
Journal of Scheduling manuscript No.
(will be inserted by the editor)

A Hybrid Genetic Algorithm and Tabu Search Approach
for Post Enrolment Course Timetabling

Sadaf Naseem Jat · Shengxiang Yang

Received: 23 November, 2009 / Revised: 06 July, 2010 / Accepted: 22 September, 2010

Abstract The post enrolment course timetabling
problem (PECTP) is one type of university course

timetabling problems, in which a set of events has to

be scheduled in time slots and located in suitable rooms

according to the student enrolment data. The PECTP
is an NP-hard combinatorial optimization problem and

hence is very difficult to solve to optimality. This pa-

per proposes a hybrid approach to solve the PECTP

in two phases. In the first phase, a guided search ge-

netic algorithm is applied to solve the PECTP. This
guided search genetic algorithm, integrates a guided

search strategy and some local search techniques, where

the guided search strategy uses a data structure that

stores useful information extracted from previous good
individuals to guide the generation of offspring into the

population and the local search techniques are used to

improve the quality of individuals. In the second phase,

a tabu search heuristic is further used on the best so-

lution obtained by the first phase to improve the op-
timality of the solution if possible. The proposed hy-

brid approach is tested on a set of benchmark PECTPs

taken from the international timetabling competition in

comparison with a set of state-of-the-art methods from
the literature. The experimental results show that the

proposed hybrid approach is able to produce promising

results for the test PECTPs.

Sadaf Naseem Jat
Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, United Kingdom
E-mail: snj2@mcs.le.ac.uk

Shengxiang Yang
Department of Information Systems and Computing, Brunel Uni-
versity, Uxbridge, Middlesex, UB8 3PH, United Kingdom
E-mail: shengxiang.yang@brunel.ac.uk

Keywords Post enrolment course timetabling prob-
lem · University course timetabling problem · Guided

search genetic algorithm · Local search · Tabu search

1 Introduction

Timetabling is one of the common scheduling prob-

lems, which can be described as the allocation of re-

sources for tasks under predefined constraints so that

it maximizes the possibility of allocation or minimizes

the violation of constraints [57]. Timetabling problems
are often complicated by the details of a particular

timetabling task. A general algorithm approach to a

problem may turn out to be incapable, because of cer-

tain special constraints required in a particular instance
of that problem. Typical timetabling areas are educa-

tional timetabling [1,60], sports timetabling [37], trans-

port timetabling [11], employee timetabling [14], and so

on. Educational timetabling can be divided into school

timetabling, exam timetabling, and course timetabling.

In the university course timetabling problem

(UCTP), events (subjects, courses) have to be allocated

into a number of time slots and rooms while satisfying

various constraints. It is very difficult to find a general
and effective solver for the UCTP due to the diversity

of the problem, variance of constraints, and particu-

lar requirements from university to university according

to the characteristics. There is no known deterministic
polynomial time algorithm for the UCTP. That is, the

UCTP is an NP-hard combinatorial optimization prob-

lem [26]. The UCTP can be further divided into two

categories as proposed by the organizers of the 2007 In-

ternational Timetabling Competition (ITC-2007)1: the

1 For more details, see the official competition website at
http://www.cs.qub.ac.uk/itc2007

2

post enrolment course timetabling problem (PECTP)

[41] and the curriculum base course timetabling prob-

lem (CBCTP). The main difference between them lies

in that in the CBCTP, courses are scheduled accord-

ing to the curricula published by the university while
in the PECTP, courses are scheduled according to the

student enrolment data [44]. In this paper, we deal with

the PECTP, which is similar to the 2003 timetabling

competition UCTP problem except two new hard con-
straints. According to Lewis [41], these two new hard

constraints make it very difficult to find the feasible so-

lution in the search space and make the PECTP much

similar to the real-world timetabling problem.

The research on timetabling has a long history of
over forty years, starting with Gotlieb in 1963 [32]. Over

the past forty years, researchers have proposed vari-

ous timetabling approaches by using constraint-based

methods, population-based approaches (e.g., genetic
algorithms (GAs), ant colony optimization (ACO),

and memetic algorithms), meta-heuristic methods (e.g.,

tabu search (TS), simulated annealing, and great del-

uge), variable neighbourhood search, and hybrid and

hyper-heuristic approaches, etc. A comprehensive re-
view on timetabling can be found in [17,19,39,41,

50,54,4]. Several researchers have used GAs to solve

course timetabling problems [5,25,40,48]. Rossi-Doria

et al. [51] compared different meta-heuristics to solve
the UCTP. They concluded that conventional GAs do

not give good results among a number of approaches de-

veloped for the UCTP. Hence, conventional GAs need

to be enhanced to solve the UCTP.

Recently, a guided search genetic algorithm, de-
noted GSGA, has been proposed for solving the UCTP

[35]. The GSGA consists of a guided search strategy and

a local search (LS) technique. One important concept

of GAs is the notion of population. Unlike traditional
search methods, GAs rely on a population of candi-

date solutions [31,53]. In GSGA, a guided search strat-

egy is used to generate offspring into the population-

based on an extra data structure. This data structure

is constructed from the best individuals from the pop-
ulation and hence stores useful information that can be

used to guide the generation of good offspring into the

next population. The main advantage of this data struc-

ture is that it provides diversity by maintaining part of
good solutions, which otherwise would have been lost in

the selection process. In GSGA [35], a LS technique is

also used to improve the quality of individuals through

searching in three kinds of neighbourhood structures.

In [35], GSGA has shown some promising results based
on some preliminary experiments.

In this paper, a hybrid approach is proposed based

on the GSGA [35] and a TS heuristic to solve the

PECTP. The proposed hybrid approach works in two

phases. In the first phase, the GSGA developed in [35]

for the UCTP is adapted and applied to solve the

PECTP. In addition to the original LS strategy used

in GSGA [35], some new neighbourhood structures and
relevant LS strategies are integrated into GSGA for the

PECTP. Given that finding a feasible solution for the

PECTP can be a challenging task [41], the hybrid ap-

proach employs a second phase, where a TS heuristic is
further used on the best solution obtained by GSGA in

the first phase to improve the optimality of the solution

if possible. In order to investigate the effect of param-

eters on the performance of the hybrid approach for

the PECTP, the sensitivity analysis of key parameters
of GSGA is carried out by systematical experiments

based on a set of ITC-2007 benchmark PECTPs. In or-

der to test the performance of the proposed hybrid ap-

proach, experiments are also carried out to compare it
with other variants of GAs and TS and a set of state-of-

the-art methods from the literature on the benchmark

PECTP instances. The experimental results show that

the proposed hybrid approach is better than or compa-

rable to all other tested methods.
The rest of this paper is organized as follows. The

next section briefly describes the related work. Section 3

describes the PECTP in details. Section 4 presents the

proposed hybrid approach for the PECTP. Experimen-
tal results of comparing the proposed hybrid approach

and other algorithms from the literature are reported

and discussed in Section 5. Finally, Section 6 concludes

this paper with discussions on the future work.

