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Abstract 

Fair sequences are useful in a variety of manufacturing and computer systems.  This 

paper considers the generation of cyclic fair sequences for a given set of products, each of which 

must be produced multiple times in each cycle.  The objective is to create a sequence so that, for 

each product, the variability of the time between consecutive completions is minimized.  

Because minimizing response time variability is known to be NP-hard and the performance of 

existing heuristics is poor for certain classes of problems, we present an aggregation approach 

that combines products with the same demand into groups, creates a sequence for those groups, 

and then disaggregates the sequence into a sequence for each product.  Computational 

experiments show that using aggregation can reduce response time variability dramatically. 

Introduction 

When a resource must serve many demands simultaneously, it is important to schedule 

the resource’s activities in some fair manner, so that each demand receives a share of the 

resource that is proportional to its demand relative to the competing demands.  A mixed-model 

assembly line, to mention one standard example, should produce different products at rates that 

are close to the given demand for each product.  Similarly, computer systems must service 

requests that have different priorities.   
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Both applications demonstrate the need for a fair sequence.  Kubiak (2004) provides a 

good overview of fair sequences and the product rate variation problem and reviews important 

results.  Miltenburg (1989) and Inman and Bulfin (1991) were some of the first to discuss the 

problem of mixed-model assembly lines.  Waldspurger and Weihl (1995) discuss the problem in 

computer system applications and provide an important stride scheduling heuristic.  Kubiak 

(2004) discusses a parameterized stride scheduling heuristic that we will adapt in our work.   

We were motivated to consider the fair sequencing problem while working with a 

healthcare facility that needed to schedule the collection of waste from waste collection rooms 

throughout the building.  Given data about how often a trash handler needs to visit each room (to 

take away a cart of waste), the facilities manager wanted these visits to occur as regularly as 

possible so that excessive waste would not collect in any room.  For instance, if a room needs 

four visits per eight-hour shift, then, ideally, it would be visited every two hours.  Given a 

schedule for one shift, the same schedule can be repeated every shift.  The time to visit each 

room and return with the trash cart varies slightly depending on the room location and other 

factors.  However, the variation is small and can be ignored.  The problem is difficult because 

different rooms require a different number of visits per shift.   

This problem is clearly one of creating a fair sequence.  In the product rate variation 

problem, the typical objective is to minimize the maximum absolute deviation (over each product 

and each position in the finite sequence) between the actual cumulative production and the ideal 

cumulative production.  However, a more appropriate objective in a cyclic situation is to 

minimize the variability in the time between consecutive completions of the same task 

(consecutive visits to the same room in our waste collection problem).  Thus, we will use the 

response time variability (RTV) metric, which was presented and analyzed by Corominas et al. 
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(2007).  Herrmann (2007) independently studied this measure as well, and Garcia et al. (2006) 

presented metaheuristic procedures for the problem. 

If the intervals between consecutive completions of the same task had to be equal to a 

predetermined quantity, we would have the periodic maintenance scheduling problem (Wei and 

Liu, 1983).  However, in our case, we don’t require this and instead seek to keep the intervals 

nearly the same.  Wei and Liu (1983) suggested that machines with the same maintenance 

interval could be replaced by a substitute machine with a smaller maintenance interval and that 

this replacement would facilitate finding a feasible solution.  This concept, which was not 

developed into a solution algorithm, is similar to the aggregation proposed here. 

Waldspurger and Weihl (1995) present a hierarchical stride scheduling algorithm that 

combines products into groups.  They suggest the use of a binary tree to minimize the maximum 

absolute deviation.  The key distinction between their hierarchical stride scheduling algorithm 

and the aggregation approach presented here is that their algorithm requires using the stride 

scheduling algorithm to disaggregate each group, since the products in a group may have 

unequal demands.  Also, the placement of products in the tree not specified.  Because our 

aggregation scheme groups products with equal demand, the disaggregation is much simpler.  

The limitation, however, is that the problem must have some equal demand products. 

Corominas et al. (2007) showed that the RTV problem is NP-hard and presented a 

dynamic program and a mathematical program for finding optimal solutions.  Because those 

approaches required excessive computational effort, they conducted experiments to evaluate the 

performance of various heuristics.  However, the heuristics performed poorly for some classes of 

problem instances.  Independently, Herrmann (2007) described the RTV problem and presented 

a heuristic that combined aggregation and parameterized stride scheduling.  The aggregation 
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approach combines products with the same demand into groups, creates a sequence for those 

groups, and then disaggregates the sequence into a sequence for each product.   

