section, which leads to Moore–
Hodgson’s algorithm. Note that in the algorithm the check-
ing of whether Jj+1 is on time has to be modified from
inspecting ‘fj (k) + pj+1 ≤ dj+1’ to inspecting whether
‘P [Cj+1 ≤ dj+1] ≥ yj+1’, that is, we have to check whether
‘P [Cj + πj+1 ≤ dj+1] ≥ yj+1’. What is left to prove is the
validity of the EDD-order.

Theorem 3.3 If di ≤ dj and yi ≥ yj , then there exists an
optimal order for adding the jobs to the dynamic program-
ming algorithm in which Ji precedes Jj .

Proof Consider the subsequence of the jobs corresponding
to any optimal solution. If we add the on time jobs in this or-
der to the dynamic programming solution with the tardy jobs
interleaved, then the dynamic programming algorithm will
come up with this solution or an equivalent one, since our
algorithm is guaranteed to find the best solution correspond-
ing to the order in which the jobs are fed into the algorithm.
Hence, it suffices to show that there exists an optimum sub-
sequence in which Ji precedes Jj if both jobs are on time.
We prove this by a contradictory argument. If Jj precedes
Ji in this scheduling order, then we modify it by removing
Jj from its current position and reinserting it immediately
after Ji . Each job affected by this move goes forward in the
scheduling order (and hence remains on time), except for Jj ,
which gets some more predecessors. The completion time of
Jj is equally distributed as the completion time of Ji in the
original scheduling order, as the same subset of jobs is in-
volved, and Ji was on time. Since di ≤ dj and yi ≥ yj , job
Jj must be on time then, too, which implies that this new
scheduling order is at least as good as the previous one. �

It is straightforward to solve the weighted case by us-
ing state-variables fj (k,W), where W contains the addi-
tional information of the total weight of the current set

of on time jobs. Note that, in contrast to the determinis-
tic case in Sect. 2, we now need both the total weight of
the current set of on time jobs and the cardinality of this
set, since knowledge of the cardinality is required for com-
puting P [Cj ≤ dj]. Hence, the algorithm will then run in
O(n2 ∑

wi) time. We can use a reduction like the one pro-
posed by Karp to show NP-hardness of the deterministic
problem (which in fact belongs to this class) to verify that
pseudo-polynomial running time is the best we can hope for
in this case.

3.3 Normally distributed processing times

In this subsection we assume that the processing time πj

of job Jj (j = 1, . . . , n) is a normally distributed random
variable with expected value pj and variance σ 2

j , where the
variance is so small that the probability of getting a nega-
tive processing time is negligible. We further assume that all
πj variables are independent of each other. Since the vari-
ances can differ per job, this problem is fundamentally more
difficult than the previous ones, as we will show in Sect. 4.
We have that Cj = ∑

i∈Qj
πi follows the normal distribu-

tion with mean
∑

i∈Qj
pi and variance

∑
i∈Qj

σ 2
i . If these

two quantities are known, then we can immediately com-
pute the probability P [Cj ≤ dj] and compare this to the
minimum success probability yj . Again, we assume that the
due dates and minimum success probabilities are agreeable;
Theorem 3.3 shows that there exists an optimal schedule that
starts with the on time jobs in EDD-order.

Obviously, not all possible combinations (
∑

i∈Qj
pi,

∑
i∈Qj

σ 2
i) are of interest. If we look at all feasible subsets

Qj of {J1, . . . , Jj } with equal
∑

i∈Qj
σ 2

i value and equal
cardinality, then our best chance to meet yj is offered by the
subset with minimum

∑
i∈Qj

pi value. On the other hand, if
we can choose among all feasible subsets Qj of {J1, . . . , Jj }
with equal

∑
i∈Qj

pi value and equal cardinality, then we

would like to have the one with smallest
∑

i∈Qj
σ 2

i value

if yj > 0.5 and the one with maximum
∑

i∈Qj
σ 2

i value
if yj < 0.5; if yj = 0.5, then the variances are irrelevant,
which implies that the problem in which all minimum suc-
cess probabilities are equal to 0.5 can be solved by applying
the algorithm by Moore–Hodgson to the instance with de-
terministic processing times pj . Since we may expect that
a customer is not satisfied with a probability of less than
50% that the manufacturer completes his job on time, we as-
sume that yj ≥ 0.5 for all j = 1, . . . , n. Therefore, we work
out the dynamic programming algorithm by determining for
each value t ∈ {0,1, . . . ,

∑j

i=1 pj } and for each cardinality
k = 0, . . . , zj the feasible subset Qj with p(Qj) = t that has
minimum total variance, if it exists. The reason behind enu-
merating the total processing time and minimizing the total
variance is that presumably

∑n
i=1 σ 2

i >
∑n

i=1 pi , which is

J Sched (2008) 11: 59–69 65

advantageous for the running time of the algorithm. If this
is not the case, then we can reverse the role of the variance
and the total processing time in the dynamic programming
algorithm.

