
ÉC OLE PO LY TEC H NIQ U E
FÉ DÉRALE D E LAUSAN NE

DÉPARTEMENT DE MATHÉMATIQUES

Chaire de Recherche Opérationnelle
CH-1015 LAUSANNE

e-mail: wkubiak@mun.ca

Preemptive open shop scheduling
with multiprocessors: polynomial

cases and applications

Dominique de Werra, Tamás Kis, Wieslaw Kubiak

ORWP 04/06
May 2004

Preemptive open shop scheduling with

multiprocessors: polynomial cases and applications

Dominique de Werra, Tamás Kis, Wieslaw Kubiak
Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland,

e-mail: dewerra.ima@epfl.ch
Computer and Automation Institute, 1111 Budapest, Kende str. 13-17, Hungary

e-mail: tamas.kis@sztaki.hu
Faculty of Business Administration, Memorial University of Newfoundland,

St. John’s, NL, Canada, e-mail: wkubiak@mun.ca

Abstract

This paper addresses a multiprocessor generalization of the preemp-
tive open-shop scheduling problem. The set of processors is partitioned
into two groups and the operations of the jobs may require either sin-
gle processors in either group or simultaneously all processors from
the same group. We consider two variants depending on whether pre-
emptions are allowed at any fractional time point or only at integral
time points. We shall show that the former problem can be solved
in polynomial time, and provide sufficient conditions under which the
latter problem is tractable. Applications to course scheduling and hy-
pergraph edge coloring are also discussed.

Keywords : preemptive open shop scheduling, multiprocessor opera-
tions, polynomial time algorithms

1 Introduction

The open shop scheduling model has been used for various types of schedul-
ing problems including in particular course scheduling (or school timetabling).
Whereas the basic open shop model is able to handle only the simplest in-
stances of timetabling problems, some extensions are able to capture more
intricate scenarios with additional requirements.

In this paper we present an extension of the open shop model which
comprises multiprocessors or groups of processors. Such a model finds appli-
cations in processor scheduling and also when dealing with some university
timetabling problems, where classes (i.e., groups of students) are grouped
for some special lectures given to several classes simultaneously.

We shall briefly discuss complexity results related to this extension and
describe situations where the optimal schedule with respect to the makespan

1

objective can be determined in polynomial time. We refer the reader to
Berge [3] for all graph theoretical terms not defined here and to B�lażewicz
et al. [6] and to Garey and Johnson [12] for basic definitions of scheduling
theory as well as for fundamental concepts and results of computational
complexity.

2 Open shop scheduling with multiprocessors

Let us first describe the basic open shop scheduling problem which will be
generalized. A collection P = {P1, . . . , Pm} of processors is given along with
a set J = {J1, . . . , Jn} of jobs. A job Jj consists of at most m operations
Oj1, . . . , Ojm, where Ojh requires processor Ph for processing. The process-
ing time of Ojh is a non-negative integer number bjh; if bjh = 0 then Jj is
not processed on processor Ph. It is assumed that each processor can work
on at most one operation at a time and similarly no two operations of the
same job can be processed simultaneously.

Now we generalize this model by partitioning the set P into groups
G1, . . . ,Gp of processors, called multiprocessors. In addition to the opera-
tions Ojh involving only one processor Ph, (these will be called individual
operations), there are group operations Ôj1, . . . , Ôjp; Ôj� must be processed
on all processors in group G� simultaneously. The processing time of Ôj�

will be denoted by aj�; if aj� = 0 then Jj has no group operation on G�.
We confine our discussion to the preemptive model, i.e., the processing of

operations can be interrupted and resumed at a later moment in time. When
an operation of a job is interrupted then another operation of the same job
may be processed before the same operation is resumed. We will distinguish
between two models: (1) the fractional model , when preemption may occur
at fractional time points and (2) the integral model , when preemption may
occur only at integral time points. In either case a schedule specifies for
each operation a set of time intervals where the operation must be processed
contiguously. A schedule is fractional (integral) if preemption of processing
occurs at fractional (only at integral) time points.

Remark 1 This definition allows schedules of length non-polynomial in the
length of the instance. Therefore, a polynomial algorithm with respect to a
particular objective function may exist only if there always exists an optimal
schedule of polynomially bounded length.

The completion time of a job in a schedule is the least time point by
which all operations of the jobs are fully processed. In this paper we will
consider only the minimization of the maximum job completion time or
makespan under the assumption that there are only p = 2 multiprocessors.

