J Sched (2008) 11: 137-148
DOI 10.1007/s10951-008-0059-7

Q OpenAccess

Time-constrained project scheduling

T.A. Guldemond - J.L. Hurink - J.J. Paulus -
J.M.J. Schutten

Published online: 14 February 2008
© The Author(s) 2008

Abstract We propose a new approach for scheduling with
strict deadlines and apply this approach to the Time-
Constrained Project Scheduling Problem (TCPSP). To be
able to meet these deadlines, it is possible to work in over-
time or hire additional capacity in regular time or overtime.
For this problem, we develop a two stage heuristic. The key
of the approach lies in the first stage in which we construct
partial schedules. In these partial schedules, jobs may be
scheduled for a shorter duration than required. The second
stage uses an ILP formulation of the problem to turn a partial
schedule into a feasible schedule, and to perform a neigh-
borhood search. The developed heuristic is quite flexible
and, therefore, suitable for practice. We present experimen-
tal results on modified RCPSP benchmark instances. The
two stage heuristic solves many instances to optimality, and
if we substantially decrease the deadline, the rise in cost is
only small.

Keywords Project scheduling - Strict deadlines

1 Introduction

In this paper we present a new scheduling methodology
for scheduling problems with strict deadlines. The new ap-
proach is applied to a project scheduling problem with strict
deadlines on the jobs, which we call the Time-Constrained

T.A. Guldemond
ORTEC bv, PO Box 490, 2800 AL, Gouda, The Netherlands

J.L. Hurink (X)) - J.J. Paulus - J.M.J. Schutten
University of Twente, PO Box 217, 7500 AE, Enschede,
The Netherlands

e-mail: j.L.Lhurink @utwente.nl

Project Scheduling Problem (TCPSP). In many project
scheduling problems from practice, jobs are subject to strict
deadlines. In order to meet these deadlines, different ways
to speed up the project are given, e.g., by working in over-
time or hiring additional resource capacity. These options
are costly but often not avoidable. The question arises how
much, when, and what kind of extra capacity should be used
to meet the deadlines against minimum cost.

The TCPSP is a variant on the well studied RCPSP
(Resource-Constrained Project Scheduling Problem). How-
ever, there are fundamental differences between the time-
constrained and the resource-constrained variant. In the
TCPSP, the deadlines are strict and resource capacity pro-
files can be changed, whereas in the RCPSP, the given re-
source availability cannot be exceeded and the objective is
to minimize the makespan. Moreover, in the TCPSP a non-
regular objective function is considered. Therefore, the ex-
isting solution techniques of the RCPSP are not suitable for
the TCPSP. For an overview of the literature on the RCPSP
see, e.g., Herroelen et al. (1998), Kolisch and Hartmann
(1999), and Kolisch and Padman (2001).

Although in practice deadlines often occur in projects,
the Time-Constrained Project Scheduling has been consid-
ered only rarely in the literature. Deckro and Herbert (1989)
give an ILP formulation for the TCPSP and discuss the con-
cept of project crashing. In project crashing, the processing
time of a job can be reduced to meet the project’s deadline,
at the cost of an increased resource usage, see also Li and
Willis (1993) and Kis (2005). Kolisch (1995) discusses a
heuristic procedure for the TCPSP with limited hiring. An-
other related problem is the resource investment problem
(RIP), see Mohring (1984) and Demeulemeester (1995). For
the RIP, it is also the goal to invest in resources as little as
possible in order to meet a given project deadline. However,

@ Springer

138

J Sched (2008) 11: 137-148

in the RIP only the investment in (new) resources is con-
sidered. If for a resource an investment in several units of
this resource is done, these units are available for the com-
plete planning horizon. The TCPSP is a scheduling problem
where the resource availability in a time unit is fixed (e.g.,
amount of employees in a time unit during a working day)
and it may be decided to extend in some of the time units
these resource capacities by hiring extra resource units. Sim-
ilarly, the time driven rough-cut capacity planning problem,
see Gademann and Schutten (2005), is about matching de-
mand for resources and availability of resources. For each
time bucket, it can be decided how many resources are as-
signed to a job.

For the TCPSP, as presented here, the basic capacities
of the resources are fixed. The resource investment decision
took place in an earlier stage. What remains is the short term
scheduling of the jobs so that costs of working in overtime
and hiring are minimized. The TCPSP in this form is mo-
tivated by a cooperation with a Dutch company developing
commercial planning software. It encounterd this problem
with several of its clients and feels a need to extend its plan-
ning tool by a component which allows to tackle TCPSP
like problems. To the best of our knowledge, in this paper
the concept of overtime and multiple forms of irregular ca-
pacity are included in the modeling for the first time.

The outline of the paper is as follows. In Sect. 2, we intro-
duce the presented solution approach that starts by planning
jobs only fractionally. Section 3 gives a detailed problem de-
scription and presents an ILP to model the TCPSP. To solve
the TCPSP, we develop a two stage heuristic in Sect. 4. The
first stage of the heuristic constructs a partial schedule. The
key of the approach lies in this first stage where jobs may
be scheduled for a shorter duration than required. The sec-
ond stage turns the partial schedule into a feasible schedule.
Section 5 concerns the computational results. The test in-
stances that we use are RCPSP benchmark instances from
the PSPIib, see Kolisch and Sprecher (1997b), that are mod-
ified to TCPSP instances. In Sect. 6, we indicate how to ex-
tend the solution approach, e.g., for the multi-mode case.
Sect. 7 gives a number of conclusions.

2 Scheduling with strict deadlines

For a good solution of the TCPSP, it is preferable to use
regular working hours and avoid work in overtime and hir-
ing, since these add to the costs. A typical greedy planning
heuristic would start by scheduling jobs using only regular
time and available resources as long as possible, and thereby
avoiding costs. Only if a job would miss its deadline by us-
ing only regular working hours, working in overtime and hir-
ing capacity comes into the picture. In our experience, using
such a greedy strategy results in bad solutions. The reason

@ Springer

for this is that by avoiding costs in the beginning, bottle-
necks get shifted toward the end of the horizon and result
in a pile up of cost toward the deadlines. The best solution
might be to hire a small amount of additional capacity at the
beginning to avoid costly situations when fitting in jobs that
get scheduled close to their deadline.

