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Abstract This paper addresses the Rolling Stock Rebalanc-
ing Problem (RSRP) which arises within a passenger rail-
way operator when the rolling stock has to be rescheduled
due to changing circumstances. RSRP is relevant both in the
short-term planning stage and in the real-time operations.

RSRP has as input a timetable and a rolling stock circu-
lation where the allocation of the rolling stock among the
stations at the start or at the end of a certain planning pe-
riod does not match with the allocation before or after that
planning period. The problem is then to modify the input
rolling stock circulation in such a way that the number of
remaining off-balances is minimal. If all off-balances have
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been solved, then the obtained rolling stock circulation can
be implemented in practice.

For practical usage of solution approaches for RSRP, it
is important to solve the problem quickly. Since we prove
that RSRP is NP-hard, we focus on heuristic solution ap-
proaches: we describe two heuristics and compare them with
each other on (variants of) real-life instances of NS, the main
Dutch passenger railway operator. Finally, to get further in-
sight in the quality of the proposed heuristics, we also com-
pare their outcomes with optimal solutions obtained by solv-
ing an existing rolling stock circulation model.

Keywords Railway planning · Rolling stock rescheduling ·
Integer linear programming · Heuristic solution methods

1 Introduction

The rolling stock planning process of a passenger railway
operator is commonly divided into several planning stages.
Huisman et al. (2005) distinguish four planning stages,
namely strategic, tactical, operational, and short-term plan-
ning. After these planning stages, the final plans are carried
out and modified if necessary in the real-time operations.
Strategic planning deals with long term decisions such as
the acquisition of new rolling stock. At the tactical level, the
different types of rolling stock are assigned to the different
lines of the network. This is typically done once a year. The
main goal of operational planning is to find a generic rolling
stock circulation with low operational costs and high service
quality. This circulation is basically carried out throughout
the whole year. However, every calendar day there are mi-
nor modifications to the timetable due to some extra trains
or due to maintenance of the railway infrastructure. These
changes in the timetable require modifications of the rolling
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stock circulation as well. This process is carried out in the
short-term planning stage. The time horizon of this planning
stage ranges from a couple of weeks to a couple of days be-
fore the operations.

In a rolling stock circulation, it is essential that at all sta-
tions there is always a balance between the number of de-
parting rolling stock units and the number of earlier arriving
units: a unit can only depart from a certain station if it ar-
rived there earlier. This condition is called the rolling stock
balancing condition.

1.1 Rolling Stock Rebalancing Problem

This paper deals with the Rolling Stock Rebalancing Prob-
lem (RSRP), which is a problem faced in the short-term plan-
ning stage as well as during the real-time operations. The
input of RSRP consists of the timetable for a given plan-
ning period, the available amount of rolling stock, the target
rolling stock inventories at the start and at the end of the
planning period, and an input rolling stock circulation.

The input rolling stock circulation is feasible, except that
it may contain a number of off-balances. An off-balance is a
deviation from the target inventory level of a certain rolling
stock type at a certain station, either at the start or at the end
of the planning period. The primary goal is to transform the
input rolling stock circulation into a new rolling stock cir-
culation with as few off-balances as possible. As secondary
objective, other criteria related to costs, service, and robust-
ness are considered as well. The input rolling stock circula-
tion determines constraints on the allowed modifications of
the rolling stock circulation, as will be explained.

1.2 Background information

In order to better motivate our study of RSRP, we first give
some background information on the rolling stock planning
process at NS (Netherlands Railways), the main passenger
railway operator in the Netherlands.

At NS, most trains are operated by electrical self-
propelled train units, and only a few are operated by a lo-
comotive and carriages. Therefore, we consider only train
units in the remainder of this paper. These train units are
available in several types. Train units of compatible types
can be attached to each other to form longer compositions.
Train units of the same type are fully interchangeable.

Each trip in the timetable is assigned a certain train com-
position. A composition describes how many train units of
each type are used for the train, and in which order they ap-
pear in the train. The practical feasibility of a rolling stock
circulation depends to a large extent on the shunting possi-
bilities of the stations. Shunting is a complex problem on its
own (see, e.g., Freling et al. 2005; Lentink 2006). Therefore,
several key aspects of the shunting processes are taken into

account already in the creation of the rolling stock circula-
tion. Examples are the restrictions on composition changes
at certain stations; uncoupling (or coupling) of train units
can only take place at the appropriate side of a train.

A first motivation to study RSRP comes from the short-
term planning process after the operational planning process.
In the operational planning process, a cyclic rolling stock
circulation is generated for 7 generic weekdays (i.e., Mon-
day to Sunday), where consecutive days of the week fit af-
ter each other with respect to the rolling stock balances
at the stations. Next, in the short-term planning process the
timetable must be modified for one or more specific calen-
dar days (in the following called the planning period), e.g.,
due to maintenance of the infrastructure certain timetable
trips must be canceled. As a consequence, the rolling stock
circulation must be modified as well during this planning
period. Discussions with planners revealed that it is usually
relatively easy for them to come up with a modified rolling
stock circulation (the input rolling stock circulation) that ful-
fills all requirements, except that there are certain remaining
off-balances. That is, at the start or at the end of the planning
period the input rolling stock circulation does not fit with the
rolling stock circulation for the generic weekdays before the
planning period or after the planning period. Thus the prob-
lem is to modify the input rolling stock circulation such that
the number of off-balances is reduced as much as possible.
This calls for a solution of RSRP.

A second motivation to study RSRP comes from disrup-
tion management in the real-time operations, see Groth et
al. (2007). During a disruption of the railway system (e.g.,
temporarily no railway traffic is possible between two sta-
tions due to malfunctioning infrastructure), the timetable is
modified, and, as a consequence, the rolling stock circula-
tion must be modified as well. As a result, the train units
may not finish their daily duties at the locations where they
were planned to. This is a problem if the number of train
units ending up in the evening at a certain station differs
from the number of train units starting their next day’s duty
there. To prevent expensive dead-heading trips during the
night, the rolling stock circulation must be modified such
that the rolling stock is balanced before the night. This real-
time version of RSRP is to a large extent equivalent to RSRP
in the short-term planning stage. The only difference is that
the input rolling stock circulation is not constructed by plan-
ners but is caused by unexpected circumstances in the real-
time operations. Moreover, in this case the off-balances only
occur in the final inventories of the planning period.

1.3 Contribution

This is one of the first papers dealing with rolling stock
planning problems in the short-term and real-time planning
process. In particular, the aspect of solving the off-balances
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Fig. 1 A time–space diagram with time in the horizontal direction.
The diagonal lines represent trips r1 to r4 between stations A and B

in a given input rolling stock circulation has not yet been
studied before. The need for fast solution approaches in the
short-term and real-time planning stages motivated us to fo-
cus on two heuristic methods for solving RSRP. Our focus
on heuristic approaches was also inspired by the fact that
RSRP is NP-hard, as we prove in the appendix of this paper.
The heuristics are compared with each other on instances of
RSRP based on (variants of) real-life instances of NS. More-
over, to get further insight in the quality of these heuristics,
we also compare the results of the heuristics with the re-
sults of an existing optimal approach for operational rolling
stock planning (see Fioole et al. 2006). The application of
the heuristics appears to result in acceptable solutions within
short computation times.

The remainder of this paper is organized as follows. In
Sect. 2, we give a precise description of RSRP. Section 3
contains a literature overview. In Sect. 4, we describe an al-
gorithm for solving a single off-balance. The heuristics for
solving the general RSRP are described in Sect. 5. Compu-
tational results are discussed in Sect. 6. In Sect. 7, we draw
some conclusions and we outline some directions for further
research. Finally, complexity results on variants of RSRP are
presented in Appendix A.

2 Problem description

In this section, we define RSRP in more detail. The first part
of the input of RSRP consists of the timetable for a certain
planning period. The timetable defines a set of trips, each
of which is characterized by a train number, departure and
arrival times, departure and arrival locations as well as an es-
timated number of passengers. Moreover, most trips (apart
from the arrivals in the late evening and some other excep-
tions) have a successor trip, which departs from the same
station shortly after the trip (the predecessor) has arrived.
Figure 1 represents trips r1 to r4 between the stations A and
B in a time-space diagram. Here trip r1 has trip r2 as succes-
sor, and trip r2 has trip r3 as successor, as is indicated by the
dotted lines. Conversely, trip r2 has trip r1 as predecessor,
and trip r3 has trip r2 as predecessor.

2.1 Rolling stock circulation

The second part of the input of RSRP concerns the rolling
stock. In particular, we have a list of available rolling stock

Fig. 2 The rolling stock duties of a black (solid bold line) and a gray
(solid dashed line) train unit on the trips r1 to r4 shown in Fig. 1

types, the number of available train units per rolling stock
type, and an input rolling stock circulation.

