
ar
X

iv
:c

s/
06

06
06

7v
2

 [c
s.

D
S

]
14

 A
ug

 2
00

7

Scheduling Algorithms for Procrastinators

Michael A. Bender∗ Raphaël Clifford† Kostas Tsichlas‡

If once a man indulges himself in murder, very soon he comes tothink little of robbing; and from rob-
bing he comes next to drinking and Sabbath-breaking, and from that to incivility and procrastination.

— Thomas de Quincey

Abstract

This paper presents scheduling algorithms for procrastinators, where the speed that a procrastinator
executes a job increases as the due date approaches. We give optimal off-line scheduling policies for
linearly increasing speed functions. We then explain the computational/numerical issues involved in
implementing this policy. We next explore the online setting, showing that there exist adversaries that
force any online scheduling policy to miss due dates. This impossibility result motivates the problem of
minimizing themaximum interval stretchof any job; the interval stretch of a job is the job’s flow time
divided by the job’s due date minus release time. We show thatseveral common scheduling strategies,
including the “hit-the-highest-nail” strategy beloved byprocrastinators, have arbitrarily large maximum
interval stretch. Then we give the “thrashing” scheduling policy and show that it is aΘ(1) approximation
algorithm for the maximum interval stretch.

1 Introduction

We are writing this sentence two days before the deadline. Unfortunately that sentence (and this one) are
among the first that we have written. How could we have delayedso much when we have known about this
deadline for months? The purpose of this paper is to explain why we have waited until the last moment to
write this paper.

In our explanation we model procrastination as a schedulingproblem. We cannot use traditional schedul-
ing algorithms to model our behavior because such algorithms do not take into account our (and humanity’s)
tendency to procrastinate. The advantages of procrastination are well documented: the closer to a deadline
a task is executed, the less processing time the task appearsto require. Hence, it is common for a person to
delay executing some onerous job in order to spend as little time as possible working on it.

Regarding this paper, it will certainly be written quickly —it will have to be, since the deadline is near.
Perhaps we will write faster under pressure because we will expend less time overanalyzing each design
option. Other aspects of the paper may change because of thistime pressure. In any case, the writing will
proceed faster than if we had begun earlier.

Our scheduling problem for procrastinators is unusual in that the processing time of a job depends on the
times when the job is run. We are given as input a set of jobsJ = {1, 2, . . . , n}. Each jobj has release time

∗Department of Computer Science, Stony Brook University, Stony Brook, NY 11794-4400, USA.
Email:bender@cs.sunysb.edu. This research was supported in part by NSF Grants CCR-0208670, CCF-0621439/0621425,
CCF-0540897/05414009, CCF-0634793/0632838, and CNS-0627645.

†Department of Computer Science, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK.
Email:clifford@cs.bris.ac.uk.

‡Computer Engineering and Informatics Department, University of Patras, 26500 Patras, Greece.
Email:tsihlas@ceid.upatras.gr.

1

http://arxiv.org/abs/cs/0606067v2

rj , due datedj , and workwj ; without loss of generality, we assume that the jobs are indexed by increasing
release times.Preemptionis allowed; that is, a running job can be interrupted and resumed later. The speed
at which jobj is run depends on the times thatj is executed; the closer to the due datedj , the fasterj can
be executed. Specifically,speed functionfj(t) indicates that at timet, job j is executed with speedfj(t);
thus, ifj is executed during time interval[a, b], then

∫ b
t=a fj(t) dt units of work of jobj complete.

Throughout most of the paper we focus onlinear speed functions. We assume that when jobj first is
released, it is executed with speed0. In accordance with this last assumption, when the call for papers first
appeared, we snapped into action and accomplished nothing.

Despite our whimsical and self-referential style, we hope to emphasize that the scheduling problems on
job streams with time-dependent processing times have mathematical subtlety as well as practical relevance.
The time-dependent processing models in this paper may be useful for industry and sociology because they
give better scheduling models of human behavior; no model can truly be accurate that does not account
for people’s ability to work faster under the temporary stress of deadlines. More generally, many common
scheduling problems in both daily life and industry have tasks whose processing times are time-dependent.
For example, an airplane that is late in arriving may have theboarding procedure expedited, a construction
project that is behind may have more workers assigned to it, and a shipment that is late may be delivered
faster by using an alternative, more expensive means of transportation. Indeed a major reason for the success
of companies such as Fedex, UPS, and DHL is that the world is filled with scheduling problems executed
by procrastinators.

Related Work

A number of other optimization problems have well studied time-dependent variants, including work on
time-dependent shortest paths [25] and time-dependent flows [16, 17]. Some authors, typically in the
operations-research community, have also worked on scheduling with time-dependent processing times (see,
e.g., [2, 5, 18, 19]), but for the offline and nonpremptive case. Of course, preemptive and online models
are best for modeling the behavior of procrastinators, who tend to timeshare and thrash as the deadlines
approach. Moreover, our introduction of preemptive scheduling with time-dependent processing times re-
quires an entirely different model. Previous work has assumed that the processing timepj(t) for job j is a
function of the starting timet. We cannot have such a model in a preemptive case because the job may be
executed during many different time intervals. This issue motivates our need for processor speeds: jobj is
executed with speedfj(t) at timet; the processing time is the sum over all intervals when jobj is executed,
and the integral offj(t) over all times that the job is executed must equal the job’s work. Curiously, if
we analyze existing nonpreemptive models (e.g., linearly decreasing processing times) and analyze what
processor speeds and total work must be to generate these processing times, then we can create instances
where the processing speeds approach infinity; clearly sucha model is unrealistic.