If there were no group operations, then both the fractional and the inte-
gral problems could be modeled by a bipartite multigraph G = (J ∪P, E, b),

2

P1

P2

P3

P4

J1

J2

J2

J3 J3

J3

J4 J4

J4

1/3 2/3 1 4/3 5/3 2 7/3

Figure 1: A fractional optimal schedule.

such that (Jj , Ph) is an edge in E with multiplicity bjh if and only if bjh > 0.
According to Kőnig’s edge coloring theorem, the edges of a bipartite multi-
graph G can be colored with K colors if and only if K ≥ ∆(G) where ∆(G)
is the maximum degree (with edge multiplicities) of the nodes of G (see
Berge [3]). Edge colorings of bipartite multigraphs can be constructed in
polynomial time by using multicolors (matchings with multiplicities), for
details see Gabow and Kariv [11], Gonzalez and Sahni [13]. In this case
there is no advantage of allowing preemptions at fractional time points.

In contrast, when there are group operations and preemptions are al-
lowed at fractional time points, the length of an optimal schedule need not be
integral even if all problem data are integral. This issue is illustrated in Fig-
ure 1. There are four processors partitioned into two groups G1 = {P1, P2},
G2 = {P3, P4}. Job 1 has only one group operation on G1, whereas jobs J2,
J3 and J4 have two individual operations each. All operations have unit
length. As can be seen, the minimum makespan is 7/3. On the other hand,
in the integral model the minimum makespan is 3.

After a brief literature review of known results (Section 3), we define ad-
ditional notation and establish common properties of the two models (Sec-
tion 4). Then we discuss the fractional model in Section 5, and establish
sufficient conditions under which the integral version of the problem can
be solved in polynomial time (Section 6, 7). Applications to timetabling
and coloring the edges of hypergraphs that generalize bipartite multigraphs
conclude the paper (Section 8).

3 Literature review

Open shop scheduling with multiprocessor operations (or tasks) is a novel is-
sue in scheduling theory; polynomial time algorithms for problems with two
or three stages or with a fixed number of stages and unit time operations
can be found in (Brucker and Krämer [7], and Brucker and Krämer [8]).
There are several results on scheduling multiprocessor tasks in a parallel
processor environment. When the tasks are not assigned to processors in

3

advance (not dedicated), the complexity of the problem with and without
preemption has been analized by e.g. B�lażewicz et al. [4], Du and Leung [10].
In contrast, in the dedicated model each task requires the simultaneous use
of a pre-specified set of processors. This model has been studied by e.g.,
B�lażewicz et al. [5], Hoogeveen et al. [14], Kubale [16] and by Jansen and
Porkolab [15], see also the survey of Drozdowski [9]. It is instructive to note
that under the assumption that all tasks require two processors simultane-
ously and preemption is allowed, then minimizing the makespan is NP-hard
when preemption of execution may occur only at integral time points [16],
and it is polymonially solvable if preemption may occur at any fractional
time point [15].

The preemptive integral open shop model has been used in (de Werra
[18]) for handling school timetabling problems: A collection J = {J1, . . . , Jn}
of teachers is given along with a collection P = {P1, . . . , Pm} of classes; each
class is a group of students that follow exactly the same program. A col-
lection E of lectures Ojh is given; lecture Ojh is given by teacher Jj to the
class Ph. It may be the case that the same lecture is given several times.
All lectures are assumed to have a unit duration.

In (Asratian and de Werra [2]) a generalization of the above timetabling
model, the university timetabling problem (UTP), has been formulated. In
addition to the above data, a partition of the set P of classes into groups
G1, . . . ,Gp is given; furthermore there is a collection E of lectures, called
group lectures, each of which is given by a teacher Jj to an entire group Gl

of classes. Such a situation occurs in various educational systems and often
there is a rather small number p of groups, i.e., typically p ≤ 4 (see [2] for
a discussion).

Concerning the computational complexity of the multiprocessor prob-
lems studied in this paper, Asratian and de Werra [2] have shown that even
if there are only p = 3 multiprocessors, the makespan minimization problem
in the integral model is unary NP-hard.

An even stronger result was established in (de Werra, Asratian and Du-
rand [19]) based on a special case occurring in timetabling. We give here
its formulation in terms of open shop: A job Jj will be called homogenous
if its operations are all group operations or all individual operations. It
turns out that minimizing the makespan in the integral model with p = 3
multiprocessors and all jobs homogenous is already unary NP-hard.

4 Preliminaries

The input of both the fractional and the integral problems consists of two
matrices A and B, where A = (aj�) is a (n × p)-matrix and B = (bjh) is
a (n × m)-matrix. The entries of both matrices are non-negative integral
numbers.