2 Related work

Many algorithms have been introduced to solve

timetabling problems. The earliest algorithms are based

on graph colouring heuristics methods. These algo-
rithms show a great efficiency in small instances of

timetabling problems, but are not efficient in large in-

stances [33,38,60]. Later, stochastic search methods,

such as GAs, simulated annealing, and TS, etc., were
introduced to solve timetabling problems.

Generally speaking, there are two types of meta-

heuristic algorithms [10]: local area based algorithms

and population-based algorithms. Each type has some

advantages and disadvantages. A local area based al-
gorithm starts from an initial state/solution and tries

to find a better solution in the space of candidate solu-

tions until a stopping criterion is met [28]. Local area

based algorithms differ from each other in the method
that is used to find a neighborhood solution in the

search space and the criterion to stop the search. Lo-

cal area based algorithms include simulated annealing

3

[6,58], very large neighborhood search [1,2], TS [9,44],

and many more. Usually, local area based algorithms

more focus on exploitation rather than exploration [10,

21]. They usually work in a non-systematic way that

may lead to find a solution in one direction without
performing a wider scan of the search space [10,28].

Population-based algorithms start with many solutions

and refine them to obtain optimal solution(s) in the

whole search space and, hence, are global area based
algorithms. Population-based algorithms that are com-

monly used to tackle timetabling problems include evo-

lutionary algorithms (EAs) [22], ant colony algorithms

[56], and artificial immune systems [45], etc.

In recent years, GAs have been used to solve the
UCTP. Erben and Keppler [25] proposed a GA for

weekly course timetables. They used a problem-specific

chromosome representation and knowledge-augmented

genetic operators. These operators can avoid building
illegal timetables. Their approach was tested on real

data. Sigl et al. [55] used 3D cubes, corresponding to

room, day, and time slot, to model the timetable. They

enhanced the performance of GAs by using modified

genetic operators and tested their algorithm on small
and large problem instances. Generally speaking, when

a simple GA is employed, it may generate illegal timeta-

bles that have duplicate and/or missing events. Usually,

the quality of a solution produced by population-based
algorithms is not better than local area based algo-

rithms. There are many reasons behind this, such as the

premature convergence problem. In that situation , the

solving procedure is trapped in the suboptimal state

and is unable to generate offspring that are superior
to their parents. The main reason for this premature

convergence problem in population-based algorithms is

that they are more concerned with exploration than

exploitation [10]. Population-based algorithms perform
search in the whole search space without strictly focus-

ing on the good part of an individual within a popula-

tion, which may lead to the lose of useful information in

a good individual [8]. Population-based algorithms have

another drawback of requiring more time [21]. How-
ever, GAs have several advantages when compared with

other optimization techniques [48]. For example, GAs

perform multiple directional search using a set of can-

didate solutions [29].

Various combinations of local area and global
area based algorithms have been reported to solve

timetabling problems in the literature [15,51,57,36,3].

In addition, it is also being increasingly realized that

EAs without incorporation of problem-specific knowl-
edge do not perform as well as mathematical program-

ming based algorithms on certain classes of timetabling

problems [13]. In this paper, we aim to combine the

good properties of local and global area based algo-

rithms to solve the PECTP. We try to make a balance

between the exploration ability (global improvement)

of GAs and the exploitation ability (local improvement)

of LS operators (to be described in Section 4.1.5) and
TS. In addition, an external memory data structure (to

be described in Section 4.1.2) is used to store parts

of previous good solutions. These stored parts are re-

introduced into offspring in order to enable the pro-
posed GAs to quickly locate the optimum of a PECTP.

3 Post enrolment course timetabling

3.1 Problem description

According to Carter and Laporte [19], the UCTP is a
multi-dimensional assignment problem, in which stu-

dents and teachers (or faculty members) are assigned

to courses, course sections, or classes and events (in-

dividual meetings between students and teachers) are

assigned to classrooms and time slots. The PECTP
consists of assigning university courses to time slots

and rooms according to student enrolment data, where

each assignment has to fulfil various constraints. Among

these constraints, some are hard constraints and some
are soft constraints. Hard constraints must not be vi-

olated under any circumstances, e.g., a student cannot

attend two classes at the same time. Soft constraints

should preferably be satisfied, but can be accepted with

a penalty associated to their violation, e.g., students
should not attend more than two classes in a row. The

PECTP deals with the following hard constraints [41]:

– H1: No student attends more than one event at the
same time;

– H2: The room is big enough for all the attending

students and satisfies all the features required by

the event;
– H3: Only one event is in a room at any time slot;

– H4: Events should only be assigned to time slots

that are predefined as available for those events;

– H5: Where specified, events should be scheduled to

occur in the correct order.

A solution is feasible if all hard constraints are sat-

isfied by the solution. According to the organizers of

ITC-2007, a timetable is required to satisfy all hard con-
straints. Due to the fact that it may be very difficult to

achieve this hard-constraint feasibility, they suggested

that some events may be left unassigned in a timetable

if necessary, and they introduced the notion of “distance
to feasibility (Df)” [41], which is defined as the num-

ber of students that are affected by unassigned events.

Given a solution, if there is any event that causes any

4

hard-constraint violation, it needs to be removed (i.e.,

unassigned) from the timetable, and as an effect, some

students that have to take this event will suffer from its

removing. The Df of the given solution is calculated by

identifying the number of students that are required to
attend each of the unassigned events and then simply

adding these values together. For example, if a solution

has three events that need to be unassigned to prevent

any violation of the hard constraints, and the number
of students that need to attend each of these events is 2,

3, and 1, then the Df of the solution is (2+3+1) = 6.

With the notion of “distance to feasibility”, an infeasi-

ble solution can be characterized by its Df .

In the PECTP, there are also soft constraints, which
are penalized equally by their occurrences

– S1: A student has a class in the last time slot of a

day;

– S2: A student has more than two classes in a row;

– S3: A student has a single class on a day.

The soft-constraint penalty value is denoted as SCP in

this paper.

3.2 Problem formulation

In a PECTP, we assign an event (courses, lectures)
into a time slot and also assign a number of resources

(students, rooms) in such a way that there is no con-

flict between the rooms, time slots, and events. The

PECTP consists of a set of n events (classes, sub-

jects) E = {e1, e2, ..., en} to be scheduled in a set of
45 time slots T = {t1, t2, ..., t45} (i.e., nine for each

day in a five day week), a set of m available rooms

R = {r1, r2, ..., rm} in which events can take place, a

set of k students S = {s1, s2, ..., sk} who attend the
events, a set of l available features F = {f1, f2, ..., fl}

that are satisfied by rooms and required by events.

In addition, interrelationships between these sets

are given by the following seven matrices:

– The first matrix Ak×n, called the Student-Eventma-

trix, shows which event is attended by which stu-
dents. The value of a cell aij ∈ Ak×n is 1 if student

si ∈ S should attend event ej ∈ E; otherwise, the

value is 0.

– The second matrix Bn×n, called the Event-Conflict

matrix, indicates whether two events can be sched-
uled in the same time slot or not. It helps to quickly

identify events that can be potentially assigned to

the same time slot.

– The third matrix Cm×l, called Room-Feature ma-
trix, gives the features that each room possesses,

where the value of a cell cij is 1 if ri ∈ R has a

feature fj ∈ F ; otherwise, the value is 0.

