
The Institute for Systems Research

ISR develops, applies and teaches advanced methodologies of design and
analysis to solve complex, hierarchical, heterogeneous and dynamic prob-
lems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the
A. James Clark School of Engineering. It is a graduated National Science

Foundation Engineering Research Center.

www.isr.umd.edu

A

R

ISR Technical Report 2008-20

Using Aggregation to Reduce Response Time Variability in Cyclic Fair Sequences

Jeffrey W. Herrmann
Department of Mechanical Engineering

2181 Martin Hall
University of Maryland

College Park, MD 20742
301-405-5433

jwh2@umd.edu

Abstract

Fair sequences are useful in a variety of manufacturing and computer systems. This

paper considers the generation of cyclic fair sequences for a given set of products, each of which

must be produced multiple times in each cycle. The objective is to create a sequence so that, for

each product, the variability of the time between consecutive completions is minimized.

Because minimizing response time variability is known to be NP-hard and the performance of

existing heuristics is poor for certain classes of problems, we present an aggregation approach

that combines products with the same demand into groups, creates a sequence for those groups,

and then disaggregates the sequence into a sequence for each product. Computational

experiments show that using aggregation can reduce response time variability dramatically.

Introduction

When a resource must serve many demands simultaneously, it is important to schedule

the resource’s activities in some fair manner, so that each demand receives a share of the

resource that is proportional to its demand relative to the competing demands. A mixed-model

assembly line, to mention one standard example, should produce different products at rates that

are close to the given demand for each product. Similarly, computer systems must service

requests that have different priorities.

 1

Both applications demonstrate the need for a fair sequence. Kubiak (2004) provides a

good overview of fair sequences and the product rate variation problem and reviews important

results. Miltenburg (1989) and Inman and Bulfin (1991) were some of the first to discuss the

problem of mixed-model assembly lines. Waldspurger and Weihl (1995) discuss the problem in

computer system applications and provide an important stride scheduling heuristic. Kubiak

(2004) discusses a parameterized stride scheduling heuristic that we will adapt in our work.

We were motivated to consider the fair sequencing problem while working with a

healthcare facility that needed to schedule the collection of waste from waste collection rooms

throughout the building. Given data about how often a trash handler needs to visit each room (to

take away a cart of waste), the facilities manager wanted these visits to occur as regularly as

possible so that excessive waste would not collect in any room. For instance, if a room needs

four visits per eight-hour shift, then, ideally, it would be visited every two hours. Given a

schedule for one shift, the same schedule can be repeated every shift. The time to visit each

room and return with the trash cart varies slightly depending on the room location and other

factors. However, the variation is small and can be ignored. The problem is difficult because

different rooms require a different number of visits per shift.

This problem is clearly one of creating a fair sequence. In the product rate variation

problem, the typical objective is to minimize the maximum absolute deviation (over each product

and each position in the finite sequence) between the actual cumulative production and the ideal

cumulative production. However, a more appropriate objective in a cyclic situation is to

minimize the variability in the time between consecutive completions of the same task

(consecutive visits to the same room in our waste collection problem). Thus, we will use the

response time variability (RTV) metric, which was presented and analyzed by Corominas et al.

 2

(2007). Herrmann (2007) independently studied this measure as well, and Garcia et al. (2006)

presented metaheuristic procedures for the problem.

If the intervals between consecutive completions of the same task had to be equal to a

predetermined quantity, we would have the periodic maintenance scheduling problem (Wei and

Liu, 1983). However, in our case, we don’t require this and instead seek to keep the intervals

nearly the same. Wei and Liu (1983) suggested that machines with the same maintenance

interval could be replaced by a substitute machine with a smaller maintenance interval and that

this replacement would facilitate finding a feasible solution. This concept, which was not

developed into a solution algorithm, is similar to the aggregation proposed here.

Waldspurger and Weihl (1995) present a hierarchical stride scheduling algorithm that

combines products into groups. They suggest the use of a binary tree to minimize the maximum

absolute deviation. The key distinction between their hierarchical stride scheduling algorithm

and the aggregation approach presented here is that their algorithm requires using the stride

scheduling algorithm to disaggregate each group, since the products in a group may have

unequal demands. Also, the placement of products in the tree not specified. Because our

aggregation scheme groups products with equal demand, the disaggregation is much simpler.