4

An algorithm for solving the makespan minimization problem is polyno-
mial if its running time is polynomial in the input length, i.e., in the size
of the matrices A and B. It is strongly polynomial if its running time is
polynomial in the dimension of these matrices, i.e., in n, m and p.

Let ∆(G�) =
∑

j aj�, � = 1, 2; d(Jj) =
∑

h bjh, j = 1, . . . , n; and d(Ph) =∑
j bjh, h = 1, . . . ,m.
A feasible schedule (one respecting all constraints) can be divided into

four parts:

(a) only group operations on G1 and only individual operations on the pro-
cessors in G2,

(b) only group operations on both processor groups,

(c) only individual operations on processors in G1 and only group operations
on G2, and

(d) only individual operations on all processors.

If r denotes the length of part (b), and w the length of part (d), then
the schedule can be rearranged so that the first ∆(G1)− r time units belong
to part (a), the next r time units to part (b), the interval [∆(G1), ∆(G1) +
∆(G2)− r] constitutes part (c), and finally part (d) is processed in [∆(G1) +
∆(G2)−r, ∆(G1)+∆(G2)−r+w]. It immediately follows that the makespan
of the schedule is a linear function of w and r:

T = ∆(G1) + ∆(G2) − r + w. (1)

5 The fractional model

In order to solve the fractional problem, we propose a linear program with
the following decision variables:

• r: the length of part (b),

• w: the length of part (d),

• xj�: the amount of time group operation Ôj� is processed in part (b),

• yjh: the amount of time individual operation Ojh is processed in part
(d).

5

We will show that the optimal solutions of the following linear program
LP (2) represent optimal fractional schedules with minimum makespan.

min (w − r) s.t. (2a)∑
j

bjh − (∆(G2) − r) �
∑

j

yjh � w, ∀h ∈ G1 (2b)

∑
j

bjh − (∆(G1) − r) �
∑

j

yjh � w, ∀h ∈ G2 (2c)

∑
h

yjh � w, ∀j (2d)

0 � yjh � bjh (2e)∑
j

xj1 = r (2f)

∑
j

xj2 = r (2g)

xj1 + xj2 � r, ∀j (2h)
0 � xj� � aj� (2i)∑

h∈G1

(bjh − yjh) + aj2 − xj2 � ∆(G2) − r, ∀j (2j)

∑
h∈G2

(bjh − yjh) + aj1 − xj1 � ∆(G1) − r, ∀j (2k)

The objective function (2a) prescribes minimization of w − r, which is
the only variable term in (1). Inequalities (2b)-(2e) ensure, on the one hand,
that part (d) of the schedule can be done in w time units and, on the other
hand, that the total load of any processor working on individual operations
in part (a) and (c) does not exceed ∆(G1) − r and ∆(G2) − r time units,
respectively. In particular, the right hand side inequality in (2b) guarantees
that the total load of processor Ph, h ∈ G1 does not exceed w in part (d),
whereas the left hand side inequality in (2b) ensures that the remaining load
of Ph left for part (c) will not exceed ∆(G2) − r. Similarly, the right hand
side inequality in (2c) ensures that the total load of processor Ph, h ∈ G2

does not exceed w in part (d), whereas the left hand side inequality in (2c)
ensures that the remaining load of Ph left for (a) will not exceed ∆(G1)− r.
The constraint (2d) ensures that each job j is processed no longer than w in
part (d). Finally, (2e) ensures that individual operation Ojh is not processed
longer than its processing time bjh in part (d).

Inequalities (2f)-(2i) guarantee that the selected portions of the group
operations can be done in part (b). In particular, constraints (2f) and (2g)
ensure the total load of multiprocessors G1 and G2 in part (b) equal r. Con-
straints (2h) make sure that group operations of any job are processed no

6

longer than r time unit in part (b). Finally, (2i) ensures that no group
operation Ôj� is processed longer than its processing time aj�.

The last two constraints require that the total work done on a job in part
(a) or (c) of the schedule be not more than the length of the corresponding
period. Notice that their left hand sides are non-negative numbers by (2e)
and (2i).

It is not hard to see that any feasible fractional schedule must satisfy all
of the above constraints. Moreover, we have the following:

Lemma 1 Any feasible solution of LP (2) can be transformed into a feasible
(fractional) preemptive schedule with makespan (1) in strongly polynomial
time. Moreover, if the solution is integral, then the resulting preemptive
schedule is also integral.