To get the dynamic programming algorithm running,
we introduce for each j = 1, . . . , n; k = 1, . . . , zj ; and

t = 0,1, . . . ,
∑j

i=1 pj the state-variable fj (k, t), which is
supposed to denote the minimum variance

∑
i∈Qj

σ 2
i over

all feasible subsets Qj of {J1, . . . , Jj } with |Qj | = k and
∑

i∈Qj
pi = t . Here zj is defined as the maximum car-

dinality over all feasible subsets Qj of {J1, . . . , Jj }. As
our initialization, we put z0 = 0 and define fj (k, t) = 0 if
j = k = t = 0 and ∞, otherwise. As before, we add the
jobs in EDD-order (where ties are settled according to non-
increasing yj value). When adding job Jj+1, we first deter-
mine zj+1. Thereto, we check for each fj (zj , t) whether

P

(

z ≤ dj+1 − t − pj+1
√

fj (zj , t) + σ 2
j+1

)

≥ yj ,

where z denotes a standard normal variable. If this holds for
none of the state-variables fj (zj , t), then we put zj+1 = zj ;
otherwise, we put zj+1 = zj + 1. As the check above indi-
cates, we have to be a bit cautious. The case that zj+1 =
zj + 1 does not imply that adding Jj+1 behind each feasi-
ble solution represented by fj (zj , t) results in Jj+1 being
stochastically on time. If we encounter a situation in which
there is no feasible solution corresponding to fj (k, t), then
we give it the value INF (from ‘infeasible’). Given the cor-
rect values for fj (k

′, t ′), we compute the values fj+1(k, t)

as follows. We put fj+1(0,0) = 0 and compute fj+1(k, t)

for k = 1, . . . , zj+1 and t = 0, . . . ,
∑j+1

i=1 pi through the fol-
lowing recurrence relation

fj+1(k, t) = min
{
fj (k, t), fj (k − 1, t − pj+1) + σ 2

j+1

}
.

The first term corresponds to including job Jj+1 in the set
of late jobs, whereas job Jj+1 is included in the on time
set in the second case. We work with the special value INF
in the following way. If an entry has value INF, then this
possibility is ignored by the minimand; if both entries have
value INF, then fj+1(k, t) gets the value INF. Furthermore,
if the minimum comes from the second term and the first
term has value INF, then we check whether Jj+1 is stochas-
tically on time when Cj+1 has expected value t and variance
fj (k − 1, t − pj+1) + σ 2

j+1; if this is not the case, then we

set fj+1(k, t) equal to INF after all. Note that, if the mini-
mum comes from the second term and the first term is not
equal to INF, then we know that Jj+1 will be stochastically
on time, since Jj was stochastically on time in a comparable
but less favorable situation. The optimum value of the objec-
tive function is determined as n − zn, and the corresponding

on time set can be found through backtracking. This algo-
rithm has running time O(n2 ∑

pi).
The weighted case can be dealt with by a clone of the

above algorithm. In that case, we let k refer to the total
weight of the on time jobs instead of the cardinality of the on
time set. Hence, the algorithm then runs in O(n

∑
pi

∑
wi)

time.

3.4 The nonagreeable case

Suppose that the due dates and the minimum success prob-
abilities are not agreeable. We start with a two-job exam-
ple, which belongs to both class three and four, that shows
that the EDD-order is not necessarily optimal then. Both
jobs have a processing time that follows a normal distrib-
ution with p1 = 12 and p2 = 8 and σ 2

1 = σ 2
2 = 1. The due

dates are d1 = 20 and d2 = 21, and the minimum success
probabilities are y1 = 0.5 and y2 = 0.95. A straightforward
calculation shows that in the EDD-sequence job J2 is late,
whereas in the reverse sequence both jobs are on time.