Therefore, we propose a new scheduling methodology.
Instead of scheduling jobs for their complete duration, we
start by scheduling the jobs only for a fraction of their dura-
tion, and then we gradually increase the fraction for which
the jobs are scheduled. This way, all jobs are partially admit-
ted in the schedule before we address the bottlenecks. Dur-
ing this procedure it is guaranteed that we can turn the par-
tial schedule into a feasible schedule. The goal is to create
a schedule, in which the usage of irregular capacity is low,
i.e., we try to prevent a pile up of costs toward the deadlines.

In the remainder of this paper we apply the idea of frac-
tional planning and gradually increasing the fraction for
which jobs are planned to the TCPSP. The computational
test show that this idea works very well for the TCPSP. We
believe that this new concept can be successfully applied to
other scheduling problems with strict deadlines as well.

3 Problem description and ILP formulation

In this section, we describe the Time-Constrained Project
Scheduling Problem (TCPSP) and formulate it as an integer
linear program (ILP). Since distinguishing between regular
time and overtime is crucial for the TCPSP, we first dis-
cuss (in Sect. 3.1) how time is divided in different units,
what the cost structure of working in these different time
units is, and what non-preemptiveness of jobs means. After
that, Sects. 3.2 and 3.3 give a formal problem formulation
of the TCPSP and a corresponding ILP model. Due to the
complexity of the problem, we cannot expect to solve the
TCPSP via this ILP-model within reasonable time. How-
ever, we present the ILP, since the heuristic presented in
Sect. 4 makes use of the ILP formulation to construct fea-
sible solutions and to perform a neighborhood search.

3.1 Modeling regular time and overtime

In project scheduling, a time horizon [0, T') is divided into
T time units, t =0, ..., T — 1, where time unit ¢ represents
the time interval [¢, t 4+ 1). The granularity of this discretiza-
tion depends on the granularity of the input data. In the fol-
lowing, we will use T to refer to both the set of time units
and the horizon [0, 7). However, for the Time-Constrained
Project Scheduling Problem, this is not enough. The time
units that represent the overtime have different properties
than the time units that represent the regular time of a work
day, e.g., different cost for hiring.

J Sched (2008) 11: 137-148

139

Fig. 1 Chains of time units

(A [R R]
T ' Fy |T%] 5, T3 My
Fl? AZIZ
S
T{R [KR [[Fe]S [[S [M[[M]M][[M,]

Therefore, we take a different view on the time units. We
define one chain of regular time units 70 = {t?, cee, t?,o},
and L chains of time units that are available for working in
overtime 7! = {t{, e, tjl\,l}, l=1,..., L. For each chain of
overtime time units 7', there is an index 7! € {1,..., No}
that indicates the last regular time unit (t?/ € TY) before the
start of the chain 7. Furthermore, we assume that the chains
do not overlap in time and that the overtime chain T'*! is
later in time than the overtime chain 7. If the first time unit
is not a regular time unit but an overtime time unit, we in-
troduce an artificial regular time unit to start with. The cor-
responding set of time units 7 is the union of all chains,
e, T = U1L=0 T!. As a consequence, each time unit t € T
belongs to one unique chain T/, 1 € {0, ..., L}. Due to the
above mentioned constraints, the set of time units itself is
also a chain, so we can compare each pair of time units,
no matter whether these time units are in regular time or in
overtime. Note that it is possible that certain regular time
units are followed by more than one chain of overtime time
units.

Consider the following example. For processing, we
have 8 regular hours available on Friday and 8 on Mon-
day, and 4 overtime hours on Friday evening, 8 on Sat-
urday, and again 4 on Monday evening. This means that
TO={F,....Fs, My1,... . Mg}, T' ={Fy, ..., Fp}, T* =
{S1,..., 83} and T3 = {Mo, ..., My,}. Furthermore, t?l =
t?z = Fg and t?3 = Mg. Figure 1 illustrates this example.

As in most project scheduling problems, preemption is
not allowed during regular time. However, for the problem
at hand, it is allowed to work (without gaps) in some of the
time units in overtime, then stop and continue the work in
the next regular time unit or in a subsequent chain of over-
time, if no regular time is in between these two chains of
overtime. This modified non-preemption requirement can be
formally stated as follows. If a job is processed in two time
units of a chain 7!, it is also processed in all time units in
between these two time units, and if a job is processed in
two different overtime chains 7% and 7!, 1 <k <1 <L,
then this job has to be processed in all regular time units

0 19y T,

0
{trk+1 LA

3.2 TCPSP with working in overtime, and hiring in regular
time and in overtime

For the TCPSP, a set of n jobs, {Ji,..., J,}, each job J;
with a release date r; and a deadline d;, has to be sched-
uled without preemption (according to the modified non-
preemption requirement of Sect. 3.1) for p; time units on
a time horizon [0, 7). This time horizon is divided into one
chain of regular time units and multiple chains of overtime
time units (as in Sect. 3.1). The release date r; gives the first
time unit in which job J; is allowed to be processed and its
processing has to be finished before d;, i.e., d; — 1 is the
last time unit where it is allowed to work on job J;. For
processing the jobs a set of K resources, {R1, ..., Rk}, is
available, where resource Rj has a capacity Qy; in regular
time unit ¢. To hire one extra unit of resource Rj in time
unit 7 € TY, an amount c,g has to be paid. In an overtime
time unit 7 € T \ T° the use of one unit of the available re-
source Ry costs clg and hiring one extra unit costs clgH Lt
is assumed that the amount of regular resource available in
overtime 7", is equal to the regular resource capacity in the
last regular time unit, i.e., Qk,,g . There is no limitation to

the amount of resource hired. The processing of the jobs is
restricted by precedence relations, which are given by sets
of jobs P;, denoting all direct predecessors of job J;, that
have to complete before J; starts. Each job J; has a speci-
fied processing time p; and during the processing of job J;
it requires g j; units of resource Ry.

