
Journal of Scheduling, 13(1): 17-38, 2010
DOI: 10.1007/s10951-009-0106-z

An improved constraint satisfaction adaptive neural
network for job-shop scheduling

Shengxiang Yang · Dingwei Wang · Tianyou Chai · Graham Kendall

Received: 30 April 2007 / Accepted: 6 February 2009

Abstract The job-shop scheduling problem is one of
the most difficult problems in scheduling. This paper

presents an improved constraint satisfaction adaptive

neural network for job-shop scheduling problems. The

neural network is constructed based on constraint con-
ditions of a job-shop scheduling problem. Its structure

and neuron connections can change adaptively accord-

ing to the real-time constraint satisfaction situations

that arise during the solving process. Several heuristics

are also integrated within the neural network to en-
hance its convergence, accelerate its convergence, and

improve the quality of the solutions produced. An ex-

perimental study based on a set of benchmark job-

shop scheduling problems shows that the improved con-
straint satisfaction adaptive neural network outperforms

the original constraint satisfaction adaptive neural net-

work in terms of computational time and the quality

of schedules it produces. The neural network approach

is also experimentally validated to outperform three

S. Yang
Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK
E-mail: s.yang@mcs.le.ac.uk

D. Wang · T. Chai
Key Laboratory of Integrated Automation of Process Industry
(Northeastern University), Ministry of Education
Northeastern University, Shenyang 110004, China

D. Wang
E-mail: dwwang@mail.neu.edu.cn

T. Chai
E-mail: tychai@mail.neu.edu.cn

G. Kendall
School of Computer Science, University of Nottingham
Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK
E-mail: gxk@cs.nott.ac.uk

classical heuristic algorithms that are widely used as
the basis of many state-of-the-art scheduling systems.

Hence, it may also be used to construct advanced job-

shop scheduling systems.

Keywords Job-shop scheduling · Constraint sat-
isfaction adaptive neural network · Heuristics ·

Active schedule · Non-delay schedule · Priority rule ·

Computational complexity

1 Introduction

The job-shop scheduling problem (JSSP) is one of the

most difficult problems in scheduling. It aims to allo-

cate a number of machines over time to perform a set of
jobs with certain constraint conditions in order to opti-

mize a certain criterion, e.g., minimizing the makespan

(Baker 1974). The JSSP has been much studied in the

academic literature due to its importance as a typical
combinatorial optimization problem and its potential

expansion to a wide range of industrial problems. Tra-

ditionally, there are three kinds of methods to solve

JSSPs: priority rules, combinatorial optimization, and

constraints analysis (Dubois et al. 1995). The first cat-
egory has the merit of being computationally efficient

and easy to implement on real cases, but there is no

guarantee with respect to the quality of the solutions

produced. Optimization methods are much more rig-
orous but are not tractable when the problem size is

large and the optimal solution is required (Bellman et

al. 1982). The third category, originated from Erschler

et al. (1976), looks for a set of feasible solutions that

meet several technical constraints from which the user
may choose the final solution.

It has been demonstrated (Garey et al. 1976) that

job-shop scheduling is usually an NP-complete prob-

2

lem. Because of the NP-complete characteristics of the

JSSP, it is usually very hard to find its optimal solu-

tion. Fortunately, an optimal solution in the mathemat-

ical sense is not always necessary in practice. Hence,

researchers have turned to search for near-optimal so-
lutions to JSSPs, utilizing many different heuristic al-

gorithms (French 1982) and the near-optimal solutions

that are produced usually meet the requirements of

practical problems. Several knowledge-based scheduling
systems have been presented (Fox and Zweben 1993;

Hentenryck 1989), which are much more general than

traditional methods because they systematically use con-

straints, implement heuristic knowledge, and represent

a framework for stating and solving combinatorial op-
timization problems.

Researchers have also investigated artificial intelli-
gence methods for JSSPs. As one line of research on

artificial intelligent methods for JSSPs, genetic algo-

rithms (GAs) have been intensively investigated in the

last decade (Bierwirth and Mattfeld 1999; Cheng et

al. 1996, 1999; Fang et al. 1993; Hart et al. 2005).
Nowadays, several state-of-the-art JSSP scheduling sys-

tems are based on GAs (Vázquez and Whitley 2000a

provides a comparison of several GAs on JSSPs). As

reviewed by Hart et al. (2005), many of the state-of-
the-art GA based approaches for JSSPs make use of

heuristics, such as the classical Giffler and Thompson’s

algorithms (Giffler and Thompson 1960), to generate

schedules and/or guide genetic operators. Examples in-

clude the Heuristically-guided GA (HGA) (Hart and
Ross 1998), the Order Based Giffler and Thompson

(OBGT) algorithm (Vázquez and Whitley 2000b), and

the GA with Time Horizon Exchange (THX) operators

(Lin et al. 1997).

Another line of research on intelligent methods for

JSSPs is to investigate artificial neural network based

scheduling systems for JSSPs (Luh et al. 2000; Akyol
and Bayhan 2007). Foo and Takefuji (1988a, 1988b)

first used a neural network to solve JSSPs. Thereafter,

several neural network architectures have been devised

(Foo et al. 1994; Willems 1994; Willems and Brangts
1995; Yu 1997). Willems (1994) first proposed a con-

straint satisfaction neural network for traditional JSSPs

without free operations1. Willems’s neural network was

extended in (Yu 1997; Yu and Liang 2001) by adding a

job constraint block to deal with free operations and in-
troduced the gradient optimization mechanism that can

be combined with the neural network for JSSPs. The

above mentioned neural networks are basically static,

where the connection weights and biases of neurons
must be first prescribed according to the constraints

1 A free operation of a job is one that has no sequence con-
straints with other operations of the job.

of a particular JSSP and then remain fixed during the

solving process.

In (Yang and Wang 2000), a constraint satisfac-

tion adaptive neural network (CSANN) was proposed

for JSSPs. CSANN consists of a sequence constraint
block that is constructed according to the sequence con-

straints of a JSSP and a resource constraint block that

is constructed according to the resource constraints of

the JSSP. CSANN works by iteratively removing the
violation of the mapped constraints and can adaptively

adjust the connection weights and biases of neurons ac-

cording to the actual constraint violations during the

solving process. In (Yang andWang 2000, 2001), several

heuristic algorithms were also proposed to improve the
performance of CSANN and the quality of produced so-

lutions. Recently, an improved model of CSANN (called

CSANN-II), which simplifies the resource constraint block

of CSANN, was proposed in (Yang 2005) with some
preliminary experiments showing promising results. In

CSANN-II, the resource constraint block is adaptively

constructed from the actual resource constraint satis-

faction situation during the solving process via a sim-

ple sorting algorithm. CSANN-II has reduced resource
constraint neurons in the resource constraint block over

the original CSANN model and hence has reduced com-

putational complexity. In (Yang 2005), some heuris-

tics were also integrated to improve the performance
of CSANN-II. For example, an adaptive pre-processing

method was proposed to determine the expected make-

span value used for CSANNs and a schedule improve-

ment method was applied to get an active schedule

(the definition of an active schedule will be given later
on in Sect. 2.2) from a feasible schedule produced by

CSANNs.

This paper further investigates CSANN-II for JSSPs

and provides a compilation and extended discussion

of work reported previously in (Yang and Wang 2000,
2001; Yang 2005). Based on an extended set of bench-

mark JSSPs, experiments are carried out in this paper

to verify the computational complexity comparisons of

CSANN-II over CSANN reported previously in (Yang
2005), and new experiments are provided to investi-

gate the impact of the initial expected makespan pro-

vided to CSANNs on the makespan of schedules pro-

duced by CSANNs. In this paper, the performance of

CSANN-II is also experimentally validated in compar-
ison with CSANN and three classical heuristics algo-

rithms based on Giffler and Thompson’s methods (Gif-

fler and Thompson 1960) for JSSPs. The three classi-

cal heuristic algorithms studied in this paper are widely
used as the fundamental tools for constructing advanced

JSSP systems (Hart et al. 2005). Just like the three

classical heuristic algorithms, CSANN-II can act as a

3

good fundamental tool for constructing advanced JSSP

scheduling systems given its better performance.

The rest of this paper is organized as follows. The

next section presents the basic concepts of classical job-

shop scheduling, the mathematical formulation and the
classical Giffler and Thompson methods for JSSPs (Gif-

fler and Thompson 1960). Sect. 3 presents the origi-

nal CSANN model proposed in (Yang and Wang 2000,

2001) for JSSPs. In Sect. 4, the improved model of
CSANN-II is described in detail together with the heuris-

tic algorithms that can be combined with CSANN and

CSANN-II for a better performance. Sect. 5 presents

the computer simulation study based on a set of bench-

mark JSSPs to investigate the computational complex-
ity of CSANN-II over CSANN and show the perfor-

mance of the combined approach of CSANN-II and

heuristic algorithms for JSSPs. Finally, Sect. 6 con-

cludes this paper with discussions on relevant future
work.

2 The job-shop scheduling problem

2.1 Formulation of the JSSP

Traditionally, the JSSP can be stated as follows (Con-

way et al. 1967): Given n jobs to be processed on m

machines in a prescribed order under certain restrictive

assumptions, the objective is to optimally arrange the
processing order and the start times of operations to

optimize certain criteria. Generally speaking, for JSSPs

there are two types of constraints: sequence constraints

and resource constraints. The first type states that one
operation of a job must finish before another operation

starts. The second type states that no more than one

job can be handled on a machine at the same time.

Job-shop scheduling can be viewed as an optimization

problem, bounded by both sequence and resource con-
straints. Traditionally for a JSSP, each job may consist

of a different number of operations, which are subject

to some precedence restrictions. Usually, the process-

ing order of each job by all machines and the process-
ing time of each operation are known and fixed. Op-

erations cannot be interrupted once started (i.e., non-

preemptive). This kind of scheduling is called determin-

istic and static. In this paper, we focus on the determin-

istic and static JSSP.
For the convenience of formulating the JSSP, some

notations are defined as follows. Let J = {J1, . . . , Jn}

and M = {M1, . . . ,Mm} denote the job set and the

machine set, respectively, where n and m are the num-
bers of jobs and machines, respectively. Let µi be the

number of operations for job i. Oikq , represents opera-

tion k of job i to be processed on machine q, Tikq and

Pikq represent the start time and processing time of

Oikq , respectively, Tiµiq and Piµiq represent the start

time and processing time of the last operation of job i,

respectively2. Denote ri and di as the release date (the

earliest start time) and deadline (the latest end time)
of job i. Let Si denote the set of operation pairs [Oikp,

Oilq] of job i, where Oikp must be processed before Oilq.

Let Rq be the set of operations Oikq to be processed on

machine q.

Taking minimizing the makespan as the optimiza-

tion criterion, the mathematical formulation of the JSSP

considered in this paper can be presented as follows:

Minimize E = maxi∈J (Tiµiq + Piµiq),

subject to

Tilq − Tikp ≥ Pikp, [Oikp, Oilq] ∈ Si,

k, l ∈ {1, · · · , µi}, i ∈ J,
(1)

Tjlq − Tikq ≥ Pikq or Tikq − Tjlq ≥ Pjlq ,

Oikq , Ojlq ∈ Rq, i, j ∈ J, q ∈ M,
(2)

ri ≤ Tijq ≤ di − Pijq , i ∈ J, j ∈ {1, . . . , µi}, q ∈ M, (3)

where the cost function E is the completion time of the

latest operation. Minimizing the cost function means
minimizing the makespan. Equation (1) represents the

sequence constraint; (2) represents resource constraints

in a disjunctive format; (3) represents the release date

and deadline constraints. Note that the fact that jobs

can have deadlines suggests that problems could be
oversubscribed (i.e., there may be more jobs to do than

available resources). In this paper, oversubscribed prob-

lems will not be considered. This paper will mainly con-

cern JSSPs with no (tight) deadline constraints for jobs.
In this paper, we also assume that a job is not allowed

to be processed by a machine more than once.