This is bad news of course. On the bright side, for both
our special classes it is possible to check in O(n2) time
whether all jobs in a given set can be stochastically on time
simultaneously, even if the minimum success probabilities
are unequal, through the following rule, which resembles
Lawler’s Least-cost-last-rule (Lawler 1973): compute the
probability distribution of the, yet unknown, last job in the
sequence, and determine whether there exists a job that can
be sequenced last without violating its minimum success
probability. If there is no such job, then this set is not fea-
sible. Otherwise, select any such job, sequence it last, and
repeat the procedure for the remaining jobs. The proof is
straightforward, and therefore we have omitted it.

Since we are able to check for a given job set whether it
is feasible, one approach might be to use the dynamic pro-
gramming algorithm of the previous subsections, where we
use the above algorithm to check whether adding the cur-
rent job to a feasible subset yields a feasible subset again.
Unfortunately, this approach does not work, as follows from
the following three-job example: we add job J0 to our two-
job example with p0 = 11, σ 2

0 = 1, d0 = 15, and y0 = 0.5.
A quick computation shows that the only possibility of hav-
ing two jobs on time is to put J2 first and J1 second. But
when we apply our dynamic programming algorithm where
we add the jobs in EDD-order, then this solution is elimi-
nated, as the feasible subset of cardinality one from {J0, J1}
with minimum processing time contains J0 and not J1. Note
that the dynamic programming algorithm works fine if we
add the jobs in the order J0, J2, J1.

Therefore we now address the question: in which order
should we add the jobs to the dynamic programming algo-
rithm? Finding an optimal one, that is, an order which leads
to the optimal solution, is a challenging open question. Be-
low, we give a partial description of an optimal order for

66 J Sched (2008) 11: 59–69

adding the jobs to the dynamic programming algorithm. If
the number of possibly optimal orders is not too big, then
one approach is to try them all and pick the best solution.

Theorem 3.4 If di ≤ dj and yi ≥ yj , where at least one
of the inequalities is strict, then we can limit ourselves to
orders in which Ji precedes Jj .

Proof The proof follows immediately from the proof of
Theorem 3.3. �

4 NP-hardness

In this section we show that the problem with normally
distributed processing times is fundamentally more difficult
than the problem with deterministic processing times, which
is solved in polynomial time. We show that the problem with
equal minimum success probabilities is NP-hard in the or-
dinary sense through a reduction from the problem PARTI-
TION, which is known to be NP-complete in the ordinary
sense. PARTITION is defined as follows:

PARTITION

Given t positive integers a1, a2, . . . , at with sum equal to
2A, does there exist a subset Q of the index set {1, . . . , t}
such that
∑

i∈Q

ai = A?

Given any instance of PARTITION, we construct the follow-
ing instance of the decision variant of our problem. Each ai

(i = 1, . . . , t) leads to two jobs: J2i−1 and J2i . Moreover,
there is a special job J2t+1. The data are found in Table 1,
where the index i runs from 1 to t . The symbols B , M , and
Z stand for numbers. B is such that B(

√
A + 1 −√

A) > A;
a straightforward computation shows that putting B equal to
2A

√
A + 1 rounded down does the trick. The integer M is

defined as A + 1 + B
√

A rounded down. The integer Z is
chosen such that

√
Z + B2A − √

Z < 1; a straightforward
computation shows that Z = A6(A + 1)2 is sufficient. The
minimum success probability y is set equal to 0.8413; this
choice is motivated by the fact that P(z ≤ 1) = 0.8413 for a
standard normal variable z.

The decision variant of our problem is defined as the fol-
lowing question: does the instance defined above have a so-
lution in which no more than t jobs are not stochastically on
time?

We will show that the answer to PARTITION is ‘yes’ if
and only if the decision problem is answered affirmatively.
Before giving a formal proof, we will briefly sketch the out-
line of the reduction. At most t of the first 2t jobs can be sto-
chastically on time, and we need all of them to get a ‘yes’ to

Table 1 Data for our instance

pj σ 2
j dj

J2i−1 iM B2ai

∑i
h=1 hM + A + B

√
A

J2i iM + ai 0
∑i

h=1 hM + A + B
√

A

J2t+1 (t+1)M Z
∑t+1

h=1 hM + A + √
Z + B2A

the decision variant. Define the index set Q such that j ∈ Q

if and only if J2j belongs to the set of stochastically on time
jobs, for j = 1, . . . , t . To let either J2t−1 or J2t finish on
time, we need that

∑
j∈Q aj ≥ A. Then J2t+1 comes into

play; the instance is chosen such that J2t+1 can be on time
only if

∑
j∈Q aj ≤ A.