A rolling stock circulation is represented in terms of a
number of rolling stock duties. Here a duty is the workload
of a single train unit on a single day. It is a chain of tasks
where a task is characterized by a trip and by the position
of the train unit in the train composition of this trip, e.g.,
front, middle or rear. Based on the rolling stock duties, the
composition of each trip can be determined. Note that a duty
may be empty, for example, in the case of a stand-by train
unit.

In principle, a trip and its successor trip are operated by
the same train units. That is, the rolling stock composition
of a trip forms the base of the rolling stock composition of
the successor trip. However, sometimes one or more train
units are coupled or uncoupled between two successor trips.
This is called a composition change, and requires a shunting
movement.

Since the time between two successor trips is short, there
is only a limited amount of time for a composition change.
Therefore, a general rule is that coupling and uncoupling
cannot be performed at the same time. Furthermore, in each
station composition changes usually may take place only at
a pre-defined side of a train, either at the front side or at
the rear side, the shunting side of the train at that station.
Thus the train compositions of a trip and its successor trip
are often the same. The difference may be that one or more
train units are either coupled onto or uncoupled from the
shunting side of the train at that station.

For example, the solid and dashed bold lines in Fig. 2
show the duties of a black and a gray train unit on the trips
r1 to r4 that were shown in Fig. 1, e.g., the duty of the gray
train unit is (r1, rear)–(r2, front)–(r4, solo). Trips r1 and r2

have compositions consisting of both train units. The gray
train unit is uncoupled from the train after trip r2 and stored
at the shunt yard of station B . This train unit is used later
for trip r4. Note that trip r4 is not a successor of trip r2,
since the time between these trips is too long. Clearly, the
shunting side of station B is the front side of an arriving
train. Therefore, it is possible to uncouple the gray train unit
there. If station B would allow shunting only at the rear side
of an arriving train, then it would have been impossible to
uncouple the gray train unit after trip r2.

Train units that have been uncoupled from a train are
stored at the shunt yard of the station until they are coupled
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onto another train. Hence they are not immediately avail-
able again, only a certain re-allocation time � later they may
be coupled again. This is to reserve time for the necessary
shunting operations at the station. A typical value for � is
30 min.

Each rolling stock circulation satisfies the following re-
quirements: The length of the composition on a trip r must
be under a certain limit μmax

r (determined by the relevant
platform lengths). Moreover, the trip has to be assigned at
least a given number μmin

r of carriages in order to cover (a
large part of) the passenger demand.

Next, we need the concept of the inventory. The inventory
of a station at a given time t consists of the train units that
are staying idle at that moment at that station. These train
units can be coupled to a departing train. Note that a train
unit that is idle at a station between two successor trips does
not belong to the inventory of that station at that moment.
If the rolling stock balancing condition is always satisfied
within the planning period, then the total inventory of train
units at a station and at time t equals the number of duties
that begin in that station at the start of the planning period,
plus the number of train units that were uncoupled from the
composition of a trip (either with or without a successor trip)
arriving in that station before t , minus the number of train
units that were coupled to the composition of a trip (either
with or without a predecessor trip) leaving from that station
before t . The inventory of a station can also be recorded per
train unit type.

In the inventory, the order of the train units is assumed to
be arbitrary. This is in contrast with the trains themselves,
where the order of the train units is essential.

2.2 Off-balances

If the rolling stock circulation was modified during a plan-
ning period of one or more consecutive days (and not dur-
ing the previous days nor during the days thereafter), then
the result may be a rolling stock circulation that satisfies
the rolling stock balancing condition before this planning
period, during this planning period, and after this planning
period. However, the balancing condition may be violated
at the transition moments at the start and at the end of the
planning period.

In order to make this more precise, we introduce the fol-
lowing definitions. For a planning period of one or more
consecutive days, the target initial inventory of a station
equals the number of duties per type that ended there just
before the start of the planning period. Thus it represents,
per type, the number of train units that are available at that
station at the start of the planning period. Similarly, the tar-
get final inventory is the number of duties per type that start
at that station just after the end of the planning period. In
other words, it represents, per type, the number of train units
that are needed there at the end of the planning period.

For example, if the planning period is a Saturday and
there is no traffic at night, then the target initial inventory
of a certain type at a station equals the number of duties of
that type that end at that station on Friday evening. The tar-
get final inventory equals the number of duties of that type
that start there on Sunday morning.

A station has a surplus (or a deficit) of a certain train
unit type in the initial inventory if the number of duties of
that type that begin at that station just after the start of the
planning period is lower (higher) than the number of duties
of that type that end there just before the start of the planning
period. Similarly, a station has a surplus (or a deficit) of a
certain type in the final inventory if the number of duties of
that type that end at that station just before the end of the
planning period is higher (lower) than the number of duties
of that type that start there just after the end of the planning
period.

The total number of remaining off-balances in a rolling
stock circulation is obtained by adding the surpluses over all
stations and over all types. In the end, this number expresses
how many train units must be involved in dead-heading trips,
i.e., driving empty train units during the night in order to
correct the off-balances in all stations. Since dead-heading
trips are expensive, this number of remaining off-balances
must be reduced as much as possible. Note that the total
number of surpluses equals the total number of deficits.

2.3 Rolling Stock Rebalancing Problem

The Rolling Stock Rebalancing Problem (RSRP) can now
be defined formally as the problem of modifying the input
rolling stock circulation during the planning period into a
new rolling stock circulation such that (i) the new rolling
stock circulation is feasible, (ii) it contains a minimum num-
ber of remaining off-balances at the start and at the end of
the planning period, and (iii) also certain secondary objec-
tives are taken into account.

In the experiments, we choose for an objective function
which is a linear combination of the number of off-balances
(with a very high weight), carriage-kilometers, shortage-
kilometers and the number of composition changes. Car-
riage-kilometers express the operational costs of the railway
operator. Seat shortage kilometers are computed by taking
the expected number of passengers without a seat on a trip,
multiplying it by the length of the trip, and adding them
up over all trips. The obtained value is a representation of
the provided service quality. The number of composition
changes counts how many times train units are coupled to or
uncoupled from the trains during a stop between two succes-
sor trips. A circulation with a smaller number of composi-
tion changes is expected to be more robust in the operations,
since composition changes are a source of delays.

The heuristic methods that we describe in Sects. 4 and 5
mimic the way planners proceed in practice to modify an
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input rolling stock circulation into an improved circulation.
They apply certain transformations to the rolling stock cir-
culation in a stepwise approach (these transformations are
called Balancing Possibilities), each of which reducing the
number of off-balances by one. Examples of Balancing Pos-
sibilities are given in Sect. 4.1. Thus the input rolling stock
restricts the modifications to the rolling stock circulation. As
a consequence, the resulting rolling stock circulation will
differ only to a limited extent from the input rolling stock
circulation.

Furthermore, the operational rolling stock scheduling
models described by Fioole et al. (2006) and by Peeters and
Kroon (2008) might be adapted in a straightforward way for
solving RSRP. In that case, these models can modify the in-
put rolling stock circulation either in an arbitrary way, or
they can mimic the application of the Balancing Possibili-
ties to a certain extent. However, their rather long and unpre-
dictable computation times on large and complex instances
motivated our research on heuristic solution approaches for
solving RSRP.

3 Literature overview

A large number of publications have addressed operational
rolling stock planning, see Caprara et al. (2007) for a re-
cent overview. We only mention here Peeters and Kroon
(2008) and Fioole et al. (2006). Their models have basi-
cally the same specifications as those in this paper, in par-
ticular the specifications related to the shunting possibili-
ties in the stations. In the case that trains are not combined
or split, Peeters and Kroon (2008) solve the rolling stock
circulation problem by applying Dantzig–Wolfe decompo-
sition and Branch-and-Price as solution technique. Fioole et
al. (2006) extend the model for splitting and combining of
trains. They use the commercial MIP software CPLEX to
solve the model.

Compared to operational planning, literature on short-
term railway rolling stock planning is scarce. Brucker et al.
(2003) consider the problem of routing railway carriages
through a railway network. The carriages should be used
in timetable services or dead-heading trips such that each
timetable service can be operated with at least a given num-
ber of carriages, thereby satisfying the passenger demand.
The order of the carriages in the trains is not considered.
The objective is to minimize a non-linear cost function. The
solution approach is based on local search techniques such
as simulated annealing.

Ben-Khedher et al. (1998) study the short-term reschedul-
ing problem of the French TGV trains from a revenue man-
agement point of view. The rolling stock circulation must
be adjusted to the latest demand from the seat reservation
system in order to maximize the expected profit.

Lingaya et al. (2002) deal with the effect of an altered
timetable and passenger demand on the rolling stock circu-
lation, focusing on the case of locomotive hauled carriages.
They explicitly take the order of the carriages in the trains
into account and assume that for each train a successor train
has already been specified. Several real-life aspects, such as
maintenance, are considered as well.