The limitation, however, is that the problem must have some equal demand products.

Corominas et al. (2007) showed that the RTV problem is NP-hard and presented a

dynamic program and a mathematical program for finding optimal solutions. Because those

approaches required excessive computational effort, they conducted experiments to evaluate the

performance of various heuristics. However, the heuristics performed poorly for some classes of

problem instances. Independently, Herrmann (2007) described the RTV problem and presented

a heuristic that combined aggregation and parameterized stride scheduling. The aggregation

 3

approach combines products with the same demand into groups, creates a sequence for those

groups, and then disaggregates the sequence into a sequence for each product.

The current paper builds on these last two works. After formulating the problem, it

precisely defines the aggregation approach of Herrmann (2007) and describes the results of

extensive computational experiments using the aggregation approach in combination with the

heuristics presented by Corominas et al. (2007). The goal of these experiments is to determine if

the solutions generated using the aggregation approach have lower RTV than solutions generated

without using the aggregation approach.

Problem Formulation

Given a single server that must produce n products, each with a demand that is a

positive integer, let . A feasible sequence has length D, and each product i

occurs exactly times in the sequence. We assume that each product requires the same amount

of time, so we can ignore time and consider only the positions in the sequence. Moreover, this

sequence will be repeated, and we will call each occurrence a cycle. The response time

variability (RTV) of a feasible sequence equals the sum of the response time variability for each

product. If product i occurs at positions

id

1 nD d d= + +L

id

{ }1, ,
ii idp pK , the response time variability is a function

of the intervals between each position, which are { }1, ,
ii idΔ ΔK , where the intervals are measured

as follows (with 0 ii idp p D= −):

 , 1ik ik i kp p −Δ = −

The average interval for product i is , so we calculate RTV as follows: / iD d

 4

2

1 1

idn

ik
i k i

DRTV
d= =

⎛ ⎞
= Δ −⎜ ⎟

⎝ ⎠
∑∑

This problem is NP-hard (Corominas et al., 2007). Note that changes to the absolute

positions do not change the variability. The objective function value is invariant under any

translations or reflection.

Parameterized Stride Scheduling

The parameterized stride scheduling algorithm builds a fair sequence and performs well

at minimizing the maximum absolute deviation (Kubiak, 2004). The algorithm has a single

parameter δ that can range from 0 to 1. This parameter affects the relative priority of low-

demand products and their absolute position within the sequence. When δ is near 0, low-demand

products will be positioned earlier in the sequence. When δ is near 1, low-demand products will

be positioned later in the sequence.

The algorithm starts with an empty sequence. Given a partial sequence, with the first k

positions filled, let ikx be the number of times that product i occurs in those k positions. Then,

position is allocated to customer i* where 1k +

 * arg max i

i
ik

di
x δ

⎧ ⎫
= ⎨ ⎬+⎩ ⎭

Of course, there may be ties, so a tie-breaking procedure is needed. We always select the

lowest-numbered product to break a tie. The computational effort of the algorithm is O(nD).

The parameterized stride scheduling algorithm can generate sequences with large

variability. Consider the following example. There are n = 14 products with demands d = (20,

2, 2, …, 2). Therefore, D = 46. The parameterized stride scheduling algorithm (with δ = 0.5)

generates the following sequence is (1, 1, 1, 1, 1, 2, 3, …, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, …,

 5

14, 1, 1, 1, 1, 1). The RTV equals 304.2. (Other values of δ change the absolute position of the

low-demand products but not the RTV.)

The high variability of this sequence occurs because the algorithm positions all of the

low-demand products together, which creates a lumpy pattern for the high-demand product. A

more fair sequence would blend the two types of products more evenly.

Aggregation

This insight led to the development of an aggregation approach that iteratively transforms

the original instance into one with fewer products. This was first introduced in Herrmann (2007)

and is similar to the substitution concept discussed by Wei and Liu (1983).