Using the standard notation for scheduling systems
of Graham et al. (1979), the above JSSP can be denoted

by Jm|n|Cmax, where J means job-shop scheduling and

Cmax means minimizing the maximal completion time,

i.e., the makespan. For a Jm|n|Cmax, there are at most

n(m−1) sequence constraint inequalities of (1), at most
mn(n − 1) resource constraint inequalities of (2), at

most mn start time constraint inequalities of (3), re-

sulting in a total number of at most n(mn+m−1) con-

straint inequalities. There are also at most mn number
of variables Tikq. The objective of job-shop scheduling

2 In this paper, we deal with JSSPs where each operation of
a job must be processed by one fixed machine. Hence, in the
notation of Oikq and other variables with three subscripts, the
third subscript is determined by the first two subscripts. However,
for the convenience of describing resource constraints and RC-
block, the third subscript is used.

4

OptimalNon−Delay

Active

Semi−Active

Inadmissable

Feasible Schedules = Inadmissable + Semi−Active

Fig. 1 Relationships of different kinds of feasible schedules.

is to find values for these variables so that they sat-

isfy all the constraint inequalities while minimizing the

makespan.

2.2 Classification of schedules to JSSPs

Given a JSSP, any feasible solution to the above for-

mulation is called a feasible schedule. Given a feasible
schedule for a JSSP, if an operation can be left-shifted,

i.e., started earlier, without altering the processing se-

quences, such a left-shift is called a local left-shift. If a

left-shift of an operation alters the processing sequences

but does not delay any other operations, it is called a
global left-shift. Based on the concept of local and global

left-shift, feasible schedules for a JSSP can be classified

into four types: inadmissible, semi-active, active and

non-delay. Inadmissible schedules are those that con-
tain excess idle time and can be improved by local left-

shift(s). Semi-active schedules are those that allow no

local left-shift. Active schedules are those that allow

neither local left-shift nor global left-shift. Non-delay

schedules are those schedules in which no machine is
kept idle when it could start processing some opera-

tion.

The relationships between the different kinds of fea-

sible schedules are illustrated in Fig. 1. Non-delay sched-

ules are necessarily active and hence also necessarily

semi-active. An optimal schedule with respect to makespan
is guaranteed to be an active one but not necessarily

a non-delay one (Baker 1974). However, there is strong

empirical evidence that non-delay schedules show a bet-

ter mean solution quality than active ones. Neverthe-
less, scheduling algorithms typically search the space of

active schedules in order to guarantee that the optimum

is taken into consideration.

Algorithm 1 The GT-Act algorithm
1: Calculate the set D of all operations that can be scheduled

next. If D is empty, stop.
2: Find an operation O∗ ∈ D (with ties broken randomly) that

has the minimum earliest (possible) completion time. That is,
O∗ := arg min{EC(O)|O ∈ D}. Let M∗ denote the machine
that processes O∗.

3: Construct the conflict set C that contains those unscheduled
operations in D that are processed on M∗ and will overlap
with O∗ in time if they are scheduled at their earliest start
times. That is, C := {O ∈ D | O on M∗, ES(O) < EC(O∗)}.

4: Select an operation O ∈ C randomly and schedule it on M∗

with its completion time set to EC(O).
5: Delete O from D and return to step 1.

Algorithm 2 The GT-ND algorithm
1: Calculate the set D of all operations that can be scheduled

next. If D is empty, stop
2: Find an operation O∗ ∈ D (with ties broken randomly) that

has the minimum earliest (possible) start time. That is,O∗ :=
arg min{ES(O)|O ∈ D}. Let M∗ denote the machine that
processes O∗.

3: Construct the conflict set C that contains those unscheduled
operations in D that are processed on M∗ and will overlap
with O∗ in time if they are scheduled at their earliest start
times. That is, C := {O ∈ D | O on M∗, ES(O) < EC(O∗)}.

4: Select an operation O ∈ C randomly and schedule it on M∗

with its start time equal to ES(O).
5: Delete O from D and return to step 1.

2.3 Giffler and Thompson heuristics for JSSPs

Giffler and Thompson (1960) first proposed a system-

atic method, denoted GT-Act in this paper, to generate

any active schedules for JSSPs as described below. Let

ES(O) and EC(O) denote the earliest (possible) start
time and earliest (possible) completion time of an op-

eration O respectively. Let D be a set of all operations

that are not scheduled yet and can be scheduled next.

Initially, D consists of the first operations of jobs. An

active schedule is generated by iteratively updating D
and selecting one operation from D until all operations

are scheduled (i.e., D is empty) as shown in Algorithm

1.

Giffler and Thompson (1960) also developed an al-

gorithm, henceforth denoted GT-ND, to generate any

non-delay schedules for JSSPs iteratively as shown in

Algorithm 2. GT-ND differs from GT-Act only in that,
in step 2, GT-ND selects from D the operation with the

minimum earliest (possible) start time to be O∗ in or-

der to decide the machine M∗ to schedule an operation

on.

In step 4 of the above GT-Act and GT-ND algo-

rithms, an operation to be selected from the conflict
set C has an important effect on the final active and

non-delay schedule respectively. Researchers have de-

veloped a large number of heuristic priority rules to be

5

Table 1 A list of priority rules for dispatching an operation for JSSPs

Rule Description

SPT Select an operation with the shortest processing time

LPT Select an operation with the longest processing time

MWR Select an operation for the job with the most total remaining processing time

LWR Select an operation for the job with the least total remaining processing time

MOR Select an operation for the job with the most number of operations remaining

LOR Select an operation for the job with the least number of operations remaining

Algorithm 3 The GT-Rule algorithm
1: Calculate the set D of all operations that can be scheduled

next. If D is empty, stop.
2: Find an operation O∗ ∈ D (with ties broken randomly) that

has the minimum earliest (possible) completion time. That is,
O∗ := arg min{EC(O)|O ∈ D}. Let M∗ denote the machine
that processes O∗.

3: Construct the conflict set C that contains those unscheduled
operations in D that are processed on M∗ and will overlap
with O∗ in time if they are scheduled at their earliest start
times. That is, C := {O ∈ D | O on M∗, ES(O) < EC(O∗)}.

4: Select an operation O ∈ C according to a priority rule ran-
domly selected from a set of priority rules and schedule it on
M∗ with its completion time equal to EC(O).

5: Delete O from D and return to step 1.

used in the Giffler and Thompson algorithms to select

an operation from the conflict set C to be scheduled

next. An extensive summary and discussion on heuris-

tic priority rules can be found in (Blackstone et al. 1982;

Haupt 1989; Graves 1981). Table 1 lists some priority
rules commonly used for scheduling an operation for

JSSPs in practice.

It is also quite common that the priority rules can

be combined into the Giffler and Thompson algorithm:

when dispatching an operation, one priority rule is first
randomly selected from a pre-defined set of priority

rules and then is applied to select an operation. This

hybrid method is denoted GT-Rule in this paper and is

described in Algorithm 3.

The GT-Act, GT-ND, and GT-Rule algorithms have
become the basis for many state-of-the-art hybrid schedul-

ing systems for JSSPs (Hart et al. 2005). For exam-

ple, in Hart and Ross’s HGA (Hart and Ross 1998),

each gene in a chromosome represents a pair of val-

ues (method, heuristic), where method denotes either
GT-Act or GT-ND should be used at each iteration

of a scheduling algorithm to calculate a set of schedu-

lable operations, and heuristic represents the priority

dispatch rule to be used to select an operation from
that set. The priority dispatch rules used in HGA are

similar to those shown in Table 1.

In this paper, the GT-Act, GT-ND, and GT-Rule al-

gorithms will be used as peer algorithms for comparing

��
��

-

6

-

������*

HHHHHHj
-

Ni Ai∑

+1

Bi

A1

Aj

An

ppppp
ppppp

Wi1

Wij

Win

f(Ni)

Fig. 2 General neuron model.

the performance of CSANN and CSANN-II for JSSPs.
The GT-Rule algorithm studied in this paper uses the

six rules in Table 1 as the set of priority rules. The

following two sections will describe the details of the

original CSANN model and the improved CSANN-II

model, respectively.

3 The original CSANN model for JSSPs

Usually, a neural unit (or neuron), say neuron i, in a
neural network consists of a linear summator and a

nonlinear activation function f(·), which are serialized

(Haykin 1999) as below:

Ai = f(Ni) = f(

n
∑

j=1

(Wij ×Aj) +Bi), (4)

where the summator sums a bias Bi and received acti-

vations Aj(j = 1, . . . , n) from connected neurons with
connection weight Wij from neuron j to neuron i. The

output of the summator is the net input Ni to neuron

i, which is then passed to the activation function f(·)

to obtain the activation Ai. Figure 2 shows the model
of a general neuron in a neural network.

3.1 Neurons of CSANN

Based on the general neuron model, CSANN contains

three kinds of neurons: ST-neurons, SC-neurons and

RC-neurons. Each ST-neuron represents an operation

with the activation representing the start time of the
operation. Each SC-neuron or RC-neuron represents

whether a relevant sequence constraint or resource con-

straint is satisfied, respectively.

6

��
��

��
��

��
��

�

-

J
J

J
JĴ

��� @@I

�
�

�

�
��

@@I J
J

J
JJ]

�

@@I ���

+1

W1 W2

W3 W4

BSCikl

+1+1 STikp STilq

ASTikp
ASTilq

ISTikp
ISTilq

SCikl ��
��

��
��

��
��

�

-

J
J

J
JĴ

��� @@I

�
�

�

+1

W5 W6

W7 W8

BRCqikjl

+1+1 STikq STjlq

ASTikq ASTjlq

ISTikq
ISTjlq

RCqikjl

�
��

@@I J
J

J
JJ]

�

@@I ���

(a) (b)

Fig. 3 (a) An SC-block unit SCBikl and (b) a RC-block unit RCBqikjl.

The net input and activation functions of an ST-
neuron, STi, are defined as:

NSTi
(t+ 1) =

∑

j(WSCj→STi
×ASCj

(t))

+
∑

k(WRCk→STi
×ARCk

(t)) +ASTi
(t)
(5)

ASTi
(t+ 1)

=















ri, NSTi
(t+ 1) < ri,

NSTi
(t+ 1), ri ≤ NSTi

(t+ 1) ≤ di − PSTi
,

di − PSTi
, NSTi

(t+ 1) > di − PSTi
,

(6)

where in (5) the net input of STi is summed from

three parts. The first and second parts come from the

activations of STi-relevant SC-neurons SCj weighted
by WSCj→STi

and the activations of STi-relevant RC-

neurons RCk weighted by WRCk→STi
, which implement

feedback adjustments due to sequence and resource con-

straint violations, respectively. The third part comes
from the previous activation of neuron STi itself. The

activation function in (6) is a linear-segmented one,

where ri and di are the release and deadline of job i

to which the operation, corresponding to STi, belongs.

PSTi
is the processing time of the operation. This ac-

tivation function implements the release and deadline

constraints described by (3).

The net input and activation functions of an SC-

neuron SCi or a RC-neuron RCi have the same defini-

tion as shown below:

NCi
(t+ 1) = WST1→Ci

×AST1(t)

+WST2→Ci
× AST2(t) + BCi

,
(7)

ACi
(t+ 1) =

{

0, NCi
(t+ 1) ≥ 0,

−NCi
(t+ 1), NCi

(t+ 1) < 0,
(8)

where Ci represents SCi or RCi and BCi
is the bias,

which equals the processing time of an operation cor-
responding to ST1 or ST2 (more details are explained

in Sect. 3.2). The ST-neurons, ST1 and ST2, represent

two operations of the same job for an SC-neuron, or two

operations sharing the same machine for a RC-neuron.
The activation function is linear-segmented. When the

activation of an SC-neuron or RC-neuron is greater

than zero, it means the relevant sequence constraint or

resource constraint is violated and there will be feed-

back adjustments from Ci to relevant ST1 and ST2 with
adaptive weights. In the following section, the connec-

tion weights and biases for SC-neurons and RC-neurons

and feedback adjustments from an SC-neuron or RC-

neuron to ST-neurons are explained.

3.2 Connection weights and biases

All neurons in CSANN are structured into two problem-

specific constraint blocks: the sequence constraint block

(SC-block) that deals with all sequence constraints of

a given JSSP and the resource constraint block (RC-
block) that deals with all resource constraints of a given

JSSP. Each SC-block unit has two ST-neurons that rep-

resent two operations of a job and one SC-neuron that

represents whether the relevant sequence constraint is
satisfied, see Fig. 3(a). Similarly, each RC-block unit

has two ST-neurons representing two operations on the

same machine and one RC-neuron representing whether

the relevant resource constraint is satisfied, see Fig. 3(b).