– The fourth matrix Dn×l, called Feature-Event ma-

trix, gives the features required by each event. It

means that event ei ∈ E needs feature fj ∈ F if

and only if dij = 1.

– The fifth matrix Gn×m, called the Event-Room ma-
trix, lists the possible rooms to which each event can

be assigned. Through this matrix, we can quickly

identify all rooms that are suitable in size and fea-

ture for each event. Usually, a matrix is used for
assigning each event to a room ri and a time slot

ti. Each pair of (ri, ti) is assigned a particular num-

ber which corresponds to an event. If a room ri in

a time slot ti is free or no event is placed, then “-

1” is assigned to that pair. In this way, we assure
that there will be no more than one event assigned

to the same pair so that one of the hard constraint

will always been satisfied.

– The six matrix Hn×t is called the Event-Availability
matrix, where the value of a cellmij is 1 if event ei ∈

E should take place at time slot tj ∈ T ; otherwise,

the value is 0.

– The last matrix In×n is called the Event-Preference

matrix, where the value of cell nij is 1 if ei ∈ E has
to be schedule before ej ∈ E, or -1 if ei ∈ E has to

place in timetable after ej ∈ E; otherwise, the value

is 0 if no restriction of precedence between ei ∈ E

and ej ∈ E.

In addition to the above matrices, we create an array

EE of lists. Each element EEi ∈ EE is a list of events

that have to be scheduled in a timetable after event ei.

This information helps to satisfy the hard constraint
H5 in the execution of an algorithm. We also create a

list ET of event time slots. Each element ETi ∈ ET

is a list of possible time slots where event ei has to be

scheduled. There is also a set E′

e of events that are not
subject to any time restriction. Similarly, there is a set

T ′

s of time slots that have no restriction of any event.

For room assignment, we use a matching algorithm

described by Rossi-Doria et al. [51]. For every time slot,

there is a list of events taking place in it and a pre-

processed list of possible rooms to which events can be
assigned. The matching algorithm uses a deterministic

network flow algorithm and gives the maximum cardi-

nality matching between rooms and events.

In general, the solution to a PECTP can be repre-

sented in the form of an ordered list of pairs (ri, ti), of

which the index of each pair is the identification num-
ber of an event ei ∈ E (i = 1, 2, · · · , n). For example,

the time slots and rooms are allocated to events in an

ordered list of pairs like:

(2, 4), (3, 30), (1, 12), · · · , (2, 7),

5

where room 2 and time slot 4 are allocated to event 1,

room 3 and time slot 30 are allocated to event 2, and

so on.

The goal of the PECTP is to minimize the number

of hard- and soft-constraint violations. The objective
function f(s) for a timetable s is the weighted sum of

the number of hard-constraint violations #hcv and soft-

constraint violations #scv, which was also used in [52],

as defined below:

f(s) := #hcv(s) ∗ C +#scv(s) (1)

where C is a constant, which is larger than the maxi-

mum possible number of soft-constraint violations.

4 Proposed hybrid approach for the PECTP

GAs are a class of powerful general purpose optimiza-

tion tools that model the principles of natural evolution

[31,53]. GAs are population-based heuristic methods,
which start from an initial population of random solu-

tions for a given problem. Each solution in the popula-

tion is called an individual. Each individual is evaluated

according to a problem-specific objective function, usu-
ally called the fitness function. After evaluation, there is

a selection phase in which possibly good individuals will

be chosen by a selection operator to undergo the recom-

bination process. In the recombination phase, crossover

and mutation operators are used to create new individ-
uals in order to explore the solution space. The newly

created individuals replace old individuals, usually the

worst ones, of the population-based on the fitness. This

process is repeated until a stopping criterion is reached,
which may be the maximum number of generations or a

time limit. GAs were first used for timetabling in 1990

[22]. Since then, there have been a number of papers

investigating and applying GAs for the UCTP [19,59].

In this paper, we propose a hybrid approach that
hybrdizes the GSGA proposed in [35] with new LS tech-

niques and a TS heuristic for the PECTP. The pseu-

docode of the proposed hybrid GA and TS approach,

denoted HGATS, for the PECTP is shown in Algo-
rithm 1. HGATS works in two phases. In the first phase,

the GSGA that uses genetic operators, a guided search

strategy, and two powerful LS techniques, is used to

evolve a population of candidate solutions toward bet-

ter and better solutions, ideally finding the optimal so-
lution. Usually, GAs are able to locate promising re-

gions for global optima in the search space, but some-

times have difficulties in finding the exact optimum of

highly constrained problems [31]. Several examples can
be found from the literature where a solution obtained

from a GA is improved by another optimization tech-

nique [34]. In this paper, we also use this technique

Algorithm 1 Proposed Hybrid Approach—HGATS
1: input : A problem instance I

2: set the generation counter g := 0
3: for i := 1 to population size do

4: si ← InitializeIndividual(i)
5: si ← solution si after applying LS operator 1 (LS1)
6: si ← solution si after applying LS operator 2 (LS2)
7: end for

8: while the termination condition is not reached do

9: if (g mod τ) == 0 then

10: apply ConstructMEM() to construct MEM

11: end if

12: s← child solution by applying GuidedSearchByMEM()
or Crossover() with a probability γ

13: s← child solution after mutation with a probability Pm

14: s← child solution after applying LS operator 1 (LS1)
15: s← child solution after applying LS operator 2 (LS2)
16: replace the worst individual of the population by s

17: g := g + 1

18: end while

19: if s is an optimal solution then

20: go to line 24
21: else

22: s← Apply TabuHeuristic() on the best solution obtained
in the first phase

23: end if

24: output : The best solution sbest achieved for the problem
instance I

in HGATS, trying to find an optimal solution for the

PECTP. Considering the hardness of the PECTP, if

only feasible solutions are found during the first phase
of HGATS, the second phase is executed, which uses a

TS heuristic inspired by [51] to improve the feasible so-

lution toward the optimal solution. Below we describe

the two phases of HGATS in detail, respectively.

4.1 The enhanced GSGA—Phase I of HGATS

The first phase of HGATS uses the GSGA, which is

adapted and enhanced according to the PECTP, to
solve the PECTP. The framework of GSGA is based

on a steady state GA, where one child solution is gen-

erated per iteration (or per generation) [27,49]. GSGA

starts from an initial population of individuals that are
randomly generated by InitializeIndividual(), where

events are assigned to rooms and time slots for each

solution based on the property of each event. Usually,

for GAs, the quality of the initial solutions affects the

final solutions and researchers have shown that good
initial solutions usually produce good or required re-

sults within less computational time [24,42,53]. Hence,

we want to create a good initial population that would

help GSGA evolve toward the optimal solution quickly.
For this purpose, two LS methods are applied to each

individual of the initial population. The LS methods use

six neighborhood structures, which will be described in

6

Algorithm 2 InitializeIndividual(i)
1: input : The index i of individual Ii
2: for each event ej of Ii do

3: if event ej ∈ E′

e then

4: assign a random time slot from T ′

s to ej
5: assign a random room from a list of suitable rooms
6: else

7: assign a random time slot from ETj to ej
8: assign a random room from a list of suitable rooms

9: end if

10: end for

11: output : The generated individual Ii

Section 4.1.5, to first move events to time slots and then

use the matching algorithm to allocate rooms and time

slots to events.