The most closely related work in the literature is on scheduling algorithms for minimizing power con-
sumption and, in particular, on “speed scaling.” See [1, 6, 7, 10, 27, 28] for some recent results and [21] for
an excellent survey. The idea of speed scaling is that the processing speed of a job is variable, but faster
speeds consume more power. This ability to vary the speeds isreminiscent of the procrastinator who can run
at unsustainable rates near the deadline. However, unlike in the speed-scaling model, the procrastinator has
less freedom in choosing the processing speed; the processing speed is solely determined by the proximity
to the deadline.

We note that there exist other scheduling papers where processors have different speeds, both for “re-
lated” processors [9, 11, 12] and for “unrelated” processors [13, 22, 24]. However, neither situation models
procrastination scheduling (or speed scaling), where the processing speeds per job change over time.

There are other scheduling problems on how to schedule reluctant workers, such as the lazy bureaucrat
problem [3,4,20]. However, the lazy bureaucrats in the scheduling problem are trying to accomplish as few

2

of the jobs as possible, whereas the procrastinators in the current scheduling problem are trying to finish all
of the jobs.

Results

In this paper we present the following results.

• Optimal offline scheduling —We first giveoptimal offline scheduling policies for the case where a
scheduling instance has a feasible solution. We consider the case of linear speed functions,fj(t) =
mj(t − rj), for constantmj ≥ 0. (In the offline problem, the scheduler sees the entire problem
instance before it has to begin scheduling.) Specifically, the policy gives the feasible solution in
which the processors spend the minimum total time running. These results are consistent with a
procrastinator who, after missing crucial deadlines, muses “if I could do it all over again. . . .”

• Computational/numerical issues —We show that, curiously, despite a simple optimal scheduling
policy, actuallydetermining feasibilityof the resulting schedule is not even known to be in NP. In
particular, determining feasibility is hard because of thecomputational difficulties of summing square
roots. We know of few scheduling problems where this intriguing issue arises.

• Online scheduling —We next turn to online scheduling. Not surprisingly, the feasibility problem is
not achievable in an online setting. In particular, even if the online procrastinator has a feasible set of
jobs, he/she may be forced to miss an arbitrarily large number of due dates.

• Online maximum interval stretch —A procrastinator may be forced to execute jobs beyond their due
dates, that is, for some jobj, the completion timeCj may exceed the due datedj . Generally speaking,
if a procrastinator has a year to do a jobj, and completesj two weeks late, the situation is better than if
the procrastinator has only one day to doj, but completes two weeks late. This observation motivates
the notion ofinterval stretch, defined as the flow time (time the job spends in the system) divided by
the job’s interval. More formally, the interval stretch1 of job j is defined assj = (Cj − rj)/(dj − rj).
We consider the optimization metricmaximum interval stretch(abbreviated tomax-stretch), maxj sj.

We study online scheduling of feasible scheduling instances. We explore traditional scheduling poli-
cies for the procrastinator, such as First-In-First-Out (FIFO), Shortest-Remaining-Processing-Time
(SRPT), and earliest-due-date (EDD). We show, not surprisingly, that these policies do not perform
well and can lead to unbounded max-stretch. A common scheduling policy among many procrastina-
tors is “hit-the-highest-nail”, that is, execute the task that most crucially requires attention, formally,
Largest-Stretch-So-Far (LSSF). In LSSF we execute the job in the system thatcurrentlyhas the largest
interval stretch. We prove, perhaps surprisingly, that LSSF can lead to arbitrarily large max-stretch.
We conclude our exploration of max-stretch by exhibiting anonline algorithm for the procrastinator,
THRASHING, that yieldsΘ(1) max-stretch. This last result holds even when each job has a bound on
its maximum execution speed.

2 Offline Procrastination Scheduling

In this section we consider theofflineprocrastination-scheduling problem. First, we give an optimal schedul-
ing policy based on a simple priority rule. Then we show that it is computationally difficult to determine
whether a scheduling instance is feasible, despite this priority rule. We focus on linear speed functions,

1This definition deviates from the standard notion of stretchwhere the flow time is divided by the total time the job has spent
working [8]. However, it is appropriate here as jobs have duedates which can be missed and job speed is time-dependent.

3

Figure 1: ScheduleA∗ results from the merge ofA′ and LRTB. ScheduleA′ results fromA by exchanging jobsj and
i. The small gap aftert1 indicates that this exchange is more time efficient.

fj(t) = mj(t − rj). We will show that, without loss of generality, we can assumethat all speed functions
can have unit slope, i.e., thatmj = 1.

Optimal Offline Scheduling Policy

We now give an optimal scheduling policy for the offline procrastination problem based on a simple priority
rule.

We first define terms. We say that a schedule isfeasibleif all jobs complete within their intervals; we
say that a feasible schedule isoptimal if the total processing time is minimized. Observe that if anoptimal
schedule has no idle time then all feasible schedules are also optimal.