Figure 3(a) shows an example SC-block unit SCBikl.
ST-neurons STikp and STilq represent two operations

Oikp and Oilq of job i. Their activations ASTikp
and

ASTilq
represent the start times Tikp and Tilq. The SC-

neuron SCikl represents the sequence constraint of (1)
betweenOikp andOilq , with BSCikl

being its bias. ISTikp

and ISTilq
represent the initial value for Tikp and Tilq,

which are taken as the initial net input to STikp and

STilq, respectively. The weights and bias are valued as

follows:
W1 = −1, W2 = 1,W3 = −W,

W4 = W, BSCikl
= −Pikp,

(9)

where W is a positive feedback adjustment factor (it is

the same in other equations in this paper). At time t

7

during the run of CSANN, if the sequence constraint be-

tween Oikp and Oilq is satisfied, the activation ASCikl
(t)

of SCikl equals zero; otherwise, the activation of SCikl

will be greater than zero and can be calculated by

ASCikl
(t+ 1) = −NSCikl

(t+ 1)

= ASTikp
(t) + Pikp −ASTilq

(t)

= Tikp(t) + Pikp − Tilq(t).

(10)

The feedback adjustments from SCikl to STikp and

STilq are shown as follows:

ASTikp
(t+ 1) = Tikp(t+ 1)

= Tikp(t)−W ×ASCikl
(t),

(11)

ASTilq
(t+ 1) = Tilq(t+ 1)

= Tilq(t) +W ×ASCikl
(t),

(12)

where the feedback adjustments put backward the start
time Tikp of Oikp and put forward the start time Tilq of

Oilq . Thus, the sequence constraint violation between

Oikp and Oilq may be solved.

Figure 3(b) shows an example RC-block unitRCBqikjl ,
representing the resource constraint of (2) between Oikq

and Ojlq on machine q. At time t during the run of

CSANN, the connection weights and bias are adaptively

valued according to the following two cases.

Case 1: If ASTikq
(t) ≤ ASTjlq

(t), i.e., Tikq(t) ≤
Tjlq(t), (13) holds

W5 = −1, W6 = 1,W7 = −W,

W8 = W, BRCqikjl
= −Pikq,

(13)

In this case, RCBqikjl represents a sequence con-
straint described by the first disjunctive equation of (2).

If violation exists, the activation of RCqikjl and feed-

back adjustments from RCqikjl to STikq and STjlq are

calculated by

ARCqikjl
(t+ 1) = ASTikq

(t) + Pikq −ASTjlq
(t)

= Tikq(t) + Pikq − Tjlq(t),
(14)

ASTikq
(t+ 1) = Tikq(t+ 1)

= ASTikq
(t) +W7 ×ARCqikjl

(t)

= Tikq(t)−W ×ARCqikjl
(t),

(15)

ASTjlq
(t+ 1) = Tjlq(t+ 1)

= ASTjlq
(t) +W8 ×ARCqikjl

(t)

= Tjlq(t) +W ×ARCqikjl
(t).

(16)

Case 2: If ASTikq
(t) > ASTjlq

(t), that is, Tikq(t) >

Tjlq(t), (17) holds

W5 = 1, W6 = −1,W7 = W,

W8 = −W, BRCqikjl
= −Pjlq .

(17)

In this case, RCBqikjl represents a sequence con-

straint described by the second disjunctive equation of

(2). If a violation exists, the activation of RCqikjl and

the feedback adjustments are calculated by

ARCqikjl
(t+ 1) = ASTjlq

(t) + Pjlq −ASTikq
(t)

= Tjlq(t) + Pjlq − Tikq(t),
(18)

ASTikq
(t+ 1) = Tikq(t+ 1)

= ASTikq
(t) +W7 ×ARCqikjl

(t)

= Tikq(t) +W ×ARCqikjl
(t),

(19)

ASTjlq
(t+ 1) = Tjlq(t+ 1)

= ASTjlq
(t) +W8 ×ARCqikjl

(t)

= Tjlq(t)−W ×ARCqikjl
(t).

(20)

3.3 Network complexity and running mechanism

The architecture of CSANN consists of two layers. The
bottom layer consists of only ST-neurons. The top layer

consists of SC-neurons and RC-neurons that are con-

nected to ST-neurons at the bottom layer according to

the exact sequence and resource constraints of a specific

JSSP.

For a traditional JSSP with m machines and n jobs
where each job goes through all machines once (i.e.,

µi = m for all i ∈ J) in a certain sequencing order,

it requires mn ST-neurons representing the mn opera-

tions, n(m− 1) SC-neurons representing the n(m − 1)
sequence constraints described by (1), and mn(n−1)/2

RC-neurons representing the mn(n−1)/2 resource con-

straints described by (2). In total, there are n(0.5mn+

1.5m − 1) neurons for the whole CSANN, which is in

the order of O(mn2).

Given a problem-specific CSANN, there are three
running mechanisms to produce a schedule (Yang and

Wang 2000). In the first mechanism, for each iteration,

the activation of units is calculated in a fixed order: first

calculating each ST-unit, then calculating each SC-unit,
and finally calculating each RC-unit. This results in a

deterministic unique schedule under the same initial

conditions of ST-units. The second mechanism calcu-

lates the activation of units in a random order for each

iteration, which results in non-deterministic schedules
under the same initial conditions of ST-units. These two

mechanisms are asynchronous. The third mechanism is

synchronous, where the activation of units is calculated

in a parallel manner. For each iteration, the activation
of all units is calculated in a random or fixed order,

but the newly calculated activation of a unit is not sent

immediately to its connected units but stored until all

8

Algorithm 4 Produce a schedule by CSANN
1: Randomly initialize Tikp(0) for each operation Oikp, and take

it as the initial net input ISTikp
to STikp.

2: Run each SC-neuron SCikl of the SC-block: calculate its ac-
tivation with (10). ASCikl

(t) 6= 0 means the violation of rel-
evant sequence constraint, then adjust activations of related
ST-neurons with (21) and (22) if Algorithm 5 is triggered, or
with (11) and (12), otherwise.

3: Run each RC-neuron RCqikjl of the RC-block: calculate its
activation with (14) or (18). ARCqikjl

(t) 6= 0 means the viola-
tion of relevant resource constraint, then adjust ASTikq

(t+1)
and ASTjlq

(t+1) with (23) and (24) if Algorithm 6 is trig-
gered, or with (15) and (16) or (19) and (20), otherwise.

4: Repeat step 2 to 4 until all neurons become stable without
changes, i.e., all sequence and resource constraints are satis-
fied and a feasible schedule is produced.

5: Produce a semi-active schedule from the feasible schedule pro-
duced by CSANN.

Algorithm 5 Swap two adjacent operations of a job
1: if [Oikp, Oilq] ∈ Si && ASTikp

(t) > ASTilq
(t) (i.e.,

Tikp(t) > Tilq(t)) then

2: exchange the order of Oikp and Oilq by exchanging their
start times as follows:
ASTikp

(t + 1) := Tikp(t + 1) := Tilq(t), (21)
ASTilq

(t + 1) := Tilq(t+ 1) := Tikp(t) (22)
3: end if

units have finished their calculations and stored their

activations. In the next calculation cycle, the activation

of a unit is calculated using the stored activations of the
connected units.

In this paper, CSANN is run iteratively using the

first asynchronous running mechanism. Each iteration

first calculates each SC-block unit in the SC-block and

then calculates each RC-block unit in the RC-block in

a fixed order, e.g., starting from RC-block units corre-
sponding to the first machine, to RC-block units corre-

sponding to the second machine, and so on. This iter-

ation continues until the activations of all SC-neurons

and RC-neurons become zero. The final activations of
ST-neurons form a feasible schedule to the given JSSP.

The procedure of running CSANN to produce a
schedule is summarized in Algorithm 4. In order to en-

hance the performance of CSANN for JSSPs, several

heuristic algorithms were developed in (Yang and Wang

2000, 2001). These heuristic algorithms, Algorithm 5

and Algorithm 6, are integrated in Algorithm 4. They
are described in the following section.

3.4 Heuristic algorithms for CSANNs

3.4.1 Swap two adjacent operations of a job

During the running of CSANN, if two adjacent opera-

tions of the same job are placed in an order that violates

Algorithm 6 Swap two adjacent operations on a ma-

chine
1: if Tqikjl(t) ≥ H (H is a prefixed threshold) then

2: swap the order of Oikq and Ojlq on machine q:
ASTikq

(t + 1) := Tikq(t + 1) := Tjlq(t), (23)

ASTjlq
(t+ 1) := Tjlq(t + 1) := Tikq(t) (24)

3: Tqikjl(t) := 0
4: end if

the relevant JSSP sequence constraint, their start times

are exchanged. Assuming [Oikp, Oilq] ∈ Si, at time t

during the running of CSANN, the heuristic algorithm
works as shown in Algorithm 5.

This heuristic algorithm aims to accelerate the solv-

ing process. In fact, (21) and (22) form a more direct

method of removing sequence constraint violations than

the feedback adjustment scheme in CSANN. Hence, the
adjustment time for removing sequence constraint vio-

lations is shortened and the solving process is speeded up.

3.4.2 Swap two adjacent operations on a machine

During the running of CSANN, due to conflicts re-

sulting from sequence and resource constraint violation
feedback adjustments, the phenomenon of deadlock may

occur (Yang and Wang 2000). Deadlocks stop CSANNs

from producing a feasible solution. A heuristic algo-

rithm was proposed to break the deadlock (and hence

make it possible to produce feasible schedules) by ex-
changing the order of two adjacent operations on the

same machine via exchanging their start times under a

certain condition.

The heuristic algorithm (i.e., Algorithm 6) works as
follows. For each RC-block unit RCBqikjl , a variable

Tqikjl(t) is defined to count, accumulated over itera-

tions, the number of continuous and similar feedback

adjustments from RCqikjl to STikq and STjlq due to the

resource constraint violation between Oikq and Ojlq on
machine q. Two feedback adjustments are called sim-

ilar if they have the same effect on STikq and STjlq,

e.g., both pushing Tikq forward while pushing Tjlq back-

ward. Whenever the resource constraint between Oikq

and Ojlq is satisfied or a different feedback adjustment

occurs within RCBqikjl , Tqikjl(t) will be reset to zero.

However, if a deadlock occurs, Tqikjl(t) will increase

over CSANN iterations because the feedback adjust-

ments from RCqikjl to STikq and STjlq will remain
similar due to the resource constraint violation between

Oikq andOjlq . When Tqikjl(t) reaches a prescribed thresh-

old value H (e.g., H = 5), Algorithm 6 is triggered to

swap the start times of Oikq and Ojlq on machine q and
reset Tqikjl(t) to zero.

Figure 4 illustrates how a deadlock may happen

and how Algorithm 6 solves the deadlock problem on

9

M1

M2

1 2

Overlapped Time

21

Expected Makespan

M1

M2

1 2

Overlapped Time

1

Expected Makespan

2

M1

M2

1 2

1

Expected Makespan

2

(a) (b) (c)

1 2

M1

M2

1 2

Expected Makespan

M1

M2

1 2

Expected Makespan

2 1

Overlapped Time

M1

M2

1 2

Expected Makespan

2 1

(d) (e) (f)

Fig. 4 Illustration of applying Algorithm 6 to solve the deadlock problem on a J2|2|Cmax JSSP: (a) an initial infeasible schedule
with H21221(0) = 0, (b) after the sequence constraint feedback adjustments in the first iteration, (c) after the resource constraint
feedback adjustment in the first iteration and H21221(1) = 1, (d) deadlock happens till the fifth iteration where H21221(5) = H = 5
and Algorithm 6 is triggered to swap the start times of O122 and O212 on machine 2, (e) after the swapping and H21221(6) = 0, and
(f) another resource constraint feedback adjustment produces a feasible schedule.

a J2|2|Cmax JSSP where the sequence constraints be-

tween operations of the two jobs are given by [O111,O122]

∈ S1 and [O222, O211] ∈ S2. Suppose the start times of
operations and the expected makespan are initialized

as shown in Fig. 4(a) and we have H21221(0) = 0. In

the first iteration, the sequence constraint feedback ad-

justments will push the start times of O122 and O212

toward the right and left, respectively, giving Fig. 4(b).
Then the resource constraint feedback adjustment from

RC21221 to ST122 and ST212 in the first iteration will

result in Fig. 4(c) with H21221(1) = 1. It can be imag-

ined that a deadlock will happen in the following it-
erations because the sequence constraint feedback ad-

justments will push T122 and T212 toward the right and

left, respectively, and the resource constraint feedback

will be similar over iterations, separating O122 and O212

on machine 2. This procedure continues till the fifth it-
eration, as shown in Fig. 4(d). Now H21221(5) reaches

the threshold H = 5 and hence triggers Algorithm 6

to swap the start times of O122 and O212, resulting in

Fig. 4(e) andH21221(6) is reset to 0. Thereafter, another
resource constraint feedback adjustment from RC22112

to ST212 and ST122 in the next iteration will produce a

feasible schedule, as shown in Fig. 4(f).