After the initialization of the population, a data

structure (denoted MEM in this paper) is constructed,
which stores a list of room and time slot pairs (r, t) for

all the events in the set E′

e that have zero penalty (i.e.,

no hard- and soft-constraint violation at these events)

of good individuals selected from the population. Af-
ter that, MEM can be used to guide the generation

of offspring for the following generations. The MEM

data structure is re-constructed regularly, e.g., every τ

generations. In each generation of GSGA, one child is

first generated either by usingMEM or by applying the
crossover operator, depending on a probability γ. Then,

the child will undergo the mutation operation followed

by the LS methods for potential improvement. Finally,

the worst member in the population is replaced with the
newly generated child individual. This iteration contin-

ues until one termination condition is reached, e.g., a

preset time limit tmax is reached or the best solution

found has no soft- and hard-constraint violation.

In the following sub-sections, we will describe in de-

tails the key components of the adapted GSGA respec-
tively, including the initialization of the population, the

MEM data structure and its construction, the guided

search strategy, the crossover and mutation operators,

and the two LS methods.

4.1.1 Initialization of the population

Each individual Ii of the initial population is created

by Algorithm 2. We divide the set of events E into two

classes: events in E′

e and events not in E′

e. If an event
has no particular time slot restriction, it is allocated

a random time slot t from the set T ′

s of not restricted

time slots and a suitable room; otherwise, the event

is allocated a random time slot from the element time
slot list of ET corresponding to the event and randomly

allocated a room among suitable rooms. This way, each

individual generated will satisfy the hard constraints H2

2

e 6

e h

e

(r 1 1, t)
6

, t)
6

(r 2 2

,

,

,(r 1 1, t) , t)
h h

(r 2 2

(r , t N6 N6
 6

(r , t Nh Nh

)
 6

 h
)

 h h

 6 6

2
(r 1 1, t) (r N2

 2
 , t N2

 2
)

 2
l2

l6

lh h

Fig. 1 Illustration of the data structure MEM .

Algorithm 3 ConstructMEM()
1: input : The whole population P with the population size N

2: sort the population P according to the fitness of individuals
3: Q← select the best α×N individuals in P

4: for each individual Ij in Q do

5: for each event (ei ∈ E′

e) in Ij do

6: calculate the penalty value of event ei from Ij
7: if ei is feasible (i.e., ei has zero penalty) then

8: add the room and time slot pair (ri, ti) assigned to
ei into the list li

9: end if

10: end for

11: end for

12: output : The data structure MEM

and H4. However, it is not guaranteed to be feasible. An

infeasible individual will be checked by the following LS

operations, which will try to make it feasible.

4.1.2 The MEM data structure

There have been a number of researches in the litera-

ture on using extra data structure or memory to store

useful information in order to enhance the performance

of GAs and other meta-heuristic methods for optimiza-
tion and search [8,7,43]. In GSGA, we also use a data

structure MEM to guide the generation of offspring by

re-introducing the best part of individuals from previ-

ous generations. This MEM data structure is used to
provide further direction of exploration and exploita-

tion in the search space.

Fig. 1 shows the details of theMEM data structure,

which is a two-level structure. The first level is a list of

events and the second level is a list li of room and time
slot pairs corresponding to each event ei in the first

level list. In Fig. 1, Ni represents the total number of

pairs in the second level list li.

The MEM data structure is regularly re-
constructed every τ generations. Algorithm 3 shows the

outline of constructing MEM . When MEM is due to

be re-constructed, we first select α × N best individ-

7

Algorithm 4 GuidedSearchByMEM()
1: input : The MEM data structure
2: Es := randomly select β ∗ |E′

e| events from E′

e

3: for each event ei in Es do

4: randomly select a room and time slot pair from the list li
5: assign the selected pair to event ei for the child
6: end for

7: for each remaining event ei not in Es do

8: if ei ∈ ET then

9: assign a particular time slot and suitable room to ei
10: else

11: assign a random time slot and room to ei
12: end if

13: end for

14: output : A new child generated using MEM

uals from the population P to form a set Q, where N

denotes the population size. After that, for each individ-

ual Ij ∈ Q, we check each event ei ∈ E′

e
2 by its penalty

value, i.e., the hard- and soft-constraint violations as-
sociated with this event. If an event has a zero penalty

value, then we store the information corresponding to

this event into MEM . For example, if the event e2 of

an individual Ij ∈ Q is assigned room 2 at time slot

13 and has a zero penalty value, then we add the pair
(2, 13) into the list l2. Similarly, the events of the next

individual Ij+1 ∈ Q are also checked by their penalty

values. If the event e2 in Ij+1 has a zero penalty, then

we add the pair of room and time slot assigned to e2 in
Ij+1 into the existing list l2. If for an event ei, there is

no list li existing yet, then the list li is added into the

MEM data structure.

Similar process is carried out for the selected Q indi-

viduals and finally MEM stores pairs of room and time

slot corresponding to those events with zero penalty
of the best individuals of the current population. This

newly re-constructedMEM data structure is then used

to guide the generation of offspring for the next τ gen-

erations. We update MEM every τ generations instead

of every generation in order to make a balance between
the solution quality and the computational time cost of

GSGA.

4.1.3 Generating a child by the guided search strategy

In GSGA, a child is created through the guided search

by MEM or a crossover operator with a probability γ.
That is, when a new child is to be generated, a random

number ρ ∈ [0.0, 1.0] is first generated. If ρ is less than

γ, GuidedSearchByMEM() (as shown in Algorithm

4) will be used to generate the new child; otherwise,

2 We only check those events that are not involved directly with
H4 because other events must have been assigned in pre-specified
time slots. It is worthless to assign and evaluate those events since
they do not help to increase the diversity of the GSGA.

Algorithm 5 Crossover()
1: input : The current population
2: Select parents P1 and P2 by the tournament selection
3: for each event ei of the child Ch do

4: if penalty value of ei of P1 < penalty value of ei of P2
then

5: ei of Ch ← the time slot and room allocated to ei of
P1

6: else

7: ei of Ch ← the time slot and room allocated to ei of
P2

8: end if

9: end for

10: output : A new child generated using crossover

a crossover operation Crossover() (as shown in Algo-

rithm 5) will be used to generate the new child.

If a child is to be created using the MEM data

structure, we first select a set Es of β ∗ |E′

e| random

events from E′

e to be generated from MEM . Here, β is
a percentage value and |E′

e| is the size of the set E
′

e. We

randomly select a pair of (rji , t
j
i), j = 1, · · · , Ni, from

the list li that corresponds to the event ei and assign

the selected pair to ei for the child. If there is an event ei
in Es but there is no list li in MEM , then we randomly

assign a room and time slot from possible rooms and

time slots to ei for the child. This process is carried

out for all the events in Es. For those remaining events

that are not present in Es, they are assigned time slots
and room according their particular requirements for

the child.