Motivated by practice we incorporate one additional re-
quirement on working in overtime. If personnel work dur-
ing one time unit in overtime, they have to be present from
the beginning of that overtime chain until that time unit.
Although, they might not have to work immediately. This
requirement reflects the fact that normally personnel start
working in overtime immediately after the regular time, and
then work for a continuous period in that one overtime chain.
Thus, the amount of available resource used in an overtime
chain is non-increasing.

3.3 ILP-formulation of the TCPSP

As a generalization of the classical TCPSP (see Neumann et
al. 2002), the considered problem is also NP-hard. To model

@ Springer

140

J Sched (2008) 11: 137-148

the TCPSP, we employ one type of binary decision variables
xj; that are equal to 1 if job J; is being processed in time
unit 7. To formulate the problem as an ILP, we use four types
of variables that can be deduced from the variables x;,. We
use binary variables s, that are equal to 1 if time unit ¢ is the
first time unit where job J; is being processed. The nonneg-
ative variables Hy; represent the amount of capacity hired of
resource Ry in time unit € 79 and nonnegative variables
Oy: and H Oy, represent the amount of capacity made avail-
able through working in overtime and hiring in overtime for
resource Ry in time unit # € T \ T, respectively.

Using these variables, the TCPSP can be modeled by the
following ILP:

K
minimize: Z[Z c,ngt+ Z (chkt—i-c]gOHOk,)]

k=1"teT0 teT\T°
()

subject to:

di—1

Yo xi=pjs Vi @
t=rj

n

> qjkxji < Qi+ Hi, V.t €T 3)
j=1

n

> qjixje < O+ HOw. Ykt €T\ T “
j=1

Ok’t{ < Qk,tfl’ Vi>1,k; (5)
Ok,z{, < Ok,tle, Vi>1,h>1,k; 6)
dj—pj

D sp=1, Vj; %)
t=rj
xj,t? =Sj,t?’ VJ, (8)
xj,t,?ij,tf,),l +sj’,19+ Z Sit, Yji,h=1; (9)

teUgpel oy '
Xjdl Exj,tol —i—sj’t{ + Z Sje, YI=1,j;
i t|t<t{,tEU(k|rk:r1)Tk
(10)
x,.’[;lij’[éil—i—sj’[}z, Vh>1,1>1,]; (11)
pi(l=sj) =Y xiz VteT.Jj.J;eP (12)
>t

Sj;=0, Vtgé{rj,...,dj—pj}; (13)
xj; =0, Vt¢{rj,...,d;j—1}; (14)

@ Springer

Xjr,8jr €{0,1}, Vj,teT; (15)
Hy >0, Vk,teTY, (16)
O, HOw >0, Vk,teT\T°. a7)

The objective function (1) minimizes the total costs. Con-
straint (2) ensures that each job is processed for the required
duration between the release date and the deadline. Con-
straint (3) ensures that the amount of required resource does
not exceed the amount of available resource in regular time
units, using regular capacity and hiring. Constraint (4) en-
sures that the resource usage in an overtime time unit cannot
exceed the amount that is available through working in over-
time and hiring in overtime. Constraints (5) and (6) force
the amount of work in overtime to be non-increasing in each
chain of overtime, and not to exceed the capacity of the reg-
ular resource in the last regular time unit. Constraint (7) en-
sures that each job starts exactly once. The modified non-
preemption requirement is specified in constraints (8) to
(11). In constraint (8), we guarantee that job J; is processed
in the first time unit of 7 if it also starts in that time unit.
For the other regular time units, constraint (9) ensures that
job J; can only be processed if it is processed in the previ-
ous regular time unit, or starts in this regular time unit, or
starts in an overtime time unit directly succeeding the previ-
ous regular time unit. For processing in overtime time units,
constraint (10) states that we are allowed to work on a job J;
in the first time unit of an overtime chain if we work on it in
the last regular time unit, or we start the job at this time unit,
or the job starts in an overtime time unit which succeeds the
last regular time unit, but preceding this overtime time unit.
Constraint (11) states that it is only allowed to work on a job
Jj in a time unit that is not the start of an overtime chain,
if that is done also in the previous overtime time unit or it
is starts in this overtime time unit. The precedence relations
are managed in constraint (12). If job J; starts in time unit 7,
then the left hand side of the constraint becomes zero, imply-
ing that in none of the time units after 7 there can be worked
on job J;, i.e., job J; is finished before ¢. On the other hand,
if job J; does not start in time unit ¢, constraint (12) gives
no restriction. Constraints (13) and (14) put all non-relevant
sj; and x j; variables to zero. Finally, constraints (15) to (17)
define the domain of the variables.

4 Solution approach

In the previous section, we presented an ILP-formulation of
the TCPSP. However, we cannot expect to solve large in-
stances with the ILP-formulation. In this section, we present
a heuristic approach based on the concept of planning frac-
tionally.

J Sched (2008) 11: 137-148

141

4.1 Two stage heuristic
4.1.1 Outline

After initialization, in which feasibility of the instance is
checked, the first stage constructs a number of different par-
tial schedules by randomized sampling. Partial schedules are
constructed by scheduling one job at a time for only a frac-
tion of its duration. The job to be scheduled next is selected
with a probability derived from its deadline and the state of
the schedule constructed so far. Once all jobs are partially
admitted in the schedule, the fraction for which the jobs are
scheduled is gradually increased. In this first stage, no use
of overtime is made and, therefore, the resulting schedule in
general does not contain the jobs for their complete dura-
tion. However, it is guaranteed that in the second stage the
partial schedules can be made feasible by allowing the use
of overtime. On a small subset of good feasible schedules, a
neighborhood search will be performed.

4.1.2 Initialization

In the initialization stage, we calculate modified release
dates and modified deadlines, which are sharp bounds on
the start and completion times of the jobs. From these mod-
ified release dates and modified deadlines, it is possible to
determine in advance whether there exists a feasible sched-
ule.

The modified release date 7; of a job J; is the first time
unit, such that if the job starts in this time unit, all its prede-
cessors can be scheduled if there is abundant resource capac-
ity, both in regular time and overtime. The modified deadline
d j of a job J; is the last time unit, such that if the job fin-
ishes the unit before, all its successors can still be scheduled
if there is abundant resource capacity, both in regular time
and overtime. A feasible schedule exists if and only if for
each job J; the interval [7;, d;] is large enough to process
the job.