Now we come to the formal proof. First suppose that the
answer to PARTITION is ‘yes’; let Q denote the subset of
{1, . . . , t} with

∑
j∈Q aj = A. Then we construct a ‘yes’ so-

lution to the decision variant as follows. We construct the set
E of on time jobs such that it includes J2j−1 if j /∈ Q and
J2j if j ∈ Q, for (j = 1, . . . , t); the last job in E is job J2t+1.
Let J[i] (i = 1, . . . , t + 1) denote the i’th job in E when or-
dered according to the EDD-rule; define C[i], p[i], and d[i]
accordingly. It is readily verified that the expected value of
C[i] is no more than

∑i
h=1 hM + A for i = 1, . . . , t + 1,

and that the variance of C[i] is at most equal to B2A, for
i = 1, . . . , t , whereas C[t+1] has variance Z + B2A. Note
that the minimum success probability is such that a job Jj

(j = 1, . . . ,2t + 1) is on time if the expected value of Cj

plus the standard deviation (which is the square root of the
variance) of Cj is no more than its due date. Hence, all jobs
in E are on time, which implies that no more than t jobs are
late, which means ‘yes’.

Conversely, suppose that the answer to the decision vari-
ant is ‘yes’. Let E denote the set of on time jobs. We first
show that then exactly one of each pair of jobs {J2i−1, J2i}
(i = 1, . . . , t) must belong to E. We prove this statement by
showing that any set Ē containing t jobs from J1, . . . , J2t

for which the above does not hold is not feasible. To facili-
tate the proof, we alter the instance by reducing the process-
ing times and getting rid of the variances; if Ē is not feasi-
ble for this instance, then Ē is also infeasible with respect
to the original instance. We put p2i = iM and σ 2

2i−1 = 0
for i = 1, . . . , t ; the other data remain unchanged. If we ap-
ply Moore–Hodgson’s algorithm to this instance, then we
find that at most i (i = 1, . . . , t) out of the jobs J1, . . . , J2i

can be on time, and that the minimum total processing time
of such a subset is equal to

∑i
h=1 hM , for i = 1, . . . , t .

Now we take a closer look at the set Ē; we define the sets
Ēj (j = 1, . . . , t) as Ē ∩ {J1, . . . , J2j }. We first show that
Ēt must contain exactly one job from {J2t−1, J2t }. Since
|Ēt | = t and at most t − 1 of the jobs from J1, . . . , J2t−2

can be on time, at least one of the jobs J2t−1, J2t must be-

J Sched (2008) 11: 59–69 67

long to Ēt . If Ēt contains both, then Ēt contains t − 2 jobs
from {J1, . . . , J2t−2}, and applying Moore–Hodgson shows
that the minimum total processing time of such a set is at
least

∑t−2
h=1 hM + 2tM . But then

p(Ēt) ≥
t−2∑

h=1

hM + 2tM =
t∑

h=1

hM + M

>

t∑

h=1

hM + A + B
√

A = max{d2t−1, d2t },

which shows that such a set Ēt cannot be feasible. Hence,
Ēt contains exactly one job from J2t−1, J2t . We repeat this
argument for Ēt−1, and find that Ēt−1 must contain exactly
one job from J2t−3, J2t−2, etc.

This implies that the set E corresponding to the ‘yes’
solution must contain exactly one of each pair of jobs
{J2i−1, J2i} (i = 1, . . . , t); hence, J2t+1 must then also be on
time to get the count right. Now that we have established this
characteristic of E, we return to our original instance. We
define Q as the subset of {1, . . . , t} that contains index i if
and only if J2i belongs to the on time set. Let J[t] denote the
job from the pair {J2t−1, J2t } that is on time. The expected
value of C[t] is equal to

∑t
h=1 hM +∑

j∈Q aj , and the vari-

ance of C[t] is equal to B2 ∑
j /∈Q aj . If

∑
j∈Q aj < A, then

the variance of C[t] is at least equal to B2(A + 1). Hence,
the expected value of C[t] plus the standard deviation of C[t]
is then at least equal to

t∑

h=1

hM + B
√

A + 1 >

t∑

h=1

hM + A + B
√

A = d[t],

where the ‘>’ sign comes from the choice of B . This re-
sult disqualifies job J[t] as on time, and hence we must have∑

j∈Q aj ≥ A.
From now on, we use a(Q) as a short-hand notation for∑
j∈Q aj . Finally, job J2t+1 comes into play; this job must

be on time as well. The expected value of C2t+1 is equal to∑t+1
h=1 hM +a(Q), and the variance of C2t+1 is equal to Z+

B2(2A − a(Q)) ≥ Z. Now suppose that a(Q) > A, which
implies that a(Q) ≥ A + 1. Hence, the expected value of
C2t+1 plus the standard deviation of C2t+1 is at least equal
to

t+1∑

h=1

hM + A + 1 + √
Z

>

t+1∑

h=1

hM + A + 1 +
√

Z + B2A − 1 = d2t+1,

where the ‘>’ sign comes from the choice of Z. But then
J2t+1 is late. This contradiction shows that a(Q) = A, and

we have shown that the answer to PARTITION is ‘yes’ as
well.