The optimal algorithm starts at the latest due date and worksbackwards in time, prioritizing jobs by the
latest release time. Whenever a new job is encountered (at the job’s due date) or a job completes, then the
job in the system having the latest release time is serviced.Where two or more jobs have the same release
time the scheduler chooses between them in an arbitrary but fixed way. We call this scheduling algorithm
Latest Release Time Backwards (LRTB).

Observe that LRTB is the traditional Earliest Due Date (EDD)policy (see, e.g., [23]) when we reverse
the flow of time so that release dates become due dates and due dates become release dates. In traditional
scheduling, time can flow in either direction, so that both LRTB and EDD generate feasible schedules. In
contrast, in the procrastination problem, EDD performs poorly; see Section 3. The intuition of the algorithm
is that it always tries to push the work of a job as near to its due date as possible in order to maximize the
processing speed.

Observe that the job priorities depend only on the release times and not the slopes. This lack of de-
pendence on the slopes should not be surprising because we can transform any scheduling instance into an
instance having all unit slopes by rescaling each jobj’s work to bew′

j = wj/mj . Alternatively, we could
give all jobs unit maximum speeds,fj(dj) = 1, by settingmj = 1/(dj − rj) and then rescaling the work.
Consequently, in the rest of the paper, we assume that the jobslopes are1, unless otherwise stated.

In the following we prove that algorithm LRTB produces the optimal schedule.

Theorem 1 LRTB is an optimal algorithm for the procrastination scheduling problem. There is a unique
optimal solution provided that the release time of the jobs are distinct.

Proof. The proof is by an exchange argument. We first assume that no two jobs have the same release time
and then relax that assumption at the end. Suppose for the sake of contradiction that there exists an optimal

4

scheduleA different from LRTB. Specifically, these schedules differ in the order of execution of two jobs
with different release times. We perform a single exchange of work to yield another feasible scheduleA∗

having smaller total processing time thanA, thus obtaining a contradiction.
Consider the latest instant in time where LRTB differs fromA and call this timet4. Consider an arbi-

trarily small interval[t3, t4], when jobj runs in LRTB and jobi runs inA. See Figure 1 for a depiction of
the setting. By the definition of LRTB,i, j, andt4, ri < rj. Consider some earlier time interval[t1, t2], i.e.,
t2 ≤ t3, when jobj runs inA. Definet1, t2, andt3 so that the amount of work that can be executed on job
j is the same, that is,

∫ t2

t=t1

fj(t) dt =

∫ t4

t=t3

fj(t) dt.

Now we make a new scheduleA∗ fromA by exchanging the work done during intervals[t1, t2] to [t3, t4].
Specifically inA∗, job j is run during[t3, t4] and jobi is run during[t1, t2]. We know that this exchange is
allowed becausedj > t4 (from the LRTB andA schedules) and becauseri < rj ≤ t1 (from theA schedule
and becauseri < rj). By the definition of the intervals, the same amount of work on j can be done during
each interval. Computing the area of the trapezoids defined by fj(t), we obtain

(t4 − t3)

(

t4 + t3
2

− rj

)

mj = (t2 − t1)

(

t2 + t1
2

− rj

)

mj,

meaning that
(t24 − t23)/2− rj(t4 − t3) = (t22 − t21)/2− rj(t2 − t1). (1)

Observe thatt4 − t3 < t2 − t1 because the speed thatj is executed during[t3, t4] is greater than during
[t1, t2].

The amount of work on jobi that needs to be exchanged from[t3, t4] to [t1, t2] is (t24−t23)/2−(t4−t3)ri.
But sinceri < rj andt4 − t3 < t2 − t1,

(rj − ri)(t4 − t3) < (rj − ri)(t2 − t1) (2)

From (1) and (2), we obtain the inequality

(t24 − t23)/2− ri(t4 − t3) < (t22 − t21)/2− ri(t2 − t1),

and therefore interval[t1, t2] is big enough to execute all of the work on jobi and still leave some idle
time. Hence, scheduleA∗ is feasible and spends a smaller amount of time working. Thisgives us our
contradiction.

We now explain the case where two jobs1 and2 have the same release time. Assume that job1 is
scheduled to execute some work in the time interval[t1, t2] and job2 is scheduled to execute some work in
the interval[t3, t4]. If we exchange the work for jobs1 and2, the relationship between the new time intervals
and the old is expressed by the simple equationt24 − t23 = t22 − t21. Therefore the total time to execute both
jobs remains the same after exchange. As a result, the order in which these jobs are executed does not affect
the total processing time, and so LRTB is an optimal algorithm no matter what the tie-breaking rule is. This
completes the proof.

Determining Feasibility May Not Be in NP

One of the remarkable features of the procrastination problem is that, despite having the simple optimal
scheduling policy LRTB, it is unclear whether determining the feasibility of a scheduling instance is even in
NP, even for linear speed functions.

5

The difficulty is numerical. Calculating the actual processing time of the jobj given a starting or ending
time t and speed functionfj(t) = t − rj requires computing square roots. Determining the feasibility of
the schedule therefore requires computing sums of square roots and their relationship to an integer, and this
problem appears to be numerically difficult.