The modified release dates 7'; can be calculated by a for-
ward recursion through the precedence network:

7 ::max{rj,max{7i+pi}}, Vj. (18)
iEPj

With a backward recursion, we calculate the modified dead-
lines d;:

d; = '{d», in {d — } vj. 19
J minjy d; {ilr}jlérll’i}{l pi} J (19)

All time windows, the time between the modified release
date and modified deadline, should be large enough to ac-
commodate the job:

dj -7 >pj. Vi (20)

Note that the modified release dates and modified deadlines
are calculated with respect to the time horizon 7.

4.1.3 Stage 1

In the first stage, we generate a schedule containing all jobs
in which jobs get intentionally scheduled for a shorter dura-
tion than necessary, using only regular time units. For each
job Jj, we are going to determine a start time S; > 7;,
a completion time C; < c?j such that in [S;, C;] there is
enough time available to process the job (with respect to
T). However, at this first stage, we assign only the regular
time in [S;, C;] to job J;. To start, we aim to create a partial
schedule such that each job is scheduled for at least a frac-
tion ag € (0, 1]. However, there is no guarantee that each
job reaches this fraction, but we do ensure that the assigned
starting and completion times allow for a feasible solution
when using overtime and hiring extra capacity are allowed.
Next, we describe this selecting and scheduling in detail.
We generate the partial schedules with a randomized
sampling procedure and then try to improve them by in-
creasing the fraction for which jobs are scheduled. In a serial
manner, we select jobs and include them in the schedule. Let
Djobs denote the decision set from which we select the job to
be scheduled next. The set Djops contains all jobs for which
all predecessors are already in the current schedule. Initially,

Diops = {]j | Pj = ().

In each iteration, we select a job from the decision set Djobs.
For each job J; € Djops, we determine a priority v;. This pri-
ority depends on how early the job can start. Let e; denote
the earliest start time of job J; in the following sense: ¢; is
the earliest time unit in 7', greater than or equal to the mod-
ified release date 7; and greater than the completion times
of job J;’s predecessors, such that for each of the [ap - p;]
regular time units following e; still enough resource capac-
ity is available to schedule job J;. This is done, because at
this stage we only try to schedule job J; for a fraction ag in
only the regular time 7°.

For each job J;, we define a slack, s!;, with respect to 70
(see Fig. 2):
slj:=dj—Tag-pjl1—ej, VJj€ Djobs.

It is possible that the slack of a job becomes negative,
implying that we cannot schedule the job for a fraction ag
without hiring or working in overtime. As a consequence,
we either have to schedule this job for a smaller fraction

[a0 - pj] sl

Fj €; d; TO

¥

Fig. 2 Derivation of the slack of job J;

@ Springer

142

J Sched (2008) 11: 137-148

at this stage or hire a small amount of resources in regular
time to enlarge the fraction for which this job is scheduled
in regular time. We get back to this problem later.

If a job has a small slack value, there is not much room to
maneuver this job, and therefore we prefer to schedule this
job next. We give such a job a high priority. More precisely,
the priority value of job J; becomes:

vj:= max {sl;}—sl;,

VJ; € Dijobs.
JieDjohs

Note that v; > 0. To get strictly positive selection probabil-
ities for each job in Djops, we add 1 to the priority and nor-
malize these priority values. The resulting selection proba-
bility n; of job J; is:

. (vj + D
Z-]iEDjobs(Ui + 1)0[5

nj: VJJ' S Djobs,

where the value of « lies in [0, oo], and indicates the impor-
tance of the priority value when selecting a job. If & equals O,
jobs are selected uniformly at random from Dijops. If o tends
to infinity, the job with the highest priority gets selected de-
terministically.

Now that we have selected a job, we determine its start
and completion time, S; € T and C; € T, respectively.
Since the job J; gets scheduled in the regular time units
in [S;, C,], for S; and C; the following must hold to en-
sure that we get a large enough interval for job J; and leave
enough room for the remaining jobs to be scheduled:

Sj zfj, (21)
Cj<d,, 22)
Sj>C,', VJ,'GPJ', (23)

Ci—S8;j+1=>p; withrespecttoT. (24)

There can be many pairs (S;, C;) satisfying these four
constraints. Therefore, we select a pair by applying the fol-
lowing criteria, in the presented order:

1. Select a pair that hires as little as possible.

2. Select a pair that minimizes max{0, [aop-p;1—(C;—S;)}
with respect to T°.

3. Select a pair that minimizes C;.

4. Select a pair that maximizes S;.

After the first three criteria there may still be several pairs
left, whereas after Criterion 4 the values for S; and C;
are uniquely determined. Due to constraints (21) to (24),
it might be necessary to hire resources in regular time, but
via criterion 1 we try to avoid this. The second criterion
states that we select from the remaining start and completion
times, those that schedule the job with minimal shortage to
the fraction ag. This way we try to schedule each job close

@ Springer

to the desired fraction ag. The third criterion gives, from the
remaining start and completion times, those that minimize
the completion time, not to hinder the jobs that still have to
be scheduled. Finally, we choose from the remaining pairs
of start and completion time, the pair that maximizes S;.

If all jobs are partially scheduled, it might be possible to
extend the processing time of jobs within regular time, such
that they are scheduled for a larger fraction. To prevent the
shifting of problematic situations (as described in Sect. 2),
we would like to spread this increase evenly over all jobs.
Therefore, we use a procedure that repeatedly tries to extend
the jobs to a higher fraction, going through the schedule al-
ternating from back to the front and from the front to the
back. Let (ag, a1, ..., ax) denote a non-decreasing sequence
of fractions that we apply, where aq equals the fraction used
in the randomized sampling.

One extension step consists of a backward and a forward
extension. In the ith backward extension, we go through the
current schedule from the back to the front and search for
each job J; a new pair (S, C;) satisfying (21) to (24), by
the following four criteria in the presented order:

1. Select a pair that requires no more hiring than before.

2. Select a pair that minimizes max{0, [a; - p;1—(C; — S;)}
with respect to T°.

3. Select a pair that maximizes S;.

4. Select a pair that minimizes C;.

The ith backward extension is followed by the ith forward
extension, which is a mirrored version of the ith backward
extension.