Substantial research has been carried out on aircraft and
bus rescheduling. Kohl et al. (2007) and Clausen et al.
(2005) give overviews of airline disruption management,
including a detailed list of aircraft rescheduling publica-
tions and applications. The common solution approaches are
based on multi-commodity network flows, thereby applying
various exact and heuristic methods. Many of the models
incorporate maintenance of the aircraft as well.

Recently, Li et al. (2007) introduced the single depot ve-
hicle rescheduling problem. It is motivated by the problem
of updating bus schedules in the case when a single vehicle
breaks down. The rescheduling problem is formulated as a
minimization problem over a number of vehicle scheduling
problems.

A main distinguishing feature of railway (re-)scheduling
is that trains may consist of multiple train units and that the
order of the train units is to be regarded when they are cou-
pled to each other. In contrast, a single bus or aircraft is to be
used for a flight or a bus trip. Thus a model for an airline or
a bus application usually cannot be used directly for solving
a railway rolling stock problem.

We conclude that, although a large variety of related
rolling stock scheduling problems has been described and
partly successfully solved, railway rolling stock reschedul-
ing—in particular in the real-time operations—still lacks the
appropriate models and solution methods.

4 An off-balance of a single train unit

In this section, we consider the special case of RSRP with
an off-balance of a single train unit; we call this problem
1-RSRP. In particular, we assume that the rolling stock cir-
culation realizes the target inventories except at two loca-
tions. There is a surplus of one train unit of type t in the final
inventory of station A, and there is a deficit of one train unit
of the same type t in the final inventory of station B . Note
that deviations from the target initial inventories of stations
A and B can be handled in a very similar way.

A solution of 1-RSRP is called a Balancing Possibility
(below abbreviated as BP). This terminology is motivated
by the two heuristic algorithms in Sect. 5 where BPs serve
as building blocks for the solution of the general RSRP.

Finding a BP, i.e., deciding whether or not an instance of
1-RSRP has a feasible solution, is an NP-complete problem.
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Fig. 3 A BP for the case that station A has a final deficit, and station
B has a final surplus: the train length on trip r is decreased

Fig. 4 Another BP for the case that station A has a final deficit, and
station B has a final surplus: the train length on trip r is increased

We prove this in Appendix A by reducing the maximum in-
dependent set problem in an undirected graph to 1-RSRP.
Therefore, the optimization variant of 1-RSRP is NP-hard.

In this section, we first give some examples of BPs. Then
we describe a heuristic algorithm for 1-RSRP based on sin-
gle commodity network flows. Since 1-RSRP is NP-hard,
there does not exist an exact polynomial-time algorithm for
1-RSRP (unless P = NP). The performance of the heuristic
algorithm (as part of the heuristic approaches for the general
RSRP) is demonstrated in Sect. 6.

4.1 Examples of balancing possibilities

Examples of BPs can be obtained by examining the rolling
stock duties. The left-hand side of Fig. 3 shows a time–space
diagram of a small railway system with two trains between
stations A, B and C. The bold lines show the duties of the
train units according to the rolling stock circulation. The tar-
get final inventories are indicated by the gray train units. One
train unit must be available at stations A and B at the end
of the planning period. Since the represented rolling stock
circulation has two ending train units in station B , this cir-
culation has a final surplus of one train unit in station B and
a final deficit of one train unit in station A.

The right-hand side of Fig. 3 is a possible solution to
the balancing problem. Trip r from A to B is operated with
one train unit only; the second train unit is uncoupled from
the train at station A before leaving towards station B . Of
course, this solution is a BP only if trip r can be operated
with a single train unit, and if time and shunting capacity
at station A are sufficient for carrying out the composition
change there (i.e., for uncoupling one of the train units).

Another example is shown in Fig. 4 where the final off-
balance of stations A and B is resolved by increasing the
train length on trip r by one train unit.

The ideas of increasing and decreasing the length of some
trains can also be combined. Such a more elaborate example
is given in Fig. 5. It involves stations A, B , C and D as
well as five trips denoted by r1, . . . , r5. Then, in order to
resolve the final deficit of station A and the final surplus of

Fig. 5 A more elaborated example of a BP for the case that station A

has a final deficit, and station B has a final surplus

station B , one has to modify the compositions on three trips:
trips r3 and r5 are to be served by two train units, while the
train length on trip r4 has to be reduced to a single train
unit. Again, this modified circulation has to agree with the
shunting possibilities. Moreover, all modified train lengths
must respect the upper and lower bounds for those trips.

The foregoing examples illustrate the fact that a solu-
tion without off-balances can often be found by applying
a number of basic BPs to the input rolling stock circula-
tion. Based on the input rolling stock circulation, the BPs
can be determined. A solution that is constructed in this way
is preferable over a solution that is constructed completely
from scratch, since it leaves the basic structure of the rolling
stock circulation unchanged to a large extent.

4.2 A heuristic algorithm for 1-RSRP

Discussions with planners revealed the desire to change the
rolling stock circulation not too deeply when solving an
off-balance of a single train unit of a certain type t . This
motivates the basic restriction in the heuristic approach to
1-RSRP: The rolling stock circulation is to be modified in
such a way that the circulation of every train unit type dif-
fering from t must not be changed. So, for example, if a trip
has composition ‘tab’ in the rolling stock circulation with
train unit types a, b and t , then the algorithm must assign
to this trip a train unit of type a and a train unit of type b

in this order, and any number of train units of type t before,
between and after them. In particular, the modified compo-
sition can be ‘ab’, ‘atb’, ‘attb’, ‘tatbt’, etc. However, it
cannot be ‘taa’ or ‘tba’ since those would change the cir-
culation of types ‘a’ and ‘b’.

The main idea of the heuristic algorithm for 1-RSRP is to
represent the problem as a single commodity network flow
problem with two additional side constraints. Here the un-
derlying graph structure ensures that in case of composition
changes, train units are coupled to or uncoupled from the
proper side of the trains. The additional side constraints ex-
press that:

(i) the train lengths lie between the given lower and upper
bounds, and

(ii) each shunting operation is either coupling of train units
or uncoupling of train units, but not both
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The algorithm we propose relaxes the additional side con-
straints (i) and (ii), solves the network flow problem, and
checks thereafter whether the obtained flow satisfies the side
constraints (i) and (ii). If these side constraints are violated,
then the algorithm terminates. This approach is justified by
our computational results, where it turns out that none of the
several thousand test runs leads to a network flow violating
the side constraints.

4.2.1 The graph representation

We represent an instance of 1-RSRP as a network flow prob-
lem. To do so, we build up a graph G = (V ,E) which is a
variant of a usual time–space network occurring in public
transport problems. Let us start with an empty graph.

A time moment j is relevant at station C if a trip de-
parts at time moment j from C or if a trip r arrives at time
moment j − � at C where � is the re-allocation time. In ad-
dition, the begin and the end of the planning period are also
relevant. Create a station node for each pair (C, j) where C

is a station and j is a relevant time moment at C. For each
pair j, j ′ of consecutive relevant time moments at station
C, draw a station arc from the node associated with (C, j)

to the node associated with (C, j ′). The flow values on the
station arcs shall express the current inventories of type t at
the stations. Station nodes at the start of the planning period
are the source nodes; station nodes at the end are the sink
nodes.

Consider a trip r and suppose the rolling stock circulation
assigns composition

t · · · t
︸ ︷︷ ︸

k
(r)
1

t1 t · · · t
︸ ︷︷ ︸

k
(r)
2

· · · t�r−1 t · · · t
︸ ︷︷ ︸

k
(r)
�r

(1)

to trip r where t1, . . . , t�r−1 denote train unit types differ-
ing from t . We assume that the left-hand side of this string
corresponds to the front side of the train. That is, train units
of type t are assigned to trip r in �r possibly empty groups,
separated by �r − 1 train units of other types. The heuristic
algorithm shall only modify the integer values k

(r)
1 , . . . , k

(r)
�r

,
and leave the train units t1, . . . , t�r−1 unchanged.

For example, if a and b represent train units of types dif-
ferent from t and a train consists of 4 train units in the com-
position atbt , then �r = 3 and kr

1 = 0 and kr
2 = kr

3 = 1.