From the above description, it can be seen that

swapping only happens between two adjacent opera-

tions on a machine because, for two non-adjacent oper-
ations Oikq and Ojlq , their corresponding resource con-

straint will be satisfied and hence Tqikjl(t) will be zero.

3.4.3 Improving the quality of schedules

Unlike the schedules produced by the Giffler and Thomp-
son algorithms, the feasible schedules produced by CSANN

are usually inadmissible, where there may exist many

idle times for each machine while some operations are

available to be processed. The schedules can be im-

proved by compacting away these idle times. In (Yang

andWang 2001), an algorithm is used to produce a semi-
active schedule from the schedule produced by CSANN.

It first sorts all the operations in a non-decreasing or-

der of their start times, and then moves each operation

from the first to the last in the ordered operation list

to its earliest possible start time by local left-shift(s).
This semi-active algorithm is applied as step 5 in Algo-

rithm 4.

4 The improved CSANN-II model for JSSPs

4.1 Simplifying the RC-block for CSANN

In the original CSANN model, the major network com-
plexity (and hence computational complexity) lies in

the RC-block. In CSANN, any combination of two op-

erations to be processed on a machine corresponds to

one RC-block unit. Assuming each of the n jobs of a

JSSP passes through all machines once, there will be
n(n− 1)/2 RC-block units for each machine. This is il-

lustrated in Fig. 5 (a), where each ST-neuron STi (i =

1, . . . , n) represents one operation of a job. This gives

the whole RC-block a network complexity of O(mn2), a
magnitude n larger than the network complexity of the

SC-block, which is O(mn). Hence, any simplification in

the RC-block will further improve the performance of

CSANN.

Fortunately, when we further consider the running

of the RC-block, a potential improvement can be ob-

tained. When we run CSANN for a JSSP, during each
iteration of the RC-block, in fact usually only a part

of the n(n − 1)/2 resource constraints with respect to

one machine are violated and hence are relevant to our

10

RC13 RC1n RC23 2nRC

ST1 ST2 STn−1 STn

RC12

n−2

RCn−1n

1n−1

ST3

RC12 RC23

ST1 ST2 STn−1 STn

n−1

RCn−1n

ST3

(a) (b)

Fig. 5 Structure of the RC-block regarding one machine in (a) CSANN and (b) CSANN-II for a JSSP where each of the n jobs passes
through all machines once.

Algorithm 7 Construct the RC-block adaptively
1: Before each iteration of the RC-block, sort the ST-neurons

related to each machine according to their activations (i.e.,
present start times of relevant operations to be processed on

the machine) in a non-decreasing order.
2: From the first to the last in the ordered ST-neuron list, con-

struct one RC-block unit for two adjacent ST-neurons.

concern toward a feasible schedule. The ratio of rele-
vant resource constraints on the average decreases with

the solving progress of CSANN. In other words, with

the solving progress of CSANN, quite a lot of RC-block

units are, in fact, redundant in terms of solving resource
constraint violations during each iteration since they do

not involve violated resource constraints on a machine.

This thinking leads to the following mechanism of con-

structing a dynamic RC-block adaptively during each

iteration of CSANN instead of the original static RC-
block, see Algorithm 7.

The new CSANN model with the above adaptive

RC-block construction mechanism is named CSANN-

II. In CSANN-II, the number of RC-block units on
each machine is greatly reduced. Assuming each job of

a JSSP passes through all machines once, the number of

RC-block units regarding each machine will be reduced

to n− 1, as illustrated in Fig. 5(b). In Fig. 5(b), the n

ST-neurons on a machine are sorted according to their
activations in a non-decreasing order from left to right,

i.e., AST1 ≤ AST2 ≤ · · · ≤ ASTn
. The n− 1 RC-neurons

are constructed as follows: RCi(i+1) is connected to ad-

jacent ST-neurons STi and STi+1 (i = 1, . . . , n− 1).

4.2 Comparison of network and computational

complexity

For CSANN-II, for a traditional JSSP with m machines

and n jobs where each job passes through all machines
in a certain sequencing order, it requiresmn ST-neurons,

n(m− 1) SC-neurons, and m(n− 1) RC-neurons. In to-

tal, CSANN-II consists of 3mn−m−n neurons, which is

in the order of O(mn) instead of in the order of O(mn2)

for CSANN. This is a reduction of magnitude n regard-
ing the network complexity.

For each CSANN-II iteration, sorting the ST-neurons

for each machine requires O(n logn) calculations by a

quick sort algorithm (Cormen et al. 1990). It also re-

quires n(m − 1) SC-neuron calculations and m(n − 1)

RC-neuron calculations, resulting in a computational
complexity ofO(mn log n). In contrast, each iteration of

CSANN requires n(m− 1) SC-neuron calculations and

mn(n−1)/2 RC-neuron calculations, which is in the or-

der of O(mn2). Hence, for each iteration of the neural
network, CSANN-II achieves a reduction of magnitude

O(n/ logn) over CSANN with respect to the computa-

tional complexity.

4.3 New heuristic algorithms for CSANNs

For CSANN-II, Algorithm 5 and Algorithm 6 can also

be used to speed up the solving process and enhance

the convergence. In addition to these algorithms, this

paper presents two other heuristics to be combined with
CSANNs (both CSANN and CSANN-II) to achieve even

better performance. They are described as follows.

4.3.1 Producing a proper expected makespan

For a JSSP without deadline constraints, which is the

concern of this paper, we need to set an expected make-

span as the common deadline of all jobs for CSANNs

to run. The expected makespan can be taken as what a

scheduler wants to achieve. The value of the expected
makespan greatly affects the performance of CSANNs.

If it is set too large, the quality of schedules produced by

CSANNs will be low. Decreasing the expected makespan,

the quality of schedules produced by CSANNs will in-
crease. The computational time rises but is still rea-

sonable (i.e., increasing slowly with the decrease of the

expected makespan) if the value of expected makespan

11

Algorithm 8 Produce a proper expected makespan
1: Initialize the pre-processing stage cycle counter k := 0 and

tightness factor γ(0) := 0.5
2: For cycle k of the pre-processing stage, run CSANN or

CSANN-II for τ times with the expected makespan set to
γ(k) ×

∑
P , where

∑
P is the total processing time of all

operations
3: Calculate Ī := (

∑i=τ
i=1 Ii(k))/τ , where Ii(k) is the number of

iterations used by CSANN or CSANN-II for a schedule in the
ith run of the kth cycle of the pre-processing stage

4: if Ī < ρ×
∑

O then

5: γ(k + 1) := γ(k) − δ, where δ is a preset decreasing factor
for γ

6: k++
7: Go to step 2
8: end if

9: Return γ(k)×
∑

P as the final expected makespan

is still above a certain level. However, when the value of

the expected makespan is decreased to a certain value,

called the threshold value, it will take CSANNs too long
to produce a feasible schedule or even make it impos-

sible to produce a feasible schedule. This qualifies the

importance of setting a proper expected makespan for

CSANNs to run.

In this paper, an adaptive heuristic algorithm, as
shown in Algorithm 8, is proposed to produce a proper

expected makespan by adding a pre-processing stage.

Let
∑

P denote the total processing time of all opera-

tions of a JSSP and
∑

O denote the total number of op-
erations, i.e.,

∑

O =
∑i=n

i=1 µi. The expected makespan

can be represented by γ×
∑

P where γ is the tightness

factor. Algorithm 8 works by cyclically decreasing the

tightness factor γ from 0.5 until it reaches a value that

requires CSANNs to use a number of iterations that is
above a prefixed value (and results in CSANNs running

for too long) to produce a schedule.

In Algorithm 8, τ is the total number of runs for

each cycle of the pre-processing stage, Ii(k) is the num-
ber of iterations that CSANN or CSANN-II uses to pro-

duce a schedule in the ith run of the kth cycle of the

pre-processing stage, Ī(k) is the mean number of it-

erations that CSANN or CSANN-II uses to produce a
schedule in the kth cycle of the pre-processing stage, ρ is

a coefficient that roughly determines the mean number

of iterations required by CSANNs to produce a schedule

after the pre-processing stage, and δ is the decreasing

factor for the tightness factor γ.

The design of Algorithm 8 is based on our expe-

rience of running CSANNs. A key factor relevant to

the computational cost is the number of iterations that

CSANNs require to produce a schedule. During our
preliminary experiments, it seems that, if the expected

makespan is properly set, the number of iterations that

CSANNs require to produce a schedule has an approxi-

mately linear relationship with the total number of op-

erations in the JSSP. When the number of iterations

required by CSANNs to produce a schedule is approxi-

mately linear with the total number of operations, the

computation time for a schedule is always reasonable.
Hence, Algorithm 8 is designed to produce a proper

expected makespan that makes the mean number of it-

erations that CSANN or CSANN-II requires to produce

a schedule to be approximately linear with
∑

O. This
is realized by cyclical trials. For each cycle, we try to

reduce the factor γ (and hence tighten the expected

makespan) while ensuring that the mean number of it-

erations required to produce a schedule is still within a

linear relation with
∑

O approximately.

4.3.2 Improving the quality of solutions

Just like CSANN, the feasible schedules produced by

CSANN-II are usually inadmissible. In this paper, a

heuristic algorithm is proposed to generate an active

schedule from the feasible schedule produced by CSANN-
II as follows: first, sort all operations in a non-decreasing

order of their start times; then, from the first to the last

in the ordered operation list, each operation is moved

forward to its earliest start time as follows: if possi-
ble, performing a global left-shift; otherwise, if possible,

performing a local left-shift. The details are shown in

Algorithm 9.

The adjustments of the start times of all operations

in Algorithm 9 are dynamic. That is, the adjusted start
time of an operation takes effect in adjusting the lat-

ter operations. For example, supposing that Ti(k−1)p

has already been adjusted, when computing Tikq of op-

eration Oikq which is just subsequent to Oi(k−1)p of
the same job i, the adjusted Ti(k−1)p is used in (25)

or (26) instead the original Ti(k−1)p. Hence, each oper-

ation needs only one adjustment to produce an active

schedule. Fig. 6 illustrates the use of Algorithm 9 for an

active schedule from an inadmissible schedule produced
by CSANN-II on a J2|2|Cmax JSSP.

4.4 Hybrid approach of CSANNs and heuristics for JSSPs

The proposed heuristics can be combined with CSANN

and CSANN-II for JSSPs. In practice,we can execute the

hybrid approach that combines heuristics with CSANN
or CSANN-II a number of times to produce a number of

schedules and select the best one as the final schedule.

The running strategy is shown in Algorithm 10, where

some preliminary experiments may be carried out to set
the proper values for W , H , τ , ρ, and δ. The procedure

of running CSANN-II for one schedule is summarized

in Algorithm 11.

12

M1

M2

2

12

1 M1

M2

1 2

2 1

M1

M2

1 2

2 1

M1

M2

1

1 2

2

(a) (b) (c) (d)

Fig. 6 Illustration of applying Algorithm 9 for an active schedule on a J2|2|Cmax JSSP: (a) an inadmissible schedule, (b) after a
local left-shift for O211, (c) after a local left-shift for O222, and (d) after a global left-shift for O122.

Algorithm 9 Produce an active schedule
1: Given a feasible schedule {Tikp, i ∈ N, k ∈ {1, . . . , µi}, p ∈

M} produced by CSANN-II, sort all operations in a non-
decreasing order of their start times.