Proof First notice that the four parts of the schedule can be treated inde-
pendently, that is, it suffices to construct a feasible schedule for each part
separately, then joining the parts in any order gives the desired result.

To construct a feasible schedule for any part, observe that when con-
sidering the parts separately, we face the problem of finding a preemptive
open shop schedule which can be solved by the procedure of Gonzalez and
Sahni in strongly polynomial time, cf. Lemma 3.8 in [13]. Namely, for part
(d) this observation is obvious, concerning e.g., part (a) consider the pre-
emptive open shop problem with jobs J1, . . . , Jn and processors Ph, h ∈ G2,
and with the additional processor Ĝ1 representing the group of processors
G1. The processing time of Jj on Ph is bjh−yjh, whereas its processing time
on Ĝ1 is aj1 −xj1. A similar construction applies for part (c), while for part
(b) the preemptive open shop scheduling problem consists of the jobs Jj to
be performed on two processors, Ĝ1 and Ĝ2, with processing times xj�.

The second part of the theorem is a simple consequence of the procedure
of Gonzalez and Sahni [13]. �

Corollary 1 The fractional model can be solved in strongly polynomial time.

Proof As we have already noted, any feasible schedule must satisfy the
constraints of LP (2). Consequently, by Lemma 1, an optimal solution of
LP (2) yields an optimal solution of the scheduling problem.

Since all entries in the constraint matrix of LP (2) are 0, +1 or −1,
the linear program and thus the makespan minimization problem in the
fractional model can be solved in strongly polynomial time by the method
of Tardos [17]. �

Remark 2 An open question remains whether LP (2) can be solved by a
direct combinatorial method.

7

6 The integral model

In this section we provide sufficient conditions that enable us to solve the
integral problem in polynomial time. To this end, we restrict the set of jobs
to binary jobs that we define below.

Firstly, we distinguish between four types of operations: (g, 1), (g, 2),
(i, 1) and (i, 2). A group operation is of type (g, �) if it requires the multi-
processor G�. An individual operation is of type (i, �) if it requires a single
processor from the group G�. We say that a job is binary if its operations are
of at most two different types. Thus a binary job cannot have e.g., a group
operation and individual operations on processors in each of the processor
groups.

We can further partition the set of binary jobs as J gi ∪J ig ∪J gg ∪J ii,
where J gi consists of all jobs with operations of type (g, 1), and (i, 1) or
(i, 2), J ig contains all jobs with operations of type (g, 2), and (i, 1) or (i, 2),
all jobs in J gg have only group operations, and all jobs in J ii have only
individual operations.

From now on we always assume that all jobs are binary. Under this
assumption, by using the results of Section 5, we shall show that ∆(G1) +
∆(G2) + �w∗ − r∗� is the minimum makespan for the integral model, where
w∗ and r∗ are taken from any optimal solution to LP (2).

First, notice that for fixed values w and r, the x and y that satisfy all
constraints of LP (2) constitute a compatible flow in a capacitated network.
To see this, observe that for binary jobs the LP (2) can be equivalently
re-written in the following form, which we refer to as LP (3).

min (w − r) s.t. (3a)∑
j∈J\J gg

bjh − (∆(G2) − r) �
∑

j∈J\J gg

yjh � w, ∀h ∈ G1 (3b)

∑
j∈J\J gg

bjh − (∆(G1) − r) �
∑

j∈J\J gg

yjh � w, ∀h ∈ G2 (3c)

∑
h∈G1∪G2

yjh � w, ∀j ∈ J ii (3d)

∑
h∈G1

yjh � w, ∀j ∈ J gi ∪ J ig (3e)

∑
h∈G2

yjh � w, ∀j ∈ J gi ∪ J ig (3f)

0 � yjh � bjh (3g)∑
j∈J gg∪J gi

xj1 = r (3h)

∑
j∈J gg∪J ig

xj2 = r (3i)

8

xj1 + xj2 � r, ∀j ∈ J gg (3j)
0 � xj� � aj� (3k)∑

h∈G1

bjh + aj2 − (∆(G2) − r) �
∑
h∈G1

yjh + xj2, ∀j ∈ J ig (3l)

∑
h∈G2

bjh + aj1 − (∆(G1) − r) �
∑
h∈G2

yjh + xj1, ∀j ∈ J gi (3m)

When w and r are fixed, LP (3) is equivalent to a capacitated network
flow problem, denoted by N(w, r).