4.1.4 Stage 2

The result of Stage 1 is a schedule containing all jobs, sched-
uled in regular time units and not necessarily for the required
length. In Stage 2, we use working in overtime and hiring in
regular time and overtime to get a feasible solution of the
TCPSP. The main idea to get a feasible solution is the fol-
lowing. Iteratively, for each job J; that is not scheduled for
its required duration, we solve an ILP. This ILP is given by
a restricted version of the ILP in Sect. 3.3, where all jobs
except job J; get ‘frozen’ as they are in the current schedule
and only the timing of job J; is left to the solver. More pre-
cisely, we deduce a release date and a deadline for job J;,
imposed by the current schedule and the original release date
and deadline. Furthermore, we deduce the regular capacity
that is still available for scheduling job J;. For the regular
time units, this is the original capacity minus the capacity
used by the other ‘frozen’ jobs in the current schedule. For
the overtime time units, this is the work in overtime that is
imposed by other jobs, but not used as a consequence of con-
straint (6). The solver returns the timing of the job J; and the
corresponding use of irregular capacity. This, together with

J Sched (2008) 11: 137-148

143

the ‘frozen’ jobs, gives a schedule that is the same as before
except for the scheduling of job J;. Job J; is now scheduled
for its required duration. Note that the requirements (21) to
(24) for the start and completion times S; and C; of job J;
ensure that there is always a feasible scheduling of job J;.
At the end of this iterative process, we have a feasible solu-
tion for the TCPSP.

The order in which the jobs are extended to their required
duration can be chosen through numerous criteria. Possible
orderings are: smallest scheduled fraction (a;) first, largest
unscheduled processing time ((1 — a;)p;) first, and an or-
dering deduced from the precedence network.

Now that we have a feasible schedule for the TCPSP, we
apply a neighborhood search to improve upon this schedule.
We use a neighborhood search based on a method proposed
by Palpant et al. (2004). This method selects a number of
jobs, ‘freezes’ the remainder of the schedule, and calculates
for the resulting ILP an optimal schedule. It is similar to the
first part of Stage 2, but now the timing of a small number
of jobs is left to the ILP-solver. One iteration of the neigh-
borhood search consists of the following steps:

1. Select a subset of the jobs, JNeighbor — ¢y, =

2. ‘Freeze’ all jobs J; ¢ JNeighbor

3. Determine release dates, deadlines, available capacities
for the jobs in JNeighbor

4. Solve the resulting ILP.

s In}

There are numerous ways to select a subset J N8O of jobs,
For example, Palpant et al. propose (1) to select a job to-
gether with all its predecessors, or (2) select a job and all
jobs scheduled parallel with, and contiguous to it. One can
think of many more selection criteria, but the main idea is
not to select jobs arbitrarily, but to select jobs that occur
close to each other in the schedule. Otherwise, there is not
much to improve, i.e., the neighborhood is too small.

5 Computational results

This section describes the setup of the computational tests
and the results for testing the solution approach presented
in this paper. Since this is the first attempt to tackle the
TCPSP with working in overtime and hiring in regular time
and overtime, the presented heuristic cannot be compared
with any existing method. However, there is much known
for the RCPSP. Therefore, we take benchmark instances of
the RCPSP and transform them into instances of the TCPSP.
This is done in such a way that we can draw conclusions
with respect to the quality of the TCPSP solutions. This
section starts with describing the transformation of the in-
stances and the parameter setting in the heuristic, before pre-
senting the computational results.

5.1 Construction of TCPSP instances

For the RCPSP, a set of benchmark instances called PSPlib
generated by Kolisch and Sprecher (1997b) and Kolisch et
al. (1995) can be found on the web (Kolisch and Sprecher
1997a). These instances have been employed in many stud-
ies, for example by Demeulemeester and Herroelen (1997),
Kolisch and Drexl (1996), and Kolisch et al. (1995). These
RCPSP instances form the base of the TCPSP instances.
To transform the instances from the PSPlib into TCPSP in-
stances, three additional aspects have to be introduced: over-
time and hiring possibilities with their associated costs, and
deadlines.

The TCPSP distinguishes between regular and overtime
time units, where the RCPSP has only one type of time units.
We let each time unit from the RCPSP correspond to a reg-
ular time unit in the TCPSP. In addition, we introduce over-
time in a weekly pattern. Day 1 of the week, the Sunday,
contains only 8 overtime time units. Days 2 to 6, the week-
days, start with 8 regular time units, followed by 4 over-
time time units. Day 7, the Saturday, contains again only 8
overtime time units. This weekly pattern is repeated until
the largest deadline of the jobs is reached. All other aspects,
like job durations, precedence relations, resource availabil-
ity, and resource requirements remain unchanged.

To get insight in the quality of the solution generated
by the two stage heuristic, we compare the TCPSP solution
with the RCPSP solution. A comparison can be made if we
set all costs equal to 1 and let the deadline of all jobs be
the (best known upper bound on the) minimum makespan
of the RCPSP instance. This means that the number of reg-
ular time units before the deadline in the TCPSP, is exactly
the (best known upper bound on the) minimum makespan of
the RCPSP instance. The quality of the schedule is given by
its costs. If a schedule has zero costs, the two stage heuris-
tic gives an optimal (best known) schedule for the RCPSP
instance. If not, the costs of a schedule give an indication
on how far we are from the best known schedule, i.e., they
give the amount of irregular capacity used to reach the best
known makespan.

Setting all costs equal to 1 implies that working in over-
time is equally costly as hiring in regular time or overtime.
This does not fit the real world situation, but it allows us
to measure the total amount of irregular capacity needed.
Note that due to constraint (6) and all costs equal to 1, hir-
ing in overtime is at least as good as working in overtime.
Therefore, the possibility of working in overtime could be
removed from the model. However, we choose not to do this,
since it would reduce the computational time and thereby
give a false indication on the computational time of real life
instances.