The current paper builds on these last two works.  After formulating the problem, it 

precisely defines the aggregation approach of Herrmann (2007) and describes the results of 

extensive computational experiments using the aggregation approach in combination with the 

heuristics presented by Corominas et al. (2007).  The goal of these experiments is to determine if 

the solutions generated using the aggregation approach have lower RTV than solutions generated 

without using the aggregation approach.   

Problem Formulation 

Given a single server that must produce n products, each with a demand  that is a 

positive integer, let .  A feasible sequence has length D, and each product i 

occurs exactly  times in the sequence.  We assume that each product requires the same amount 

of time, so we can ignore time and consider only the positions in the sequence.  Moreover, this 

sequence will be repeated, and we will call each occurrence a cycle.  The response time 

variability (RTV) of a feasible sequence equals the sum of the response time variability for each 

product.  If product i occurs at positions 

id

1 nD d d= + +L

id

{ }1, ,
ii idp pK , the response time variability is a function 

of the intervals between each position, which are { }1, ,
ii idΔ ΔK , where the intervals are measured 

as follows (with 0 ii idp p D= − ): 

 , 1ik ik i kp p −Δ = −  

The average interval for product i is , so we calculate RTV as follows: / iD d
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This problem is NP-hard (Corominas et al., 2007).  Note that changes to the absolute 

positions do not change the variability.  The objective function value is invariant under any 

translations or reflection. 

Parameterized Stride Scheduling 

The parameterized stride scheduling algorithm builds a fair sequence and performs well 

at minimizing the maximum absolute deviation (Kubiak, 2004).  The algorithm has a single 

parameter δ that can range from 0 to 1.  This parameter affects the relative priority of low-

demand products and their absolute position within the sequence.  When δ is near 0, low-demand 

products will be positioned earlier in the sequence.  When δ is near 1, low-demand products will 

be positioned later in the sequence.   

The algorithm starts with an empty sequence.  Given a partial sequence, with the first k 

positions filled, let ikx  be the number of times that product i occurs in those k positions.  Then, 

position  is allocated to customer i* where  1k +

 * arg max i

i
ik

di
x δ

⎧ ⎫
= ⎨ ⎬+⎩ ⎭

 

Of course, there may be ties, so a tie-breaking procedure is needed.  We always select the 

lowest-numbered product to break a tie.  The computational effort of the algorithm is O(nD). 

The parameterized stride scheduling algorithm can generate sequences with large 

variability.  Consider the following example. There are n = 14 products with demands d = (20,  

2, 2, …, 2).  Therefore, D = 46.  The parameterized stride scheduling algorithm (with δ = 0.5) 

generates the following sequence is (1, 1, 1, 1, 1, 2, 3, …, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, …, 
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14, 1, 1, 1, 1, 1).  The RTV equals 304.2.  (Other values of δ change the absolute position of the 

low-demand products but not the RTV.) 

The high variability of this sequence occurs because the algorithm positions all of the 

low-demand products together, which creates a lumpy pattern for the high-demand product.  A 

more fair sequence would blend the two types of products more evenly. 

Aggregation 

This insight led to the development of an aggregation approach that iteratively transforms 

the original instance into one with fewer products.  This was first introduced in Herrmann (2007) 

and is similar to the substitution concept discussed by Wei and Liu (1983). 

To do this blending, we will combine products that have the same demand into groups.  

This has two benefits.  First, it reduces the number of products that need to be sequenced.  

Secondly, because a group will have higher demand, it will be blended better than the individual 

products. 

Let an instance kI  be a sequence of products  for kjP 1, , kj n= K

kjd

.  It will be convenient to 

represent a product as a set.  Each product  has demand .  We assume that the products are 

sorted so that .  Let 

kjP

1 2 kk k kd d d≤ n≤ ≤L 0I  be the original instance, and each { }0 jP j= . 

Given an instance kI , the aggregation procedure transforms kI  into a new problem 

instance 1kI +  as follows.  First, find the smallest i such that ki n<  and .  If there exists 

no such i, return with 

, 1k id +kid =

1k kI I+ =  because no further aggregation is possible. 