For each trip r , we create �r new nodes u
(r)
1 , . . . , u

(r)
�r

cor-
responding to the groups of type t at the departure of trip r ,
and we create �r new nodes v

(r)
1 , . . . , v

(r)
�r

corresponding to

the arrival of trip r . Moreover, we draw the arcs u
(r)
i v

(r)
i for

each i = 1, . . . , �r . We call these arcs trip arcs.
Let r ′ be the successor of trip r and suppose that in the

rolling stock circulation train units are uncoupled from the
arriving trip r . We also assume that the uncoupling takes
place at the rear side of the train. Then our graph represen-
tation does not contain the possibility of coupling any train
unit to trip r ′ and we have �r ≥ �r ′ . Physically, the train is
split into two parts at a point that lies in the �r ′ th group of
the arriving composition. Then the first (i.e., left-most in (1))
�r ′ − 1 groups go over unchanged to become the first �r ′ − 1
groups of trip r ′. The last (i.e., right-most in (1)) �r − �r ′
groups (if any) are uncoupled. Train units in the �r ′ th group
of trip r can go over to the �r ′ th group of trip r ′ or they can
be uncoupled. These possibilities are expressed by the arcs
shown in Fig. 6(a) for the case �r = 3 and �r ′ = 2. Notice
that the re-allocation time � is respected. The construction
can easily be adjusted if uncoupling takes place at the front
side of the arriving trip.

The cases when, according to the rolling stock circu-
lation, train units are added to the departing trip r ′ and
when there is no composition change between trips r and
r ′ are modeled similarly. Examples are shown in Figs. 6(b)
and 6(c).

We call an arc from a station node to a node u
(r)
i a cou-

pling arc and we call an arc from a node v
(r)
i to a station

node an uncoupling arc as they are intended to describe cou-
pling and uncoupling of train units.

Furthermore, a trip without a predecessor has to be sup-
plied completely with rolling stock from the inventory at the
involved station. Arcs that are similar to the coupling arcs
described above are introduced for dealing with this situ-
ation. Similarly, for a trip without a successor, uncoupling
arcs are introduced to allow the complete composition of

Fig. 6 The graph representation
for the cases that uncoupling,
coupling or no composition
change takes place between trips
r and r ′
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Fig. 7 The graph representation of a small railway network and the
flow of the black train unit type: bold arcs have flow value one, other
arcs have zero flow value

the trip to be moved to the inventory at the involved station.
This completes the definition of the graph G.

4.2.2 The initial flow in the graph

In this section, we describe how the movements of the train
units of type t in the input rolling stock circulation corre-
spond to a network flow x in the graph G. Next, the off-
balances are solved by modifying this network flow.

In the graph, each trip arc corresponding to group i of
trip r gets the corresponding flow value k

(r)
i . The number of

coupled or uncoupled train units of type t is assigned to the
coupling and uncoupling arcs. The flow value on a station
arc is the inventory of type t at that station during the time
interval indicated by the arc. Then the source nodes have
a (possibly zero) out-flow, the sink nodes have a (possibly
zero) in-flow, and all other nodes satisfy the flow conserva-
tion law.

Figure 7 indicates the graph representation for the black
train unit type in a small railway network.

The flow value on each arc is non-negative and, depend-
ing on the problem specification, it obeys certain upper
bounds denoted by the capacity g(a) of each arc a. For ex-
ample, bounds on the station arcs may express the storage
capacity of the stations. In addition, the following two side
constraints (2)–(3) must be satisfied. These constraints rep-
resent the earlier mentioned constraints (i) and (ii) in mathe-
matical terms. First, the train length on each trip r obeys the
lower and upper bounds μmin

r and μmax
r :

μmin
r ≤

�r
∑

i=1

λt × x
(

u
(r)
i v

(r)
i

) + Lr

≤ μmax
r for each trip r . (2)

Recall that μmin
r and μmax

r represent the minimal and maxi-
mal number of carriages of the train on trip r . Furthermore,
λt denotes the number of carriages of each train unit of type
t , and Lr denotes the total number of carriages in those train
units on trip r whose types differ from t .

Second, coupling and uncoupling may not take place to-
gether between a trip r and its successor r ′:

�r
∑

i=1

∑

a∈δout(v
(r)
i ):

a is an uncoupling arc

x(a) = 0 or

�r
∑

i=1

∑

a∈δin(u
(r′)
i ):

a is a coupling arc

x(a) = 0.

(3)

Here δin(v) (resp., δout(v)) denotes the set of arcs entering
(resp., leaving) node v.

Conversely, if a network flow in G satisfies side con-
straints (2)–(3), then it corresponds to a feasible rolling
stock circulation.

4.2.3 Solving the off-balances

Recall our assumption that station A has a final surplus of
one train unit and station B has a final deficit of one train
unit. That is, the target initial inventories are equal to the
out-flow of the source nodes, and the target final inventories
are equal to the in-flow of the sink nodes except for stations
A and B . In order to resolve this off-balance, we have to find
a network flow x′ such that

∑

e∈δin(A)

x′(e) =
∑

e∈δin(A)

x(e) + 1 and

∑

e∈δin(B)

x′(e) =
∑

e∈δin(B)

x(e) − 1,

where we identified stations A and B with their sink nodes.
At each other node, the in- and out-flow of x and x′ must
be equal. Furthermore, x′ must satisfy the side constraints
(2)–(3).

It is well-known in network flow theory that, if such a
flow x′ exists (without requiring (2)–(3)), then it can be ob-
tained by modifying the flow x along an augmenting path
P which is a directed A–B path in the so-called auxiliary
graph Gx . The auxiliary graph Gx on the node set V is
constructed as follows. Let Gx have a forward arc uv if
uv ∈ E with x(uv) < g(uv). Let Gx have a backward arc
vu if uv ∈ E with x(uv) > 0. If there exists a directed A–B

path P in the auxiliary graph Gx , then the modified flow x′
is defined as follows:

x′(uv) =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

x(uv) + 1
if the forward arc uv is used by path P ,

x(uv) − 1
if the backward arc vu is used by path P ,

x(uv) otherwise.

(4)
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An arbitrary augmenting path P may lead to a viola-
tion of the side constraints (2)–(3). Actually, the feasibil-
ity version of 1-RSRP is NP-complete (see Appendix A);
therefore, an augmenting path satisfying (2)–(3) cannot be
found in polynomial time (unless P = NP). In our heuris-
tic approach, we simply relax the side constraints (2)–(3)
by looking for an augmenting path and verifying afterwards
whether the updated network flow x′ satisfies the side con-
straints (2)–(3).

If there is no augmenting path at all, then the instance
of 1-RSRP is certainly infeasible. If there is an augmenting
path and x′ fulfills constraints (2)–(3) then the off-balance of
stations A and B has been resolved. However, if there exists
an augmenting path, but the side constraints are violated,
then the algorithm reports that the off-balance could not
be resolved. In the latter case, the answer might be wrong.
Another augmenting paths might have resulted in satisfied
side constraints (2)–(3). However, in our extensive compu-
tational tests, we did not find any augmenting path that led
to violated side constraints (2)–(3).

The algorithm as described above attempts to find any
augmenting path. This reflects that the main objective is
to resolve as many off-balances as possible. The additional
secondary objective criteria (carriage-kilometers, seat short-
age kilometers and the number of composition changes) are
taken into account by assigning cost values to the arcs of G.
Then, according to classical network flow theory, arc costs
in Gx are defined by cx(uv) = c(uv) if uv is a forward arc
and by cx(vu) = −c(uv) if vu is a backward arc. Now we
have to look for a minimum cost augmenting path in Gx .

5 Arbitrary off-balances

This section describes two heuristic algorithms for solving
RSRP in the case of arbitrary off-balances. The main idea
is to reduce the solution process for an instance of the gen-
eral RSRP to iteratively solving instances of 1-RSRP. That
is, a solution for an instance of the general problem is built
up from BPs that each resolve a single off-balance. The first
approach iterates greedily: In each iteration, it takes the out-
come of the previous iteration as input, and resolves one
off-balance in the next iteration. In the second approach,
we derive a priori a large number of BPs from the input
rolling stock circulation. Then we use an Integer Program-
ming model to combine these BPs into a solution for the
general problem.

5.1 An iterative heuristic

This section describes an iterative heuristic for solving
RSRP. In each iteration, either a type switching step or a
rerouting step is carried out on the current rolling stock

circulation. Both steps try to decrease the number of off-
balances in a greedy way. The overall algorithm stops if no
step can bring any further improvement.

A type switching step considers pairs of train units of
different types. The algorithm checks whether exchanging
the duties of these train units over the whole planning pe-
riod results in a feasible rolling stock circulation, and also
whether the exchange decreases the number of off-balances.
The two train units whose exchange leads to an improve-
ment are in fact switched, yielding an updated rolling stock
circulation. Thereafter, another iteration is launched. Type
switching steps are straightforward; therefore, they are not
further described.