Besides choosing the deadline equal to the (best known
upper bound the) minimum makespan, which we denote by

@ Springer

144

J Sched (2008) 11: 137-148

Table 1 Different values of «

on the 100 schedules generated # iterations 2 2 4 4 4 4 5 5 5 5 10 10 10 30
o 100 50 20 10 9 8 7 6 5 4 3 2 1 0
Table 2 Different values of ag -
on instances with 30 jobs and RS Extension seq. Average percentage Average percentage Average cost
b=09 aop ap,az, ... planned after RS planned after extension after feasibility
0.5 0.6,0.7,0.8,0.9, 1 78.0 88.9 97.4
0.6 0.7,0.8,0.9,1 80.2 89.1 90.5
0.7 0.8,09,1 83.7 90.3 91.1
0.8 09,1 87.3 91.0 76.2
0.9 1 88.0 90.7 87.0
1 - 88.0 88.0 154.4

Cmax, it can be chosen as a fraction of Cy,x. By letting the
deadline be equal to [b - Crax |, where b € (0, 1], the prob-
lem becomes tighter, and more irregular capacity will be
needed. The resulting objective value will indicate the costs
to complete the project earlier. Since the problem becomes
tighter with b < 1, we get a better insight in the influence of
the different parameter settings of the two stage heuristic.

5.2 Parameter setting

In each stage of the heuristic, there are a number of para-
meters that need to be set. In the first stage, these are the
fraction ag, the o value for the randomized sampling, and
the extension sequence in the improvement. In the second
stage, there is the order in which the jobs are extended to
their required duration, and the choice of the neighborhood
for the improvement. This subsection concerns the setting of
these parameters.

Since there are far too many different parameter settings
to test all possible combinations, we determine the para-
meter setting one parameter after the other and evaluate
the achieved result after the feasibility step (and not after
the neighborhood search). For each instance, we generate a
number of partial schedules (by random sampling), extend
them, and turn them into a feasible schedule. Out of these
schedules, we select the one with minimum costs to be the
solution.

For testing the parameter settings, we use a selection of
10 instances with 30 jobs and 10 instances with 120 jobs
from the PSPIib. Initially, we use a deadline of 90% of the
best known upper bound on the makespan, i.e., b = 0.9. We
are then quite sure that the objective value will not equal
zero, allowing us a better measurement of the effect of the
parameters. For these initial tests, we use largest unsched-
uled processing time first as the priority rule in the feasibility
step.

@ Springer

To determine good values for o, we fix all other parame-
ters. When testing different values for «, it turns out that if a
small number of schedules for each instance are generated,
large values for o outperform small values. However, as the
number of schedules generated per instance increases, the
random search (o = 0) outperforms the higher values for «.
Therefore, we conclude that it is best to start with a high
value for « and decrease it as more schedules for the same
instance are being generated. From these tests, we conclude
that taking 100 randomized samples gives enough diversity.
Table 1 presents the decreasing values of o we use for the
100 random samples. It states that the first two random sam-
ples are taken with an « value of 100, the next two with value
of 50, and so on. These values are used in the remainder of
the computational experiments.

For the randomized sampling (RS) to generate partial
schedules, we need an initial fraction aq. If we choose aq too
close to 1, we do not benefit from the idea that scheduling
only a fraction prevents the shifting of problems toward the
deadlines. If we choose ag too small, we observed that the
jobs are pulled to the front of the scheduling period, caus-
ing problematic situations at the beginning of the horizon.
Tables 2 and 3 report on tests using different values of ag.
Within the tests, an extension with step size 0.1 is chosen.
The tables give the results after the randomized sampling,
after the extension, and after the feasibility procedure. Be-
fore the feasibility procedure, the costs of a schedule have no
meaning, and we therefore display the average percentage
planned. If we only consider the average fraction planned
after the randomized samples, ap = 0.9 is best. However,
with the extension and feasibility, ag = 0.8 is best. Note that
the average cost for instances with 120 jobs is about 4 times
as large as the average cost for instances with 30 jobs. This
is due to the fact that the instances with 120 jobs approx-
imately have a 4 times higher total resource requirement
(work content), while the deadlines are about the same.

J Sched (2008) 11: 137-148

145

Table 3 Different values of ag

on instances with 120 jobs and RS Extension seq. Average percentage Average percentage Average cost
b=09 ap ay,ap, ... planned after RS planned after extension after feasibility

0.5 0.6,0.7,0.8,0.9, 1 82.9 92.6 467.3

0.6 0.7,0.8,0.9,1 84.7 92.7 439.4

0.7 0.8,0.9,1 86.9 93.7 417.2

0.8 09,1 89.4 93.8 357.9

0.9 1 92.8 92.8 445.7

1 - 90.1 90.1 580.4

Table 4 Different extension

sequences, 120 jobs, b = 0.9, Extension seq.

Average percentage

Average percentage Average cost

and ap = 0.8 ap,a, ... planned after RS planned after extension after feasibility
0.8,0.9,1 89.4 93.3 386.9
0.9,1 89.4 93.8 357.9
1 89.4 93.6 370.3
- 89.4 89.4 539.8

As already can be seen from Tables 2 and 3, the extension
step is important. In the next series of tests, we have applied
four sequences: no extension, directly from ap = 0.8 to a; =
1, using sequence (0.9, 1), and using sequence (0.8, 0.9, 1).
Comparing the resulting schedules when using no extension
at all with an extension sequence equal to [0.9, 1], we ob-
serve a major improvement, see Table 4. With extension,
the result is 1.5 times better. The result of using different
extension sequences is less diverse. We choose to use the
extension sequence [0.9, 1].

For Stage 2, we have to decide in which order we ad-
dress the jobs to schedule them for the required duration. We
compare: largest unscheduled processing time first, smallest
scheduled fraction first, smallest start time first, and largest
start time first. It turns out that between these different or-
derings there is no significant difference in the costs after
the feasibility step. However, largest unscheduled process-
ing time first and smallest scheduled fraction first require far
less computational time, and the latter performs slightly bet-
ter. Therefore, we choose to use smallest scheduled fraction
first.