2: for each operation Oikp from the first to the last in the or-
dered operation list do

3: Denote the already orderly adjusted r operations on ma-
chine p by a list Lp = {O1, · · · , Or}. If there is no opera-
tion already adjusted on machine p (i.e.,, r = 0), then Lp

is empty.
4: Denote the start and precessing time of Oj ∈ Lp by TOj

and POj
, respectively.

5: For the convenience of description, define dummy oper-
ations Oi0∗ (∗ ∈ M) and O0 with the start time and
precessing time being zero, i.e., Ti0∗ = Pi0∗ = 0 and
TO0

= PO0
= 0.

6: Declare two variables Done = false and j = 1.
7: while (Done == false && j ≤ r) do

8: if (TOj
−max{TO(j−1)

+PO(j−1)
, Ti(k−1)q+Pi(k−1)q} ≥

Pikp) then

9: Perform a global left shift as follows:
Tikp = max{TO(j−1)

+PO(j−1)
, Ti(k−1)q+Pi(k−1)q}(25)

{O(j−1) is either O0 or the operation on machine p
that has been adjusted just before Oj , and Ti(k−1)q is
the start time of Oi(k−1)q, which is either the dummy

operation Oi0q or the operation of job i that precedes
Oikp}

10: Done = true
11: else

12: j = j + 1
13: end if

14: end while

15: if (Done == false) then

16: if (Tikp > max{Ti(k−1)q +Pi(k−1)q , TOr
+POr

}) then
17: Perform a local left shift as follows:

Tikp = max{Ti(k−1)q + Pi(k−1)q , TOr
+ POr

} (26)
18: end if

19: end if

20: end for

5 Experimental study

5.1 Experimental setting

The experimental study was executed on a PC with

2.2Ghz AMD Opteron 848 CPU using the GNU C++

programming environment under the Linux system. It

has three purposes: validating the computational com-
plexity of CSANN-II over CSANN for JSSPs, compar-

ing the performance of CSANN and CSANN-II over the

three classical heuristics for JSSPs described in Sect. 2.3,

Algorithm 10 The running strategy of the hybrid ap-

proach
1: Construct a JSSP-specific CSANN or CSANN-II
2: Set the maximum number of schedules MaxSched to be pro-

duced and values for W , H, τ , ρ, and δ according to some
preliminary experiments

3: Apply Algorithm 8 to produce a proper expected makespan
4: Run CSANN or CSANN-II to produce one schedule with the

produced expected makespan
5: If MaxSched is reached, stop; otherwise, go to step 4

Algorithm 11 Produce a schedule by CSANN-II
1: Randomly initialize Tikp(0) for each operation Oikp, and take

it as the initial net input ISTikp
to STikp.

2: Run each SC-neuron SCikl of the SC-block: calculate its ac-
tivation with (10). If ASCikl

(t) 6= 0, adjust activations of
related ST-neurons with (21) and (22) if Algorithm 5 is trig-
gered, or with (11) and (12), otherwise.

3: Construct the RC-block by Algorithm 7.
4: Run each RC-neuron RCqikjl of the RC-block: calculate its

activation with (14) or (18). If ARCqikjl
(t) 6= 0, adjust

ASTikq
(t+1) and ASTjlq

(t+1) with (23) and (24) if Algo-
rithm 6 is triggered, or with (15) and (16) or (19) and (20),
otherwise.

5: Repeat step 2 to 4 until a feasible schedule is produced.
6: Use Algorithm 9 to produce an active schedule from the fea-

sible schedule produced by CSANN-II.

Table 2 Benchmark test JSSPs, where “B/O” means the best-
known or optimal makespan value

JSSP LA01 LA06 LA11 LA16 LA21 LA26

n×m 10× 5 15× 5 20× 5 10× 10 15 × 10 20× 10

B/O 666 926 1222 945 1046 1218

and analyzing the effect of some key component algo-
rithms proposed for CSANN-II. Three sets of experi-

ments were carried out regarding the three purposes,

respectively. For CSANNs, the parameters W and H

are set as in (Yang and Wang 2001): W = 0.5 and

H = 5.

In the experimental study we select the benchmark

JSSPs LA01, LA06, LA11, LA16, LA21, and LA26 from

Lawrence (1984) as the test bed. Table 2 shows the

problem sizes and the best known or optimal values
(B/O in short) of the makespan of these test JSSPs,

where the optimal values are shown in the bold font.

The source data of these JSSPs can be found in (Beasley

13

Table 3 The settings of the tightness factor γ for each JSSP

JSSP γ

LA01 0.5 0.45 0.4 0.35 0.3

LA06 0.5 0.45 0.4 0.35 0.3 0.28

LA11 0.5 0.45 0.4 0.35 0.3 0.28

LA16 0.5 0.45 0.4 0.35 0.3 0.28 0.26 0.24

LA21 0.5 0.45 0.4 0.35 0.3 0.28 0.26 0.24 0.22 0.2

LA26 0.5 0.45 0.4 0.35 0.3 0.28 0.26 0.24 0.22 0.2 0.18

1990). These JSSPs form a good test bed because we

can study the effect of not only increasing n while fix-

ing m, but also doubling m while fixing n on the per-

formance of CSANNs.

5.2 Experiments on the computational complexity

In the first set of experiments, we focus on the study

of the computational complexity of CSANN-II over the

original CSANN based on the six test JSSPs. In this

set of experiments, CSANN uses Algorithms 4, 5 and

6, and CSANN-II uses Algorithms 5, 6, 7, 9, and 11. Al-
gorithm 8 is switched off for both CSANN and CSANN-

II and the expected makespan value is manually set to

γ ×
∑

P where γ ≤ 0.5. In order to test the effect of

the expected makespan value on the performance of
CSANNs, γ needs to be set to different values. In order

to properly study the effect of different settings of γ on

the performance of CSANNs, we carried out some pre-

liminary experiments. In the preliminary experiments,

for each JSSP problem, CSANN and CSANN-II were
run a few times with γ manually decreased from 0.5

to a value that becomes unreasonable. A value of γ is

said unreasonable if it is too tight such that it takes

CSANNs too long to produce a feasible schedule or it is
impossible for CSANNs to produce a feasible schedule.

According to our preliminary experiments, the set-

tings of γ shown in Table 3 basically capture the time

growth feature of CSANNs for each test JSSP and hence

were used in the following experiments. That is, γ is de-
creasingly set to the values from 0.5 to 0.3 with a step

of 0.05 for all JSSPs and is then reduced from 0.3 with

a step 0.02 till it becomes unreasonable for each test

JSSP. For each value of γ, CSANN or CSANN-II was

run 10000 times with different random seeds to produce
10000 schedules for each test JSSP and the time used

for all runs was recorded. For each run, the number of

iterations of CSANN or CSANN-II was also recorded.

The experimental results regarding the best and mean
makespan produced by CSANN and CSANN-II over

the 10000 runs against different settings of γ on the

JSSPs are plotted in Fig. 7. The experimental results

regarding the computational complexity of CSANNs,

including the required number of iterations per sched-

ule (IPS), the run time per schedule (TPS), and the

run time per iteration (TPI) against different values of

γ on the JSSPs are plotted in Fig. 8. In Fig. 8, the data
were averaged over the 10000 runs, the computational

complexity measures are log-scaled, and TPS and TPI

are plotted in the unit of millisecond and microsecond

respectively.

From Figs. 7 and 8, several results can be observed

and are analyzed as follows. First, CSANN-II greatly

outperforms CSANN with respect to the quality of sched-
ules produced, either the best makespan or the mean

makespan, under almost all values of γ on all the test

JSSPs (see Fig. 7). On LA21 and LA26, when γ is set

to loose values, e.g., bigger than 0.3, even the mean

makespan achieved by CSANN-II is better than the
best makespan achieved by CSANN. Under almost all

settings of γ, CSANN-II has reached the optimal sched-

ule for JSSPs LA01, LA06, and LA11.

Second, with respect to the computational complex-

ity of CSANNs, it can be seen that CSANN-II greatly

(note that the y-axis is log-scaled in Fig. 8) shortens the

mean run time used to produce a schedule over CSANN

under all values of γ on all the test JSSPs with only
one exception occurred on LA16 with γ = 0.24 where

CSANN-II is beaten by CSANN3.

One thing to notice is that on the average, CSANN-
II requires slightly more iterations for a schedule on

all JSSPs, see the IPS lines in Fig. 8. This happens

because the dynamic RC-block in CSANN-II is not to-

tally equivalent to the static RC-block in CSANN. For
example, in Fig. 5(a), except for the n− 1 RC-neurons

that correspond to the n− 1 RC-neurons in Fig. 5(b),

not all the other n(n−1)/2− (n−1) = (n−1)(n−2)/2

RC-neurons are irrelevant. Among them, some relevant

RC-neurons will help solve the resource constraint vio-
lations during each iteration. This slightly helps shorten

the total number of iterations to reach a feasible sched-

ule. However, this benefit of slightly reduced number of

iterations in CSANN is rather small in comparison with
the benefit of reduced computational cost per iteration

due to greatly reduced size of the RC-block in CSANN-

II. The overall effect is that on the average the TPS

required by CSANN-II is significantly shorter than the

TPS required by CSANN.

In Sect. 4.2, we have analyzed that for each iter-

ation of the neural network, CSANN-II achieves a re-

3 Careful scrutinization reveals that under this exceptional
case, CSANN-II has used an extremely large number of itera-
tions to produce a schedule for a small part of the 10000 runs.
This results in that CSANN-II uses a much bigger mean time per
schedule than CSANN does.

14

 600

 650

 700

 750

 800

 850

 900

 950

 1000

0.500.450.400.350.30

M
a

k
e

s
p

a
n

γ

LA01

CSANN, Best
CSANN-II, Best

CSANN, Mean
CSANN-II, Mean

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

0.500.450.400.350.300.28

M
a
k

e
sp

a
n

γ

LA06

CSANN, Best
CSANN-II, Best

CSANN, Mean
CSANN-II, Mean

 1200

 1250

 1300

 1350

 1400

 1450

 1500

 1550

 1600

 1650

0.500.450.400.350.300.28

M
a
k

e
sp

a
n

γ

LA11

CSANN, Best
CSANN-II, Best

CSANN, Mean
CSANN-II, Mean

 1000

 1100

 1200

 1300

 1400

 1500

M
a
k

e
sp

a
n

γ

LA16

0.
24

0.
26

0.
28

0.
30

0.
35

0.
40

0.
45

0.
50

CSANN, Best
CSANN-II, Best

CSANN, Mean
CSANN-II, Mean

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

M
a
k

e
sp

a
n

γ

LA21

0.
20

0.
22

0.
24

0.
26

0.
28

0.
30

0.
35

0.
40

0.
45

0.
50

CSANN, Best
CSANN-II, Best

CSANN, Mean
CSANN-II, Mean

 1400

 1600

 1800

 2000

 2200

M
a
k

e
sp

a
n

γ

LA26

0.
18

0.
20

0.
22

0.
24

0.
26

0.
28

0.
30

0.
35

0.
40

0.
45

0.
50

CSANN, Best
CSANN-II, Best

CSANN, Mean
CSANN-II, Mean

Fig. 7 Experimental results on the best and mean makespan produced by CSANNs against different values of γ on the JSSPs.