If a child is to be generated using the crossover op-

erator, we first select two individuals from the current
population as the parents by the tournament selection

with a tournament size 2. Then, a child is generated as

follows: for each event, we first select the parent that has

the smaller penalty value corresponding to that event,

and then allocate the corresponding room and time slot
pair to the event of the child.

4.1.4 Mutation

After a child is generated by using either MEM or
crossover, a mutation operator is used with a probabil-

ity Pm. The mutation operator first randomly selects

one from four neighborhood structures N1, N2, N3, and

N4, which will be described in Section 4.1.5, and then
makes a move within the selected neighborhood struc-

ture.

4.1.5 Local search methods

After the mutation operation, two LS operators, de-

noted LS1 and LS2, respectively, are applied on the

child solution for possible improvement. Algorithm 6

8

Algorithm 6 Local Search Operator 1 (LS1)
1: input : Individual I from the population
2: for i := 1 to n do

3: if event ei is infeasible then

4: if there is untried move left then

5: calculate the moves: first in N1, then in N2 if N1 fails,
then in N3 if N2 also fails, and finally in N4 if N3 also
fails

6: apply the matching algorithm to the time slots af-

fected by the move and delta evaluate the result.
7: if moves reduce hard-constraint violations then

8: make the moves and go to line 4
9: end if

10: end if

11: end if

12: end for

13: if no any hard-constraint violations remain then

14: for i := 1 to n do

15: if event i has soft-constraint violations then

16: if there is untried move left then

17: calculate the moves: first in N1, then in N2 if N1
fails, then in N3 if N2 also fails, and finally in N4
if N3 also fails

18: apply the matching algorithm to the time slots
affected by the move and delta evaluate the result

19: if moves reduce soft-constraint violations then

20: make the moves and go to line 16
21: end if

22: end if

23: end if

24: end for

25: end if

26: output : A possibly improved individual I

and Algorithm 7 summarize the LS1 and LS2 schemes,

used in the proposed algorithm, respectively. LS1 works

on all events while LS2 works on a set of events. Here,

we suppose that each event is involved with soft- and

hard-constraint violations. The LS methods are based
on six neighborhood structures, denoted as N1, N2, N3,

N4, N5, and N6, respectively. They are described as fol-

lows:

– N1: the neighborhood defined by an operator that

moves one event from a time slot to a different one.

– N2: the neighborhood defined by an operator that
swaps the time slots of two events.

– N3: the neighborhood defined by an operator that

permutes three events in three distinct time slots in

one of the two possible ways other than the existing

permutation of the three events.
– N4: the neighborhood defined by an operator that

takes two random events from the set E′

e and re-

places their time slots by random ones from T ′

s.

– N5: the neighborhood defined by an operator that
takes each event ei from the list of EE and try to

find a place in the timetable before all the events in

EEi.

Algorithm 7 Local Search Operator 2 (LS2)
1: input : Individual I after LS1 is applied
2: for each event ei of I in EE do

3: for each event ej in EEi do

4: try to place event ej in the timetable after the time slot
of ei by calculating a move of ei in the neighborhood
N1 and N2

5: apply the matching algorithm to the time slots affected
by the move

6: compute the penalty of ei and delta evaluate the result
7: apply the move if it reduces hard- or soft-constraint vi-

olations
8: end for

9: end for

10: S :=randomly pick a percentage of occupied time slots from T

11: for each time slot ti ∈ S do

12: for each event ej in the time slot ti do

13: calculate the penalty value of event ej
14: end for

15: sum the total penalty value of events in the time slot ti
16: end for

17: select the time slot wt with the biggest penalty value from S

18: for each event ei in wt do

19: calculate a move of ei in the neighborhood N1
20: apply the matching algorithm to the time slots affected by

the move
21: compute the penalty of ei and delta evaluate the result
22: end for

23: if all the moves of events in wt together reduce hard- or
soft-constraint violations then

24: apply the moves
25: else

26: delete the moves
27: end if

28: output : A possibly improved individual I

– N6: the neighborhood defined by an operator that
takes a subset of time slots among all occupied time

slots. Among this subset, the worst time slot (that

contain events that collectively have the highest

penalty value) is selected and its events are moved
to another randomly chosen time slot in the subset.

As mentioned before, LS1 works on all events and is

based on two steps. In the first step (line 2-12 in Algo-
rithm 6), LS1 checks the hard-constraint violations of

each event while ignoring its soft-constraint violations.

If there are hard-constraint violations for an event, LS1

tries to resolve them by applying moves in the neigh-
borhood structures N1, N2, N3, and N4 orderly3 until

3 For the event being considered, potential moves are calcu-
lated in a strict order. First, we try to move the event to the next
time slot, then the next, then the next, etc. If this search in N1
fails, we then search in N2 by trying to swap the event with the
next one in the list, then the next one, and so on. If the search in
N2 also fails, we try a move in N3 by using one different permu-
tation formed by the event with the next two events, then with
the next two, and so on. If the search in N3 also fails, we try a
move in N4 by replacing the time slots of two random events that
are in the set E′

e with random time slots from T ′

s, then the next
two, and so on.

9

a termination condition is reached, e.g., an improve-

ment is reached or the maximum number of steps smax

is reached, which is set to different values for different

problem instances in the experimental study.

After each move, we apply the matching algorithm

to the time slots affected by the move and try to re-
solve the room allocation disturbance and delta evalu-

ate the result of the move (i.e., calculate the hard- and

soft-constraint violations before and after the move). If

there is no untried move left in the neighborhood for an
event, LS1 continues to the next event. After applying

all neighborhood moves on each event, if there is still

any hard-constraint violation, then LS will stop; oth-

erwise, LS1 will perform the second step (lines 13-25

in Algorithm 6). In the second step, after reaching a
feasible solution, the LS1 method is used to deal with

soft constraints. LS1 performs a similar process as in

the first step on each event to reduce its soft-constraint

violations. For each event, LS1 tries to make moves in
the neighborhood N1, N2, N3 and/or N4 orderly with-

out violating the hard constraints. For each move, the

matching algorithm is applied to allocate rooms to af-

fected events and the result is delta evaluated.

Algorithm 7 describes the second LS operator, LS2,
used in GSGA. LS2 works on a set of events with N5

(corresponding to lines 2-9 in Algorithm 7) and N6 (cor-

responding to lines 10-27 in Algorithm 7). The basic

idea of LS2 is that it first tries to place an event ei
(involved in the precedence constraint H5) in a time
slot before the corresponding list of events EEi. After

moving a concerned event into a new time slot in the

neighborhood structures N1 and N2 every time, the new

penalty value of the event is calculated. If the move re-
duces the penalty value, then it is saved; otherwise, it

is not saved.