The neighborhood search is the most time consuming
part of the heuristic, since it has to solve many ILP’s. There-
fore, we select out of the 100 constructed schedules of
Stage 1 the one with lowest costs, and do only the neigh-
borhood search on that schedule. Moreover, for the neigh-
borhood search, it is important to keep the running time low,
but still search a large part of the neighborhood. In each step,
a number of jobs are removed from the schedule, the other
jobs are fixed before we reinsert the removed jobs optimally
into the schedule. To do this, we choose a point in time and
remove each job that is contiguous to it. Due to the concept
of overtime we define a job contiguous to time ¢ if its start

time is at most the first regular time unit after # and its com-
pletion time is at least the last regular time unit before 7. By
choosing a single point in time, we keep the number of re-
moved jobs small, and all these jobs are close together. The
set of considered points in time is chosen as the set of com-
pletion times of the jobs in the schedule. We process these
points in an increasing order. Always when an improvement
occurs, we replace the current schedule by the new schedule.
We do not recalculate the set of time points to be considered.
One option is to go through the schedule only once (a single
pass); another option is to go through the schedule several
times (a multi pass). If we do a multi pass, we use in each
pass the new completion times, and stop if the last pass does
not improve the schedule. From our tests, we have seen that
it can take a long time to determine the optimal placements
of the removed jobs, i.e., solve the ILP. We can restrict the
computational time spent on one reinsertion by using time
limits. If we reach such a time limit, we use the best found
reinsertion of the removed jobs (this can be the placement
we had before, so we are guaranteed to have a solution that
is at least as good as before). Table 5 displays the quality
against time trade-off. (C T (s) stands for computational time
in seconds.) Multi pass gives solutions of higher quality at
a price of larger computational times; single pass with time
limit (we used a 10 second time limit) gives a solution very
fast, but one with higher costs. From the second and third
column in Table 5, we see that there are a few instances with
very large computational time. We have observed that there
are only a few instances in which the time limit of 10 sec-
onds is reached. Therefore, it pays to limit the computational
time spent on one reinsertion. Comparing the values in Ta-
bles 4 and 5, we see that the neighborhood search reduces
the objective value by 20% to 25%.

@ Springer

146

J Sched (2008) 11: 137-148

Table 5 Quality time trade-off,

120 jobs, b = 0.9 Strategy Average CT(s) Max CT'(s) Objective
Single pass/No time limit 3,700.8 32,919.4 291.0
Single pass/10 s time limit 84.7 192.6 289.1
Multi pass/No time limit 3,900.9 33,385.3 264.1
Multi pass/10 s time limit 315.8 750.7 265.6
Table 6 Summary of the results
Jobs Instances Work b=1.0 b=0.9
content Maximum Average Objective # with Maximum Average Objective
CT(s) CT(s) value cost=0 CT(s) CT(s) value
30 480 2,310.7 26.1 2.9 32 294 55.1 4.5 58.6
60 480 4,562.9 241.7 17.2 13.4 276 303.4 24.7 124.4
90 480 6,812.2 932.7 53.0 22.6 282 845.3 73.9 180.8
120 600 9,073.5 2,163.4 308.3 72.4 75 2,798.2 362.2 326.6

From this subsection, we may conclude that each step in
the presented method has its contribution to finding a good
schedule, and that the presented method is very flexible. De-
pending on the purpose of use, not only the parameters can
be chosen appropriately, but there is also a choice in the
quality against time trade-off.

5.3 Computational results

In the previous subsection, we have used only a small num-
ber of instances to determine the choices for the parameters
of the two stage approach. In this subsection, we present a
summary of the computational results for a large set of in-
stances. We have used all single mode instances from the
PSPIlib and have set the algorithm as discussed in the pre-
vious subsection with a multi pass, 10 second time lim-
ited, neighborhood search. For each instance, we construct a
schedule with a deadline on 100% and 90% of Cyyax. Table 6
summarizes the test results. The computational experiments
were performed on a computer with a Intel Centrino proces-
sor running at 2.0 GHz. We used Delphi 7 to code the algo-
rithm and CPLEX 9.1 to solve the ILP’s. The details of the
computational tests can be found on a website (Guldemond
et al. 20006).

If we set the upper bound equal to Cpyax and solve an in-
stance with zero cost, this means that we have an optimal
(or best known) schedule for the RCPSP. We see that our
method solves about 60% of the instances with zero cost for
the 30, 60, and 90 job instances, but only 13% of the 120 job
instances. The 30, 60, and 90 job instances are generated
with similar characteristics, whereas the 120 job instances
have a lower relative resource availability and are therefore
tighter and more difficult. The average objective value, the
amount of used irregular capacity, is only a small fraction

@ Springer

of the total work content. In the solutions of the instances
with 30 jobs, on average, 0.14% of the required capacity
is satisfied with irregular capacity. This percentage goes up
to 0.33% for the instances with 90 jobs. For the tighter 120
job instances, the percentage of work done with irregular ca-
pacity is 0.80%. These percentages are very low, and there-
fore we can conclude that the achieved schedules are of high
quality.

Setting the deadline to 90% of Cpax, We can no longer
verify whether or not optimal schedules are found. As ex-
pected, the objective values increase. However, the 10% re-
duction of the time horizon results in schedules that have
only 2.5% of the total work content in irregular capacity
for the 30 job instances, and up to 3.5% for the 120 job in-
stances. So completing a project 10% earlier does not have
to be too costly.

The computational time grows as the number of jobs
grows, but the relative resource availability seems more im-
portant. The instances that have a low resource availability
require more computational time than instances with high
availability. The instances that require a lot of computa-
tional time are exactly those for which the corresponding
RCPSP instances are also difficult and where the best found
makespan is often not proven to be optimal.

6 Extensions of the TCPSP

In practice a more elaborate modeling of the project might
be required, such as including multi-mode scheduling of
jobs and time-lags on precedence relations. In this section
we indicate how to extend the presented heuristic in these
cases.

J Sched (2008) 11: 137-148

147

6.1 Multi-mode TCPSP

One possible extension of the TCPSP is by allowing mul-
tiple modes for scheduling the jobs. Then, for each job J;
a set M of different execution modes is given. Each mode
m € M has a specified processing time pj,, and during the
processing of job J; in mode m it requires g, units of
resource Ry.

The presented solution approach can easily be extended
to the multi-mode TCPSP. In the randomized sampling one
not only has to select a job, but also a corresponding mode.
This mode can be fixed until a feasible schedule is reached.

