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Scheduling Algorithms for Procrastinators

Michael A. Bender Raphaél Clifford Kostas Tsichlals

If once a man indulges himself in murder, very soon he com#sin little of robbing; and from rob-
bing he comes next to drinking and Sabbath-breaking, amd fnat to incivility and procrastination.

— Thomas de Quincey

Abstract

This paper presents scheduling algorithms for procrastinawhere the speed that a procrastinator
executes a job increases as the due date approaches. Wepgivel ff-line scheduling policies for
linearly increasing speed functions. We then explain th@paational/numerical issues involved in
implementing this policy. We next explore the online seftishowing that there exist adversaries that
force any online scheduling policy to miss due dates. Thimissibility result motivates the problem of
minimizing themaximum interval stretchf any job; the interval stretch of a job is the job’s flow time
divided by the job’s due date minus release time. We showsthatral common scheduling strategies,
including the “hit-the-highest-nail” strategy beloved pcrastinators, have arbitrarily large maximum
interval stretch. Then we give the “thrashing” scheduliotigy and show that it is ®(1) approximation
algorithm for the maximum interval stretch.

1 Introduction

We are writing this sentence two days before the deadlindortimately that sentence (and this one) are
among the first that we have written. How could we have delagethuch when we have known about this
deadline for months? The purpose of this paper is to expléywe have waited until the last moment to
write this paper.

In our explanation we model procrastination as a schedplioglem. We cannot use traditional schedul-
ing algorithms to model our behavior because such algosttiomnot take into account our (and humanity’s)
tendency to procrastinate. The advantages of procrastinate well documented: the closer to a deadline
a task is executed, the less processing time the task apgpaaguire. Hence, it is common for a person to
delay executing some onerous job in order to spend as litike &s possible working on it.

Regarding this paper, it will certainly be written quickly #will have to be, since the deadline is near.
Perhaps we will write faster under pressure because we xyiktred less time overanalyzing each design
option. Other aspects of the paper may change because ¢htkipressure. In any case, the writing will
proceed faster than if we had begun earlier.

Our scheduling problem for procrastinators is unusualaitiie processing time of a job depends on the
times when the job is run. We are given as input a set of jobs {1, 2,...,n}. Each jobj has release time
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rj, due datel;, and workw;; without loss of generality, we assume that the jobs arexedi®dy increasing
release timesPreemptioris allowed; that is, a running job can be interrupted andnmesiilater. The speed
at which joby is run depends on the times thais executed; the closer to the due ddjfethe faster; can
be executed. Specificallgpeed functiory;(¢) indicates that at time, job j is executed with speefi;(t);
thus, if j is executed during time intervat, b, thenftb:a f;(t) dt units of work of jobj complete.

Throughout most of the paper we focus lorear speed functions. We assume that when jdbst is
released, it is executed with spe@din accordance with this last assumption, when the call &qeps first
appeared, we snapped into action and accomplished nothing.

Despite our whimsical and self-referential style, we haperhphasize that the scheduling problems on
job streams with time-dependent processing times haveamttical subtlety as well as practical relevance.
The time-dependent processing models in this paper maydsel éigr industry and sociology because they
give better scheduling models of human behavior; no modeltiedy be accurate that does not account
for people’s ability to work faster under the temporary stref deadlines. More generally, many common
scheduling problems in both daily life and industry havés$ashose processing times are time-dependent.
For example, an airplane that is late in arriving may havebtheerding procedure expedited, a construction
project that is behind may have more workers assigned tmdt,aashipment that is late may be delivered
faster by using an alternative, more expensive means afgcatation. Indeed a major reason for the success
of companies such as Fedex, UPS, and DHL is that the worldes fitith scheduling problems executed
by procrastinators.