 1

 10

 100

 1000

 10000

 100000

0.500.450.400.350.30

IP
S

,
T

P
S

 (
1

0
-3

 S
e
c
),

 T
P

I
(1

0
-6

 S
e
c
)

γ

LA01

CSANN, IPS
CSANN-II, IPS

CSANN, TPS
CSANN-II, TPS

CSANN, TPI
CSANN-II, TPI

 1

 10

 100

 1000

 10000

0.500.450.400.350.300.28

IP
S

,
T

P
S

 (
1

0
-3

 S
e
c
),

 T
P

I
(1

0
-6

 S
e
c
)

γ

LA06

CSANN, IPS
CSANN-II, IPS

CSANN, TPS
CSANN-II, TPS

CSANN, TPI
CSANN-II, TPI

 1

 10

 100

 1000

 10000

 100000

0.500.450.400.350.300.28

IP
S

,
T

P
S

 (
1

0
-3

 S
e
c
),

 T
P

I
(1

0
-6

 S
e
c
)

γ

LA11

CSANN, IPS
CSANN-II, IPS

CSANN, TPS
CSANN-II, TPS

CSANN, TPI
CSANN-II, TPI

 1

 10

 100

 1000

 10000

IP
S

,
T

P
S

 (
1

0
-3

 S
e
c
),

 T
P

I
(1

0
-6

 S
e
c
)

γ

LA16

0.
24

0.
26

0.
28

0.
30

0.
35

0.
40

0.
45

0.
50

CSANN, IPS
CSANN-II, IPS

CSANN, TPS
CSANN-II, TPS

CSANN, TPI
CSANN-II, TPI

 1

 10

 100

 1000

 10000

IP
S

,
T

P
S

 (
1

0
-3

 S
e
c
),

 T
P

I
(1

0
-6

 S
e
c
)

γ

LA21

0.
20

0.
22

0.
24

0.
26

0.
28

0.
30

0.
35

0.
40

0.
45

0.
50

CSANN, IPS
CSANN-II, IPS

CSANN, TPS
CSANN-II, TPS

CSANN, TPI
CSANN-II, TPI

 1

 10

 100

 1000

 10000

 100000

IP
S

,
T

P
S

 (
1

0
-3

 S
e
c
),

 T
P

I
(1

0
-6

 S
e
c
)

γ

LA26

0.
18

0.
20

0.
22

0.
24

0.
26

0.
28

0.
30

0.
35

0.
40

0.
45

0.
50

CSANN, IPS
CSANN-II, IPS

CSANN, TPS
CSANN-II, TPS

CSANN, TPI
CSANN-II, TPI

Fig. 8 Experimental results on the mean iterations per schedule (IPS), mean time per schedule (TPS), and mean time per iteration
(TPI) used by CSANNs against different values of γ on the JSSPs. The y-axis is log-scaled and the unit for TPS and TPI is 10−3

second and 10−6 second, respectively.

duction in the order O(n/ logn) over CSANN regarding

the computational complexity. In order to see whether

this is the case in the experiments, we calculate the

weighted ratio of the TPI required by CSANN to the

TPI required by CSANN-II for each value of γ and on

each JSSP using the following formula:

RTPI =
TPI(CSANN)

TPI(CSANN-II)× (n/ logn)
, (27)

15

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2
R

T
P

I

γ
0.1

8
0.2

0
0.2

2
0.2

4
0.2

6
0.2

8
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0

LA01
LA06
LA11
LA16
LA21
LA26 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

R
T

P
S

γ
0.1

8
0.2

0
0.2

2
0.2

4
0.2

6
0.2

8
0.3

0
0.3

5
0.4

0
0.4

5
0.5

0

LA01
LA06
LA11
LA16
LA21
LA26

(a) (b)

Fig. 9 Results of (a) RTPI and (b) RTPS against different γ on the JSSPs.

where logn is 10 based. We also calculate the weighted

ratio of the TPS by CSANN to the TPS by CSANN-II

using the following formula:

RTPS =
TPS(CSANN)

TPS(CSANN-II)× (n/ logn)
. (28)

The calculated results regarding RTPI and RTPS are

plotted in Fig. 9(a) and (b), respectively. From Fig. 9(a),

it can be seen that RTPI is roughly bounded in the
range of [0.14, 0.2] over all values of γ for CSANNs and

on all the JSSPs. In other words, we have the following

relationship between TPI(CSANN) and TPI(CSANN-II):

TPI(CSANN) = 0.14∼0.2(n/logn)TPI(CSANN-II).(29)

This result confirms that CSANN-II really achieves a

reduction in the order O(n/ logn) over CSANN on the

test JSSPs with respect to the TPI.

From Fig. 9(b), it can be seen that RTPS is roughly
bounded in the range of [0.13, 0.18] over almost all γ set-

tings and test JSSPs with only two exceptions on LA16

when γ = 0.24 and 0.26. The upper and lower bounds

for RTPS are slightly lower than those for RTPI . This is

because, as analyzed before, CSANN-II requires slightly
more iterations per schedule than CSANN. However,

the effect is rather small with a factor of about 10%

(i.e., max{(0.14− 0.13)/0.14, (0.2− 0.18)/0.2}≈10%).

Roughly, we can say that CSANN-II achieves a reduc-
tion in the same order O(n/ log n) over CSANN on the

test JSSPs regarding the TPS measure.

Regarding the effect of m on the performance of

CSANNs, from Fig. 8 it can be seen that when m is

doubled, the TPI of CSANNs is approximately doubled.
And from Fig. 9, it can also be seen that the value of m

has no clear effect on the value of RTPI (and RTPS).

This result is consistent with our analysis in Sect. 4.2:

the computational complexity per iteration for CSANN
and CSANN-II is linear with m while the improvement

of CSANN-II over CSANN is of the order O(n/ logn)

without an explicit impact from m.

Third, regarding the effect of the tightness factor γ

on the performance of CSANNs, from Fig. 7 it can be

seen that the value of γ affects the best schedule pro-

duced by CSANN, but it shows no clear effect on the
best schedule produced by CSANN-II. However, γ has

a significant effect on the mean makespan produced by

both CSANN and CSANN-II. The smaller (and hence

the tighter) the value of γ, the better the schedule pro-
duced on the average. The trade-off for this gain is, not

surprisingly, the computational cost.

From Fig. 8, it can be seen that when γ becomes

tighter, the mean IPS and hence the mean TPS re-

quired by CSANNs increases. And for each JSSP when

γ is decreased from 0.5, the IPS and TPS by CSANNs

increase slowly at the early stage. When γ is decreased
below a certain value (i.e., the threshold value), they

increase significantly in a power law. For example, on

LA21, the mean IPS of CSANN-II increases approxi-

mately linearly from 34.43 to 138.80 when γ decreases
from 0.5 to 0.3. Then, the IPS increases from 186.54

to 1019.40 approximately in a power law when γ de-

creases from 0.28 to 0.22. Finally, it increases exponen-

tially from 1019.40 to 10672.38 when γ decreases from

0.22 to 0.2. The threshold value varies with the JSSP.
The larger the problem size, the smaller the threshold

value.

The above two aspects together validate the impor-

tance of selecting a proper γ, i.e., a proper expected

makespan, for CSANNs to run. There is a big trade-off

between the quality of the schedules and the computa-
tional cost. Ideally, γ should be set at the end of the

linear growth region for a good schedule quality and

reasonable run time of CSANNs. This is the aim of the

proposed Algorithm 8, which tries to produce a proper
expected makespan by iterative trials. CSANNs with

Algorithm 8 are the concern of the second set of exper-

iments to be presented in the next section.

16

Table 4 Experimental results of CSANNs and classical heuristics over 50 runs

Best Makespan Produced (min/ave/std)

JSSP LA01 LA06 LA11

CSANN-II 666/666.2/0.9 926/926.0/0.0 1222/1222.0/0.0

CSANN 666/677.6/7.1 926/926.2/1.0 1222/1247.1/12.9

GT-Act 666/698.3/10.5 926/934.9/7.6 1225/1247.1/9.2

GT-ND 668/687.0/9.7 926/929.7/5.3 1222/1238.6/9.5

GT-Rule 674/696.1/10.4 926/939.8/9.4 1236/1253.3/8.0

JSSP LA16 LA21 LA26

CSANN-II 962/978.5/3.3 1162/1186.1/8.3 1336/1361.3/10.9

CSANN 1011/1053.4/14.0 1280/1318.6/21.3 1481/1530.3/22.4

GT-Act 1012/1045.1/11.8 1253/1295.1/17.4 1469/1529.9/19.0

GT-ND 1008/1051.2/16.9 1287/1317.1/14.7 1483/1513.5/13.5

GT-Rule 1020/1047.4/12.4 1243/1301.3/18.0 1508/1540.7/15.0

Time Used in Seconds (min/ave/std)

JSSP LA01 LA06 LA11

CSANN-II 47/60.5/8.5 91/133.8/20.8 131/203.9/51.0

CSANN 69/91.8/13.6 134/237.4/49.5 290/558.8/125.7

GT-Act 9/15.6/1.3 35/35.1/0.3 32/33.1/0.6

GT-ND 8/8.0/0.1 18/18.3/0.4 33/34.1/0.5

GT-Rule 8/8.9/0.2 19/19.6/0.5 35/36.0/0.3

JSSP LA16 LA21 LA26

CSANN-II 170/336.9/110.9 269/543.4/136.6 589/1238.9/487.0

CSANN 214/326.4/55.5 501/1044.7/243.3 1057/3089.9/1341.7

GT-Act 15/15.6/0.5 33/35.2/0.6 64/65.4/0.6

GT-ND 15/15.5/0.5 34/34.7/0.5 64/64.2/0.4

GT-Rule 16/16.8/0.4 36/37.7/0.5 78/121.3/10.6

5.3 Experiments on comparisons with classical heuristics

In the second set of experiments, we focus on the per-

formance comparisons of CSANNs and three classical

heuristics, GT-Act, GT-ND, and GT-Rule, based on

the test JSSPs listed in Table 2. In this set of experi-
ments, CSANN uses Algorithm 10 with Algorithms 4,

5, and 6, and CSANN-II uses Algorithm 10 with Algo-

rithms 11, 5, 6, and 9. Algorithm 8 is now switched on

for both CSANN and CSANN-II with τ = 10, ρ = 1,

and δ = 0.01. Here, parameters τ , ρ, and δ were set ac-
cording to some preliminary experiments without sys-

tematic tuning.

For each run of a method on a test JSSP, 105 sched-
ules4 were calculated with the intermediate best-so-far

schedule recorded every 100 schedules. And for each

run, the final best schedule and time used were also

recorded. In order to avoid the effect a random seed
may have, 50 runs with different random seeds were

carried out for each method on each test problem and

the mean results over 50 runs are reported.

4 For CSANNs the schedules calculated during the pre-
processing stage were also counted into the total 105 schedules.

The experimental results regarding the makespan of
final best schedule and time used in seconds are given

in Table 4, where min/ave/std means minimum, aver-

age and standard deviation over 50 runs of algorithms,

respectively. The statistical comparison of methods re-
garding the best makespan produced and the run time

used over 50 runs by one-tailed t-test with 98 degrees

of freedom at a 0.05 significance level is given in Table

5, In Table 5, if the t-test value regarding Method 1 –

Method 2 is negative or positive, it means that Method
1 is better than or worse than Method 2, respectively,

regarding the corresponding performance measure. If

the absolute t-test value is greater than 1.660, the per-

formance difference between Method 1 and Method 2
is significant. Those t-test values that mean significant

differences of performance between methods are shown

in bold font in Table 5. The experimental results regard-

ing best-so-far makespan produced by different meth-

ods against schedules are plotted in Fig. 10, where the
data were averaged over 50 runs. From Table 4, Table

5, and Fig. 10, several results can be observed.