To do this blending, we will combine products that have the same demand into groups.

This has two benefits. First, it reduces the number of products that need to be sequenced.

Secondly, because a group will have higher demand, it will be blended better than the individual

products.

Let an instance kI be a sequence of products for kjP 1, , kj n= K

kjd

. It will be convenient to

represent a product as a set. Each product has demand . We assume that the products are

sorted so that . Let

kjP

1 2 kk k kd d d≤ n≤ ≤L 0I be the original instance, and each { }0 jP j= .

Given an instance kI , the aggregation procedure transforms kI into a new problem

instance 1kI + as follows. First, find the smallest i such that ki n< and . If there exists

no such i, return with

, 1k id +kid =

1k kI I+ = because no further aggregation is possible.

If , let . Else, find m such that
kkn kid d= km n i= − ,ki k i md d += and . , 1 ,k i m k i md d+ + +>

 6

Create the new instance 1kI + as follows: Assign 1k kn n+ m= − . Then, { }1,k jP + = j

d

 and

 for 1,k j kjd + = 1, , 1j i= K − . Then, { }1, , ,k iP i+ = K i m+ 1,k i+ and . Finally, (d m= +)1 kid

{ }1,k jP + = +j m 1,k jd = and for ,kd+ +j m 11, , kj i n += + K . Renumber as needed so that the products

in 1kI + are sorted by demand and return 1kI + .

The total demand in the new instance will equal the total demand of the original instance

because the demand of the new product (which we call a “group”) equals the total demand of the

products that were removed.

We run the aggregation procedure until no further aggregation is possible to generate a

sequence of instances 0I , …, HI . (H is the index of the last aggregation created.) The

aggregation can be done at most times because the number of products decreases by at least

one each time the aggregation procedure is called (unless no aggregation occurs). Thus

.

1n −

1H n≤ −

We can then apply a sequence generation algorithm to the most aggregated instance HI

to generate a sequence HS . We disaggregate HS to generate 1HS − and then continue to

disaggregate each sequence in turn to generate 2HS − , …, . is a feasible sequence for 0S 0S 0I ,

the original instance.

The disaggregation of sequence is performed as follows: Let be the set of

products j in

kS kF

kI such that 1kjP = . will include kF 1kn − products. Let g be the remaining

product and let { }, ,kgP i i m= +K . To create sequence 1kS − for instance 1kI − , first let c = 0.

Then, loop over . Let 1, ,a D= K ()kj S a= . If kj F∈ , then let q be the element of . (There kjP

 7

is exactly one.) Assign . If j is not in , then ()1kS a− = q kF j g= , the group that needs to be

disaggregated. Assign and update ()1kS a i− = + c ()1 mod 1mc c= + + .

Consider the group g, which is formed from 1m + products. It has been assigned

positions in the sequence. According to the aggregation scheme, . When

creating , the first position assigned to g in goes to i (the first product in the group), the

second position assigned to g goes to product i

kgd

() 1,1kg k id m d −= +

1kS − kS

1+ , and so forth. This continues until all

positions have been assigned. Each product in the group gets

kgd

1,k id − positions.

Aggregation runs in O() time because each aggregation requires O(n) time and there

are at most aggregations. Likewise, because each sequence disaggregation requires O(D)

effort, disaggregation runs in O() time in total.

2n

nD

3

1n −

Tables 1, 2, and 3 present a 10-product example that is aggregated three times. is a

feasible sequence for

3S

I . Note that, at each step of disaggregating the sequence, copies of

product j are replaced by the product(s) in . kjP

Table 1. A 10-product instance and the aggregate instances formed from it.
d

k
0

_{kj}, j =
1 2
1
2 2
3 5
3 6

k n_ 3 4 7 8 9 10
0 1 1 1 2 3 5
1 6 2 3
2 4 5 6
3 3 10

5 6
1 1

5 5
2 2

Table 2. The product sets for the instances in Table 1.
P_{kj}, j =

k n_k 1 2 4 9 10
0 10 {1} {2 {4} { {8} {9} {10}
1 6 {6} {7 {9} {1,2,
2 4 {4} {5} {1,2,3}
3 3 {1} {4