Related Work

A number of other optimization problems have well studiedetidependent variants, including work on
time-dependent shortest paths [25] and time-dependent fldé; 17]. Some authors, typically in the
operations-research community, have also worked on stihgduith time-dependent processing times (see,
e.g., [2,5, 18, 19)]), but for the offline and nonpremptiveeca®f course, preemptive and online models
are best for modeling the behavior of procrastinators, vemal tto timeshare and thrash as the deadlines
approach. Moreover, our introduction of preemptive schieduwith time-dependent processing times re-
quires an entirely different model. Previous work has assiithat the processing time(¢) for job j is a
function of the starting timeé. We cannot have such a model in a preemptive case becausith®@y be
executed during many different time intervals. This issusivates our need for processor speeds: jjab
executed with speef;(¢) at timet; the processing time is the sum over all intervals whenyjjabexecuted,
and the integral off;(t) over all times that the job is executed must equal the job’skwuriously, if

we analyze existing nonpreemptive models (e.qg., lineaglgrehsing processing times) and analyze what
processor speeds and total work must be to generate thesesgirg times, then we can create instances
where the processing speeds approach infinity; clearly aumbdel is unrealistic.

The most closely related work in the literature is on schieduhlgorithms for minimizing power con-
sumption and, in particular, on “speed scaling.” See [1,80727, 28] for some recent results and [21] for
an excellent survey. The idea of speed scaling is that theepsing speed of a job is variable, but faster
speeds consume more power. This ability to vary the speedmisiscent of the procrastinator who can run
at unsustainable rates near the deadline. However, unlitesispeed-scaling model, the procrastinator has
less freedom in choosing the processing speed; the pragesseed is solely determined by the proximity
to the deadline.

We note that there exist other scheduling papers where ggoce have different speeds, both for “re-
lated” processors [9, 11, 12] and for “unrelated” proces$nB, 22, 24]. However, neither situation models
procrastination scheduling (or speed scaling), where thegssing speeds per job change over time.

There are other scheduling problems on how to scheduletagiieorkers, such as the lazy bureaucrat
problem [3,4,20]. However, the lazy bureaucrats in the dalireg problem are trying to accomplish as few



of the jobs as possible, whereas the procrastinators inufiert scheduling problem are trying to finish all
of the jobs.

Results

In this paper we present the following results.

e Optimal offline scheduling -We first giveoptimal offline scheduling policies for the case where a
scheduling instance has a feasible solution. We consigecabe of linear speed functiongt) =
m;(t — r;), for constantm; > 0. (In the offline problem, the scheduler sees the entire probl
instance before it has to begin scheduling.) Specificallg, folicy gives the feasible solution in
which the processors spend the minimum total time runningesé€ results are consistent with a
procrastinator who, after missing crucial deadlines, rauge could do it all over again. . ..”

e Computational/numerical issues We show that, curiously, despite a simple optimal schedulin
policy, actuallydetermining feasibilityof the resulting schedule is not even known to be in NP. In
particular, determining feasibility is hard because ofdbmputational difficulties of summing square
roots. We know of few scheduling problems where this iniriguissue arises.

e Online scheduling —We next turn to online scheduling. Not surprisingly, thesibdity problem is
not achievable in an online setting. In particular, eveihéf online procrastinator has a feasible set of
jobs, he/she may be forced to miss an arbitrarily large nurobgue dates.

e Online maximum interval stretch -A-procrastinator may be forced to execute jobs beyond ther d
dates, that is, for some jof the completion tim&’; may exceed the due dafg. Generally speaking,
if a procrastinator has a year to do a joland completeg two weeks late, the situation is better than if
the procrastinator has only one day tojddut completes two weeks late. This observation motivates
the notion ofinterval stretch defined as the flow time (time the job spends in the systengetivby
the job's interval. More formally, the interval streffbaf job j is defined as; = (Cj—rj)/(dj — ).
We consider the optimization metngaximum interval stretcfabbreviated tanax-stretch, max; s;.

We study online scheduling of feasible scheduling instan@ée explore traditional scheduling poli-
cies for the procrastinator, such as First-In-First-OUF@®), Shortest-Remaining-Processing-Time
(SRPT), and earliest-due-date (EDD). We show, not surigi that these policies do not perform
well and can lead to unbounded max-stretch. A common scimgdpiblicy among many procrastina-
tors is “hit-the-highest-nalil”, that is, execute the tals&ttmost crucially requires attention, formally,
Largest-Stretch-So-Far (LSSF). In LSSF we execute thanjtiel system thaturrentlyhas the largest
interval stretch. We prove, perhaps surprisingly, that E88n lead to arbitrarily large max-stretch.
We conclude our exploration of max-stretch by exhibitingoafine algorithm for the procrastinator,
THRASHING, that yieldsO(1) max-stretch. This last result holds even when each job hasiadoon
its maximum execution speed.