The basic sum-of-square-roots problem is to determine whether

m
∑

i=1

√
xi ≥ I

for somexi, I ∈ Z (1 ≤ i ≤ m). Because there is no known polynomial-time algorithm for deciding the
sum-of-square-roots problem, basic computational-geometry problems such as Euclidean TSP or Euclidean
shortest paths are not known to be in NP. See the Open ProblemsProject [14, Problem 33] (originally
from [26]) and the Geometry Junkyard [15] for nice discussions of the sum-of-square-roots problem.

We establish the difficulty of procrastination scheduling by providing a reduction from any instance of
the sum-of-square-roots problem. To derive the cleanest reduction, we allow the existence of nonlazy jobs,
i.e., jobs that are always executed at the same speed, i.e., having slope0. (It is likely that a reduction can be
made to work using no nonlazy jobs, but at the cost of additional complications.)

Theorem 2 The procrastination scheduling problem is not decidable inpolynomial time unless the sum-of-
square-roots problem is decidable in polynomial time. The procrastination scheduling problem is not in NP
unless the sum-of-square-roots problem is also in NP.

Proof. We reduce the sum-of-square-roots problem to the procrastination scheduling problem. Given
integersx1, . . . , xn−1 andI, we will create a procrastination-scheduling problem withn jobs. The procras-
tination scheduling problem will be feasible if and only if

∑n−1
i=1

√
xi ≥ I.

We first give the structure of the scheduling instance and then determine the release times, deadlines,
and work for each job. In our scheduling instance, jobs1 . . . n − 1 have nonoverlapping intervals, so that
r1 = 0, and the due date of one job is the release date of the next:ri+1 = di (i = 1, . . . , n − 2). The speed
functions have slope1. Jobn is nonlazy. We place this job’s interval so that it overlaps with the intervals of
all other jobs, i.e.,rn = r1 anddn = dn−1.

We now specify jobs1, . . . , n − 1. For jobi, we choose interval lengthℓi (= di − ri) and workwi to
be positive integers such thatℓ2i − 2wi = xi; many choices ofℓi andwi will work. It suffices to choose
positive integersℓi andwi such that0 < ℓ2i − 2wi < ℓi. For example, by choosingℓi = xi + 2 and
wi = (x2i + 3xi + 4)/2, all conditions are fulfilled. Note thatx2i + 3xi + 4 is always an even number for
xi > 0 and thuswi is an integer.

Each jobi (i = 1, . . . , n − 1) runs fastest when pushed to the right side of its interval. We show that

such a job runs in timeti = ℓi −
√

ℓ2i − 2wi. To establish this running time, we set up and solve a quadratic
equation. By simple geometry, we have the following relationship between running timeti and workwi:

wi = ti (ℓi − ti/2) .

This quadratic equation has two roots,

ti = ℓi ±
√

ℓ2i − 2wi,

and the smaller root is the running time of the job. (This can be seen since the larger root is greater thanℓ,
the interval length.)

The total time taken by alln− 1 nonoverlapping jobs when scheduled optimally is therefore

n−1
∑

i=1

ℓi −
n−1
∑

i=1

√

ℓ2i − 2wi =
n−1
∑

i=1

ℓi −
n−1
∑

i=1

√
xi.

6

(a) r1

1
2

3

t

f(t)

r2 r3 d3 d2 d1 (b)

1

2 4

f(t)

t
r1 r2 d2 r4 d4d1

Figure 2: (a) Case 1: job1 is run at timer2 = 3. Then job3 arrives. Either job2 or 3 is forced to miss its due date.
(b) Case 2: job2 is run at timer2 = 2. Then job4 arrives. Either job1, 2, or 4 is forced to miss its due date.

We now construct the nonlazy jobn. As described earlierrn = 0 anddn = dn−1. We set workwn = I.
There is a feasible solution for this scheduling problem if and only if

dn ≥ wn +
n−1
∑

i=1

ℓi −
n−1
∑

i=1

√
xi.

This is the case, as long asI ≤∑n−1
i=1

√
xi, since by construction,dn = dn−1 =

∑n−1
i=1

ℓi. Thus, an arbitrary
instance of the sum-of-square-roots problem can be reducedto an instance of procrastination scheduling,
implying the numerical difficulty of procrastination scheduling.

3 Online Algorithms

This section considers the online procrastination scheduling problem. In the online problem, jobs1 . . . n ar-
rive over time. Jobj is known to the scheduler only at the release timerj , at which point the scheduler also
learns the values ofwj anddj . We first show that it is difficult for an online scheduler to find feasible sched-
ules. Next we search for online algorithms that generate small, ideally constant, max-stretch. We show that
traditional scheduling policies such as EDD, SRPT, and FIFO, have large, typically unbounded, max-stretch.
We next consider the scheduling policy Largest-Stretch-So-Far (LSSF), which executes the job in the sys-
tem currently having the largest interval stretch. This policy formalizes the “hit-the-highest-nail” scheduling
policy, that is, execute the task in the system that most crucially requires attention. More precisely, in the
LSSF scheduling policy, we run the job in the system that has incurred the largest interval stretch so far, that
is, at timet we execute the jobj that maximizes(t − rj)/(dj − rj). We show that, remarkably, LSSF also
has unbounded max-stretch. We conclude this section by exhibiting the scheduling algorithm THRASHING,
whose max-stretch is within a constant factor of optimal andthen give a generalization to non-linear speed
functions. One consequence of this last result is that good online max-interval-stretch bounds are achiev-
able even when the procrastinator’s maximum processing speed is at most a constant factor faster than a
nonprocrastinator’s speed.