We are now ready to formulate a polynomial time algorithm for the
makespan minimization problem in the integral model. The algorithm finds
an optimal solution in the following three steps:

1. Solve the LP (3). Let (w∗, r∗, x∗, y∗) be an optimal solution.

2. Modify LP (3) as follows: replace the objective function (3a) by min r,
and add the constraint

w − r = �w∗ − r∗� (4)

to the existing constraints. Call the resulting system LP’.

3. Solve LP’, let (w, r, x, y) be an optimal solution. Find a compatible
flow in N(w, r) with w and r fixed to the values of this optimal solution.
Convert the solution into an open shop schedule.

Clearly, the above algorithm runs in strongly polynomial time.
To prove that it finds an optimal solution to the makespan minimization

problem with integral preemptions, it suffices to show that the r found in
step 3 of the algorithm is integral. Since this implies integrality of w, it
follows that all bounds in N(w, r) are integral. Therefore, N(w, r) admits
an integral compatible flow, which, by Lemma 1, can readily be converted
into a solution for the preemptive open shop scheduling problem.

Before proving the next theorem recall that a square matrix M is dou-
bly stochastic if all entries are non-negative and each row and column sums
up to 1. Moreover, a square matrix Π is a permutation matrix if it is an
integral doubly stochastic matrix. By the Birkhoff-von Neumann theorem
every doubly stochastic matrix is a convex combination of permutation ma-
trices, that is, there exist permutation matrices Π1, . . . , Πq and positive real
numbers λ1, . . . , λq such that M =

∑q
i=1 λiΠi and

∑
i λi = 1.

Theorem 1 If all jobs are binary, r is integral in any optimal solution to
LP’.

9

(a) (b) (c) (d) (a) (b) (c) (d)

Original schedule Transformed schedule

Jg
Jg

Jk Jk

G
1

G
1

G
2G

2

Figure 2: The transformation of the solution. In the transformed schedule
parts (b) and (d) become shorter.

Proof Let S = (w, r, x, y) be an optimal solution to LP’ and suppose r is
fractional. Due to constraints (3h)-(3j), there can be at most two jobs with
xj1 + xj2 = r. For these jobs, if they exist, either xj1 or xj2 is fractional,
as r is fractional by assumption. Therefore, we can choose jobs Jg and Jk

with multiprocessor operations on G1 and G2 respectively, such that xg1 and
xk2 are fractional and xj1 + xj2 < r for all other j ∈ J \ {g, k}. Notice
that we may have g = k. Let ε be the minimum of r − �r	, xg1, xk2, and
minj∈J\{g,k}(r− (xj1 +xj2)). By the choice of g and k, the latter minimum,
and thus, ε are positive.

For job Jg, we claim that at least one of the following inequalities holds:
ag1 − xg1 +

∑
h∈G2

(bgh − ygh) < ∆(G1) − r or
∑

h∈G2
ygh < w. If not, then

ag1−xg1 +
∑

h∈G2
bgh = ∆(G1)−r+w would follow. But the right hand side

of this equality is integral, hence, xg1 is integral as well, a contradiction. Let
δg = ∆(G1)−r−(ag1−xg1+

∑
h∈G2

(bgh−ygh)). By the same token, for job Jk

at least one of the following holds: ak2−xk2 +
∑

h∈G1
(bkh−ykh) < ∆(G2)−r

or
∑

h∈G1
ykh < w. Let δk = ∆(G2) − r − (ak2 − xk2 +

∑
h∈G1

(bkh − ykh)).
We shall determine a set of job-processor pairs A ⊆ J × P such that

the solution S′ = (w′, r′, x′, y′) for LP’ obtained from S by decreasing each
of w, r, xg1, xk2 and yjh ((j, h) ∈ A) by a small amount µ > 0 (to be chosen
later) is feasible to LP’. Since r′ < r, this will lead to a contradiction. The
effect of this transformation on the schedule is illustrated in Figure 2.

We now provide a set of conditions for A to ensure feasibility of S′ for
LP’. First, call a job Jj0 (processor Ph0) tight if

∑
h yj0h = w (

∑
j yjh0 = w)

in S. For each tight processor Ph0 , A will contain a pair (j, h0), ensuring the
right hand side inequalities (3b) and (3c) for S′. To satisfy the left hand side
inequalities in (3b) and (3c), A will not contain distinct pairs (j1, h), (j2, h)
for any h. To meet (3d), for each tight job Jj0, A will contain a pair (j0, h)
for some h, and to ensure that (3l) and (3m) hold for S′, A will not contain
distinct pairs (j, h1), (j, h2) with h1, h2 ∈ G�. By the same token, if δg = 0
(δk = 0), then A will not assign job Jg to a processor in G2 (job Jk to a
processor in G1). We will show that a set of pairs A satisfying all of the
above conditions always exists. We distinguish between two cases:

10

Jg

G
2

Πg Πk

Ji1

Ji1
Ji2

Ji2

hg

h1

h2

Figure 3: The combination of Πg and Πk.