2 Offline Procrastination Scheduling

In this section we consider tludfline procrastination-scheduling problem. First, we give amoakschedul-
ing policy based on a simple priority rule. Then we show tha computationally difficult to determine
whether a scheduling instance is feasible, despite th@ifrirule. We focus on linear speed functions,

1This definition deviates from the standard notion of strettiere the flow time is divided by the total time the job has spen
working [8]. However, it is appropriate here as jobs have dites which can be missed and job speed is time-dependent.
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Figure 1: ScheduleA* results from the merge of’ and LRTB. Schedulel’ results fromA by exchanging jobg and
1. The small gap aftet; indicates that this exchange is more time efficient.

fi(t) = m;(t —r;). We will show that, without loss of generality, we can assuha all speed functions
can have unit slope, i.e., that; = 1.

Optimal Offline Scheduling Policy

We now give an optimal scheduling policy for the offline prstination problem based on a simple priority
rule.

We first define terms. We say that a schedulteasibleif all jobs complete within their intervals; we
say that a feasible scheduleaptimalif the total processing time is minimized. Observe that ioatimal
schedule has no idle time then all feasible schedules aveptimal.

The optimal algorithm starts at the latest due date and wmakkwards in time, prioritizing jobs by the
latest release time. Whenever a new job is encounteredggolfs due date) or a job completes, then the
job in the system having the latest release time is serviééakere two or more jobs have the same release
time the scheduler chooses between them in an arbitraryxXaa fay. We call this scheduling algorithm
Latest Release Time Backwards (LRTB)

Observe that LRTB is the traditional Earliest Due Date (ERDIjcy (see, e.g., [23]) when we reverse
the flow of time so that release dates become due dates andchtiselcome release dates. In traditional
scheduling, time can flow in either direction, so that botifBRand EDD generate feasible schedules. In
contrast, in the procrastination problem, EDD performsrlypsee Sectiohl3. The intuition of the algorithm
is that it always tries to push the work of a job as near to its date as possible in order to maximize the
processing speed.

Observe that the job priorities depend only on the releasestiand not the slopes. This lack of de-
pendence on the slopes should not be surprising becausenvilnaform any scheduling instance into an
instance having all unit slopes by rescaling eachjjsbvork to bew; = wj/m;. Alternatively, we could
give all jobs unit maximum speeds;(d;) = 1, by settingm; = 1/(d; — r;) and then rescaling the work.
Consequently, in the rest of the paper, we assume that trelgpbs ard, unless otherwise stated.

In the following we prove that algorithm LRTB produces theiwmyal schedule.

Theorem 1 LRTB is an optimal algorithm for the procrastination schig problem. There is a unique
optimal solution provided that the release time of the jofgsdastinct.

Proof. The proof is by an exchange argument. We first assume thatmjphs have the same release time
and then relax that assumption at the end. Suppose for teeo$akntradiction that there exists an optimal



scheduleA different from LRTB. Specifically, these schedules differthe order of execution of two jobs
with different release times. We perform a single excharfgeaok to yield another feasible schedulg
having smaller total processing time thdanthus obtaining a contradiction.

Consider the latest instant in time where LRTB differs franand call this time4. Consider an arbi-
trarily small interval[ts, 4], when jobj runs in LRTB and jok runs in A. See Figure 1 for a depiction of
the setting. By the definition of LRTH, j, andt,, r; < r;. Consider some earlier time intenval, ¢»], i.e.,
to < t3, when jobj runs in A. Definety, to, andts so that the amount of work that can be executed on job
j is the same, that is,

to tq
|- swa= [ g

=t t=

Now we make a new schedule’ from A by exchanging the work done during intervils to] to [ts, t4].
Specifically inA*, job j is run during|ts, t4] and jobi is run during|t, t2]. We know that this exchange is
allowed becausé; > t, (from the LRTB andA schedules) and because< r; < t; (from the A schedule
and because; < ;). By the definition of the intervals, the same amount of wankj @an be done during
each interval. Computing the area of the trapezoids defigefj (), we obtain

ty + 13 to + 11
(t4—t3)< 5 —Tj)mj=(t2—t1)( 5 —Tj)myv

meaning that
(5 —13)/2 = rj(ts — t3) = (5 — £1)/2 — rj(t2 — t1). (1)
Observe that, — t3 < to — t; because the speed thats executed durindts, ¢4] is greater than during
[tl, tg].
The amount of work on jobthat needs to be exchanged frém ¢4] to [t1, o] is (t3—13) /2 — (ta—t3)r;.
But sincer; < rj andty —t3 <ty — ty,