Basic Results

We first show that any online algorithm can be forced to miss due dates, even when the scheduling instance
is feasible. A jobj hasslack if the work,wj, associated with it is less than the area betweenrj anddj , i.e.,
wj < (dj − rj)

2/2.

Theorem 3 For any online algorithm, there is a feasible job stream on which that algorithm misses due
dates.

7

Proof. We show that regardless of the online scheduling decisions,the adversary can force the algorithm
to miss due dates by maliciously selecting future jobs. The adversary first sends jobs1 and2, wherer1 < r2
andd2 < d1. Both jobs1 and2 have some slack and the set{1, 2} is feasible. At timer2 there are two
cases:

1. Job1 is serviced at timer2. Then the adversary places a job3 with r2 < r3 < d3 < d2. Job3 is
designed so that the entire interval[r2, d2] is required to complete jobs2 and3 by their due dates.
Since the online algorithm works partially on job1 during this interval, either job2 or 3 misses its
due date; see Figure 2(a).

2. Job2 is serviced at timer2. The adversary places a job4 with r4 > d2 andd4 < d1. Job4 is designed
so that all the time betweenr2 andd1 is required to complete jobs1, 2, and4 by their due dates.
However, as job2 has some slack we know that by Theorem 1 that the optimal strategy is to run1 at
time r2 and that this strategy is unique. Therefore, by running2 at timer2 the algorithm misses at
least one of the due dates; see Figure 2(b).

Observe that, as stated, this example has job parameters that may be irrational (because of square roots).
In fact, we can round job parameters so that all are rational and the input size (number of bits) is polynomial
in n.

By repeating this construction, the adversary can force thealgorithm to miss an arbitrarily large number
of due dates. Thus, Theorem 3 explains why procrastinators may have a harder time juggling online tasks
than non-procrastinators.

We now show that most traditional scheduling policies for non-procrastinators do not work well for
procrastinators. The following theorem gives the performance of First-In-First-Out (FIFO), Earliest-Due-
Date (EDD), and Shortest-Remaining-Processing-Time (SRPT).

Theorem 4 There exist feasible scheduling instances of a constant number of jobs for which the max-
stretch of the First-In-First-Out (FIFO) and Earliest-Due-Date (EDD) scheduling policies can be arbitrarily
large. There exist feasible scheduling instances ofn jobs for which the Shortest-Remaining-Processing-Time
(SRPT) scheduling policy achieves a max-stretch ofΘ(

√
n).

Proof. There is a bad example for FIFO consisting of only two jobs. Let r1 < r2 < d2 < d1. Setw1 and
w2 so that optimal schedule is to execute job2 to completion as soon as it arrives, and then finish job1. In
FIFO, job2 will not start work until job1 has completed and will finish late. The interval stretch of job 2
can be made arbitrarily large by decreasingw2 andd2 − r2 or by increasingd1 andw1.

There is a bad example for EDD consisting of only three jobs. As before, letr1 < r2 < d2 < d1. In
EDD, job2 is executed starting at its arrival timer2 because this job has the earliest deadline. By the proof
of Theorem 1, job1 can be made finish its work after its due date. Now set a third job so thatr3 = d1 and
d3 − r3 is small compared to the lateness of job1. The interval stretch of job3 can be made arbitrarily large
by decreasingd3 − r3 or by increasing the lateness of job1.

There is a bad example for SRPT consisting ofn jobs. All jobs are released at time0. Give job1 the
largest amount of work:w1 = 1. Give all other jobsw2 = w3 = · · · = wn = 1/2. Setd1 so that job1
must be executed as soon as it arrives in order not to be late, i.e.,d1 = 2. Give all other jobs later deadlines:
d2 = d3 = · · · = dn =

√
n + 2. In the optimal schedule, job1 is executed first and the remaining jobs

are executed in any order. In contrast, in SRPT, jobs2 . . . n are executed before job1. One job will be
completed at time1, the next at time

√
2, the next at time

√
3, and the last at time

√
n− 1. (A calculation

similar to this is explained in greater detail in the next section.) Only after all other jobs complete does job1
complete, giving it an interval stretch ofΩ(

√
n).

8

(a) 0

f(t)

1

2

3

s (b)

f(t)

3

4
5

x
t

Figure 3: (a) Job2 starts work ats and completes after its due date. Job3 starts work at its due date and finishes with
a stretch of

√
2 (b) A stream of jobs with increasing stretch. The stretch of job 4 is

√
2 when it starts work at timex

and
√
3 when it finishes.

Hitting the Highest Nail Does Not Work

A common scheduling strategy among procrastinators is “hit-the-highest-nail,” that is, execute the job that
is farthest behind. Since the objective is to minimize the max-stretch, “hitting-the-highest-nail” translates
to running the job that has the largest interval stretch. We call this strategyLargest-Stretch-So-Far (LSSF).
More precisely, in the LSSF scheduling policy, we run the jobin the system that has incurred the largest
interval stretch so far, that is, at timet we execute the jobj that maximizes(t − rj)/(dj − rj). Thus, the
algorithm might execute a jobi, but switch to a smaller jobj that arrived afteri, oncej’s interval-stretch-
so-far surpasses that ofi’s.