3
} {3}
} {8}

{6}
} {2,3}

5

}

6 7 8
5} {6}
3,4,5 {10}

{7}

 8

Table 3. The disaggregation of sequence for instance 3S 3I .
S_3 3 2 3 2 3 1 3 2 3 2 3 1

1
4

0 9

3 2 2 3 1 3
S_2 2 4 3 4 2 1 3 4 2 4 3 2 4 4 2 1 3
S_1 5 1 6 2 5 4 6 3 5 1 6 5 2 3 5 4 6
S_0 1 6 10 7 2 9 10 8 3 6 1 4 7 8 5 9 10

3
3
6

10
The aggregation can greatly simplify sequencing. If only one product remains in the final

instance, then it gets all of the positions in the sequence, and one can immediately proceed to

disaggregation. For instance, consider the following example from Waldspurger and Weihl

(1995). There are n = 101 products with demands d = (100, 1, 1, …, 1). Therefore, D = 200. To

solve this problem, we first aggregate the one hundred low-demand products into one group with

a total demand of 100. Then we aggregate the group and the high-demand product into a larger

group with a total demand of 200. Now that we have only one group, we disaggregate the 200

positions by allocating them alternately to the high-demand product and the group of 100. Then,

we disaggregate the group’s 100 positions by giving one to each low-demand product. The

resulting sequence has zero RTV.

In the 14-product example presented earlier in this paper, the aggregation procedure

replaces the 13 low-demand products by one group with a demand of 26 to create an instance

with only two products. Applying the parameterized stride scheduling algorithm (with δ = 0.5)

to generate an aggregate sequence and then disaggregating it reduces the RTV from 304.2 to 4.2.

(The aggregate and disaggregated sequences are shown in Figure 1.)

Heuristics

The purpose of this paper is to investigate how much the aggregation approach reduces

RTV when used with various heuristics. To that end we will consider five basic heuristics and

the exchange heuristic of Corominas et al. (2007).

Webster. This heuristic uses the parametric stride scheduling algorithm with 0.5δ = .

 9

Jefferson. This heuristic uses the parametric stride scheduling algorithm with 1δ = .

The Webster and Jefferson heuristics run in O(nD) time.

Bottleneck. This heuristic is the due date algorithm that Steiner and Yeomans (1993)

developed for solving the mixed-model production problem. This heuristic runs in O(D log D)

time.

Random swap. This heuristic (presented in Corominas et al., 2007) starts with the

sequence that the bottleneck heuristic generates. Then, for each position 1, ,j D= K , it generates

a random number { }1, ,k∈ K D and swaps the tasks in positions j and k. We use a discrete

uniform distribution over { }1, ,K D for choosing k. Because the swapping runs in O(D), this

heuristic runs in O(D log D) time.

Insertion. This heuristic, introduced by Corominas et al. (2007), solves a sequence of

two-product problems in order to generate a sequence recursively. It runs in O(D log D) time.

To solve the two-product problem with 1d d2< , we use the following procedure: let

 (or if divides D) and 1modm D d= 1m d= 1d 1/R D d= ⎡ ⎤⎢ ⎥ Note that .

Assign m copies of product 1 to positions

()()1 1mR d m R D+ − − =

R , ..., and mR 1d m− copies of product 1 to the

following positions:

 , , …, 1mR R+ − (2 1mR R+ −) ()()1 1mR d m R 1+ − − − , D.

Assign copies of product 2 to all of the remaining positions. 2d

Exchange. Corominas et al. (2007) developed the exchange heuristic as a technique for

improving any given sequence. Unlike the other heuristics presented, it treats the sequence as a

cycle, not a finite sequence. It repeatedly loops through the positions, exchanging a task with the

 10

task immediately following it if that exchange reduces the RTV or reduces the maximum

distance between two tasks for a product. It runs in O() time. 4nD

Computational Experiments

The purpose of the computational experiments was to show how the aggregation

technique performs in combination with a variety of heuristics on the metric of RTV.