Since the decision variant of our problem belongs to NP ,
we have proven the following theorem.

Theorem 4.1 The problem of minimizing the number of late
jobs on a single machine with normally distributed process-
ing times is NP-hard, even if all minimum success proba-
bilities are equal.

Until so far, we have not worried about the possibility that
the actual processing time of a job might become negative.
This can virtually be avoided in the above NP-hardness
proof by adding to each processing time a huge constant and
updating the due dates in a corresponding fashion.

5 Maximizing the expected number of on time jobs

In Sect. 3 we introduced the concept of stochastically on
time to be able to establish the value of the objective func-
tion without waiting until the last job was finished. Another
way to circumvent this problem is to use as an objective
function the expected number of on time jobs. The quality
of a sequence is then measured as

n∑

j=1

P(Cj ≤ dj),

which expression has to be maximized. If not all jobs are
equally important, then we can add weights wj and maxi-
mize the total weighted probability.

As mentioned before, a job will always be included in
the optimal order as long as there is a positive probability
of meeting the due date, no matter how small. To avoid this,
we use the minimum success probabilities in this setting,
too, and we only choose jobs that are stochastically on time.
Hence, we are now looking for a sequence in which each
job is stochastically on time and by which the total proba-
bility of meeting the due date is maximized. We solve this
problem by applying dynamic programming again. Since we
consider a job only once in our dynamic programming algo-
rithm, a job that is rejected, although being stochastically on
time, does not get a second chance. This approach is cor-
rect only if adding this job to the final set of selected jobs
cannot lead to a feasible subset, which can be verified by
the analogon of Lawler’s Least-cost-last-rule (Lawler 1973)
formulated in Sect. 3.4.

Note that it may seem optimal to execute the accepted
jobs in EDD-order, but this is not always true. Consider
the following two-job example. Both jobs have a process-
ing time that follows a normal distribution. The data are

68 J Sched (2008) 11: 59–69

p1 = 12, p2 = 2, σ 2
1 = 16, and σ 2

2 = 1. The due dates are
d1 = 14 and d2 = 15, and we choose y1 = y2 = 0.5. The ex-
pected number of on time jobs is equal to almost 1.29 for
the EDD-sequence and 1.5 for the reverse sequence. Note
that, if we would have y1 = y2 = 0.55, then the reverse se-
quence would be infeasible, and the EDD-sequence would
be optimal. This implies that we can only guarantee that
an optimum is found by feeding the jobs to our dynamic
programming algorithms in all nondominated orders. Un-
fortunately, the above example also shows that a job with
larger due date and smaller minimum success probability
should sometimes precede a job with a smaller due date and
a larger minimum success probability, which makes a par-
tial description of the set of optimal orders unlikely. Given
that the jobs are added in order of index, where the initial
numbering is arbitrary, our algorithms below find the best
solution in which the accepted jobs are executed in order of
index.

We start with the instance class with processing times
that follow a gamma distribution; the class of instances with
processing times from a negative binomial distribution can
be dealt with in the same way. Given a sequence in which
Jj is an accepted job, we use Qj to denote the set of ac-
cepted jobs up to and including Jj . To compute P(Cj ≤ dj)

we only need p(Qj). To measure the quality of this solu-
tion, we need to know

∑
i∈Qj

P (Ci ≤ di), which we denote
as Pr(Qj). We can capture this information by using state-

variables fj (t) (j = 0, . . . , n; t = 0, . . . ,
∑j

h=1 ph), which
denote the maximum value Pr(Qj) over all subsets Qj of
{J1, . . . , Jj } with p(Qj) = t . Working this out is standard,
and therefore we omit it for reasons of brevity.

A similar algorithm can be used for the instance class
with equally disturbed processing times, but now we need to
keep track of |Qj | as well. We therefore use state-variables

fj (k, t) (j = 0, . . . , n; k = 0, . . . , j ; t = 0, . . . ,
∑j

h=1 ph),
which again denote the maximum value Pr(Qj) over all
subsets Qj of {J1, . . . , Jj } with |Qj | = k and p(Qj) = t .