Case 1. If δg > 0 or δk > 0, define the matrix M =
(

C Y
Y T D

)
for S,

where Y is a n × m matrix with Yjh = yjh, Y T is its transpose, C and
D are diagonal matrices complementing each row and column sum of M
to w. Since w > 0, (1/w)M is a doubly stochastic matrix, therefore, by
the Birkhoff-von Neumann theorem, (1/w)M is a convex combination of
permutation matrices.

Consider a particular convex decomposition of (1/w)M and choose a
permutation matrix Π in it according to the following criteria. If δg > 0
and δk > 0, then choose Π arbitrarily and let µ := min{ε,w · λΠ, δg, δk},
where λΠ is the coefficient of Π in the convex decomposition. If δg = 0,
then choose Π with Πgg = 1 (such a Π exists in any convex decomposition
of (1/w)M , because

∑
h∈G2

ygh < w by assumption, hence, Cgg > 0), and
let µ := min{ε,w ·λΠ, δk}. Finally, if δk = 0, choose Π with Πkk = 1 (again,
such a Π exists as Ckk > 0) and let µ := min{ε,w · λΠ, δg}. One may
verify that the set of pairs A = {(j, h) ∈ J × P | Πj,n+h = 1} satisfies all
requirements.
Case 2. If δg = δk = 0, then we cannot always apply directly the above
proof technique to determine A. Since δg = 0 we know that any convex
decomposition of (1/w)M contains a permutation matrix Πg with Πg

gg = 1,
and since δk = 0, it also contains a Πk with Πk

kk = 1. If Πg
kk = 1 or job

Jk has no individual operations on any processor in G1, then define A as in
Case 1 with respect to Π = Πg. Similarly, if Πk

gg = 1 or Jg has no individual
operations on any processor in G2, then define A is in Case 1 with respect
to Π = Πk. If none of the above applies, we shall combine Πg and Πk to a
new 0/1 matrix Π, where Π will not be a permutation matrix, and define
A with respect to Π as in Case 1. Initially, let Π = Πk. Since Πk

gg = 0
by assumption, there exists a processor hg ∈ G2 such that Πg,n+hg = 1.
Set Πg,n+hg to 0. Now, if processor hg is not tight, then we can stop, the
set A defined with respect to Π would meet all requirements. However,
if processor hg is tight, there must be some job, different to Jg, assigned
to it when defining A. To choose this job, observe that there exists some

11

job Ji1 such that Πg
i1,n+hg

= 1, since processor hg is tight. Therefore, set
Πi1,n+hg to 1. Now if Πi1,n+h = 0 for all h ∈ G2 \ {hg}, then we can stop.
Otherwise, let h1 be the processor in G2 \ {hg} such that Πi1,n+h1 = 1. Set
Πi1,n+h1 to 0 and continue the procedure with processor h1 as above (see
Fig. 3 for illustration). Notice that Jk cannot be part of the above chain
of jobs and processors, as Jk is binary and it has individual operations on
processors in G1, by assumption. Since the number of jobs and processors
is finite and no cycling can occur, the algorithm will terminate. In the end,
the set A defined with respect to Π in the same way as in Case 1, and
µ = min{ε,w · λΠg , w · λΠk} satisfy all requirements. �

7 A special case

A binary job Jj will be called simple if either it has no individual operations
or it has no group operations or all its individual and group operations are
on the same group of processors.

Simple jobs allow us to considerably simplify our three step algorithm of
Section 6. Namely, suppose we want to find a schedule with makespan T in
the integral model, if one exists. Then in any feasible schedule of length T ,
r is at least rmin(T) := max{0, ∆(G1) + ∆(G2) − T}, as one may verify.

Lemma 2 If an instance with all simple jobs admits an integral preemptive
schedule of length T , then it also admits one of length T and with r =
rmin(T).

Proof Let S be an integral preemptive schedule with makespan T and over-
lap r > rmin(T) = max{0, ∆(G1)+∆(G2)−T} in part (b) of S. Consider the
block X, see Figure 4, of length r − rmin(T) starting at ∆(G1)− r on multi-
processor G2. Let Y be the block of individual operations on processors in
G2 in part (d) of length r− rmin(T) � w starting at time ∆(G1) + ∆(G2)− r,
see Figure 4.

r

T=7

G

G

1

2

∆(G)1

∆(G)2

Y

∆(G)=41

∆(G)=52

r =3

r (7)=2
min

time

X

Figure 4: A schedule with non-minimal overlap.