A rerouting step looks for a BP that reduces the number
of off-balances in the rolling stock circulation by one. It does
so by applying the flow-based algorithm for solving 1-RSRP
described in Sect. 4 to the current rolling stock circulation.
Each rerouting step takes into account the objective criteria
that were described in Sect. 4 (i.e., carriage kilometers, seat
shortage kilometers, and number of composition changes) in
a weighted way. When the flow-based algorithm has found
the best possible BP that reduces the total number of off-
balances by one, the rolling stock circulation is updated ac-
cordingly. Then another iteration is carried out.

5.2 A two-phase heuristic

Here we describe a two-phase heuristic approach for solv-
ing RSRP. In Phase 1, we identify a number of elementary
BPs, each of which reduces the number of off-balances in
the rolling stock circulation by one. Phase 2 selects a subset
of the elementary BPs computed in Phase 1 such that carry-
ing out the selected BPs leads to a new feasible rolling stock
circulation with less off-balances.

In Phase 1, the elementary BPs are generated by apply-
ing the flow-based algorithm for solving 1-RSRP described
in Sect. 4 under varying parameter settings. For example, for
each combination of a surplus and a deficit at two stations—
either in the initial inventory or in the final inventory—the
algorithm attempts to generate one or more BPs. The ob-
jective criteria that were described in Sect. 4 (i.e., carriage
kilometers, seat shortage kilometers, and number of com-
position changes) are used in a weighted way to express the
desirability of each BP in terms of a cost value. Given the set
of all BPs that were defined in Phase 1, we choose in Phase
2 those BPs that minimize the weighted sum of the number
of remaining off-balances and the total costs of the BPs.

The feasibility of a BP for a certain trip depends on the
details of the composition of the trip, as well as on the com-
positions of its predecessor and successor trip. Therefore, it
is not possible to determine a priori whether certain combi-
nations of BPs that modify the composition of the same trip
result in a feasible rolling stock circulation. To stay on the



290 J Sched (2010) 13: 281–297

safe side, we allow BPs to be selected simultaneously only
if each trip gets modified at most once by the selected BPs.
Thereby we guarantee that the selected BPs can be imple-
mented in practice indeed.

The BPs with overall minimum cost are selected with
the following integer linear programming model. Let E be
the set of all BPs that were generated in Phase 1, S the
set of all stations, T the set of train unit types, and Trip
the set of all trips. Let b

beg
s,t ∈ {0,±1,±2, . . . } and bend

s,t ∈
{0,±1,±2, . . . } denote the surplus or deficit in the initial
and final inventory of type t ∈ T on station s ∈ S.

Let ce be the cost of e ∈ E. Furthermore, the parameters
d

beg
s,t,e (or dend

s,t,e) describe the change in the initial (or final) in-
ventory of type t ∈ T at station s ∈ S when e ∈ E is applied.
Note that, by definition, d

beg
s,t,e and dend

s,t,e ∈ {0,±1}. The set
�e contains the trips that are modified by e ∈ E.

For each e ∈ E, let xe be a binary decision variable ex-
pressing whether or not e is selected. Then the BP selection
problem can be formulated as follows.

minimize
∑

e∈E

cexe, (5)

s.t.
∑

e∈E

d
beg
s,t,exe = b

beg
s,t , ∀s ∈ S, ∀t ∈ T , (6)

∑

e∈E

dend
s,t,exe = bend

s,t , ∀s ∈ S, ∀t ∈ T , (7)

∑

e∈E : v∈�e

xe ≤ 1, ∀v ∈ Trip, (8)

xe ∈ {0,1}, ∀e ∈ E. (9)

We assume that E contains BPs corresponding to dead-
heading trips (i.e., empty repositioning of train units) be-
tween each pair of stations. Therefore, the model (5)–(9)
always has a feasible solution. The costs of these BPs are
equal to the costs of the corresponding dead-heading trips.

The objective function (5) minimizes the total costs of
the selected BPs. At each station and for each train unit
type, the sum of the changes in the initial (or final) inven-
tory should be equal to the deficit or surplus in the initial (or
final) inventory. This is ensured by constraints (6) (or (7)).
Constraints (8) guarantee that for each trip at most one BP
can be selected that modifies the composition of that trip.
Finally, constraints (9) state that the decision variables are
binary.

A disadvantage of the two-phase heuristic is that it re-
stricts the solution space: The heuristic forbids two BPs to
be selected both if there is a single trip that these BPs try
to modify. Although it is very well possible that in practice
both BPs fit together, it is hard to check this pairwise fea-
sibility a priori. In order to compensate for this restriction,
we apply the two-phase heuristic several times in a row until

no further improvement is observed. That is, after each iter-
ation, the BPs corresponding to dead-heading trips—the un-
desirable BPs—are deleted from the solution, and the two-
phase heuristic is carried out once more. From that point of
view, the method bears some similarity with column genera-
tion techniques: BPs are generated dynamically based on the
current rolling stock circulation, and the “master problem”
(5)–(9) selects the BPs into an overall solution.

6 Computational tests

In this section, we report our computational results, which
are all based on the short-term planning process of NS, the
main Dutch passenger railway operator. All test instances
are based on timetable of the so-called 3,000 line of NS
connecting Den Helder (Hdr) to Nijmegen (Nm). The sta-
tions are indicated in Fig. 8. The total length of the line is
about 200 km. The line is operated in a cyclic timetable with
a frequency of twice per hour in both directions.

Composition changes are possible at the terminals as well
as at the intermediate stations Alkmaar (Amr) and Arnhem
(Ah). Furthermore, train units may start and finish their daily
duties in Amsterdam (Asd) and Utrecht (Ut).

The 3,000 line is served by 11 train units of type VIRM4
and 24 train units of type VIRM6. These are double-deck
train units with 4 or 6 carriages, respectively, see Fig. 9.
The maximally allowed train length is 12 carriages, thus the
VIRM types admit 7 possible compositions, namely 4, 6, 44,
46, 64, 66, and 444.

Fig. 8 The 3,000 line connecting Den Helder (Hdr) to Nijmegen (Nm)
via Alkmaar (Amr), Amsterdam (Asd), Utrecht (Ut), and Arnhem (Ah)
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Fig. 9 A VIRM4 train unit

Table 1 Objective coefficients in the three cost structures

Criterion Obj-A Obj-B Obj-C

Off-balance 1,000.0 1,000.0 1,000.0

Carriage-kilometers 0.050 0.005 0.005

Composition changes 0.010 20.000 0.010

Shortage-kilometers 0.015 0.010 0.015

6.1 Instances

The timetable of the 3,000 line contains about 500 trips on
each day. We studied instances for Saturday and Sunday,
since these are the typical days of the week on which mainte-
nance of the railway infrastructure takes place. This requires
modification of the timetable, and thus of the rolling stock
circulation as well.

In the first computational tests, we considered the time-
table on Sunday and assumed that a certain part of the trajec-
tory (Amr–Asd or Asd–Ut or Ah–Nm) is closed either until
14:00 or for the entire Sunday. The reduced timetables have
about 400 trips; in each of these six timetables, we deleted
the closed trips, and we updated the predecessor–successor
pairs of the trips.

Moreover, in the case that the infrastructure is blocked
for an entire Sunday, it is common in practice to modify the
rolling stock circulations both on the day itself and on the
previous day. This leads to instances with a planning period
of two days: Saturday and Sunday. The 2-day test problems
concern about 900 trips.

To illustrate the behavior of the solution methods under
different priorities, we considered three different settings for
the relative importance of off-balances, carriage-kilometers,
shortage-kilometers, number of composition changes. We
refer to these settings as Obj-A, Obj-B and Obj-C. Ta-
ble 1 contains the values of the coefficients in the objec-
tive functions. Besides heavily penalizing the remaining off-
balances, Obj-A focuses on carriage-kilometers, Obj-B on
composition changes, and Obj-C on seat shortages.

The VIRM4 and VIRM6 train units have a limited num-
ber of possibilities to be attached to one another. Therefore,
in a number of further artificial experiments, we changed the
rolling stock types used. We split each VIRM4 and VIRM6
train unit into two identical parts (i.e., VIRM2 and VIRM3).
This results in as much as 48 possible compositions for each
trip, thereby increasing the complexity of the problem sig-
nificantly. For these artificial rolling stock types, we consid-
ered the same one- and two-day instances and the same so-
lution methods as for the original rolling stock types. All to-
gether, this results in 27 instances with VIRM4 and VIRM6

train units, and 27 instances with VIRM2 and VIRM3 train
units. We refer to the instances with VIRM4 and VIRM6
train units as V46 and to those with VIRM2 and VIRM3
train units as V23.

6.2 Implementation issues

Throughout this section, Heur-1 denotes the iterative ap-
proach described in Sect. 5.1 as well as its results, while
Heur-2 denotes the two-phase approach described in
Sect. 5.2 as well as its results. To be more precise, the al-
gorithm Heur-2 is composed of several consecutive runs of
solving the model (5)–(9), each run using the output of the
previous run as input. The iterative process continues until
no further improvement is observed. In all test cases this
convergence occurred within 4 iterations.