If , let .  Else, find m such that 
kkn kid d= km n i= − ,ki k i md d +=  and . , 1 ,k i m k i md d+ + +>
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Create the new instance 1kI +  as follows:  Assign 1k kn n+ m= − .  Then, { }1,k jP + = j

d

 and 

 for 1,k j kjd + = 1, , 1j i= K − .  Then,  { }1, , ,k iP i+ = K i m+ 1,k i+ and .  Finally, (d m= + )1 kid

{ }1,k jP + = +j m 1,k jd = and  for ,kd+ +j m 11, , kj i n += + K .  Renumber as needed so that the products 

in 1kI +  are sorted by demand and return 1kI + .   

The total demand in the new instance will equal the total demand of the original instance 

because the demand of the new product (which we call a “group”) equals the total demand of the 

products that were removed.   

We run the aggregation procedure until no further aggregation is possible to generate a 

sequence of instances 0I , …, HI .  (H is the index of the last aggregation created.)  The 

aggregation can be done at most  times because the number of products decreases by at least 

one each time the aggregation procedure is called (unless no aggregation occurs).  Thus 

. 

1n −

1H n≤ −

We can then apply a sequence generation algorithm to the most aggregated instance HI  

to generate a sequence HS .  We disaggregate HS  to generate 1HS −  and then continue to 

disaggregate each sequence in turn to generate 2HS − , …, .   is a feasible sequence for 0S 0S 0I , 

the original instance.   

The disaggregation of sequence  is performed as follows:  Let  be the set of 

products j in 

kS kF

kI  such that 1kjP = .   will include kF 1kn −  products.  Let g be the remaining 

product and let { }, ,kgP i i m= +K .  To create sequence 1kS −  for instance 1kI − , first let c = 0.  

Then, loop over .  Let 1, ,a D= K ( )kj S a= .  If kj F∈ , then let q be the element of .  (There kjP
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is exactly one.)  Assign .  If j is not in , then ( )1kS a− = q kF j g= , the group that needs to be 

disaggregated.  Assign  and update ( )1kS a i− = + c ( )1 mod 1mc c= + + . 

Consider the group g, which is formed from 1m +  products.  It has been assigned  

positions in the sequence.  According to the aggregation scheme, .  When 

creating , the first position assigned to g in  goes to i (the first product in the group), the 

second position assigned to g goes to product i

kgd

( ) 1,1kg k id m d −= +

1kS − kS

1+ , and so forth.  This continues until all  

positions have been assigned.  Each product in the group gets 

kgd

1,k id −  positions.   

Aggregation runs in O( ) time because each aggregation requires O( n ) time and there 

are at most  aggregations.  Likewise, because each sequence disaggregation requires O(D) 

effort, disaggregation runs in O( ) time in total. 

2n

nD

3

1n −

Tables 1, 2, and 3 present a 10-product example that is aggregated three times.   is a 

feasible sequence for 

3S

I .  Note that, at each step of disaggregating the sequence, copies of 

product j are replaced by the product(s) in . kjP

Table 1. A 10-product instance and the aggregate instances formed from it. 
d

k
0

_{kj}, j =
1 2
1
2 2
3 5
3 6

k n_ 3 4 7 8 9 10
0 1 1 1 2 3 5
1 6 2 3
2 4 5 6
3 3 10

5 6
1 1

5 5
2 2

 
 

Table 2. The product sets for the instances in Table 1. 
P_{kj}, j =

k n_k 1 2 4 9 10
0 10 {1} {2 {4} { {8} {9} {10}
1 6 {6} {7 {9} {1,2,
2 4 {4} {5} {1,2,3}
3 3 {1} {4

3
} {3}
} {8}

{6}
} {2,3}

5

}

6 7 8
5} {6}
3,4,5 {10}

{7}
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Table 3. The disaggregation of sequence  for instance 3S 3I . 
S_3 3 2 3 2 3 1 3 2 3 2 3 1

1
4

0 9

3 2 2 3 1 3
S_2 2 4 3 4 2 1 3 4 2 4 3 2 4 4 2 1 3
S_1 5 1 6 2 5 4 6 3 5 1 6 5 2 3 5 4 6
S_0 1 6 10 7 2 9 10 8 3 6 1 4 7 8 5 9 10

3
3
6

10  
The aggregation can greatly simplify sequencing.  If only one product remains in the final 

instance, then it gets all of the positions in the sequence, and one can immediately proceed to 

disaggregation.  For instance, consider the following example from Waldspurger and Weihl 

(1995).  There are n = 101 products with demands d = (100, 1, 1, …, 1).  Therefore, D = 200.  To 

solve this problem, we first aggregate the one hundred low-demand products into one group with 

a total demand of 100.  Then we aggregate the group and the high-demand product into a larger 

group with a total demand of 200.  Now that we have only one group, we disaggregate the 200 

positions by allocating them alternately to the high-demand product and the group of 100.  Then, 

we disaggregate the group’s 100 positions by giving one to each low-demand product.  The 

resulting sequence has zero RTV. 