Remarkably, even for feasible scheduling instances, LSSF may schedule jobs to have unbounded max-
stretch. Below we exhibit such an adversarial scheduling instance that confounds LSSF. For simplicity, we
describe a scheduling instance where job parameters may be irrational because of square roots. We then
show how to round the job parameters so that all are rational.

Our bad instance consists ofn jobs, indexed by increasing arrival time. We ensure that jobs2 . . . n have
no slack, that is,

wj =
(dj − rj)

2

2
(2 ≤ j ≤ n) . (3)

Thus, in order for jobj (2 ≤ j ≤ n) to complete by its deadline, jobj must be executed without pause
during its entire interval. In contrast, job1 does have slack.

We arrange jobs1-3 so that in LSSF, job3 does not begin executing until after its due dated3. To do
so, we assign intervals for jobs1 and2 so thatr2 > r1, d2 < d1, andd1 − r1 = O(1). Thus, in the LSSF
schedule, job1 works uninterrupted until some point in job2’s interval when job2 has the largest stretch-
so-far and so begins executing. Since job2 has no slack, it finishes late, after its deadlined2. We place job3
so its release time is job2’s deadline and its deadline is job2’s completion time, i.e.,r3 = d2 andd3 = C2.
In LSSF, job3 does not start until its due date,d3, and then works uninterrupted until it completes for an
interval stretch ofs3 =

√
2; see Figure 3(a).

We now assign jobs4 . . . n as follows; see Figure 3(b). Each jobj has release time

rj = dj−1 (3 ≤ j ≤ n) . (4)

Moreover, in LSSF we assigndj so that jobj has a stretch-so-far at timeCj−1 of

Cj−1 − rj
dj − rj

= sj−1 =
Cj−1 − rj−1

dj−1 − rj−1

(4 ≤ j ≤ n) . (5)

In the following we show that in LSSF,sn = Θ(
√
n). In contrast, in OPT, all jobs finish before their

deadlines: jobs2 . . . n run in their intervals and job1 begins before job2 arrives and completes after jobn
completes.

9

We now analyze the performance of LSSF on thesen jobs.

Theorem 5 There exist feasible scheduling instances ofn jobs for which the scheduling policy LSSF achieves
a max-stretch ofΘ(

√
n).

Proof. We analyze the performance of LSSF on the schedule instance given above. We derive a recurrence
for the stretchsj as a function ofsj−1. Then we solve the recurrence, showing thatsn = Θ(

√
n).

Define intervalIj = dj−rj. Recall that in LSSF, jobj only begins executing at timeCj−1 = rj+sj−1Ij
because, from (4) and (5), while jobj − 1 is in the system, its stretch-so-far is larger than that of job j’s.

We now determine the timexj that jobj spends running. By Equations (3) and (5), we have

wj =
I2j
2

= sj−1Ijxj +
x2j
2

(j ≥ 4) .

Solving forxj and taking the positive root, we obtain

xj = −sj−1Ij + Ij
√

1 + s2j−1
(j ≥ 4) . (6)

Thus, the stretch is

sj =
Cj−1 + xj − rj

Ij
(j ≥ 4) .

From (5), the previous equation simplifies to

sj = sj−1 +
xj
Ij

(j ≥ 4) .

Finally, from (6) we substitute forxj , obtaining

sj =
√

1 + s2j−1
(j ≥ 4) .

The solution to this recurrence is
sj =

√

j − 1 (j ≥ 3) , (7)

meaning that the max-stretch issn =
√
n− 1.

We now show how big job1’s interval has to be for the entire scheduling instance to befeasible. We
make a recurrence for the interval lengthIj. By (5), we obtain

Ij = Ij−1

(

Cj−1 − rj
Cj−1 − rj−1

)

= Ij−1

(

1 +
rj−1 − rj

Cj−1 − rj−1

)

(j ≥ 4) .

Finally, by Equations (4) and (7), we obtain

Ij = Ij−1

(

1 +
1

sj−1

)

= Ij−1

(

1− 1√
j − 2

)

(j ≥ 4) .

Therefore, assuming w.l.o.g. thatI3 = 1, an upper bound onIj is

Ij =
j−2
∏

i=2

(

1− 1√
i

)

≤ e−
√
j−3 (j ≥ 3) .

10

The sum of all intervals lengths is

n
∑

j=3

Ij =
n
∑

j=3

e−
√
j−3 = O(1) (j ≥ 3) .

Consequently, it suffices to setI1 = O(1) andw1 = O(1) to obtain a feasible schedule.

This particular example has job parameters that may be irrational (because of square roots). In fact, we
can come up with another scheduling instance so that the input size (number of bits necessary to describe
the scheduling instance) is polynomial inn. The idea is to round job parameters so that all are rational.We
round the interval lengthdj − rj of job j up to a rational number and round the workwj down to a rational
number. We make bothrj anddj rational and retain Equation (4). We make the equality in Equations (3)
and (5) only approximate, that is, for arbitrarily small nonnegativeεj andε′j ,

wj + εj = (dj − rj)
2/2 (2 ≤ j ≤ n)

Cj−1 − rj
dj − rj

+ ε′j = sj−1 (4 ≤ j ≤ n) .