For each of the instances, we computed the input rolling
stock circulation by the model of Fioole et al. (2006) with
one of the objective functions Obj-A, Obj-B and Obj-C and
with the penalty for the off-balances being set to zero. As a
consequence, the rolling stock circulations were optimal so-
lutions for the corresponding objective functions, but they
also contained positive numbers of off-balances. We ap-
plied the heuristics Heur-1 and Heur-2 to resolve these off-
balances.

In order to further evaluate the quality of the rebalanced
solutions obtained by the heuristics, we also generated opti-
mal solutions by applying the model of Fioole et al. (2006)
with the penalties on the off-balances. Note that the solu-
tions obtained in this way provide a lower bound to the solu-
tions that are optimally rebalanced based on the input rolling
stock circulation, since in the model of Fioole et al. (2006)
the solutions are created completely from scratch: The input
rolling stock circulation is not taken into account explicitly.

The graphs for Heur-1 have up to 5,800 nodes and up to
6,500 arcs. In the first phase of Heur-2, we generated 10,000
to 30,000 balancing possibilities. Thus the integer program
in Phase 2 of Heur-2 has 10,000 to 30,000 variables. More-
over, it has 500 to 1,000 constraints.

The computations have been carried out on a PC equipped
with a Pentium IV 3.0 GHz processor and 1 GB internal
memory. For solving the model in Phase 2 of Heur-2 and for
solving the model of Fioole et al. (2006) we used CPLEX
9.0 with the modeling software ILOG Opl Studio 3.7. The
heuristic algorithms have been implemented in the Perl lan-
guage (Heur-1) and in the C language (Heur-2).

6.3 The quality of the solutions

The results of the computational experiments of the heuris-
tics Heur-1 and Heur-2 are presented in Tables 2 and 3.
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Table 2 Results for the V46 instances. For each instance, ‘IOB’ de-
notes the number of off-balances in the input rolling stock circulation,
‘OB’ the number of remaining off-balances, ‘Rest’ the contribution of
carriage-kilometers, seat shortages and composition changes, ‘Obj’ the

objective value. ‘Optimal’ stands for the optimal solution obtained by
CPLEX. For the optimal solution, ‘ST’ denotes the solution time (in
seconds)

Instance Heur-1 Heur-2 Optimal

Name IOB OB Rest Obj OB Rest Obj OB Rest Obj ST

46-C1-H-A 13 4 4,048 8,048 7 4,123 11,123 0 3,907 3,907 20

46-C1-H-B 8 2 624 2,624 2 449 2,449 0 545 545 24

46-C1-H-C 8 2 1,252 3,252 4 394 4,394 0 395 395 21

46-C1-F-A 11 8 3,707 11,707 7 3,771 10,771 3 3,660 6,660 15

46-C1-F-B 9 3 590 3,590 4 437 4,437 3 490 3,490 18

46-C1-F-C 13 5 3,772 8,772 5 996 5,996 3 379 3,379 15

46-C1-W-A 11 6 8,451 14,451 5 8,363 13,363 0 7,840 7,840 73

46-C1-W-B 9 1 1,875 2,875 4 1,184 5,184 0 1,165 1,165 74

46-C1-W-C 13 3 5,713 8,713 4 2,480 6,480 0 814 814 80

46-C2-H-A 11 3 3,747 6,747 4 4,048 8,048 0 3,654 3,654 19

46-C2-H-B 13 0 865 865 3 440 3,440 0 583 538 16

46-C2-H-C 12 3 1,766 4,766 4 381 4,381 0 371 371 19

46-C2-F-A 11 6 2,850 8,850 10 2,733 12,733 3 2,832 5,832 12

46-C2-F-B 11 4 516 4,516 5 328 5,328 3 428 3,428 12

46-C2-F-C 11 9 278 9,278 10 277 10,277 3 286 3,286 12

46-C2-W-A 11 3 7,917 10,917 8 7,546 15,546 0 7,088 7,088 103

46-C2-W-B 11 1 1,809 2,809 5 1,019 6,019 0 1,121 1,121 79

46-C2-W-C 11 6 3,268 9,268 8 2,375 10,375 0 728 728 86

46-C3-H-A 11 3 3,790 6,790 5 3,751 8,751 0 3,753 3,753 17

46-C3-H-B 12 0 849 849 2 456 2,456 0 557 557 17

46-C3-H-C 13 2 1,991 3,991 4 740 4,740 0 384 384 16

46-C3-F-A 11 6 2,935 8,935 7 2,931 9,931 4 2,961 6,961 12

46-C3-F-B 12 6 703 6,703 6 380 6,380 4 424 4,424 11

46-C3-F-C 11 7 774 7,774 7 298 7,298 4 302 4,302 11

46-C3-W-A 11 5 7,741 12,741 6 7,724 13,724 0 7,342 7,342 97

46-C3-W-B 12 2 2,142 4,142 7 1,066 8,066 0 1,178 1,178 71

46-C3-W-C 11 5 2,878 7,878 6 2,408 8,408 0 757 757 194

These tables also show the numbers of unresolved off-
balances and the objective function values in the optimal
solutions obtained by CPLEX for the model of Fioole et al.
(2006).

Each row in the tables represents one instance. The in-
stance names indicate the types used (V46 or V23) and the
closed part of the infrastructure due to maintenance (C1 for
Ah–Nm, C2 for Asd–Ut and C3 for Amr–Asd). Also, ‘H’
(or ‘F’) indicates that the planning period is a Sunday and
that the blockage takes half the Sunday (or the full Sun-
day, respectively). The character ‘W’ stands for the entirely
blocked Sunday and for a planning period of the whole

weekend. Finally, the objective function is added (A for
Obj-A, etc.).

Tables 2 and 3 show that on many instances Heur-1
results in significantly less remaining off-balances than
Heur-2. This can be explained partially by the fact that in
Heur-2 two selected BPs may not touch the same trip, even
if the technical and market requirements would allow us-
ing both of them. Yet, in some cases the greedy method
in Heur-1 terminates with a higher number of off-balances
than Heur-2. Moreover, Heur-2 appears to be able to balance
the four optimization criteria better than Heur-1. Indeed, the
contribution of carriage-kilometers, shortage-kilometers and
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Table 3 Results for the V23 instances. Here we use the same notations as in Table 2

Instance Heur-1 Heur-2 Optimal

Name IOB OB Rest Obj OB Rest Obj OB Rest Obj ST

23-C1-H-A 23 2 3,928 5,928 6 4,007 10,007 0 2,961 2,961 730

23-C1-H-B 16 0 964 964 1 849 1,849 0 521 521 2,619

23-C1-H-C 23 5 6,568 11,586 10 1,276 11,276 0 302 302 310

23-C1-F-A 23 9 3,101 12,101 10 3,952 13,952 6 2,808 8,808 104

23-C1-F-B 22 6 762 6,762 7 440 7,440 6 451 6,451 133

23-C1-F-C 25 10 4,473 14,473 15 696 15,696 6 289 6,289 116

23-C1-W-A 23 3 7,894 10,894 4 7,561 11,561 0 5,824 5,824 715

23-C1-W-B 22 1 2,077 3,077 4 1,139 5,139 0 878 878 367

23-C1-W-C 25 4 5,805 9,805 8 2,350 10,350 0 595 595 1,173

23-C2-H-A 21 4 3,345 7,345 7 3,260 10,260 0 2,782 2,782 2,758

23-C2-H-B 20 2 870 2,870 2 522 2,522 0 542 542 247

23-C2-H-C 21 4 5,144 9,144 8 1,113 9,113 0 284 284 2,096

23-C2-F-A 24 10 2,171 12,171 10 2,851 12,851 6 2,128 8,128 114

23-C2-F-B 17 7 909 7,909 6 1,284 7,284 6 391 6,391 253

23-C2-F-C 28 10 408 10,408 16 218 16,218 6 217 6,217 114

23-C2-W-A 24 6 6,918 12,918 6 6,742 12,742 0 5,167 5,167 1,878

23-C2-W-B 17 2 2,299 4,299 4 1,469 5,469 0 782 782 333

23-C2-W-C 28 6 2,505 8,505 8 2,288 10,288 0 528 528 6,810

23-C3-H-A 20 5 3,224 8,224 3 3,634 6,634 0 2,917 2,917 348

23-C3-H-B 21 0 1,337 1,337 1 2,108 3,108 0 555 555 272

23-C3-H-C 24 4 2,265 6,265 7 314 7,314 0 301 301 392

23-C3-F-A 22 9 2,669 11,669 15 2,383 17,383 8 2,363 10,363 132

23-C3-F-B 18 8 990 8,990 9 340 9,340 8 831 8,371 111

23-C3-F-C 24 9 3,868 12,868 16 241 16,241 8 240 8,240 204

23-C3-W-A 22 5 7,628 12,628 7 6,855 13,855 0 5,404 5,404 597

23-C3-W-B 18 2 2,181 4,181 5 1,048 6,048 0 802 802 367

23-C3-W-C 24 5 8,186 13,186 7 2,309 9,309 0 551 551 1,264

composition changes to the objective function (this is the
‘Rest’ column in Tables 2 and 3) is often higher for Heur-1
than for Heur-2. This is particularly true for the instances
with Obj-C.