We generated 4700 instances as follows. First, we set the total number of tasks D and the

number of products n. (We followed Corominas et al., 2007, in choosing values of D and n, but

these are not the same instances.) To generate an instance, we generated random numbers

from a discrete uniform distribution over

D n−

{ }1, , nK . We then let equal one plus the number of

copies of i in the set of random numbers (this avoided the possibility that any

id

D n− 0id =). We

generated 100 instances for each of the following combinations of D and n:

100D = and 3n = , 10, 20, 30, 40, 50, 60, 70, 80, and 90;

500D = and , 5, 10, 50, 100, 150, 200, 250, 300, 350, 400, and 450; 3n =

1000D = and , 50, 100, 200, 300, 400, 500, 600, 700, 800, and 900; and 10n =

1500D = and , 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300,

and 1400.

100n =

For each instance that can be aggregated, we constructed 30 sequences as follows. First,

we applied one of the basic heuristics to the instance (we call this the H sequence). Then, we

applied the exchange heuristic to the H sequence to construct the HE sequence. (This essentially

repeats what Corominas et al., 2007, did.)

Next, we aggregated the instance if possible. For the aggregate instance, we applied the

heuristic to construct an aggregated solution. We disaggregated this solution to construct the

AHD sequence. Then, we applied the exchange heuristic to the AHD sequence to construct the

 11

AHDE sequence. We also applied the exchange heuristic to the aggregated solution and then

disaggregated to construct the AHED sequence. Finally, we applied the exchange heuristic to

the AHED sequence to construct the AHEDE sequence. This makes six sequences using one

basic heuristic and combinations of aggregation-disaggregation and the exchange heuristic. We

repeated this for the remaining basic heuristics for a total of 30 solutions.

The clock time needed to generate the six sequences for one instance and one basic

heuristic increased as D increased. These times ranged from 1 to 15 seconds for instances with

D = 1500. The longest times occurred when n = 400, and the shortest times occurred when n =

1400.

Before discussing the results of the heuristics, we note that the number of times that an

instance was aggregated depended greatly upon the ratio of n/D. When this ratio was very small

(less than 0.05), many instances were not aggregated. For small values of n/D, all of the

instances can be aggregated, and the average number of aggregations jumps to near 6 for D =

100 and is near 15 for D = 1500. The largest number of aggregations was 18, which occurred in

five instances (one with n = 100 and D = 1000 and four with n = 100 and D = 1500). As n/D

increases further, the average number of aggregations decreases steadily for all values of D.

When n/D is near 0.9, the average number of aggregations is between 2 and 3.

Because the exchange heuristic is known to reduce RTV, significantly in some cases, our

discussion will focus on the HE and AHDE sequences. As shown by Corominas et al. (2007),

the exchange heuristic significantly reduces the RTV of the solutions generated by the heuristics

(without aggregation). Thus, the HE sequences are more interesting that the H sequences.

The results of these experiments show that the AHD sequences may perform poorly

(compared to the other sequences) for large values of n and in combination with the random

 12

swap and insertion heuristics. The AHED sequences also perform poorly. Finally, the RTV of

the AHEDE sequences was only slightly better than that for the AHDE sequences.

The notable exception to this last result occurred for the random swap and insertion

heuristics when D = 1000 and D = 1500. In those cases, the AHEDE sequences were

significantly better than the AHDE sequences for medium values of n. However, these

sequences were still not as good as the sequences generated using the Webster, Jefferson, and

bottleneck heuristics.

Tables 4 to 7 present the results for the HE and AHDE sequences for each of the basic

heuristics. The results are averaged over the instances where aggregation was performed. The

number of instances (out of 100) where any aggregation was performed is also shown.

Using aggregation with the Webster, Jefferson, and bottleneck heuristics generates the

best sequences. Compared to the HE sequences, the AHDE sequences reduce RTV dramatically

when n is moderate (not at the extremes). For instance, when n = 300 and D = 1000, the average

RTV of the AHDE sequences is less than 4% of the average RTV of the HE sequences. When n

= 400 and D = 1500, the average RTV of the AHDE sequences is between 1% and 2% of the

average RTV of the HE sequences.