First, CSANN-II significantly outperforms CSANN

with respect to both the quality of produced schedules

and time used on almost all test JSSPs, as indicated

17

Table 5 The t-test results of comparing CSANNs and classical heuristics over 50 runs

JSSP LA01 LA06 LA11 LA16 LA21 LA26

t-Test Result Regarding the Best Makespan Produced

CSANN-II – CSANN -11.30 -1.66 -13.75 -36.83 -40.92 -48.04

CSANN-II – GT-Act -21.64 -8.35 -19.36 -38.51 -39.92 -54.50

CSANN-II – GT-ND -15.13 -4.96 -12.30 -29.84 -54.86 -62.13

CSANN-II – GT-Rule -20.40 -10.41 -27.80 -38.02 -41.02 -68.43

t-Test Result Regarding the Time Used

CSANN-II – CSANN -13.83 -13.64 -18.50 0.60 -12.70 -9.17

CSANN-II – GT-Act 36.96 33.53 23.68 20.48 26.31 17.04

CSANN-II – GT-ND 43.67 39.26 23.55 20.49 26.33 17.06

CSANN-II – GT-Rule 42.89 38.80 23.28 20.41 26.18 16.22

 660

 680

 700

 720

 740

 760

 780

 800

10008006004002000

B
es

t-
S

o
-F

ar
 M

ak
es

p
an

Number of Schedules (x 100)

LA01

CSANN
CSANN-II
GT-Active

GT-ND
GT-Rule

 920

 940

 960

 980

 1000

 1020

10008006004002000

B
es

t-
S

o
-F

ar
 M

ak
es

p
an

Number of Schedules (x 100)

LA06

CSANN
CSANN-II
GT-Active

GT-ND
GT-Rule

 1200

 1220

 1240

 1260

 1280

 1300

 1320

 1340

10008006004002000
B

es
t-

S
o
-F

ar
 M

ak
es

p
an

Number of Schedules (x 100)

LA11

CSANN
CSANN-II
GT-Active

GT-ND
GT-Rule

 950

 1000

 1050

 1100

 1150

 1200

10008006004002000

B
es

t-
S

o
-F

ar
 M

ak
es

p
an

Number of Schedules (x 100)

LA16

CSANN
CSANN-II
GT-Active

GT-ND
GT-Rule

 1150

 1200

 1250

 1300

 1350

 1400

 1450

 1500

10008006004002000

B
es

t-
S

o
-F

ar
 M

ak
es

p
an

Number of Schedules (x 100)

LA21

CSANN
CSANN-II
GT-Active

GT-ND
GT-Rule

 1350

 1400

 1450

 1500

 1550

 1600

 1650

 1700

10008006004002000

B
es

t-
S

o
-F

ar
 M

ak
es

p
an

Number of Schedules (x 100)

LA26

CSANN
CSANN-II
GT-Active

GT-ND
GT-Rule

Fig. 10 The dynamic performance of methods regarding the best-so-far makespan against schedules on the JSSPs. The data were
averaged over 50 runs.

in the t-test results regarding CSANN-II – CSANN.
This result is consistent with our first set of experi-

ments. In order to see whether Algorithm 8 for CSANNs

works, we also recorded the tightness factor γ achieved

after the pre-processing stage of each run and report

the results in Table 6, where min/ave/std means min-
imum, average and standard deviation over 50 runs of

CSANNs, respectively. From Table 6 and Fig. 7, it can

be seen that Algorithm 8 achieved a slightly loose value

of γ for LA01, LA06 and LA11 and a good value of
γ on larger JSSPs, LA16, LA21 and LA26. Here, a

“loose” or “good” value of γ is relative to the “thresh-

old value”. For example, for LA01, it is “good” to set

γ to the range of [0.35, 0.4] since in this range TPS

is low but the solution quality is high, see Fig. 6 and
7. Algorithm 8 reaches an average value of 0.46 for

Table 6 The tightness factor γ produced by Algorithm 8

Method γ (min/ave/std)

JSSP LA01 LA06 LA11

CSANN-II 0.42/0.46/0.020 0.36/0.40/0.021 0.36/0.42/0.026

CSANN 0.40/0.45/0.020 0.34/0.39/0.028 0.36/0.39/0.024

JSSP LA16 LA21 LA26

CSANN-II 0.32/0.36/0.020 0.26/0.30/0.021 0.20/0.22/0.010

CSANN 0.32/0.34/0.015 0.26/0.28/0.018 0.20/0.22/0.012

CSANN-II for LA01 and 0.45 for CSANN for LA01, re-

spectively, which is “loose” in comparison to the range
[0.35, 0.4]. Generally speaking, Algorithm 8 works rea-

sonably well for CSANNs under the given parameters

though proper tuning may further improve the perfor-

18

Table 7 Experimental results regarding the best makespan produced over 50 runs of CSANNs and classic heuristics with fixed run
time, where the data are shown in the format of min/ave/std

JSSP LA01 LA06 LA11

Run Time (Seconds) 250 375 500

CSANN-II 666/666.0/0.0 926/926.0/0.0 1222/1222.0/0.0

CSANN 666/672.0/4.9 926/926.1/0.52 1224/1249.0/12.5

GT-Act 666/673.3/5.4 926/926.0/0.1 1222/1230.9/6.3

GT-ND 666/667.0/2.0 926/926.0/0.0 1222/1222.9/2.5

GT-Rule 666/674.5/5.8 926/927.0/1.9 1222/1235.5/7.5

JSSP LA16 LA21 LA26

Run Time (Seconds) 500 750 1000

CSANN-II 956/976.8/5.1 1162/1183.1/7.2 1342/1363.7/9.9

CSANN 1011/1050.8/13.7 1281/1324.0/18.8 1481/1544.5/22.7

GT-Act 995/1016.5/8.5 1233/1258.8/9.5 1463/1497.8/13.4

GT-ND 961/1012.4/13.3 1241/1278.7/14.1 1423/1472.3/16.6

GT-Rule 995/1019.4/8.6 1226/1267.0/12.2 1483/1508.6/11.3

Table 8 The t-test results of comparing CSANNs and classic heuristics with fixed run time regarding the best makespan produced
over 50 runs

JSSP LA01 LA06 LA11 LA16 LA21 LA26

Run Time (Seconds) 250 375 500 500 750 1000

CSANN-II – CSANN -8.65 -1.63 -15.27 -35.88 -49.46 -51.54

CSANN-II – GT-Act -9.63 -1.00 -10.05 -28.32 -45.02 -56.93

CSANN-II – GT-ND -3.41 0.0 -2.64 -17.70 -42.74 -39.75

CSANN-II – GT-Rule -10.40 -3.54 -12.70 -30.09 -41.92 -67.97

GT-ND – GT-Act -7.84 -1.00 -8.38 -1.84 8.32 -8.48

GT-ND – GT-Rule -8.73 -3.54 -11.25 -3.16 4.44 -12.80

mance of CSANNs. On average, Algorithm 8 achieved

slightly tighter value of γ for CSANN than for CSANN-

II. This is because, as analyzed before, CSANN-II re-

quires slightly more iterations per schedule than CSANN
does.

Second, comparing the performance of CSANNs with

the three heuristic algorithms regarding the quality of

produced schedules, it can be seen that CSANN-II also

significantly outperforms GT-Act, GT-ND and GT-Rule
on all test JSSPs and that CSANN outperforms them

on LA01 and LA06 while performs similarly as or is

beaten by them on the other JSSPs. This result can

be more clearly viewed from the dynamic performance

of methods in Fig. 10. Fig. 10 shows that CSANN-II
performs much better than the other methods on the

JSSPs. On LA06 and LA11, CSANN-II even achieved

the optimal solution within 100 schedules on the aver-

age.

Third, when considering the computational cost of
different methods, both CSANN and CSANN-II spend

significantly more time than GT-Act, GT-ND, and GT-

Rule. This is easy to understand because CSANNs, un-

der the values of γ produced by Algorithm 8, need tens

or hundreds of iterations for one schedule while GT-Act,

GT-ND and GT-Rule produce one schedule in just one

iteration.

In order to carry out a fairer comparison among dif-
ferent methods regarding the computational time, fur-

ther experiments were carried out to run each method

on each test JSSP for a certain fixed time. We also car-

ried out 50 runs for each method on a JSSP. For each
run of a method on a JSSP, the run time was limited to

5×
∑

O seconds, where
∑

O is the total number of op-

erations. For each run, the best schedule produced and

the total number of schedules produced were recorded.

The experimental results regarding the best makespan
produced by CSANNs and classic heuristics and the

corresponding t-test results of comparing them over 50

runs are shown in Table 7 and Table 8 respectively. The

average number of schedules produced by CSANNs and
classic heuristics over 50 runs is shown in Table 9.

Table 7 shows that CSANN is now beaten by the three

heuristic methods on large JSSPs. However, CSANN-II

still significantly outperforms CSANN as well as GT-

19

Table 9 The average number of schedules produced by CSANNs and classic heuristics with fixed run time over 50 runs

JSSP LA01 LA06 LA11 LA16 LA21 LA26

Run Time (Seconds) 250 375 500 500 750 1000

CSANN-II 435464.3 306350.6 234634.4 227509.8 147369.5 88392.6

CSANN 322730.8 153152.2 92711.4 132779.9 63429.8 36318.4

GT-Act 3129798.9 2065252.2 1492171.4 3258000.8 2153771.9 1545604.7

GT-ND 3101206.7 1961333.2 1480097.7 3250826.2 2157310.0 1543490.5

GT-Rule 2845412.3 1903676.1 1428637.2 3096360.8 1811451.4 1511530.7

Table 10 Experimental results of analyzing the component algorithms of CSANNs regarding the best makespan produced over 50
runs, where the data are shown in the format of min/ave/std

JSSP LA01 LA06 LA11 LA16 LA21 LA26

CSANN-Act 666/666.5/1.2 926/926.0/0.0 1222/1222.0/0.0 956/980.3/5.3 1173/1193.6/9.4 1338/1374.8/11.8

CSANN-AP 666/666.2/0.7 926/926.2/0.0 1222/1222.0/0.0 959/978.7/3.1 1160/1181.6/8.9 1334/1361.6/8.8

Act, GT-ND, and GT-Rule on nearly all JSSPs, as in-

dicated in the t-test results in Table 8. Among the three

heuristic algorithms, it seems that GT-ND outperforms
GT-Act and GT-Rule on most JSSPs, as indicated in

the t-test results regarding GT-ND – GT-Act and GT-

ND – GT-Rule respectively. This result is consistent

with other research work in the literature that non-
delay schedules show a better mean solution quality

than active ones (Bierwirth and Mattfeld 1999).

Next, let us consider the average number of sched-
ules produced by different methods within the fixed

time on each JSSP. From Table 9, it can be seen that

GT-Act and GT-ND produce a similar number of sched-

ules while GT-Rule generates fewer schedules. This is
natural due to their similar computational complex-

ity. CSANN-II generates about 6 to 18 times fewer

schedules than GT-Act and GT-ND on the JSSPs while

dominating them in mean solution quality. In other

words, the peak quality per schedule (QPS) generated
by CSANN-II is much higher than other methods. This

is an interesting result because both CSANN-II and GT-

Act aim at active schedules with uncertainty: CSANN-

II starts from random initialized start times of opera-
tions while GT-Act schedules a random operation from

the conflict set C iteratively. The difference lies in that

GT-Act searches in the whole domain of active sched-

ules randomly while CSANN-II searches from the larger

domain of feasible schedules, which are properly fil-
tered by the expected makespan imposed (the produced

schedules are then mapped to active ones by Algorithm

9). This gives CSANN-II an advantage over GT-Act

(and GT-ND and GT-Rule similarly). The result that
CSANN-II has a much higher QPS is also important

since for many advanced scheduling systems, the QPS

is a key issue. For these systems, CSANN-II appears

better suited than some widely applied heuristics like

GT-Act, GT-ND, and GT-Rule.

5.4 Experiments on analyzing the component

algorithms proposed for CSANN-II

There are several component algorithms proposed in

CSANN-II, i.e., Algorithms 7, 8 and 9. In Sect. 5.2,

we have shown that Algorithm 7 improves the com-

putational complexity of CSANN-II over CSANN and

that Algorithm 8 eliminates the need of setting up the
tightness factor for CSANNs. In this set of experiments,

we further analyze the effect of Algorithms 8 and 9

on the schedule quality improvement of CSANNs. Two

CSANN variants were investigated on the test JSSPs
listed in Table 2: one is CSANN without Algorithm 8

but with Algorithm 9 used in Step 5 of Algorithm 4 to

produce an active schedule instead of a semi-active one,

which is denoted CSANN-Act. The other is CSANN

with both Algorithm 8 and Algorithm 9 switched on,
which is denoted CSANN-AP. For CSANN-Act, the

tightness parameter is set to γ = 0.5. For CSANN-AP,

the parameters in Algorithm 8 are set the same as in

Sect. 5.2 with τ = 10, ρ = 1, and δ = 0.01.

For each CSANN on a JSSP, 50 runs were car-

ried out with 105 schedules produced per run and the

intermediate best-so-far schedule recorded every 100

schedules. The experimental results regarding the best
makespan produced by CSANN-Act and CSANN-AP

and the corresponding t-test results of comparing them

and CSANN and CSANN-II are shown in Table 10 and

Table 11 respectively.