It can be observed that the quality of the solutions highly
depends on the structure of the input rolling stock circu-
lation. Table 4 summarizes the differences in numbers of
off-balances obtained by the heuristic methods in compar-
ison with the optimal solutions; the average differences are
referred to as �1 and �2. These values are much smaller
for Obj-B than for Obj-A and Obj-C. In Obj-B, the num-
ber of composition changes has the largest weight. There-
fore, the rolling stock circulation for this objective contains
a very small number of couplings and uncouplings. Then the
heuristic methods find ways to resolve many off-balances.

Table 4 The average difference between the off-balances in the
heuristic solutions (OB1 for Heur-1 and OB2 for Heur-2) and in the
optimal solution (OBopt)

�1 := OB1 − OBopt �2 := OB2 − OBopt

V46 Obj-A 3.78 5.44

V46 Obj-B 1.00 3.11

V46 Obj-C 3.56 4.67

V46 Total 2.78 4.41

V23 Obj-A 3.67 5.44

V23 Obj-B 0.89 2.11

V23 Obj-C 4.11 8.33

V23 Total 2.89 5.30



294 J Sched (2010) 13: 281–297

The rolling stock circulations for Obj-A and Obj-C are ob-
tained by penalizing the carriage-kilometers and shortage-
kilometers more heavily. The resulting larger number of
composition changes is disadvantageous for both heuristic
methods.

This can be explained partially as follows: If at a certain
spot in the current rolling stock circulation no composition
change takes place, then the models may allow either cou-
pling or uncoupling of train units there in the modified cir-
culation. However, a coupling in the rolling stock circulation
cannot be converted directly into uncoupling, nor vice versa.
This can be done only in two iterations. Thus the more com-
position changes take place in the input rolling stock circu-
lation, the less flexibility is allowed for the models to solve
the off-balances.

The rolling stock circulations of the V23 instances have
on average 22.03 off-balances which is much more than the
average of 11.15 of the V46 instances. However, for iden-
tical objectives the differences �1 and �2 of Table 4 are
rather similar for V23 and V46. For Heur-1, the average dif-
ferences in the number of off-balances are 2.78 and 2.89 for
V46 and V23, respectively, while for Heur-2 these averages
are 4.41 and 5.30. Since both heuristic algorithms solve a
larger part of the initial off-balances of the V23 instances
than of the V64 instances, they perform relatively better on
the V23 instances than on the V46 instances. This is not sur-
prising. The shorter train units give much more possibilities
for adjustments without violating the constraints on the min-
imal and maximal lengths of the trains.

As said, Heur-2 is composed of several successive runs of
the two-phase method of Sect. 5.2. In the first, second, and
third run, the average differences �2 over all V46 instances
are 5.11, 4.44 and 4.41, while they are 6.74, 5.48 and 5.30
over all V23 instances. That is, the multiple consecutive runs
of the two-phase heuristic indeed improved the performance
of Heur-2. However, no further improvement was reached in
a subsequent fourth run.

6.4 Computation times

Recall that the main motivation for using heuristic algo-
rithms is the need for a quick solution process. In that sense,
the heuristic algorithms are quite successful, since algorithm
Heur-1 has a running time of 1–2 min for each run, and al-
gorithm Heur-2 has a computation time of 4–5 s for each
run.

In Tables 2 and 3, we give the computation times of the
exact optimization method of CPLEX. Although this in-
volves a relatively small instance of NS, it already shows
how unpredictably the solution times grow when increas-
ing the problem size. The V46 instances are easily solved
for a one-day planning period (these instances are denoted
by 46-C*-H-* and 46-C*-F-*, where * represents an ar-
bitrary character) within 10–20 s. The two-day instances

(denoted by 46-C*-W-*) require more than 5 times more
CPU time on average. The V23 instances have a much more
complex combinatorial structure due to the higher number
of possible compositions. The solution time ranges from
2 min to 45 min, and a particular two-day instance requires
nearly 2 h.

7 Conclusions

In this paper, we formulated the Rolling Stock Rebalanc-
ing Problem (RSRP). This is a relevant problem both in the
short-term planning stage of a passenger railway operator
and in the real-time operations.

Due to changes in the timetable (e.g., planned mainte-
nance of the railway infrastructure or unplanned disruptions
of the railway system), the input rolling stock circulation for
a certain planning period contains a number of off-balances.
RSRP is the problem of modifying the input rolling stock
circulation such that the number of remaining off-balances
is minimal, in combination with other criteria related to ef-
ficiency, service and robustness.

Two heuristics have been developed to solve RSRP.
The performances of these heuristics are compared with
each other and with the performance of the exact solu-
tion method of Fioole et al. (2006) that is used at NS, the
main Dutch passenger railway operator. The comparison of
the results is carried out on some (variants of) real-life in-
stances of NS. These instances varied in size and complex-
ity.

From the results presented in Sect. 6 we can conclude that
both heuristics are very fast, even if the complexity of the in-
stances is increased by extending the planning period or by
increasing the number of feasible compositions per trip. The
results also show that both heuristics can be used effectively,
not only for solving larger size short-term planning prob-
lems, but also as a basis for solving real-time rescheduling
problems in the case of a disruption of the railway system.
In our further research we will especially focus on the latter
application.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix A: Complexity results

In this section, we prove that it is an NP-complete problem
to decide whether an instance of the Rolling Stock Rebal-
ancing Problem has a feasible solution, even if only a single
station has a surplus in the final inventory and another station
has a deficit in the final inventory. Subsequently, we extend
the proof and show that the problem remains NP-complete
in the case of an off-balance of a single train unit.
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Throughout this section, the railway networks are drawn
in time–space diagrams. Stations are represented by hori-
zontal time-lines, where time increases to the right. The trips
correspond to diagonal lines between the time-lines. Train
stops are indicated by dots. Dotted arcs connect the arrivals
of the trips to the departures of their successors.

Furthermore, there are two rolling stock types P and Q

which can be combined with each other in one train. Each
trip is operated by a single train unit of type P (in the fig-
ures represented by thick solid lines), by a single train unit
of type Q (thick dotted lines) or by a two-train unit com-
position PP (thick dashed lines). Here the left-hand side of
the string PP corresponds to the front of the train.

At each station, train units can be coupled or uncoupled
only at one side of the train, indicated as the shunting side
of the station. This shunting side of the station, either left
or right, is indicated by [L] and [R]. The shunting side of a
departing (or arriving) trip is defined as the shunting side of
its departure (or arrival) station.

In the figures, for some trips the departure or arrival sta-
tion is not indicated. These anonymous stations are all dif-
ferent. Trips to or from anonymous stations have a single
train unit of a certain type in the rolling stock circulation.
Anonymous stations with a departing trip have an initial in-
ventory 1 for this type and 0 for the other type; the final in-
ventory is 0 for both types. Similarly, anonymous stations
with an arriving trip have an initial inventory 0 for both
types; the final inventory is 1 for the type of the arriving
train unit, and 0 for the other type.

A.1 Building blocks for the proofs: the gadgets

A gadget is a part of the railway network as shown in
Fig. 10. The figure indicates 8 named stations (α, β , γ , δ,
ε, α1, α2, ω1, and ω2), their shunting sides, the trips (among
them trips s1, s2, t1, and t2), and the compositions of the
trains on these trips in the input rolling stock circulation.

The initial and final inventories of stations β , γ , δ, and ε

are 0. Stations α1, α2, ω1, and ω2 have undefined initial and
final inventories in type P and they have zero initial and final
inventory in type Q. Next, Lemma A.1 describes a number
of restrictions on the feasible rolling stock circulations for a
gadget.

Fig. 10 A gadget

Lemma A.1 Consider a rolling stock circulation for a gad-
get that satisfies the aforementioned constraints on the train
lengths and on the shunting sides of the trains, as well as
the constraints on the initial and final inventories. Then the
following statements hold:

(i) Trip s1 has composition PP if and only if trip t1 has
composition PP .

(ii) Trip s2 has composition PP if and only if trip t2 has
composition PP .

(iii) At most one of the trips t1 and t2 can have composi-
tion PP .