The analysis for Theorem 5 carries over.

Θ(1)-Competitive Online Algorithm for Max-Stretch

We now exhibit the strategy THRASHING, which bounds the interval stretch of each job by4. The THRASH-
ING strategy models the extreme case of a procrastinator who does not work on any job until it has already
passed its due date. More formally, in the this strategy no job is executed until it has a stretch of at least2.
Among all such jobs, the procrastinator executes the job that arrived latest.

Before proceeding, we explain our choice of terminology. Anoperating system is said to ‘thrash’ when
it begins running inefficiently because it spends too much time context switching. ‘Thrashing’ is now also
commonly used among computer scientists to describe their own behavior when they have too many jobs to
finish. The name is applied here because the procrastinator appears to be thrashing. Each time a more recent
job has too large an interval stretch, the procrastinator abandons the current job and executes the more recent
job.

We begin by proving the following simple lemma:

Lemma 6 Consider a feasible set of jobs1, . . . ,m and consider timesr and d, where allrj ≥ r and
dj ≤ d. Letα-DLY be any scheduling policy that only schedules work from jobs having stretch at leastα,
whereα ≥ 1. The total amount of time required to run all jobs usingα-DLY is at most(d− r)/α.

Proof. Because the set of jobs is feasible, there is some way to schedule each job within its interval and
the total time spent working is at mostd−r. Now consider runningα-DLY. For any given jobj, the slowest
that j runs inα-DLY is at leastα times faster thanj runs in the feasible schedule. The lemma follows
immediately.

Theorem 7 For any feasible set of jobs,THRASHING bounds the interval stretch of every job by4.

Proof. The proof is by contradiction. Define theextended due datẽdj of job j to be the time thatj must
complete by to guarantee an interval stretch of4, that is,d̃j = 4(dj − rj) + rj. Consider some jobj that
does not meet its extended due date. For simplicity and without loss of generality, we normalize time so that
rj = 0 anddj = 1. Jobj cannot begin until time2 and by assumption completes at some timef > 4.

11

By Lemma 6, the total amount of time spent working on all jobs (including j) whose intervals are
entirely contained within[0, 4] is at most4/2 = 2 units of time. Moreover, there can be no gaps in the
schedule during the interval[2, f] because otherwisej would work during the gaps and finish earlier than
time f . Finally, by the definition of THRASHING, there can be no work scheduled during[2, f] on jobs
having release dates before0 becausej has higher priority. Thus,f cannot be greater than4 and we obtain
a contradiction.

It may, of course, be unrealistically optimistic to give theonline procrastinator the power to run arbitrar-
ily fast. However, it follows from Theorem 7 that THRASHING never runs any jobj faster than4fj(dj). In
fact, the proof of Theorem 7 indicates that we can reduce thisupper bound still further to2fj(dj) without
increasing the max-stretch; we need only modify the speed functions so that the maximum job speed for job
j is limited to2fj(dj).

4 Conclusions

The first sentence of the conclusion, which summarizes the paper, is being written just a few hours before
the deadline. As we were writing this paper, we were struck bythe wealth of open problems in this area. For
example, what is the right way to resolve the computational and numerical issues associated with linear and
other speed functions? The scheduling problem (even in the offline case) becomes even more complex with
speed functions that may be nonzero at jobs’ release times. (This is because LRTB fails, and the optimal
schedule seems to depend on the workload as well as on the slopes of the speed functions.) For our online
algorithm we did not try to optimize the constant in the online competitive ratio fully; what is the smallest
that we can make this constant, especially where the speed functions are sublinear?

We have also considered piecewise-constant speed functions and have linear programming solutions for
several variants of the problem. The LP has constraints for each time interval[t1, t2] in which the execution
speeds of all jobs are constant. (Specifically, within(t1, t2) there are no job release times or deadlines,
and for each jobj the function offj(t) is constant whent ∈ [t1, t2].) There are many metrics we can
optimize. For example, we can minimize or maximize the totalamount of time working. Alternatively, we
can introduce a notion of stress for the procrastinator and find the least stressful schedule.

Finally, what about other metrics, especially in models where some jobs may be left unexecuted? What
about settings where job streams are executed on parallel processors?

It is now several hours later, just minutes before the deadline. We were searching for the ideal way to
end the paper and circumstances have unfortunately provided the answer. A campus-wide power failure at
Stony Brook has cut two hours from our last-minute working time and highlights the difficulties of online
scheduling for procrastinators.

Acknowledgments

We are grateful to Esther Arkin, Nikhil Bansal, and Joseph Mitchell for many helpful discussions. We thank Nikhil
Bansal for the LP solution for piecewise constant speed functions.

References
[1] S. Albers and H. Fujiwara. Energy-efficient algorithms for flow time minimization. InProc. 23rd Annual Symposium on

Theoretical Aspects of Computer Science (STACS), volume 3884 ofLecture Notes in Computer Science, pages 621–633,
2006.