We can see why if we consider a set of products with the same demand. The Webster,

Jefferson, and bottleneck heuristics tend to put copies of these products next to each other, which

increases the RTV of products with higher demand. Aggregation spreads out the copies these

products, leaving space for the products with higher demand.

When n is very small and D = 100, 500, or 1000, the AHDE sequences are about the

same as the HE sequences because the heuristic sequences are already good. When n is near D,

 13

the AHDE sequences are about the same as the HE sequences because the exchange heuristic is

very good at constructing low-RTV sequences in those cases.

The random swap and insertion heuristics generate sequences that are not as good. Using

aggregation improves the random swap sequences less than it improves the sequences generated

with other heuristics. In sequences generated by the random swap heuristic, the advantages that

occur with aggregation are lost as the products are shuffled in the aggregated sequence. In

sequences generated by the insertion heuristic, products with low demand usually have higher

RTV than the other products in that sequence because the low demand products are assigned last

and get the “leftover” spots, which are not spread out evenly. However, the heuristic works well

if there are many products with the same demand, because it will allocate them fairly. The

aggregation deliberately creates an instance in which no products have the same demand, which

degrades the performance of the insertion heuristic. The products that are not aggregated will be

assigned last and will have large RTV.

Table 4. Comparison of the HE and AHDE sequences across five basic heuristics for D = 100.
n aggregation HE AHDE HE AHDE HE AHDE HE AHDE HE AHDE
3 17 15.5 15.5 15.5 15.5 15.5 15.5 113.9 52.4 26.0 15.5
10 100 98.3 73.0 97.6 75.5 96.9 72.6 165.8 134.6 94.2 104.7
20 100 165.7 59.1 160.0 62.8 163.9 58.0 118.3 88.3 116.3 78.2
30 100 180.2 39.0 155.3 38.7 156.4 38.2 83.8 61.8 105.4 48.8
40 100 217.6 26.1 260.6 27.3 205.9 28.5 66.1 57.4 96.6 38.4
50 100 85.6 18.3 79.6 19.6 90.1 18.5 32.9 33.9 52.1 23.8
60 100 36.3 9.0 35.8 8.9 31.8 8.8 14.1 14.2 66.6 13.3
70 100 5.3 3.7 6.9 3.4 6.0 3.8 5.7 5.7 51.1 5.4
80 100 1.4 1.3 1.7 1.4 1.4 1.5 2.0 1.9 21.2 1.7
90 100 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.3 0.3

InsertionWebster Jefferson Bottleneck Random Swap

Table 5. Comparison of the HE and AHDE sequences across five basic heuristics for D = 500.

n aggregation HE AHDE HE AHDE HE AHDE HE AHDE HE AHDE
3 11 44.5 44.5 44.5 44.5 44.5 44.5 644.0 288.9 65.6 44.5
5 35 130.3 128.2 130.6 132.2 130.2 129.1 1391.0 1062.8 220.2 567.9

10 89 348.8 344.7 349.1 345.7 344.6 313.2 3472.1 2931.7 712.9 974.4
50 100 2006.0 513.6 1971.3 537.9 1967.9 515.1 1699.9 1214.1 1565.4 987.4

100 100 2099.7 306.3 1755.6 306.3 1801.1 303.3 818.7 659.2 1290.6 531.2
150 100 6778.6 211.6 5728.4 210.4 5926.2 215.8 722.0 677.0 1915.4 453.9
200 100 1850.0 153.0 3478.8 151.9 2889.5 156.3 474.2 449.4 658.7 401.0
250 100 650.9 83.0 744.3 83.4 595.8 91.5 192.5 185.7 552.7 176.6
300 100 415.9 42.1 255.6 42.4 239.0 46.5 77.2 76.7 454.9 65.2
350 100 25.1 17.7 105.0 18.6 26.9 21.4 28.3 27.5 359.1 24.4
400 100 7.7 6.5 12.6 8.4 9.9 7.6 9.5 9.3 164.2 9.4
450 100 1.5 1.5 1.6 1.5 1.6 1.5 1.6 1.6 1.5 1