Proof

(i) If trip s1 has composition PP , then a train unit must
be uncoupled from it at station γ . This train unit must
be coupled to the right-hand side of the train unit that
travels from γ towards ε. Then the train unit of type
P must be uncoupled at station ε. Actually, this is the
only possibility to lead the uncoupled train unit to ei-
ther ω1 or ω2. Moreover, this is the only way to get
composition PP for trip t1.

(ii) Similar to (i).
(iii) Two extra train units of type P can reach stations ω1

and ω2 only if the trip between γ and δ has composition
PQP . However, this would violate the upper bound on
the train length. �

In the remainder of this section, we use the simplified
symbol in Fig. 11 for a gadget. The main purpose of a gadget
is to bring an additional train unit either from α1 to ω1, or
from α2 to ω2, but not both.

A.2 Resolving an off-balance of k train units

Consider an undirected graph G = (V ,E) with V =
{1, . . . , n} and let k be a positive integer with k ≤ n. We
build an instance of RSRP that is feasible if and only if G

contains an independent set of size k. Here an independent
set is a subset of nodes such that no pair of them is joined
by an edge. It is well known that deciding whether a graph
with n nodes has an independent set with k (k ≤ n) nodes is
NP-complete (Karp 1972).

Create two stations A and Z. For every node v ∈ V with
dv neighbors, we create dv + 1 stations Sv

1 , . . . , Sv
dv+1. The

shunting side of all these stations is [R].
For each v ∈ V , insert a trip from station A to station Sv

1
and insert a trip from station Sv

dv+1 to station Z. For each
trip from station A to station Sv

1 , create a predecessor trip
from an anonymous station to A. For each trip arriving at Z,

Fig. 11 A simple symbol for a
gadget
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Fig. 12 An example of the construction of the network

insert a successor from Z to an anonymous station. All trips
so far are operated with a single train unit of type P in the
rolling stock circulation.

For each node v ∈ V with neighbors u1, . . . , udv in G, as-
sign stations Sv

1 , . . . , Sv
dv

to the edges u1v, . . . , udvv, bijec-
tively in an arbitrary way. For each edge uv ∈ E with u < v,
add a gadget as follows. Let Su

i and Sv
j be the stations as-

signed to edge uv. Create four new stations β , γ , δ, and ε,
set α1 = Su

i , α2 = Sv
j , ω1 = Su

i+1, ω2 = Sv
j+1 and insert all

the trips described in the definition of a gadget. A station Sv
j

with 1 < j < dv + 1 belongs to exactly two gadgets and has
one arriving and one departing trip. The departing trip is the
successor of the arriving trip.

This completes the railway network. Its size is polyno-
mial in n as it contains O(n2) trips between O(n2) stations.
The network for a small graph G is shown schematically in
Fig. 12.

The rolling stock circulation satisfies the following in-
ventory constraints. The initial and final inventories for type
Q are 0 (except for some anonymous stations inside the gad-
gets). For type P , the initial and final inventories of stations
Sv

j are 0. Station A has initial and final inventory k, while
station Z has initial and final inventory 0. The initial and fi-
nal inventories of the β-, γ -, δ-, and ε-stations of the gadgets
are all zero.

The target inventories differ from these inventories at two
points. The target final inventory of station A in type P is 0,
the target final inventory of station Z in type P is k. Hence
rebalancing the train units means that k train units of type P

must be routed from station A to station Z.
Note that the inventory and train length constraints do

not leave much choice for feasible rolling stock circulations.
Each trip has either the same composition as in the rolling
stock circulation or it receives the original composition ex-
tended by a single train unit of type P .

Theorem A.2 Graph G = (V ,E) contains an independent
set of size k if and only if the instance of RSRP constructed
above has a feasible solution.

Proof Suppose that G contains the independent set
{v1, . . . , vk}. Then a solution of the instance of RSRP can
be obtained as follows. Couple the k train units of type

P at station A to the k trips that depart towards stations
S

v1
1 , . . . , S

vk

1 .
Consider any gadget that connects stations S

vi

j and S
vi

j+1
for some indices i and j . We adjust the input circulation
inside the gadget as follows. The trips of this gadget that
are incident to stations S

vi

j and S
vi

j+1 get composition PP .
We also make all the necessary modifications to route the
additional train unit through the gadget from S

vi

j to S
vi

j+1.
The adjustment of the gadgets can be done simultaneously
since there is no edge between the nodes v1, . . . , vk . Then
all k excess train units reach station Z where they can be
uncoupled. Therefore, the instance of RSRP is feasible.

Conversely, consider a solution of the instance of RSRP.
At station A, k train units of type P are coupled to trips
towards stations, say, S

v1
1 , . . . , S

vk

1 . These train units pass
through all gadgets that are related to the nodes v1, . . . , vk

and end up at station Z. Then the nodes v1, . . . , vk form an
independent set in G, as otherwise Lemma A.1 (iii) would
be violated. �

Corollary A.3 It is an NP-complete problem to decide
whether an instance of RSRP has a solution with zero off-
balances.

A.3 Resolving an off-balance of one train unit

Here we extend the construction described in the previous
section. Thereby we prove that the maximum independent
set problem can be reduced to 1-RSRP, the special case of
RSRP with an off-balance of one train unit.

Let G = (V ,E) be an undirected graph with |V | = n, and
let k be a positive integer with k ≤ n. Consider the railway
network constructed in the previous section. It is represented
in Fig. 13 by stations A and Z and by the gray box.

Create k+1 new stations α1, . . . , αk and ω. Insert 4k trips
as follows (see Fig. 13). Create a trip from αi to αi+1 for
each i = 1, . . . , k (where αk+1 = ω) and insert their prede-
cessors and successors from and to the anonymous stations.
Also insert a trip that departs from station αi and that returns
to the same station and has no predecessor or successor. All
these new trips are operated by a single train unit of type P

in the rolling stock circulation.
Insert k additional gadgets g1, . . . , gk . Let s

(i)
1 , s

(i)
2 , t

(i)
1

and t
(i)
2 denote the s1-, s2-, t1-, and t2-trips of gadget gi .

For each i = 1, . . . , k, trips s
(i)
1 , s

(i)
2 , t

(i)
1 , and t

(i)
2 (and their

predecessor or successor trips from or to anonymous sta-
tions) connect gadget gi to stations A, Z and αi as shown in
Fig. 13. The figure also indicates the compositions on these
trips in the rolling stock circulation.

The railway network we constructed has polynomial size
in n since it contains O(n2) trips and O(n2) stations.

The initial and final inventories for train units of type Q

are 0 except for some anonymous stations inside the gad-
gets. For type P , the initial inventory of station A is k, at
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Fig. 13 One train unit to be routed (k = 3). At the start and the end
of the time-lines, we give the initial and final inventories of type P

realized by the rolling stock circulation

stations α1, . . . , αk it is 1, and at stations Z and ω it is 0.
The final inventory of stations A, Z and ω is 0, while at sta-
tions α1, . . . , αk it is 2. Anonymous stations have initial and
final inventory zero or one. All other stations (i.e., the β-,
γ -, ε-, and δ-stations of the gadgets) have zero initial and
final inventories.

The goal is to decrease the final inventory of station α1 in
type P by one and to increase the final inventory of station
ω in type P by one.

Note that, the same as in the previous section, the shunt-
ing, inventory and train length constraints strongly restrict
the possible rolling stock circulations. Each trip must be as-
signed the same composition as in the initial rolling stock
circulation, possibly with a train unit of type P coupled or
uncoupled at the appropriate side. In particular, the circula-
tion of the train units of type Q does not change at all.

Theorem A.4 Graph G has an independent set of size k if
and only if the input circulation can be modified to decrease
the final inventory of station α1 in type P by one and to
increase the final inventory of station ω in type P by one.

Proof To increase the final inventory at station ω by one,
the trip from station αk to station ω must get a composition
PP . Then the trip from station αk returning to station αk

has no train unit to serve unless an extra train unit arrives
earlier from gadget gk . That is, trip s

(k)
1 from station Z to

gadget gk and trip t
(k)
1 from gadget gk to station αk must

get composition PP , too. Then trip s
(k)
2 from station A to

gadget gk and trip t
(k)
2 from gadget gk to station αk must get

composition P only, see Lemma A.1.
To correct the final inventory at station αk , the trip from

station αk−1 to station αk must get composition PP , sim-
ilar to the trip from station αk to station ω. By repeating
the above argument, all trips from station αi−1 to station αi

(i = 2, . . . , k) must get composition PP . Thus all trips from

gadgets i to station αi and all trips from station Z to sta-
tion αi (i = 1, . . . , k) must get composition PP instead of
composition P . Thus the k train units that start at station A

can reach station Z. Invoking Theorem A.2 completes the
proof. �

Corollary A.5 It is an NP-complete problem to decide
whether an instance of RSRP has a solution with zero off-
balance even in the case of an off-balance of a single train
unit.
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