After applying N5, LS2 applies N6. It first randomly

selects a percentage of time slots4 (e.g., 20% as used in

this paper) from the total time slots in T . Then, the

penalty value of each selected time slot is calculated
and the time slot wt that has the biggest penalty value

is selected for local search. This way, LS2 aims to help

improve the existing result. After taking the worst time

slot, LS2 tries a move in the neighborhood structure N1
for each event of wt and checks the penalty value of each

event before and after applying the move. If all moves

in wt together reduce the hard- and/or soft-constraint

violations, then we apply all the moves; otherwise, we

4 Rather than choosing the worst time slot out of all time slots,
we randomly select a set of time slots and then choose the worst
time slot from the set. This is because for each selected time
slot we need to calculate its penalty value, which costs time. By
selecting a set of time slots instead of all time slots, we try to
balance between the computational time and the quality of the
algorithm.

Algorithm 8 TabuHeuristic()—Phase II of HGATS

1: input : The best solution sbest from Phase I (GSGA)
2: s← sbest
3: if s is not feasible then

4: remove all events that involve hard-constraint violations
5: end if

6: TL← ∅
7: while the termination condition is not reached do

8: for i := 0 to 10% of the neighbors do

9: si ← s after the i-th move
10: compute the objective value f(si)
11: end for

12: if ∃sj |f(sj) < f(s) and f(sj) ≤ f(si)∀i then
13: s← sj
14: TL ← TL ∪ Ei where Ei is the set of events moved to

get sj
15: else

16: s← the best non-tabu moves among all si
17: TL← TL ∪Eb where Eb is the set of events moved by

the best non-tabu move
18: end if

19: sbest ← the best solution so far
20: end while

21: output : The optimized solution sbest

do not make the moves. This way, LS2 can not only
place the events according to their precedence but also

check the worst time slot and reduce the penalty value

for some events by moving them to other time slots. In

general, LS2 is expected to enhance the individuals of

the population and increase the quality of the feasible
solution by reducing the number of constraint viola-

tions. When LS2 finishes, we get a possibly improved

and feasible individual.

At the end of each generation of GSGA, the ob-
tained child solution replaces the worst member of the

population to make a better population in the next gen-

eration. By the end of Phase I, GSGA may produce

several different optimal or near-optimal solutions.

4.2 The tabu search heuristic – Phase II of HGATS

We try to find an optimal solution using the above

proposed GSGA. However, due to the hardness of
the PECTP, after the first phase of HGATS, some-

times an optimal or feasible solution may not be ob-

tained. In order to further improve the quality of the

solution obtained by GSGA, a simple TS heuristic

TabuHeuristic(), which is shown in Algorithm 8, is ap-
plied as the second phase of HGATS in the hope to get

an improved and feasible solution from the best solu-

tion obtained from phase I. TS is a kind of heuristic

methods, which has the advantage of having internal
memory [30]. This internal memory prevents TS from

revisiting previously visited areas of the search space.

Therefore, it is easier to escape from local optimum and

10

approach the global or near-global optimum in a short

time [23]. TS is usually known be a powerful tool for

all types of timetabling problems [16].

The TS heuristic used in HGATS is similar to the

TS scheme described in [51]. We first check the best
solution obtained from the first phase. If it is optimal,

Phase II will not be executed. Otherwise, if it is a feasi-

ble solution, then we improve the solution by applying

the TS heuristic; if a solution is not feasible, we first re-

move all events that involve hard-constraint violations
and re-consider them if and only if they satisfy all hard

constraints during the neighborhood search.

We apply N1, N2, and N4 as neighborhood struc-

tures for moving a solution. A move of a solution is
defined by moving one random event of the solution

using N1, swapping two random events of the solution

using N2, or swapping two specific events of the so-

lution to time slots using N4, orderly. The reason for

not applying N5 and N6 in the move lies in that using
N5 and N6 takes time and extra work on removing a

hard-constraint violation.

A move is a tabu move if at least one of the events

involved has been moved less than l steps before, where

l is the length of the tabu list TL. The tabu list length
is set to the number of events divided by a constant K

(K = 100 as described in [51]). In order to decrease the

probability of generating cycles of moves and enhance

the exploration, a variable neighborhood set is applied,
as suggested in [51], where every move uses the neigh-

borhood N1, N2, or N4 with a probability 0.1. In order

to explore the search space more efficiently, we accept

a tabu move if it improves the best so far solution. In

summary, the TS heuristics considers a variable neigh-
borhood set and performs the best move that improves

the best so far solution; otherwise, it performs the best

non-tabu move chosen among those that belong to the

current variable set of neighbors. The TS heuristics con-
tinues until a time limit is reached or the best so far

solution has no soft- and hard-constraint violation (i.e.,

an optimal solution is obtained).

5 Experimental study

In this section, we experimentally investigate the per-

formance of the proposed hybrid approach for the

PECTP in comparison with several other algorithms.
All algorithms were coded in GNU C++ under version

4.1 and run on a 3.20 GHz PC. We use 24 benchmark

PECTP instances to test the algorithms, which were

proposed for the ITC-2007 [41]. Table 1 presents the

features of these PECTP instances5.

Two sets of experiments were carried out in this

study. The first set of experiments are devoted to an-

alyze the sensitivity of key parameters for the perfor-

mance of HGATS for the PECTP. The second set of
experiments compare the performance of HGATS with

two relevant algorithms on the test PECTP instances.

In the end, we compare our experimental results with

current state-of-the-art methods from the literature on
the tested instances.

5.1 Sensitivity analysis of key parameters of HGATS

The performance of the proposed hybrid approach de-

pends on the parameters and operators used, especially

in GSGA. Through our previous work [35], we found
that α, β, γ, and τ are key parameters that can greatly

affect the performance of GSGA for the UCTP, where

α is the percentage of best individuals selected from

the current population for creating the data structure

MEM , β is the percentage of the total number of events
that are used to create a child through the data struc-

ture MEM , γ is the probability that indicates whether

a child is created through MEM or crossover, and τ

decides the frequency of updating MEM (i.e., MEM

is updated every τ generations). Hence, we test our al-

gorithm HGATS with different settings of these param-

eters. Table 2 shows different parameters and their set-

tings that were tested in our experiments. Some other

parameters for HGATS were set as follows: the popula-
tion size N was set to 50 and the mutation probability

Pm was set to 0.5.

In order to find out which parameter settings have

a great effect on the performance of HGATS, we run

HGATS 50 times for all parameter combinations in Ta-
ble 2. Here, we report some typical results in Fig. 2,

where the dynamic performance of HGATS regarding

the average objective value against the number of eval-

uations over 50 runs with one parameter changing while

the other parameters kept constant on different PECTP
instances is shown. Fig. 2(a) shows the effect of chang-

ing α on the 2007-16 problem instance with β = 0.3,

γ = 0.8, and τ = 20. Fig. 2(b) shows the effect of chang-

ing β on 2007-17 with α = 0.2, γ = 0.8, and τ = 20.
Fig. 2(c) shows the effect of changing γ on 2007-11 with

α = 0.2, β = 0.3, and τ = 20. Fig. 2(d) shows the effect

of changing τ on 2007-3 with α = 0.2, β = 0.3, and

γ = 0.8.

5 Details about these PECTP instances can be found at
http://www.cs.qub.ac.uk/itc2007/postenrolcourse/course post
index.htm.