InsertionWebster Jefferson Bottleneck Random Swap

.6

 14

Table 6. Comparison of the HE and AHDE sequences across five basic heuristics for D = 1000.
n aggregation HE AHDE HE AHDE HE AHDE HE AHDE HE AHDE
10 79 572.2 568.5 570.7 575.4 550.5 521.6 8078.4 6745.1 1190.6 1723.5
50 100 4126.4 1454.1 3951.8 1552.2 3962.9 1452.6 8641.4 6146.0 3358.2 3937.4
100 100 5657.1 984.0 5814.2 983.5 5949.2 969.7 3672.0 2627.7 4741.4 2170.3
200 100 4322.4 612.1 4092.0 614.0 4143.0 618.5 1867.1 1549.5 3941.2 1287.3
300 100 11213.1 433.7 11525.5 432.9 12582.6 448.1 1788.9 1755.1 3482.1 1485.8
400 100 4840.7 312.2 8903.6 309.7 5948.0 318.5 957.6 913.7 1826.3 936.0
500 100 1218.8 185.5 2097.2 187.8 1451.3 200.5 373.1 368.0 1706.1 366.4
600 100 1030.3 93.4 581.8 94.8 532.1 107.5 155.3 149.3 911.3 135.1
700 100 49.0 40.0 271.9 40.4 67.8 47.7 58.0 58.8 769.2 53.0
800 100 17.2 15.9 24.3 16.6 19.8 18.8 20.9 19.3 314.0 20.5
900 100 3.8 3.6 3.8 3.5 3.9 3.5 3.9 4.0 3.4 3.8

InsertionWebster Jefferson Bottleneck Random Swap

Table 7. Comparison of the HE and AHDE sequences across five basic heuristics for D = 1500.

n aggregation HE AHDE HE AHDE HE AHDE HE AHDE HE AHDE
100 100 11389.9 2045.1 11224.6 2155.2 11233.4 2041.8 9793.5 6692.2 9239.1 5212.0
200 100 8232.5 1275.7 8338.3 1334.4 8181.8 1300.2 4426.9 3348.3 6926.3 2702.9
300 100 8672.9 982.0 7610.1 1009.2 7796.3 988.6 3152.5 2442.9 8325.6 2338.0
400 100 67875.4 779.4 52338.9 776.5 45754.6 799.9 3286.9 3072.0 8023.1 3147.0
500 100 28090.6 583.9 21590.5 579.0 21642.3 605.8 2738.8 2440.9 5148.5 2678.5
600 100 8165.7 478.1 18664.8 471.4 7449.3 496.6 1534.7 1450.3 3766.7 1513.0
700 100 2690.3 324.8 4462.3 328.1 4978.0 349.7 778.3 737.3 3338.9 748.2
800 100 1638.5 211.8 1890.3 213.3 1365.6 241.6 412.2 414.7 2461.2 402.7
900 100 2301.3 124.1 1252.9 125.2 1139.8 150.2 213.4 216.3 2018.7 211.3

1000 100 198.7 64.8 292.5 65.0 232.5 81.9 108.6 108.3 2013.9 108.8
1100 100 37.7 32.9 67.6 34.0 73.9 39.5 53.6 50.1 1531.7 45.5
1200 100 25.0 14.4 30.0 16.4 38.9 16.9 22.6 22.4 1257.0 17.5
1300 100 1.3 5.0 21.6 5.6 12.9 6.4 7.8 7.2 22.5 8.3
1400 100 0.1 0.0 3.5 2.6 4.5 0.0 1.0 1.1 1.3 0.2

InsertionWebster Jefferson Bottleneck Random Swap

Summary and Conclusions

This paper presents an aggregation approach for the problem of minimizing RTV. We

combined this approach with various heuristics for the RTV problem in order to determine when

aggregation is useful. The computational effort of the aggregation and disaggregation

procedures is comparable to that of the heuristics themselves. Thus, it is reasonable to consider

aggregation and disaggregation as part of the solution approach.

The results show that, when the number of products is very small or when the number of

products is near the total demand (and each product has very small demand), combining

aggregation with other heuristics does not reduce RTV compared to using the heuristics without

aggregation.