(rj —ri)(ta — t3) < (rj —ri)(t2 — t1) 2
From (1) and[(R), we obtain the inequality
(5 = 3)/2 = rilta — t3) < (83 — 11)/2 = ri(ta — t1),

and therefore interval, t] is big enough to execute all of the work on joland still leave some idle
time. Hence, scheduld* is feasible and spends a smaller amount of time working. @hiss us our
contradiction.

We now explain the case where two jobsnd 2 have the same release time. Assume thatljad
scheduled to execute some work in the time inteftalt2] and job2 is scheduled to execute some work in
the interval[ts, t4]. If we exchange the work for jobisand2, the relationship between the new time intervals
and the old is expressed by the simple equation t3 = t3 — t2. Therefore the total time to execute both
jobs remains the same after exchange. As a result, the orddrich these jobs are executed does not affect
the total processing time, and so LRTB is an optimal algoritto matter what the tie-breaking rule is. This
completes the proof. L]

Determining Feasibility May Not Be in NP

One of the remarkable features of the procrastination prolik that, despite having the simple optimal
scheduling policy LRTB, it is unclear whether determinihg feasibility of a scheduling instance is even in
NP, even for linear speed functions.



The difficulty is numerical. Calculating the actual progeggime of the jobj given a starting or ending
time ¢ and speed functiorf;(t) = t — r; requires computing square roots. Determining the featyilf
the schedule therefore requires computing sums of squate aad their relationship to an integer, and this
problem appears to be numerically difficult.

The basic sum-of-square-roots problem is to determinelvenet

> VE =1

i=1
for somez;, I € Z (1 < i < m). Because there is no known polynomial-time algorithm faridieg the
sum-of-square-roots problem, basic computational-gégnpeoblems such as Euclidean TSP or Euclidean
shortest paths are not known to be in NP. See the Open Profenject [14, Problem 33] (originally
from [26]) and the Geometry Junkyard [15] for nice discussiof the sum-of-square-roots problem.

We establish the difficulty of procrastination schedulinggooviding a reduction from any instance of
the sum-of-square-roots problem. To derive the cleandsict®n, we allow the existence of nonlazy jobs,
i.e., jobs that are always executed at the same speed avingrslope). (It is likely that a reduction can be
made to work using no nonlazy jobs, but at the cost of additioomplications.)

Theorem 2 The procrastination scheduling problem is not decidablpatynomial time unless the sum-of-
square-roots problem is decidable in polynomial time. Tioemstination scheduling problem is not in NP
unless the sum-of-square-roots problem is also in NP.

Proof. ~ We reduce the sum-of-square-roots problem to the pronedigtn scheduling problem. Given
integersrey, ..., x,—1 andl, we will create a procrastination-scheduling problem witjobs. The procras-
tination scheduling problem will be feasible if and onl)@;’;‘f Vo > 1.

We first give the structure of the scheduling instance and tedermine the release times, deadlines,
and work for each job. In our scheduling instance, jobs. n — 1 have nonoverlapping intervals, so that
r1 = 0, and the due date of one job is the release date of thenext=d; (i = 1,...,n — 2). The speed
functions have slopé&. Jobn is nonlazy. We place this job’s interval so that it overlapthhe intervals of
all other jobs, i.e.y,, = v andd,, = d,,_1.

We now specify jobd,...,n — 1. For jobi, we choose interval length (= d; — r;) and workw; to
be positive integers such thél% — 2w; = x;; many choices of; andw; will work. It suffices to choose
positive integers; and w; such thatd < ¢7 — 2w; < ¢;. For example, by choosing = z; + 2 and
w; = (z? + 3x; +4)/2, all conditions are fulfilled. Note that? + 3z; + 4 is always an even number for
x; > 0 and thusw; is an integer.