In the 14-product example presented earlier in this paper, the aggregation procedure 

replaces the 13 low-demand products by one group with a demand of 26 to create an instance 

with only two products.  Applying the parameterized stride scheduling algorithm (with δ = 0.5) 

to generate an aggregate sequence and then disaggregating it reduces the RTV from 304.2 to 4.2.  

(The aggregate and disaggregated sequences are shown in Figure 1.) 

Heuristics 

The purpose of this paper is to investigate how much the aggregation approach reduces 

RTV when used with various heuristics.  To that end we will consider five basic heuristics and 

the exchange heuristic of Corominas et al. (2007). 

Webster.  This heuristic uses the parametric stride scheduling algorithm with 0.5δ = .   
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Jefferson.  This heuristic uses the parametric stride scheduling algorithm with 1δ = .  

The Webster and Jefferson heuristics run in O(nD) time. 

Bottleneck.  This heuristic is the due date algorithm that Steiner and Yeomans (1993) 

developed for solving the mixed-model production problem.  This heuristic runs in O(D log D) 

time. 

Random swap.  This heuristic (presented in Corominas et al., 2007) starts with the 

sequence that the bottleneck heuristic generates.  Then, for each position 1, ,j D= K , it generates 

a random number { }1, ,k∈ K D  and swaps the tasks in positions j and k.  We use a discrete 

uniform distribution over { }1, ,K D  for choosing k.  Because the swapping runs in O(D), this 

heuristic runs in O(D log D) time. 

Insertion.  This heuristic, introduced by Corominas et al. (2007), solves a sequence of 

two-product problems in order to generate a sequence recursively.  It runs in O(D log D) time.  

To solve the two-product problem with 1d d2< , we use the following procedure: let 

 (or  if  divides D) and 1modm D d= 1m d= 1d 1/R D d= ⎡ ⎤⎢ ⎥   Note that .  

Assign m copies of product 1 to positions 

( )( )1 1mR d m R D+ − − =

R , ...,  and mR 1d m−  copies of product 1 to the 

following positions: 

 , , …, 1mR R+ − (2 1mR R+ − ) ( )( )1 1mR d m R 1+ − − − , D.   

Assign  copies of product 2 to all of the remaining positions. 2d

Exchange.  Corominas et al. (2007) developed the exchange heuristic as a technique for 

improving any given sequence.  Unlike the other heuristics presented, it treats the sequence as a 

cycle, not a finite sequence.  It repeatedly loops through the positions, exchanging a task with the 
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task immediately following it if that exchange reduces the RTV or reduces the maximum 

distance between two tasks for a product.  It runs in O( ) time. 4nD

Computational Experiments 

The purpose of the computational experiments was to show how the aggregation 

technique performs in combination with a variety of heuristics on the metric of RTV. 

We generated 4700 instances as follows.  First, we set the total number of tasks D and the 

number of products n.  (We followed Corominas et al., 2007, in choosing values of D and n, but 

these are not the same instances.) To generate an instance, we generated  random numbers 

from a discrete uniform distribution over 

D n−

{ }1, , nK .  We then let  equal one plus the number of 

copies of i in the set of  random numbers (this avoided the possibility that any 

id

D n− 0id = ).  We 

generated 100 instances for each of the following combinations of D and n: 

100D =  and 3n = , 10, 20, 30, 40, 50, 60, 70, 80, and 90; 

500D =  and , 5, 10, 50, 100, 150, 200, 250, 300, 350, 400, and 450; 3n =

1000D =  and , 50, 100, 200, 300, 400, 500, 600, 700, 800, and 900; and  10n =

1500D =  and , 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 

and 1400. 

100n =

For each instance that can be aggregated, we constructed 30 sequences as follows.  First, 

we applied one of the basic heuristics to the instance (we call this the H sequence).  Then, we 

applied the exchange heuristic to the H sequence to construct the HE sequence.  (This essentially 

repeats what Corominas et al., 2007, did.) 