In all other cases, combining aggregation with other heuristics does dramatically reduce

RTV compared to using the heuristics without aggregation. In these cases, the solutions

 15

generated by the heuristics have large values of RTV, and aggregation provides a way to find

much better solutions. Aggregation is particularly effective in combination with the Webster,

Jefferson, and bottleneck heuristics. Our results also confirm that the exchange heuristic plays a

valuable role in reducing RTV.

The aggregation procedure described in this paper is simple but effective. However, it is

possible to create more sophisticated aggregations that more intelligently combine products in

order to minimize the number of products in the highest level of aggregation, with the goal of

aggregating all of the products into one group. If there is only one group, the disaggregation

leads directly to a solution with zero RTV. Future work will consider algorithms for

systematically creating more sophisticated aggregations.

Other future work should consider problems with multiple servers. In the case of

multiple servers, it would be interesting to look at the problem under the constraint that, for each

product, all of its demand must be satisfied by exactly one of the servers. That is, the products

are first assigned to servers, and then we seek to find a low variability sequence for each server.

Acknowledgements

This work was motivated by a collaboration with the University of Maryland Medical

Center. The author appreciates the help of Leonard Taylor, who introduced the problem,

provided useful data, and recognized the value of the work presented here. The suggestions

made by anonymous reviewers on an earlier version of this paper are also appreciated.

 16

Figures

(a) Aggregate Sequence

12 12 12 2 2 1 2 1 12 12 2 2 1 12 12 2 2 1 12 12 2 2 1 2 1 12 12 2 2 1 2 1 12 2

12 13 14 5 6 1 7 1 18 19 A B 1 1C 1D E 2 1 13 14 5 6 1 7 1 18 19 A B 1 C 1 1D E

(b) Disaggregated Sequence

Figure 1. (a) An aggregate sequence for the 14-product problem after aggregation into a 2-
product problem. (b) The disaggregated sequence (the letters A, B, C, D, and E represent

products 10, 11, 12, 13, and 14).

 17

 18

References
Corominas, Albert, Wieslaw Kubiak, and Natalia Moreno Palli (2007) “Response time

variability,” Journal of Scheduling, 10:97-110.

Garcia, A., R. Pastor, and A. Corominas (2006) “Solving the Response Time Variability Problem

by Means of Metaheuristics,” in Artificial Intelligence Research and Development, edited

by Monique Polit, T. Talbert, and B. Lopez, pages 187-194, IOS Press, 2006.

Herrmann, Jeffrey W. (2007) “Generating Cyclic Fair Sequences using Aggregation and Stride

Scheduling,” Technical Report 2007-12, Institute for Systems Research, University of

Maryland, College Park. Available online at http://hdl.handle.net/1903/7082

Inman, R.R., and Bulfin, R.L. (1991) Sequencing JIT Mixed-Model Assembly Lines.

Management Science, 37(7):901-904.

Kubiak, W. (2004) Fair sequences. In Handbook of Scheduling: Algorithms, Models and

Performance Analysis, Leung, J.Y-T., editor, Chapman & Hall/CRC, Boca Raton,

Florida.

Miltenburg, J. (1989) Level Schedules for Mixed-Model Assembly Lines in Just-in-Time

Production Systems. Management Science, 35(2):192-207.

Steiner, George, and Scott Yeomans (1993) “Level Schedules for Mixed-Model, Just-in-Time

Processes,” Management Science, 39(6):728-735

Waldspurger, C.A., and Weihl, W.E. (1995) Stride scheduling: Deterministic proportional-share

resource management. Technical Memorandum MIT/LCS/TM-528, MIT Laboratory for

Computer Science, Cambridge, Massachusetts.

Wei, W.D., and Liu, C.L. (1983) On a periodic maintenance problem. Operations Research

Letters, 2(2):90-93.

	cover
	Fair+Sequences+2008.pdf
	Abstract
	Introduction
	Problem Formulation
	Parameterized Stride Scheduling
	Aggregation
	Heuristics
	Computational Experiments
	Summary and Conclusions
	Acknowledgements