Each jobi (i = 1,...,n — 1) runs fastest when pushed to the right side of its intervat show that

such ajob runs in timg = ¢; — \/¢? — 2w;. To establish this running time, we set up and solve a quiadrat
equation. By simple geometry, we have the following reladitip between running timeg and workuw:

w; = ti (EZ — tl/2) .
This quadratic equation has two roots,

ti :Eijzwﬁf—mui,

and the smaller root is the running time of the job. (This carséen since the larger root is greater than
the interval length.)
The total time taken by alt — 1 nonoverlapping jobs when scheduled optimally is therefore

n—1 n—1 n—1 n—1
SNli=> JE=2w=> 6i—>
i=1 1=1 1=1 i=1

6
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Figure 2: (a) Case 1: jold is run at timery = 3. Then job3 arrives. Either jol2 or 3 is forced to miss its due date.
(b) Case 2: joR2 is run at timer, = 2. Then job4 arrives. Either jold, 2, or4 is forced to miss its due date.

We now construct the nonlazy job As described earliet,, = 0 andd,, = d,,_1. We set workw,, = I.
There is a feasible solution for this scheduling problermd anly if

n—1 n—1
(LL27UH+_§:€i_'§:‘V5?
=1 =1

This is the case, as long &s< Z;‘:‘f \/Zi, since by construction,, = d,—1 = Z;‘:‘f £;. Thus, an arbitrary
instance of the sum-of-square-roots problem can be rediecad instance of procrastination scheduling,
implying the numerical difficulty of procrastination scheidg. L]

3 Online Algorithms

This section considers the online procrastination sclieglgroblem. In the online problem, jolis .. n ar-
rive over time. Joly is known to the scheduler only at the release timeat which point the scheduler also
learns the values ab; andd;. We first show that it is difficult for an online scheduler todfifeasible sched-
ules. Next we search for online algorithms that generatdl sitk@ally constant, max-stretch. We show that
traditional scheduling policies such as EDD, SRPT, and FH&We large, typically unbounded, max-stretch.
We next consider the scheduling policy Largest-Stretch=&0(LSSF), which executes the job in the sys-
tem currently having the largest interval stretch. Thisqydlormalizes the “hit-the-highest-nail” scheduling
policy, that is, execute the task in the system that mostiaiycequires attention. More precisely, in the
LSSF scheduling policy, we run the job in the system that hasrred the largest interval stretch so far, that
is, at timet we execute the job that maximizest — r;)/(d; — r;). We show that, remarkably, LSSF also
has unbounded max-stretch. We conclude this section byiérigi the scheduling algorithmHRASHING,
whose max-stretch is within a constant factor of optimal tireth give a generalization to non-linear speed
functions. One consequence of this last result is that gmtideomax-interval-stretch bounds are achiev-
able even when the procrastinator's maximum processingdsigeat most a constant factor faster than a
nonprocrastinator’'s speed.

Basic Results

We first show that any online algorithm can be forced to missdhtes, even when the scheduling instance
is feasible. A jobj hasslackif the work, w;, associated with it is less than the area betwgeandd;, i.e.,
w; < (dj —15)%/2.

Theorem 3 For any online algorithm, there is a feasible job stream orichithat algorithm misses due
dates.



Proof. We show that regardless of the online scheduling decistbesadversary can force the algorithm
to miss due dates by maliciously selecting future jobs. Theesary first sends joldsand2, wherer; < ro
andds < d;. Both jobs1 and2 have some slack and the dgt 2} is feasible. At timer, there are two
cases:

1. Jobl is serviced at time,. Then the adversary places a jBlwith o < r3 < ds < dy. Job3 is
designed so that the entire interJa}, d-| is required to complete job and 3 by their due dates.
Since the online algorithm works partially on jabduring this interval, either joB or 3 misses its
due date; see Figuré 2(a).

2. Job2 is serviced at time,. The adversary places a jalwith 4, > d andd, < dy. Job4 is designed
so that all the time betweery, andd; is required to complete jobk 2, and4 by their due dates.
However, as jol2 has some slack we know that by Theorflgm 1 that the optimakgtras to runl at
time r, and that this strategy is unique. Therefore, by runrirag timery the algorithm misses at
least one of the due dates; see Fidure 2(b). U]

Observe that, as stated, this example has job parametémadlidoe irrational (because of square roots).
In fact, we can round job parameters so that all are ratiamditlae input size (number of bits) is polynomial
inn.