Next, we aggregated the instance if possible.  For the aggregate instance, we applied the 

heuristic to construct an aggregated solution.  We disaggregated this solution to construct the 

AHD sequence.  Then, we applied the exchange heuristic to the AHD sequence to construct the 
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AHDE sequence.  We also applied the exchange heuristic to the aggregated solution and then 

disaggregated to construct the AHED sequence.  Finally, we applied the exchange heuristic to 

the AHED sequence to construct the AHEDE sequence.  This makes six sequences using one 

basic heuristic and combinations of aggregation-disaggregation and the exchange heuristic.  We 

repeated this for the remaining basic heuristics for a total of 30 solutions. 

The clock time needed to generate the six sequences for one instance and one basic 

heuristic increased as D increased.  These times ranged from 1 to 15 seconds for instances with 

D = 1500.  The longest times occurred when n = 400, and the shortest times occurred when n = 

1400. 

Before discussing the results of the heuristics, we note that the number of times that an 

instance was aggregated depended greatly upon the ratio of n/D.  When this ratio was very small 

(less than 0.05), many instances were not aggregated.  For small values of n/D, all of the 

instances can be aggregated, and the average number of aggregations jumps to near 6 for D = 

100 and is near 15 for D = 1500.  The largest number of aggregations was 18, which occurred in 

five instances (one with n = 100 and D = 1000 and four with n = 100 and D = 1500).  As n/D 

increases further, the average number of aggregations decreases steadily for all values of D.  

When n/D is near 0.9, the average number of aggregations is between 2 and 3. 

Because the exchange heuristic is known to reduce RTV, significantly in some cases, our 

discussion will focus on the HE and AHDE sequences.  As shown by Corominas et al. (2007), 

the exchange heuristic significantly reduces the RTV of the solutions generated by the heuristics 

(without aggregation).  Thus, the HE sequences are more interesting that the H sequences. 

The results of these experiments show that the AHD sequences may perform poorly 

(compared to the other sequences) for large values of n and in combination with the random 
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swap and insertion heuristics.  The AHED sequences also perform poorly.  Finally, the RTV of 

the AHEDE sequences was only slightly better than that for the AHDE sequences.   

The notable exception to this last result occurred for the random swap and insertion 

heuristics when D = 1000 and D = 1500.  In those cases, the AHEDE sequences were 

significantly better than the AHDE sequences for medium values of n.  However, these 

sequences were still not as good as the sequences generated using the Webster, Jefferson, and 

bottleneck heuristics. 

Tables 4 to 7 present the results for the HE and AHDE sequences for each of the basic 

heuristics.  The results are averaged over the instances where aggregation was performed.  The 

number of instances (out of 100) where any aggregation was performed is also shown. 

Using aggregation with the Webster, Jefferson, and bottleneck heuristics generates the 

best sequences.  Compared to the HE sequences, the AHDE sequences reduce RTV dramatically 

when n is moderate (not at the extremes).  For instance, when n = 300 and D = 1000, the average 

RTV of the AHDE sequences is less than 4% of the average RTV of the HE sequences.  When n 

= 400 and D = 1500, the average RTV of the AHDE sequences is between 1% and 2% of the 

average RTV of the HE sequences. 

We can see why if we consider a set of products with the same demand.  The Webster, 

Jefferson, and bottleneck heuristics tend to put copies of these products next to each other, which 

increases the RTV of products with higher demand.  Aggregation spreads out the copies these 

products, leaving space for the products with higher demand.   

When n is very small and D = 100, 500, or 1000, the AHDE sequences are about the 

same as the HE sequences because the heuristic sequences are already good.  When n is near D, 
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the AHDE sequences are about the same as the HE sequences because the exchange heuristic is 

very good at constructing low-RTV sequences in those cases. 

The random swap and insertion heuristics generate sequences that are not as good.  Using 

aggregation improves the random swap sequences less than it improves the sequences generated 

with other heuristics.  In sequences generated by the random swap heuristic, the advantages that 

occur with aggregation are lost as the products are shuffled in the aggregated sequence.  In 

sequences generated by the insertion heuristic, products with low demand usually have higher 

RTV than the other products in that sequence because the low demand products are assigned last 

and get the “leftover” spots, which are not spread out evenly.  However, the heuristic works well 

if there are many products with the same demand, because it will allocate them fairly.  The 

aggregation deliberately creates an instance in which no products have the same demand, which 

degrades the performance of the insertion heuristic.  The products that are not aggregated will be 

assigned last and will have large RTV. 