[2] B. Alidaee and K. Womer. Scheduling with time dependent processing times: Review and extensions.Journal of Operational
Research Society, 50:711–720, 1999.

12

[3] E. M. Arkin, M. A. Bender, J. S. B. Mitchell, and S. S. Skiena. The lazy bureaucrat scheduling problem. InProc. 6th
Workshop on Discrete Algorithms WADS, pages 122–133, 1999.

[4] E. M. Arkin, M. A. Bender, J. S. B. Mitchell, and S. S. Skiena. The lazy bureaucrat scheduling problem.Information and
Computation, 184(1):129–146, 2003.

[5] A. Bachman, A. Janiak, and M. Y. Kovalyov. Minimizing thetotal weighted completion time of deteriorating jobs.Information
Processing Letters, 81(2):81–84, 2002.

[6] N. Bansal, T. Kimbrel, and K. Pruhs. Dynamic speed scaling to manage energy and temperature. InProc. 45th Symposium
on Foundations of Computer Science (FOCS), pages 520–529, 2004.

[7] N. Bansal and K. Pruhs. Speed scaling to manage temperature. InProc. 22nd Annual Symposium on Theoretical Aspects of
Computer Science (STACS), volume 3404 ofLecture Notes in Computer Science, pages 460–471, 2005.

[8] M. A. Bender, S. Chakrabarti, and S. Muthukrishnan. Flowand stretch metrics for scheduling continuous job streams.In
Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 270–279, 1998.

[9] M. A. Bender and M. O. Rabin. Online scheduling of parallel programs on heterogeneous systems with applications to Cilk.
Theory of Computing Systems Special Issue on SPAA00, 35:289–304, 2002.

[10] D. P. Bunde. Power-aware scheduling for makespan and flow. In Proc. 18th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), 2006. To appear.

[11] C. Chekuri and M. A. Bender. An efficient approximation algorithm for minimizing makespan on uniformly related machines.
Journal of Algorithms, 41:212–224, 2001.

[12] F. A. Chudak and D. B. Shmoys. Approximation algorithmsfor precedence-constrained scheduling problems on parallel
machines that run at different speeds.J. Algorithms, 30(2):323–343, 1999. An earlier version appears in SODA ’97.

[13] E. Davis and J. M. Jaffe. Algorithms for scheduling tasks on unrelated processors.J. ACM, 28(4):721–736, 1981.

[14] E. D. Demaine, J. S. B. Mitchell, and J. O’Rourke. The open problems project.
http://maven.smith.edu/˜orourke/TOPP/, viewed February 13, 2005.

[15] D. Eppstein. Geometry junkyard, computational and recreational geometry pointers.
http://www.ics.uci.edu/˜eppstein/junkyard/open.html, viewed April 6, 2007.

[16] L. Fleischer and M. Skutella. The quickest multicommodity flow problem. InProc. 9th Integer Programming and Combina-
torial Optimization (IPCO) Conference, volume 2337 ofLecture Notes in Computer Science, pages 36–53, 2002.

[17] L. Fleischer and M. Skutella. Minimum cost flows over time without intermediate storage. InProc. 14th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 66–75, 2003.

[18] S. Gawiejnowicz, W. Kurc, and L. Pankowska. A greedy approach for a time-dependent scheduling problem.LNCS, 2328:79–
86, 2002.

[19] S. Gawiejnowicz and L. Pankowska. Scheduling jobs withvarying processing times.Information Processing Letters,
54(3):175–178, 12 May 1995.

[20] C. Hepner and C. Stein. Minimizing makespan for the lazybureaucrat problem. InProc. 8th Scandinavian Workshop on
Algorithm Theory (SWAT), volume 2368 ofLecture Notes in Computer Science, pages 40–50, 2002.

[21] S. Irani and K. R. Pruhs. Algorithmic problems in power management.SIGACT News, 36(2):63–76, 2005.

[22] K. Jansen and L. Porkolab. Improved approximation schemes for scheduling unrelated parallel machines. InProc. 31st
Annual ACM Symposium on Theory of Computing, pages 408–417, 1999.

[23] D. Karger, C. Stein, and J. Wein. Scheduling algorithms. In M. J. Atallah, editor,Handbook of Algorithms and Theory of
Computation. CRC Press, 1998.

[24] E. L. Lawler and J. Labetoulle. On preemptive scheduling of unrelated parallel processors by linear programming.J. ACM,
25(4):612–619, 1978.

[25] A. Orda and R. Rom. Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length.J. ACM,
37(3):607–625, 1990.

[26] J. O’Rourke. Advanced problem 6369.Amer. Math. Monthly, 1981.

[27] K. Pruhs, R. van Stee, and P. Uthaisombut. Speed scalingof tasks with precedence constraints. InProc. 3rd Workshop on
Approximation and Online Algorithms (WAOA), pages 307–319, 2005.

[28] E. Uysal-Biyikoglu, B. Prabhakar, and A. El Gamal. Energy-efficient packet transmission over a wireless link.IEEE/ACM
Trans. Netw., 10(4):487–499, 2002.

13

http://maven.smith.edu/~orourke/TOPP/
http://www.ics.uci.edu/~eppstein/junkyard/open.html

	Introduction
	Offline Procrastination Scheduling
	Online Algorithms
	Conclusions