By repeating this construction, the adversary can forcelterithm to miss an arbitrarily large number
of due dates. Thus, Theordr 3 explains why procrastinatassmave a harder time juggling online tasks
than non-procrastinators.

We now show that most traditional scheduling policies fon4poocrastinators do not work well for
procrastinators. The following theorem gives the perfaroeaof First-In-First-Out (FIFO), Earliest-Due-
Date (EDD), and Shortest-Remaining-Processing-Time {SRP

Theorem 4 There exist feasible scheduling instances of a constantaumwf jobs for which the max-
stretch of the First-In-First-Out (FIFO) and Earliest-Di®ate (EDD) scheduling policies can be arbitrarily
large. There exist feasible scheduling instances jobs for which the Shortest-Remaining-Processing-Time
(SRPT) scheduling policy achieves a max-stretcB@fn).

Proof. There is a bad example for FIFO consisting of only two jobg.7he< o < do < dy. Setw; and
ws SO that optimal schedule is to execute pto completion as soon as it arrives, and then finishljoln

FIFO, job2 will not start work until job1 has completed and will finish late. The interval stretch &f 20
can be made arbitrarily large by decreasingandds — ro or by increasingl; andw;.

There is a bad example for EDD consisting of only three jobs.béfore, letry < ro < do < dj. In
EDD, job2 is executed starting at its arrival time because this job has the earliest deadline. By the proof
of TheorentlL, jobl can be made finish its work after its due date. Now set a thbds@thatrs = d; and
ds — r3 i1s small compared to the lateness of jolirhe interval stretch of joB can be made arbitrarily large
by decreasings — r3 or by increasing the lateness of job

There is a bad example for SRPT consisting:gbbs. All jobs are released at tinfle Give job1 the

largest amount of workw, = 1. Give all other jobswy, = w3 = --- = w, = 1/2. Setd; so that jobl
must be executed as soon as it arrives in order not to be latel;i= 2. Give all other jobs later deadlines:
dy = d3 = --- =d, = \/n+ 2. In the optimal schedule, jobis executed first and the remaining jobs

are executed in any order. In contrast, in SRPT, jpbs n are executed before joh One job will be
completed at timd, the next at time/2, the next at time/3, and the last at timg/n — 1. (A calculation
similar to this is explained in greater detail in the nextigec) Only after all other jobs complete does jbb
complete, giving it an interval stretch 6f(y/n). L
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Figure 3: (a) Jobh2 starts work at and completes after its due date. Joktarts work at its due date and finishes with
a stretch ofy/2 (b) A stream of jobs with increasing stretch. The stretctobf4 is v/2 when it starts work at time
andv/3 when it finishes.

Hitting the Highest Nail Does Not Work

A common scheduling strategy among procrastinators istheithighest-nail,” that is, execute the job that
is farthest behind. Since the objective is to minimize thedstaetch, “hitting-the-highest-nail” translates
to running the job that has the largest interval stretch. ¥etlsis strategyLargest-Stretch-So-Far (LSSF)
More precisely, in the LSSF scheduling policy, we run theijolbhe system that has incurred the largest
interval stretch so far, that is, at timave execute the job that maximizest — r;)/(d; — r;). Thus, the
algorithm might execute a joh but switch to a smaller job that arrived aftet, oncej’s interval-stretch-
so-far surpasses that ©.

Remarkably, even for feasible scheduling instances, LS&fFsuhedule jobs to have unbounded max-
stretch. Below we exhibit such an adversarial schedulistaimce that confounds LSSF. For simplicity, we
describe a scheduling instance where job parameters mayatienal because of square roots. We then
show how to round the job parameters so that all are rational.

Our bad instance consistswfobs, indexed by increasing arrival time. We ensure that fab. n have
no slack, that is,

(dj —;)?

2
Thus, in order for jobj (2 < j < n) to complete by its deadline, jopmust be executed without pause
during its entire interval. In contrast, jdbdoes have slack.