Once the multi-mode is incorporated, the presented
model cannot only deal with working in overtime and hiring
in regular time and overtime, but also with the possibility
to outsource. Outsourcing can be included by introducing
a mode for each job which represents the outsourcing. We
introduce for such an outsource mode a processing time and
a resource requirement for an artificial resource that has to
be hired. The processing time of this mode and the cost for
hiring correspond to the outsourcing.

6.2 Including time-lags in the model

Within the new concept of time chains of Sect. 3.1, us-
ing time-lags on precedence relations can lead to problems.
They are not properly defined, since it is not clear whether
the time-lags only refer to regular time units or also to over-
time time units. Consider the following example. If the time-
lag is a consequence of a lab test that has to be done be-
tween two processes, the opening hours of the lab deter-
mine to which time units the time-lag applies. To overcome
this problem, it is possible to introduce a dummy job and a
dummy resource for each time-lag. With the proper resource
requirements and resource availability for each dummy job
and dummy resource, time-lags can have any desired prop-
erty with respect to regular and overtime time units. There-
fore, our approach can also deal with time-lags.

7 Conclusions

In this paper, a new scheduling methodology is presented for
scheduling jobs with strict deadlines. First jobs are sched-
uled for only a fraction for their required duration and then
the fraction for which the jobs are scheduled is gradually in-
creased. This idea is applied to find solutions for the TCPSP
with hiring and working in overtime.

Since there are no benchmark instances for the TCPSP,
we used benchmark instances from the RCPSP to get in-
sight in the quality of the achieved schedules. It turned out
that a large amount of the instances are solved to optimal-
ity. Decreasing the deadline of a project by 10% results in

schedules that have far less than 10% of the work done with
irregular capacity. Thus, we can state that the schedules gen-
erated by the two stage heuristic are of high quality. The
computational tests also show that there is a lot of flexibil-
ity in the developed method. The flexibility is not only due
to the parameter setting, but also due to the possibility to
choose where to spend the computational effort. Therefore,
we believe this method is very suited for practical use.

The computational tests demonstrate the effectiveness of
the fractional scheduling method. We believe this methodol-
ogy may also work well for other scheduling problems with
strict deadlines. Moreover, the method may work well for
any scheduling problems with a non-regular objective func-
tion, like earliness/tardiness problems.

Acknowledgements The authors are grateful to the anonymous ref-
erees for the helpful comments on an earlier draft of the paper. Part of
this research has been funded by the Dutch BSIK/BRICKS project.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Deckro, R. F., & Herbert, J. E. (1989). Resource constrained project
crashing. OMEGA International Journal of Management Science,
17, 69-179.

Demeulemeester, E. (1995). Minimizing resource availability costs
in time-limited project networks. Management Science, 41(10),
1590-1598.

Demeulemeester, E., & Herroelen, W. (1997). New benchmark results
for the resource-constrained project scheduling problem. Man-
agement Science, 43, 1485-1492.

Gademann, N., & Schutten, M. (2005). Linear-programming-based
heuristics for project capacity planning. I/IE Transactions, 37,
153-165.

Guldemond, T. A., Hurink, J. L., Paulus, J. J., & Schutten, J. M. J.
(2006). Time-constrained project scheduling; details of the com-
putational tests. http://tcpsp.ewi.utwente.nl/.

Herroelen, W., De Reyck, B., & Demeulemeester, E. (1998). Resource-
constrained project scheduling: a survey of recent developments.
Computers and Operations Research, 25, 279-302.

Kis, T. (2005). A branch-and-cut algorithm for scheduling of projects
with variable intensity activities. Mathematical Programming,
103, 515-539.

Kolisch, R. (1995). Project scheduling under resource constraints.
Berlin: Physica.

Kolisch, R., & Drexl, A. (1996). Adaptive search for solving hard
project scheduling problems. Naval Research Logistics, 43, 23—
40.

Kolisch, R., & Hartmann, S. (1999). Heuristic algorithms for solving
the resource-constrained project scheduling problem: classifica-
tion and computational analysis. In J. Weglarz (Ed.), Handbook on
recent advances in project scheduling (pp. 197-212). Dordrecht:
Kluwer.

Kolisch, R., & Padman, R. (2001). An integrated survey of determinis-
tic project scheduling. Omega, 29, 249-272.

Kolisch, R., & Sprecher, A. (1997a). Project scheduling library—
PSPlib. http://129.187.106.231/psplib/.

@ Springer

148

J Sched (2008) 11: 137-148

Kolisch, R., & Sprecher, A. (1997b). PSPLIB a project scheduling
problem library. European Journal of Operational Research, 96,
205-216.

Kolisch, R., Sprecher, A., & Drexl, A. (1995). Characterization and
generation of a general class of resource-constrained project
scheduling problems. Management Science, 41(10), 1693-1703.

Li, R. K.-Y., & Willis, R. J. (1993). Resource constrained scheduling
within fixed project durations. The Journal of the Operational Re-
search Society, 44, 71-80.

Mohring, R. H. (1984). Minimizing costs of resource requirements in
project networks subject to a fixed completion time. Operations
Research, 32(1), 89-120.

@ Springer

Neumann, K., Schwindt, C., & Zimmermann, J. (2002). Project
scheduling with time windows and scarce resources. Lecture
notes in economics and mathematical systems (Vol. 508). Berlin:
Springer.

Palpant, M., Artigues, C., & Michelon, P. (2004). LSSPER: solving
the resource-constrained project scheduling problem with large
neighbourhood search. Annals of Operations Research, 131,237—
257.

	Time-constrained project scheduling
	Abstract
	Introduction
	Scheduling with strict deadlines
	Problem description and ILP formulation
	Modeling regular time and overtime
	TCPSP with working in overtime, and hiring in regular time and in overtime
	ILP-formulation of the TCPSP

	Solution approach
	Two stage heuristic
	Outline
	Initialization
	Stage 1
	Stage 2

	Computational results
	Construction of TCPSP instances
	Parameter setting
	Computational results

	Extensions of the TCPSP
	Multi-mode TCPSP
	Including time-lags in the model

	Conclusions
	Acknowledgements
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