We may then swap the blocks X and Y . The resulting schedule S ′

is feasible: since the jobs are simple by assumption, the jobs with their

12

group operation on G2 have no individual operations on processors in G1,
moreover, the jobs with individual operations on processors in G2 have no
group operations on G1. Clearly, the size of S ′ remains T . Finally, the size
of part (b) in S ′ is precisely rmin(T). �

Corollary 2 An open shop scheduling problem with two multiprocessors and
all simple jobs has an optimal schedule with a minimum overlap of group
operations.

By the above corollary, there is a purely combinatorial algorithm for
solving the integral model with all simple jobs. Namely, find the smallest
T such that the network flow N(w, r) with r = max{0, ∆(G1) + ∆(G2)− T}
and w = T −(∆(G1)+∆(G2)−r) admits a compatible flow. Such a T can be
determined by dichotomic search between e.g., the trivial lower and upper
bounds 0 and

∑
jh bjh +

∑
j� aj�, respectively. This procedure is polynomial,

but not strongly polynomial in the input.
Another option is to compute the optimal makespan in strongly poly-

nomial time by solving LP (2). If (w∗, r∗, x∗, y∗) is the optimal solution,
then the optimal makespan is T ∗ = ∆(G1) + ∆(G2) + �w∗ − r∗�. Letting
rmin(T ∗) = max{0, ∆(G1) + ∆(G2) − T ∗} = max{0,−�w∗ − r∗�}, solve the
network flow N(w, r) with r = rmin(T ∗) and w = rmin(T ∗) + �w∗ − r∗�.
Notice that if �w∗ − r∗� < 0, then the above calculation shows that there
exists an optimal solution with w = 0, whereas if �w∗ − r∗� � 0, then there
is an optimal solution with r = 0.

J
1

J
2

J
3

P
1

P
2

P
3

P
4

1

G
1
G

2

1

G
1

G
2

Optimal solution

P
1

P
2

P
3

P
4

time

No optimal solution

without overlap

11

111

J J

J

J

J

2 1

3

3

3P
1

P
2

P
3

P
4

time

J

J

1

1

J J

J

2 1

3
J

J

1

1

?
J3

Figure 5: No optimal schedule with r = rmin(4).

13

Notice that Lemma 2 does not hold for binary jobs in general as the ex-
ample in Figure 5 indicates. There, jobs J1, J3 are binary but not simple, and
J2 is simple. The optimum makespan is 4, thus rmin(4) = max{0, ∆(G1) +
∆(G2) − 4} = 0, but there exists no feasible schedule with makespan 4 and
r = 0.

As for the number of preemptions, observe that we may rearrange ar-
bitrarily the schedule of the group operations on G1 in part (a) without
changing the size of any part and without affecting feasibility. Moreover,
the same is true for part (b) between ∆(G1)−rmin(T) and ∆(G1). We may in
particular reorder the group operations on G1 between 0 and ∆(G1) so that
no group operation on G1 is preempted. Similarly, we may reorder the group
operations on G2 between ∆(G1) and ∆(G1) + ∆(G2) − rmin(T) so that no
group operation is preempted. Hence, we have shown the following result:

Lemma 3 Given any instance of the makespan minimization problem in
the integral model with 2 multiprocessors and all simple jobs, there exists an
optimal schedule S with makespan T ∗ with the following properties:

a) the overlap r of group operations attains the minimum:

r = max{0, ∆(G1) + ∆(G2) − T ∗} = rmin(T ∗),

b) there are no preemptions for the group operations on multiprocessor G1,

c) there are at most rmin(T ∗) − 1 preemptions for the group operations on
G2. �

8 Applications

University timetabling. In [2] the professor-lecturer model has been
introduced in which some type of teachers have only group-lectures (pro-
fessors), and the others have only individual lectures (lecturers). This
timetabling model corresponds to the preemptive open shop scheduling prob-
lem in the integral model, where professors and lecturers constitute the jobs,
and classes correspond to processors. By the results of Section 7, there ex-
ists a minimum length university timetable with minimum overlap of group
lectures. Moreover, when teachers are able to give two types of courses (lec-
tures for individual classes or lectures to groups of classes), then the problem
can still be solved in polynomial time (cf. Section 6).
Hypergraph edge coloring. Given an instance of the preemptive mul-
tiprocessor scheduling problem, finding an integral preemptive schedule is
equivalent to determining a feasible edge coloring of the hypergraph H =
(P ∪J , E ∪E) with the least number of colors. The node set of H is P ∪J ;