11

Table 1 ITC-2007 problem instances

ITC-2007 Instance 1 2 3 4 5 6 7 8 9 10 11 12

Number of events 400 400 200 200 400 400 200 200 400 400 200 200
Number of rooms 10 10 20 20 20 20 20 20 10 10 10 10
Number of features 10 10 10 10 20 20 20 20 20 20 10 10
Number of students 500 500 1000 1000 300 300 500 500 500 500 1000 1000
Max students per event 33 32 98 82 19 20 43 39 34 32 88 81
Max events per student 25 24 15 15 23 24 15 15 24 23 15 15
Mean features per room 3 4 3 3 2 3 5 4 3 3 3 4
Mean features per event 1 2 2 2 1 2 3 3 1 2 1 23

ITC-2007 Instance 13 14 15 16 17 18 19 20 21 22 23 24

Number of events 400 400 200 200 100 200 300 400 500 600 400 400
Number of rooms 20 20 10 10 10 10 10 10 20 20 20 20
Number of features 10 10 20 20 10 10 10 10 20 20 30 30
Number of students 300 300 500 500 500 500 1000 1000 300 500 1000 1000
Max students per event 20 20 41 40 195 65 55 40 16 22 69 41
Max events per student 24 24 15 15 23 23 14 15 23 25 24 15
Mean features per room 2 3 2 5 4 4 3 3 3 3 5 5
Mean features per event 1 1 3 3 2 2 1 1 1 2 3 3

Table 2 Parameter settings in HGATS

Parameter Settings

α 0.2 0.4 0.6 0.8
β 0.1 0.3 0.5 0.7
γ 0.2 0.4 0.6 0.8
τ 20 40 60 80

From Fig. 2, several results can be observed and are

analyzed below. First, the parameter α has a significant

effect on the performance of HGATS for the PECTP.

The performance of HGATS drops when the value of

α increases from 0.2 to 0.8, see Fig. 2(a) for reference.
This occurs because when we choose a small part of

population to create the MEM data structure, MEM

can provide a strong guidance during the genetic oper-

ations and help HGATS exploit the area of the search
space that corresponds to the best individuals of the

population sufficiently. This sufficient exploitation can

ensure that HGATS quickly achieves better solutions.

In the contrast, when a large part of the population

is taken to create or update MEM , then MEM will
lose its effect of guiding HGATS to exploit promising

areas of the search space. In other words, when α is set

to large values, HGATS tends to be GALS and, hence,

the performance will drop or be weak. This can be ob-
served from Fig. 2(a): when the value of α increases,

the best solution of HGATS can not improve after a

certain number of evaluations, e.g., after about 4000

evaluations when α = 0.6 and after about 2000 evalua-

tions when α = 0.8.

Second, regarding the effect of β, an interesting be-

haviour of HGATS can be observed on the 2007-17

problem instance with α = 0.2, γ = 0.8, τ = 20, and

different β values in Fig. 2(b). From Fig. 2(b), it can
be seen that when the value of β increases from 0.1 to

0.3, the performance of HGATS improves due to the

enhanced effect of the MEM data structure. However,

when the value of β is further raised, the performance
of HGATS drops. This occurs because if a large por-

tion of individuals is created throughMEM , e.g., when

β = 0.7, the chance of creating a similar child may

be increased every generation and after a few genera-
tions, HGATS may be trapped in a sub-optimal state

and hence can not obtain the optimal solution. From

Fig. 2(b), it can be seen that setting the value of β to

0.5 or 0.7 leads to an earlier stagnation in the perfor-

mance of HGATS during the solving process.

Third, regarding the effect of γ, from Fig. 2(c), it

can be easily seen that increasing the value of γ results

in better solutions. The reason lies in the fact that the

small value of γ leads to the proposed GSGA acting
as the conventional GA. The effect of γ also shows the

importance of introducing the MEM data structure.

Fourth, regarding the effect of τ , it can be seen from

Fig. 2(d) that updating MEM every 20 generations
gives a better performance for HGATS than updating

MEM every 80 generations. This is due to the fact that

in the former case the search space is explored more

than in the latter case, which increases the diversity

and gives a greater chance to create better individuals.
The difference is significant when τ is set to 20 over 100.

This is because increasing the value of τ slows down

the updating of the MEM data structure and hence

degrades the efficiency of MEM .

Based on the above parameter analyses, in the fol-

lowing experiments, we set the parameters for HGATS

as follows: α = 0.2, β = 0.3, γ = 0.8, and τ = 20.

5.2 Comparison with relevant algorithms

This set of experiments compares the performance of
HGATS with two relevant algorithms: one is the same

as the proposed GSGA except that the guided search

technique is switched off. That is, it is the standard

12

 2

 3

 4

 5

 6

 7

 8

 0 2000 4000 6000 8000 10000 12000 14000

O
bj

ec
tiv

e
va

lu
e

 (l
og

10
)

number of evaluations

α=0.2
α=0.4
α=0.6
α=0.8

 1

 2

 3

 4

 5

 6

 7

 8

 0 2000 4000 6000 8000 10000 12000 14000

O
bj

ec
tiv

e
va

lu
e

 (l
og

10
)

number of evaluations

β=0.1
β=0.3
β=0.5
β=0.7

(a) (b)

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000

O
bj

ec
tiv

e
va

lu
e

 (l
og

10
)

number of evaluations

γ=0.2
γ=0.4
γ=0.6
γ=0.8

 7.6

 7.7

 7.8

 7.9

 8

 8.1

 8.2

 8.3

 0 500 1000 1500 2000

O
bj

ec
tiv

e
va

lu
e

 (l
og

10
)

number of evaluations

τ=20
τ=60
τ=80

τ=100

(c) (d)

Fig. 2 Comparison on the effect of parameters on the performance of HGATS on different problem instances: (a) 2007-21 with β = 0.3,
γ = 0.8 and τ = 20, (b) 2007-17 with α = 0.2, γ = 0.8 and τ = 20, (c) 2007-11 with α = 0.2, β = 0.3 and τ = 20, and (d) 2007-03
with α = 0.2, β = 0.3 and γ = 0.8.

steady state GA with LS1 and LS2, denoted GALS in

this study. For GALS, the crossover operator is applied
with a crossover probability Pc = 0.8. The second al-

gorithm is the TS algorithm. The basic framework of

the TS algorithm tested is inspired by [51] with the

same new neighborhood operators as the tabu heuris-
tic used in HGATS. The parameter settings identified

for HGATS by the previous experiments were used in

HGATS and GALS (if relevant) in this section. The

InitializeIndividual() is used for initial solutions for

all algorithms in order to have a fair comparison of the
performance of algorithms. There were 50 runs of each

algorithm on each problem instance. The run time for

each run of an algorithm on each problem instance was

set to tmax = 600 seconds based on the time allocation
used by the ITC-2007. Other parameter settings are as

follows: the population size N was set to 50 and the

mutation probability Pm was set to 0.5.