Finally, the instance class with normally distributed
processing times can be dealt with by a similar dynamic
programming algorithm. We need to keep track of p(Qj),
σ 2(Qj), and Pr(Qj) in each iteration. Therefore, we use

state-variables fj (s, t) (j = 0, . . . , n; s = 0, . . . ,
∑j

h=1 σ 2
h ;

t = 0, . . . ,
∑j

h=1 ph), which denote the maximum value
Pr(Qj) over all subsets Qj of {J1, . . . , Jj } with σ 2(Qj) = s

and p(Qj) = t .
The weighted versions can be dealt with through straight-

forward generalizations of the above algorithms.

6 Concluding remarks

In this paper, we have looked at the problem of maximizing
the (weighted) number of on time jobs in a stochastic envi-

ronment. To cope with the stochastic completion times, we
have introduced the concept of a job being stochastically on
time. This concept is more general than the requirement that
the expected completion time is no more than the due date,
and it offers the possibility to the client to ask for a higher
reliability of on time completion. Moreover, a similar ap-
proach can be used in the situation that a penalty has to be
paid for tardy completion, which may depend on the actual
completion time, and the manufacturer accepts a job only if
the expected profit is large enough.

We have analyzed four classes of stochastic processing
times, which all allow us to describe the completion times
as stochastic variables with an accessible distribution. We
have formulated a general theorem that states sufficient con-
ditions that allow us to reformulate the stochastic problem
into an equivalent deterministic problem irrespective of the
values of the minimum success probabilities. We have fur-
ther shown that, if only a part of these properties were met,
then we can solve the problem given the order in which the
accepted jobs are to be executed.

There are several open questions and directions for future
research. The first one is to derive more dominance rules
that must be satisfied by an optimal order to add the jobs in
the dynamic programming algorithm. Another direction is to
introduce a ‘look-forward’ time, during which information
can be gathered concerning the actual processing times of
the first jobs in the schedule. Closely related to this is to put
the problem in an on line context. Finally, it is an interest-
ing question to find out whether there is a link between our
model and the model of maximizing the expected number of
on time jobs.

We further want to point out that, whereas we have con-
sidered the single machine problem only, a similar approach
can be used to solve parallel machine problems with sto-
chastic processing times.

Acknowledgements The authors want to express their gratitude to
Sem Borst and to an anonymous referee for their helpful comments on
an earlier draft of the paper.

References

Dean, B. C. (2005). Approximation algorithms for stochastic schedul-
ing problems. PhD thesis, MIT. www.cs.clemson.edu/~bcdean/
bdean_phd_thesis.pdf.

Jackson, J. R. (1955). Scheduling a production line to minimize max-
imum tardiness (Research Report 43). Management Science Re-
search Project, University of California, Los Angeles.

Karp, R. M. (1972). Reducibility among combinatorial problems. In R.
E. Miller & J. W. Thatcher (Eds.), Complexity of computer com-
putations (pp. 85–103). New York: Plenum.

Law, A. M., & Kelton, W. D. (2000). Simulation modeling and analy-
sis. New York: McGraw–Hill.

J Sched (2008) 11: 59–69 69

Lawler, E. L. (unpublished) Scheduling a single machine to minimize
the number of late jobs. Unpublished manuscript.

Lawler, E. L., & Moore, J. M. (1969). A functional equation and its
application to resource allocation and sequencing problems. Man-
agement Science, 16, 77–84.

Lawler, E. L. (1973). Optimal sequencing of a single machine subject
to precedence constraints. Management Science, 19, 544–546.

Moore, J. M. (1968). An n job, one machine sequencing algorithm
for minimizing the number of late jobs. Management Science, 15,
102–109.

van den Akker, J. M., & Hoogeveen, J. A. (2004). Minimizing the num-
ber of tardy jobs. In J. Y. -T. Leung (Ed.), Handbook of schedul-
ing, algorithms, models, and performance analysis (pp. 227–243).
Boca Raton: CRC Press.

	Minimizing the number of late jobs in a stochastic setting using a chance constraint
	Abstract
	Introduction
	Moore-Hodgson's algorithm reviewed
	Stochastic processing times
	Gamma and negative binomial distributed processing times
	Equally disturbed processing times
	Normally distributed processing times
	The nonagreeable case

	NP-hardness
	Maximizing the expected number of on time jobs
	Concluding remarks
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