From Table 10 and Table 4, it can be seen that

CSANN-AP significantly outperforms CSANN on al-

most all test JSSPs, as indicated in the t-test results in

20

Table 11 The t-test results of comparing CSANNs with different component algorithms over 50 runs

JSSP LA01 LA06 LA11 LA16 LA21 LA26

CSANN-AP – CSANN -11.33 -1.66 -13.75 -36.83 -41.93 -49.65

CSANN-AP – CSANN-Act -1.61 0.0 0.0 -1.83 -6.52 -6.32

CSANN-II – CSANN-AP 0.0 0.0 0.0 -0.35 2.64 -0.16

Table 11. That is, Algorithm 9 significantly improves

the quality of solutions produced. Another observation

is that CSANN-AP outperforms CSANN-Act, especially

on large JSSPs. This result indicates that Algorithm
8 also contributes toward a better quality of solutions

produced by CSANN. The third result is that CSANN-

II performs statistically equivalent or similar to CSANN-

AP regarding the solution quality, except on LA21 where
CSANN-II is significantly beaten by CSANN-AP.

6 Conclusions and future work

This paper investigates an improved constraint satis-
faction adaptive neural network, CSANN-II, for the

JSSP. In CSANN-II, the topology corresponding to the

resource constraints is simplified according to the on-

line resource constraint satisfaction situation when it is
running via a simple sorting algorithm. Consequently,

CSANN-II’s computational time per schedule is reduced

over the original CSANN model. Some heuristics are

also proposed to improve the performance of CSANN

and CSANN-II, including producing a proper expected
makespan and improving the quality of produced sched-

ules.

Based on a set of benchmark JSSPs, we experimen-

tally studied the computational complexity of CSANN-

II over CSANN and compared the performance of CSANN-
II over CSANN and three classical heuristics. From the

experimental results, we analyze the strength and weak-

ness of CSANNs for JSSPs. According to the experi-

mental results and analysis, the following conclusions

can be drawn on the test JSSPs.

First, CSANN-II speeds up in the order O(n/ logn)

over CSANN, including the time per iteration and time

per schedule measures. CSANN-II outperforms CSANN

with respect to the quality of solutions primarily due to

its use of Algorithm 9, which is better than the semi-
active algorithm used in CSANN.

Second, the proposed adaptive scheme for producing

a proper expected makespan works well for CSANNs.

The experimental results show that reasonable values

can be found for the expected makespan automatically.
This eliminates the need and difficulty of manually set-

ting the value for CSANNs to solve JSSPs since setting

a reasonably good value for the expected makespan can

usually lead to good schedules. Of course, we may still

manually tune the value with human expertise for op-

timal results.

Third, CSANN-II outperforms three classical heuris-

tic algorithms with respect to the quality of solutions

but requires more time for a schedule. When the run

time is fixed, CSANN-II can reach better solutions than

the three classical heuristic algorithms with fewer sched-
ules. Hence, CSANN-II has a much higher QPS, which

is an important feature.

There are several avenues to pursue for future work

regarding CSANN-II. First, just as the three classical
heuristic algorithms studied in this paper, CSANN-II

is a working tool for JSSPs. Whenever the initial start

times for operations are given, CSANN-II will return

a deterministic schedule. It is important to see that
the QPS generated by CSANN-II is much higher than

the three classical heuristic algorithms studied, which

are widely used as the fundamental tools for advanced

JSSP systems (Hart et al. 2005). Just as the three clas-

sical heuristic algorithms, CSANN-II can surely act as
a good fundamental tool for constructing advanced hy-

brid intelligent systems for JSSPs. For example, com-

bining it with a simple local search scheme has shown

some promising results for JSSPs (Yang 2006). Combin-
ing it with other meta-heuristic methods may also pro-

duce promising results. For example, we may integrate

CSANN-II into GAs and compare the performance with

other state-of-the-art GA based scheduling systems for

the JSSP. This is an interesting work now under inves-
tigation.

Second, CSANN-II itself may be further improved.

The knowledge that becomes available during the solv-

ing process can be further integrated to improve its
performance. For example, with the solving process of

CSANN-II, more and more neuron units will correspond

to already satisfied sequence constraints and resources

constraints and hence become irrelevant in terms of
solving constraint violations for a feasible schedule. This

knowledge may be used to avoid calculating such irrel-

evant units and further reduce the computational cost.

Finally, the JSSP studied in this paper is basically
an academic problem in scheduling. For the sake of sim-

plicity and clarity, we have focused on JSSPs that are

not oversubscribed, have no (tight) deadlines for jobs,

21

and do not allow one job to be processed more than once

on a machine. A modest future effort will extend the

CSANN approach to practical JSSP-type situations.

The application of CSANN-II can also be extended to

stochastic and dynamic JSSPs, which are closer to real-
world scheduling problems. To address these JSSPs, the

structure of CSANN-II may be more flexible and change

over time according to the stochastic or dynamic con-

ditions of the JSSP.

Acknowledgments The authors would like to thank the anony-

mous associate editor and reviewers for their thoughtful com-

ments and constructive suggestions. This work was supported in

part by the Engineering and Physical Sciences Research Coun-

cil (EPSRC) of UK under Grant EP/E060722/01 and in part

by the National Nature Science Fundation of China under Grant

60821063 and National Basic Research Program of China under

Grant 2009CB320601.

References

Akyol, D. E., & Bayhan, G. M. (2007). A review on evolution
of production scheduling with neural networks. Computers &
Industrial Engineering, 53(1), 95–122.

Baker, K. R. (1974). Introduction to Sequence and Scheduling.
New York: Wiley.

Bellman, R. E., Esogbue, A. O., & Nabeshima, I. (1982). Mathe-
matical Aspects of Scheduling and Applications. Oxford: Perg-
amon.

Beasley, J. E. (1990). OR-Library: Distributing test problems by
electronic mail. Journal of the Operational Research Society,
41(11), 1069–1072.

Bierwirth, C., & Mattfeld, D. C. (1999). Production schedul-
ing and rescheduling with genetic algorithms. Evolutionary
Computation, 7(1), 1–17.

Blackstone, J., Phillips, D., & Hogg, G. (1982). A state-of-the-
art survey of dispatching rules for manufacturing job shop op-
erations. International Journal of Production Research, 20,

27–45.
Cheng, R., Gen, M., & Tsujimura, Y. (1996). A tutorial sur-

vey of job-shop scheduling problems using genetic algorithms,
I. representation. Computers & Industrial Engineering, 30(4),
983–997.

Cheng, R., Gen, M., & Tsujimura, Y. (1999). A tutorial sur-
vey of job-shop scheduling problems using genetic algorithms,
part II: hybrid genetic search strategies. Computers & Indus-
trial Engineering, 36(2), 343–364.

Conway, R. W., Maxwell, W. L., & Miller, L. W. (1967). Theory
of scheduling. Reading: Addison-Wesley.

Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1990). Intro-
duction to Algorithms. Cambridge: MIT Press.

Dubois, D., Fargier, H., & Prade, H. (1995). Fuzzy constraints
in job-shop scheduling. Journal of Intelligent Manufacturing,
6, 215–234.

Erschler, J., Roubellat, F., & Vernhes, J. P. (1976). Finding
some essential characteristics of the feasible solutions for a
scheduling problem. Operations Research, 24(4), 774–783.

Fang, H.-L., Ross, P., & Corne, D. (1993). A promising genetic
algorithm approach to job-shop scheduling, rescheduling and
open-shop scheduling problems. In Proceedings of the 5th in-
ternational conference on genetic algorithms (pp. 375–382).

Foo, S. Y., & Takefuji, Y. (1988a). Neural networks for solving
job-shop scheduling: part 1. problem representation. In Pro-
ceedings of the 2nd IEEE international joint conference on

neural networks (Vol. 2, pp. 275–282).
Foo, S. Y., & Takefuji, Y. (1988b). Neural networks for solving

job-shop scheduling: part 2. architecture and simulations. In
Proceedings of the 2nd IEEE international joint conference
on neural networks (Vol. 2, pp. 283–290).

Foo, S. Y., Takefuji, Y., & Szu, H. (1994). Job-shop scheduling
based on modified Tank-Hopfield linear programming net-
works. Engineering Application of Artificial Intelligence, 7(3),
321–327.

Fox, M. S., & Zweben, M. (1993). Knowledge-based scheduling.
San Manteo: Morgan Kaufmann.

French, S. (9182). Sequencing and scheduling: An introduction
to the mathematics of the job-shop. New York: Wiley, 1982.

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The com-
plexity of flowshop and job-shop scheduling. Mathematics of
Operational Research, 1(2), 117–129.

Giffler, B., & Thompson, G. (1960). Algorithms for solving pro-
duction scheduling problems. Operations Research, 8, 487–
503.

Graham, R. L., Lawler, E. L., Lenstra, J. K., Rinnooy Kan,
A. H. G. (1979). Optimization and approximation in deter-
ministic sequencing and scheduling: a survey, Annals of Dis-
crete Mathematics, 4, 287–326.

Graves, S. C. (1981). A review of production scheduling. Oper-
ations Research, 29(24), 646-675.

Hart, E., & Ross, P. (1998). A heuristic combination method
for solving job-shop scheduling problems. In Lecture notes in
computer science: Vol. 1498. Proceedings of the 5th inter-
national conference on parallel problem solving from nature
(PPSN V) (pp. 845–854). Berlin: Springer.

Hart, E., Ross, P., & Corne, D. (2005). Evolutionary scheduling:
a review. Genetic Programming and Evolvable Machines, 6,
191–220.

Haupt, R. (1989). A survey of priority-rule based scheduling
problem, OR Spektrum, 11, 3–16.

Haykin, S. (1999). Neural Networks A Comprehensive Founda-
tion (2nd ed.). London: Prentice Hall International.

Hentenryck, P. V. (1989). Constraint Satisfaction and Logic
Programming. Cambridge: MIT Press.

Lawrence, S. (1984). Resource constrained project scheduling:
an experimental investigation of heuristic scheduling tech-
niques. Graduate School of Industrial Administration, Carnegie-
Mellon University, Pittsburgh, Pennsylvania, PA.

Lin, S.-C., Goodman, E. D., & Punch, W. F. (1997). A genetic
algorithm approach to dynamic job-shop scheduling prob-
lems. In Proceedings of the 7th International Conference on

Genetic Algorithms (pp. 481-489).
Luh, P. B., Zhao, X., Wang, Y., & Thakur, L. S. (2000). La-

grangian relaxation neural networks for job shop scheduling,
IEEE Transactions on Robotics and Automation, 16(1), 78–
88.

Vázquez, M., & Whitley, L. D. (2000a). A comparison of ge-
netic algorithms for the static job shop scheduling problem.
In Proceedings of the 6th International Conference on paral-
lel problem solving from nature (PPSN VI) (pp. 303–312).

Vázquez, M., & Whitley, L. D. (2000b). A comparison of genetic
algorithms for the dynamic job shop scheduling problem. In
Proceedings of the 2000 genetic and evolutionary computa-
tion conference (pp. 1011–1018).

Willems, T. M. (1994). Neural networks for job-shop scheduling.
Control Engineering Practice, 2(1), 31-39.

Willems, T. M., & Brandts, L. E. M. W. (1995). Implementing
heuristics as an optimization criterion in neural networks for
job-shop scheduling. Journal of Intelligent Manufacturing, 6,
377–387.

22

Yang, S., & Wang, D. (2000). Constraint satisfaction adaptive
neural network and heuristics combined approaches for gen-
eralized job-shop scheduling. IEEE Transactions on Neural

Networks, 11(2), 474–486.
Yang, S., & Wang, D. (2001). A new adaptive neural network

and heuristics hybrid approach for job-shop scheduling. Com-
puters & Operation Research, 28(10), 955–971.

Yang, S. (2005). An improved adaptive neural network for job-
shop scheduling. In Proceedings of the 2005 IEEE interna-
tional conference on systems, man and cybernetics (Vol. 2,
pp. 1200-1205).

Yang, S. (2006). Job-shop scheduling with an adaptive neural
network and local search hybrid approach. In Proceedings
of the 2006 IEEE international joint conference on neural

networks (pp. 2720–2727).
Yu, H. (1997). Research of intelligent production scheduling

methods and their applications. PhD Thesis, Northeastern
University, China.

Yu, H., & Liang, W. (2001). Neural network and genetic algorithm-
based hybrid approach to expanded job-shop scheduling. Com-
puters & Industrial Engineering, 39, 337–356.