We arrange jobg-3 so that in LSSF, jol3 does not begin executing until after its due déte To do
so, we assign intervals for jodsand2 so thatrs > 71, ds < dy, andd; — r, = O(1). Thus, in the LSSF
schedule, jold works uninterrupted until some point in j@s interval when jol2 has the largest stretch-
so-far and so begins executing. Since Jdimas no slack, it finishes late, after its deadliiae We place jolB
so its release time is jolis deadline and its deadline is j@s completion time, i.er3 = dy andds = Cs.

In LSSF, job3 does not start until its due daté;, and then works uninterrupted until it completes for an
interval stretch ok; = /2; see Figur€l3(a).

We now assign jobg. .. n as follows; see Figulg 3(b). Each jglhas release time

wj = (2<j<n). 3)

rj=dji1 (3<j<n). 4
Moreover, in LSSF we assigf) so that jobj has a stretch-so-far at tingg;_; of
Cjo1—rj Cjim1—rj—1 :
—_— = S5 _ = - 4 < < n). 5
dj — T it dj—l —Tj—1 ( =J= ) ( )

In the following we show that in LSSF,, = ©(y/n). In contrast, in OPT, all jobs finish before their
deadlines: jobg...n run in their intervals and jolb begins before joR arrives and completes after job
completes.



We now analyze the performance of LSSF on thegabs.

Theorem 5 There exist feasible scheduling instances jofbs for which the scheduling policy LSSF achieves
a max-stretch 00 (y/n).

Proof. We analyze the performance of LSSF on the schedule instawve® apbove. We derive a recurrence
for the stretchs; as a function o&;_;. Then we solve the recurrence, showing that= O(y/n).
Define intervall; = d; —r;. Recall that in LSSF, job only begins executing at tim€;_; = r;+s;_1.;
because, froni{4) andl(5), while jgb- 1 is in the system, its stretch-so-far is larger than that bfjje.
We now determine the time; that job; spends running. By Equatioris (3) abdl (5), we have
_5

wj = & = sjlzg+ o

Do QSI\D

(j=4).

Solving forz; and taking the positive root, we obtain

lL'j:—Sj_le—Fij/l—FS?_l (]24) (6)

Cjiita—r;
I

Thus, the stretch is

8j = (=4).

From [B), the previous equation simplifies to

X, R
si=siat7 (124,

I;
Finally, from (@) we substitute far;, obtaining
3] = 1 + 3] 1 (] 2 4)
The solution to this recurrence is
sj=vj—1 (1=3), (7)

meaning that the max-stretchsds = v/n — 1.
We now show how big joli’s interval has to be for the entire scheduling instance téebsible. We
make a recurrence for the interval lendth By (5), we obtain

Cj_l — Tj Tj

ri_1— .
IL.=I (|l —2L"—"7 |=7I_,|14+>2"— 7 >4).
i =1 1<Cj_1—rj_1> j 1( +Cj—1—7“j—1> (j>4)

Finally, by Equationd (4) an@(7), we obtain

Ij:Ij_1<1—|—?1_1>: j_1<1—\/jl_—2> (]24)

Therefore, assuming w.l.0.g. that= 1, an upper bound o#; is

Ij:ﬁ<1—%)ge—m (j>3).

i=2 t
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The sum of all intervals lengths is
D L= eV =00)  (723).
j=3 j=3

Consequently, it suffices to st = O(1) andw; = O(1) to obtain a feasible schedule. U

This particular example has job parameters that may beoinat(because of square roots). In fact, we
can come up with another scheduling instance so that the sipel (number of bits necessary to describe
the scheduling instance) is polynomialsin The idea is to round job parameters so that all are ratiohal.
round the interval length; — r; of job j up to a rational number and round the wark down to a rational
number. We make both; andd; rational and retain Equatiofl(4). We make the equality indfigns [3)
and [3) only approximate, that is, for arbitrarily small negatives; ande’;,

wjte;=(dj—r)?/2  (2<j<n)
Cj—l_rj / .
W—Fszsj'_l (4§]§n)

The analysis for Theoren 5 carries over.

©(1)-Competitive Online Algorithm for Max-Stretch

We now exhibit the strategyHRASHING, which bounds the interval stretch of each jobdbyrhe THRASH-
ING strategy models the extreme case of a procrastinator whordiienvork on any job until it has already
passed its due date. More formally, in the this strategy hdgexecuted until it has a stretch of at le2st
Among all such jobs, the procrastinator executes the joletfieved latest.