14

the edge set E ∪ E consists of edges E representing the individual opera-
tions and hyperedges E representing the group operations. More precisely,
each individual operation Ojh is represented by an edge {Ph, Jj} ∈ E with
multiplicity bjh and each group operation Ôj� is represented by a hyperedge
{G�, Jj} ∈ E with multiplicity aj�, where a hyperedge {G�, Jj} consists of
job Jj and all processors in G�. A coloring of the edges consists of a set of
matchings with integral multiplicities.

These types of hypergraphs generalize bipartite multigraphs, but they
do not belong to known classes, like balanced, normal or with the Kőnig-
Egerváry property (see Berge [3]). Yet, our procedure enables us to decide
whether an edge coloring with K colors exists in polynomial time.

Acknowledgments

The research of Tamás Kis has been supported by the Hungarian Scientific
Research Fund, grant no. T046509. The research of Wieslaw Kubiak has
been supported by the Natural Sciences and Engineering Research Council
of Canada grant OPG0105675 and the Institute of Mathematics of the Ecole
Polytechnique Fédérale de Lausanne. The supports are gratefully acknowl-
edged.

References

[1] P.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows, Prentice-
Hall (London 1993).

[2] A.S. Asratian and D. de Werra, A generalized Class-Teacher Model for
some Timetabling Problems, Eur. J. Oper. Res. 143 (2002) 531-542.

[3] C. Berge, Graphs and Hypergraphs, North Holland (Amsterdam 1973).

[4] J. B�lażewicz, M. Drabowski, J. Weglarz, Scheduling multiprocessor
tasks to minimize schedule length, IEEE Trans. Comput. 35:5 (1986)
389–393.

[5] J. B�lażewicz, P. Dell’Olmo, M. Drozdowski and M. G. Speranza,
Scheduling multiprocessor tasks on three dedicated processors, Infor-
mation Processing Letters 41 (1992) 275-280.

[6] J. B�lażewicz, K.H. Ecker, E. Pesch, G. Schmidt and J. Weglarz,
Scheduling computer and Manufacturing Processes, Springer-Verlag
(Berlin 1996).

[7] P. Brucker and A. Krämer, Shop scheduling problems with multiproces-
sor tasks on dedicated processors, Annals of Op. Res. 57 (1995) 13-27.

15

[8] P. Brucker and A. Krämer, Polynomial algorithms for resource-
constrained and multiprocessor task scheduling problems,
Eur. J. Oper. Res. 90 (1996) 214-226.

[9] M. Drozdowski, Scheduling multiprocessor tasks – An overview,
Eur. J. Oper. Res. 94:2 (1996) 215-230.

[10] J. Du and J.Y.-T. Leung, Complexity of scheduling parallel task sys-
tems, SIAM J. Discrete Mathematics 2:4 (1989) 473-487.

[11] H.N. Gabow and O. Kariv, Algorithms for edge coloring bipartite
graphs and multigraphs, SIAM J. Computing 11:1 (1982) 117-129.

[12] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-completeness, WH Freeman & Co. (San Francisco,
1979).

[13] T. Gonzalez and S. Sahni, Open shop scheduling to minimize finish
time, J. ACM 23:4 (1976) 665-679.

[14] J. A. Hoogeveen, S. L. van de Velde, B. Veltman, Complexity of schedul-
ing multiprocessor tasks with prespecified processor allocations, Dis-
crete Applied Mathematics, 55 (1994) 259-272.

[15] K. Jansen, L. Porkolab, Preemptive Scheduling with Dedicated Proces-
sors: Applications of Fractional Graph Coloring, Journal of Scheduling
7:1 (2004) 35-48.

[16] M. Kubale, Preemptive versus nonpreemptive scheduling of biprocessor
tasks on dedicated processors, Eur. J. Oper. Res. 94:2 (1996) 242-251.

[17] É. Tardos, A strongly polynomial algorithm to solve combinatorial lin-
ear programs, Operations Research 34 (1986) 362-370.

[18] D. de Werra, An introduction to timetabling, Eur. J. Oper. Res. 19
(1985) 151-162.

[19] D. de Werra, A.S. Asratian, S. Durand, Complexity of some special
types of timetabling problems, Journal of Scheduling 5 (2002) 171-183.

16