Table 4. Comparison of the HE and AHDE sequences across five basic heuristics for D = 100. 
n aggregation HE AHDE HE AHDE HE AHDE HE AHDE HE AHDE
3 17 15.5 15.5 15.5 15.5 15.5 15.5 113.9 52.4 26.0 15.5
10 100 98.3 73.0 97.6 75.5 96.9 72.6 165.8 134.6 94.2 104.7
20 100 165.7 59.1 160.0 62.8 163.9 58.0 118.3 88.3 116.3 78.2
30 100 180.2 39.0 155.3 38.7 156.4 38.2 83.8 61.8 105.4 48.8
40 100 217.6 26.1 260.6 27.3 205.9 28.5 66.1 57.4 96.6 38.4
50 100 85.6 18.3 79.6 19.6 90.1 18.5 32.9 33.9 52.1 23.8
60 100 36.3 9.0 35.8 8.9 31.8 8.8 14.1 14.2 66.6 13.3
70 100 5.3 3.7 6.9 3.4 6.0 3.8 5.7 5.7 51.1 5.4
80 100 1.4 1.3 1.7 1.4 1.4 1.5 2.0 1.9 21.2 1.7
90 100 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.3 0.3

InsertionWebster Jefferson Bottleneck Random Swap

 
Table 5. Comparison of the HE and AHDE sequences across five basic heuristics for D = 500. 

n aggregation HE AHDE HE AHDE HE AHDE HE AHDE HE AHDE
3 11 44.5 44.5 44.5 44.5 44.5 44.5 644.0 288.9 65.6 44.5
5 35 130.3 128.2 130.6 132.2 130.2 129.1 1391.0 1062.8 220.2 567.9

10 89 348.8 344.7 349.1 345.7 344.6 313.2 3472.1 2931.7 712.9 974.4
50 100 2006.0 513.6 1971.3 537.9 1967.9 515.1 1699.9 1214.1 1565.4 987.4

100 100 2099.7 306.3 1755.6 306.3 1801.1 303.3 818.7 659.2 1290.6 531.2
150 100 6778.6 211.6 5728.4 210.4 5926.2 215.8 722.0 677.0 1915.4 453.9
200 100 1850.0 153.0 3478.8 151.9 2889.5 156.3 474.2 449.4 658.7 401.0
250 100 650.9 83.0 744.3 83.4 595.8 91.5 192.5 185.7 552.7 176.6
300 100 415.9 42.1 255.6 42.4 239.0 46.5 77.2 76.7 454.9 65.2
350 100 25.1 17.7 105.0 18.6 26.9 21.4 28.3 27.5 359.1 24.4
400 100 7.7 6.5 12.6 8.4 9.9 7.6 9.5 9.3 164.2 9.4
450 100 1.5 1.5 1.6 1.5 1.6 1.5 1.6 1.6 1.5 1

InsertionWebster Jefferson Bottleneck Random Swap

.6  
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Table 6. Comparison of the HE and AHDE sequences across five basic heuristics for D = 1000. 
n aggregation HE AHDE HE AHDE HE AHDE HE AHDE HE AHDE
10 79 572.2 568.5 570.7 575.4 550.5 521.6 8078.4 6745.1 1190.6 1723.5
50 100 4126.4 1454.1 3951.8 1552.2 3962.9 1452.6 8641.4 6146.0 3358.2 3937.4
100 100 5657.1 984.0 5814.2 983.5 5949.2 969.7 3672.0 2627.7 4741.4 2170.3
200 100 4322.4 612.1 4092.0 614.0 4143.0 618.5 1867.1 1549.5 3941.2 1287.3
300 100 11213.1 433.7 11525.5 432.9 12582.6 448.1 1788.9 1755.1 3482.1 1485.8
400 100 4840.7 312.2 8903.6 309.7 5948.0 318.5 957.6 913.7 1826.3 936.0
500 100 1218.8 185.5 2097.2 187.8 1451.3 200.5 373.1 368.0 1706.1 366.4
600 100 1030.3 93.4 581.8 94.8 532.1 107.5 155.3 149.3 911.3 135.1
700 100 49.0 40.0 271.9 40.4 67.8 47.7 58.0 58.8 769.2 53.0
800 100 17.2 15.9 24.3 16.6 19.8 18.8 20.9 19.3 314.0 20.5
900 100 3.8 3.6 3.8 3.5 3.9 3.5 3.9 4.0 3.4 3.8