Before proceeding, we explain our choice of terminology.oferating system is said to ‘thrash’ when
it begins running inefficiently because it spends too muctetcontext switching. ‘Thrashing’ is now also
commonly used among computer scientists to describe theitbehavior when they have too many jobs to
finish. The name is applied here because the procrastinapeiass to be thrashing. Each time a more recent
job has too large an interval stretch, the procrastinatandbns the current job and executes the more recent
job.

We begin by proving the following simple lemma:

Lemma 6 Consider a feasible set of jolds...,m and consider times and d, where allr; > r and
d; < d. Leta-DLY be any scheduling policy that only schedules work frolos jhaving stretch at least,
wherea > 1. The total amount of time required to run all jobs usimgPLY is at mostd — r) /.

Proof. Because the set of jobs is feasible, there is some way to slehedch job within its interval and
the total time spent working is at mast- . Now consider running--DLY. For any given jobyj, the slowest
that 7 runs ina-DLY is at leasta times faster thar runs in the feasible schedule. The lemma follows
immediately. L]

Theorem 7 For any feasible set of job§,HRASHING bounds the interval stretch of every job 4y

Proof. The proof is by contradiction. Define tlextended due dat@- of job j to be the time thaj must
complete by to guarantee an interval stretchl afhat is,ch = 4(d; — r;) + r;. Consider some job that
does not meet its extended due date. For simplicity and witloss of generality, we normalize time so that
r; = 0 andd; = 1. Jobj cannot begin until tim@ and by assumption completes at some tjfne 4.
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By Lemmal®, the total amount of time spent working on all jolrel(iding j) whose intervals are
entirely contained withirj0, 4] is at most4/2 = 2 units of time. Moreover, there can be no gaps in the
schedule during the intervé, f] because otherwisgwould work during the gaps and finish earlier than
time f. Finally, by the definition of FRASHING, there can be no work scheduled durii2gf] on jobs
having release dates befdrdecauseg has higher priority. Thusf cannot be greater thahand we obtain
a contradiction. (]

It may, of course, be unrealistically optimistic to give thdine procrastinator the power to run arbitrar-
ily fast. However, it follows from Theorel 7 thatiRASHING never runs any job faster thantf;(d;). In
fact, the proof of Theorei 7 indicates that we can reduceuhyi®r bound still further t@ f;(d;) without
increasing the max-stretch; we need only modify the speectifons so that the maximum job speed for job
Jjis limited to2f;(d;).

4 Conclusions

The first sentence of the conclusion, which summarizes therp& being written just a few hours before
the deadline. As we were writing this paper, we were structhbywealth of open problems in this area. For
example, what is the right way to resolve the computationdlraumerical issues associated with linear and
other speed functions? The scheduling problem (even infflieeocase) becomes even more complex with
speed functions that may be nonzero at jobs’ release timiéss (s because LRTB fails, and the optimal
schedule seems to depend on the workload as well as on tresgéthe speed functions.) For our online
algorithm we did not try to optimize the constant in the oaloompetitive ratio fully; what is the smallest
that we can make this constant, especially where the speetidas are sublinear?

We have also considered piecewise-constant speed fus@iahhave linear programming solutions for
several variants of the problem. The LP has constraintsson &me intervalt;, ¢2] in which the execution
speeds of all jobs are constant. (Specifically, witfin ¢2) there are no job release times or deadlines,
and for each joby the function of f;(¢) is constant whent € [t1,t].) There are many metrics we can
optimize. For example, we can minimize or maximize the tatabunt of time working. Alternatively, we
can introduce a notion of stress for the procrastinator arttitfie least stressful schedule.

Finally, what about other metrics, especially in models igtsme jobs may be left unexecuted? What
about settings where job streams are executed on paralietgsors?

It is now several hours later, just minutes before the deadliWe were searching for the ideal way to
end the paper and circumstances have unfortunately pitaeanswer. A campus-wide power failure at
Stony Brook has cut two hours from our last-minute workimgeiand highlights the difficulties of online
scheduling for procrastinators.
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