InsertionWebster Jefferson Bottleneck Random Swap

 
Table 7. Comparison of the HE and AHDE sequences across five basic heuristics for D = 1500. 

n aggregation HE AHDE HE AHDE HE AHDE HE AHDE HE AHDE
100 100 11389.9 2045.1 11224.6 2155.2 11233.4 2041.8 9793.5 6692.2 9239.1 5212.0
200 100 8232.5 1275.7 8338.3 1334.4 8181.8 1300.2 4426.9 3348.3 6926.3 2702.9
300 100 8672.9 982.0 7610.1 1009.2 7796.3 988.6 3152.5 2442.9 8325.6 2338.0
400 100 67875.4 779.4 52338.9 776.5 45754.6 799.9 3286.9 3072.0 8023.1 3147.0
500 100 28090.6 583.9 21590.5 579.0 21642.3 605.8 2738.8 2440.9 5148.5 2678.5
600 100 8165.7 478.1 18664.8 471.4 7449.3 496.6 1534.7 1450.3 3766.7 1513.0
700 100 2690.3 324.8 4462.3 328.1 4978.0 349.7 778.3 737.3 3338.9 748.2
800 100 1638.5 211.8 1890.3 213.3 1365.6 241.6 412.2 414.7 2461.2 402.7
900 100 2301.3 124.1 1252.9 125.2 1139.8 150.2 213.4 216.3 2018.7 211.3

1000 100 198.7 64.8 292.5 65.0 232.5 81.9 108.6 108.3 2013.9 108.8
1100 100 37.7 32.9 67.6 34.0 73.9 39.5 53.6 50.1 1531.7 45.5
1200 100 25.0 14.4 30.0 16.4 38.9 16.9 22.6 22.4 1257.0 17.5
1300 100 1.3 5.0 21.6 5.6 12.9 6.4 7.8 7.2 22.5 8.3
1400 100 0.1 0.0 3.5 2.6 4.5 0.0 1.0 1.1 1.3 0.2

InsertionWebster Jefferson Bottleneck Random Swap

 

Summary and Conclusions 

This paper presents an aggregation approach for the problem of minimizing RTV.  We 

combined this approach with various heuristics for the RTV problem in order to determine when 

aggregation is useful.  The computational effort of the aggregation and disaggregation 

procedures is comparable to that of the heuristics themselves.  Thus, it is reasonable to consider 

aggregation and disaggregation as part of the solution approach. 

The results show that, when the number of products is very small or when the number of 

products is near the total demand (and each product has very small demand), combining 

aggregation with other heuristics does not reduce RTV compared to using the heuristics without 

aggregation.   

In all other cases, combining aggregation with other heuristics does dramatically reduce 

RTV compared to using the heuristics without aggregation.  In these cases, the solutions 
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generated by the heuristics have large values of RTV, and aggregation provides a way to find 

much better solutions.  Aggregation is particularly effective in combination with the Webster, 

Jefferson, and bottleneck heuristics.  Our results also confirm that the exchange heuristic plays a 

valuable role in reducing RTV. 

The aggregation procedure described in this paper is simple but effective.  However, it is 

possible to create more sophisticated aggregations that more intelligently combine products in 

order to minimize the number of products in the highest level of aggregation, with the goal of 

aggregating all of the products into one group.  If there is only one group, the disaggregation 

leads directly to a solution with zero RTV.  Future work will consider algorithms for 

systematically creating more sophisticated aggregations. 

Other future work should consider problems with multiple servers.  In the case of 

multiple servers, it would be interesting to look at the problem under the constraint that, for each 

product, all of its demand must be satisfied by exactly one of the servers.  That is, the products 

are first assigned to servers, and then we seek to find a low variability sequence for each server.   
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Figures 

(a) Aggregate Sequence

12 12 12 2 2 1 2 1 12 12 2 2 1 12 12 2 2 1 12 12 2 2 1 2 1 12 12 2 2 1 2 1 12 2

12 13 14 5 6 1 7 1 18 19 A B 1 1C 1D E 2 1 13 14 5 6 1 7 1 18 19 A B 1 C 1 1D E

(b) Disaggregated Sequence
 

Figure 1.  (a) An aggregate sequence for the 14-product problem after aggregation into a 2-
product problem.  (b) The disaggregated sequence (the letters A, B, C, D, and E represent 

products 10, 11, 12, 13, and 14). 
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