Algorithms are evaluated on the basis of two values,

Df and SCP. Table 3 presents the results of algorithms

in terms of the best, worst, average, and standard devi-
ation of Df and SCP values over the 50 runs on the 24

problem instances. From Table 3, it can be seen that

HGATS produces a lower average and standard devi-

ation of the objective value on most of the PECTP

instances. HGATS produces good solutions due to the
usage of the MEM data structure and LS schemes. As

mentioned earlier, this is due to the fact that we as-

sign to an event a pair of room and time slot that was

extracted from one of the best individuals of previous
populations. This means that the pair satisfies different

constraints that are suitable to that event. The local

and tabu search techniques further helps find the local

optimum of an individual. By doing so, we increase the

chance of getting better and better solutions during the
solving process.

Fig. 3 shows the performance of different algorithms

regarding the objective value in the log scale against the

number of evaluations. From Fig. 3, it can be seen that

on the 2007-14 and 2007-17 problem instances, HGATS
and TS reach a solution as the number of evaluations

increases. HGATS remarkably decreases in the objec-

tive value and gives an optimal solution after 9000 and

4000 evaluations, respectively.

The t-test results of statistically comparing investi-
gated algorithms with 98 degrees of freedom at a 0.05

level of significance are shown in Table 4. In Table 4, the

t-test result is shown as “s+”, “s−”, “+”, “−”, or “∼”

13

Table 3 Comparison of algorithms on different problem instances

Best Worse Average Std
PECTP Alg Df SCP Df SCP Df SCP Df SCP

2007-1 TS 0 1069 51 1732 11.33 1202.6 17.55 257.04
GALS 0 641 12 976 3.44 704.89 5.13 152.33
HGATS 0 501 12 842 0 587 1.84 108.61

2007-2 TS 0 989 72 2213 25.87 1191.22 17.44 386.77
GALS 0 747 50 2311 8.78 1005.11 16.87 504.79
HGATS 0 342 0 695 0 476.2 0 96.94

2007-3 TS 0 756 18 821 5.89 794.33 5.84 21.9
GALS 0 509 0 801 0 697.44 0 129.53
HGATS 0 3770 432 0 0 407.78 0 19.73

2007-4 TS 0 794 76 1130 18.33 910.5 29.44 141.45
GALS 0 521 11 791 2 669 4.09 46
HGATS 0 234 4 524 0 369 0.33 26.72

2007-5 TS 0 496 65 678 22 544.2 9.62 884
GALS 0 98 20 310 8.62 154 9.62 78
HGATS 0 0 0 325 0 118 0 88.05

2007-6 TS 0 218 0 788 0 428 0 272.93
GALS 0 10 0 430 0 207 0 134.18
HGATS 0 0 0 342 0 201 0 139.5

2007-7 TS 0 84 198 508 82 258 66.59 183.74
GALS 0 275 70 489 25.5 381.75 35.20 89.531
HGATS 0 0 2 543 0.53 418 1.62 98.404

2007-8 TS 0 0 0 751 0 481 0 315.7
GALS 0 0 0 424 0 322 0 193.1
HGATS 0 0 0 309 0 257.12 0 120.78

2007-9 TS 0 1711 152 2361 40.12 1797 53.04 294.85
GALS 0 1547 115 2141 28.87 1237 39 412.37
HGATS 0 989 42 1183 4.5 1002 20.09 81.12

2007-10 TS 0 763 0 1978 0 999 0 406
GALS 4 548 26 1040 5 850 9 154
HGATS 0 499 0 810 0 614 0 117

2007-11 TS 0 680 0 1980 0 968 0 414
GALS 0 701 0 984 0 897 0 84
HGATS 0 246 0 691 0 452 0 121

2007-12 TS 0 373 56 1563 17 702 23 393
GALS 0 444 0 984 0 576 0 178
HGATS 0 172 13 546 1.625 226 0.59 129

2007-13 TS 0 624 20 1873 6.37 1230 9.1 380
GALS 0 201 0 1639 0 852 0 392
HGATS 0 0 0 717 0 616 0 249

2007-14 TS 0 241 17 416 4.75 287 7.62 76
GALS 0 61 0 104 0 78.2 0 17
HGATS 0 0 0 19 0 4.125 0 7.29

2007-15 TS 0 101 0 164 0 135 0 33
GALS 0 14 0 97 0 69 0 21
HGATS 0 0 0 37 0 26 0 6.54

2007-16 TS 0 109 0 1158 0 563 0 161
GALS 0 168 0 771 0 377 0 195
HGATS 0 0 0 270 0 168 0 115.27

2007-17 TS 0 0 0 42 0 32 0 10
GALS 0 0 0 21 0 5 0 7.4
HGATS 0 0 0 11 0 2.5 0 4.65

2007-18 TS 0 0 0 1241 0 924 0 420.52
GALS 0 0 0 842 0 631 0 270
HGATS 0 0 0 572 0 446 0 108

2007-19 TS 147 1078 346 1867 138 1372 110 334
GALS 0 1015 430 2693 174 1612 154 673.65
HGATS 0 84 319 1900 133 810 115 513.7

2007-20 TS 40 348 113 1192 71 1100 29 133
GALS 0 318 138 1942 67 1199 86 439
HGATS 0 297 234 2305 75 1274 95 622

2007-21 TS 0 137 261 1162 69.5 805 96 267
GALS 0 0 10 621 22.5 305 4.6 241
HGATS 0 0 15 1359 2.5 780 2 422

2007-22 TS 91 1742 102 2439 97.37 2051 4.47 260.6
GALS 42 1579 188 2466 94 1715 42 396
HGATS 0 1142 73 1315 33.125 1196 38 243

2007-23 TS 0 2062 34 5556 362 1604 16 8.75
GALS 11 1001 43 1291 81 1193 13 20
HGATS 0 963 16 1896 1.2 1152 3.6 2

2007-24 TS 0 629 0 2309 0 1407 0 541
GALS 0 368 9 2007 2.25 1112 4.16 463.6
HGATS 0 274 0 2142 0 1002 0 519

14

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000 25000

O
b

je
c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-01

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000 25000
O

b
je

c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-02

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000 25000 30000

O
b

je
c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-03

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000 25000

O
b

je
c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-04

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000

O
b

je
c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-05

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000

O
b

je
c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-06

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000 25000

O
b

je
c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-07

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000 25000

O
b

je
c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-08

TS
GALS

HGATS

 3

 4

 5

 6

 7

 8

 9

 0 10000 20000 30000 40000 50000

O
b

je
c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-09

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10000 20000 30000 40000 50000

O
b

je
c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-10

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 2000 4000 6000 8000 10000 12000 14000

O
b

je
c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-11

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000

O
b

je
c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-12

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 2000 4000 6000 8000 10000 12000 14000

O
b

je
c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-13

TS
GALS

HGATS

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5000 10000 15000 20000

O
b

je
c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-14

TS
GALS

HGATS

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5000 10000 15000 20000

O
b

je
c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-15

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000

O
b

je
c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-16

TS
GALS

HGATS

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5000 10000 15000 20000

O
b

je
c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-17

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000

O
b

je
c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-18

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10000 20000 30000 40000 50000

O
b

je
c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-19

TS
GALS

HGATS

 8.4

 8.45

 8.5

 8.55

 8.6

 8.65

 8.7

 8.75

 0 2000 4000 6000 8000 10000 12000 14000

O
b

je
c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-20

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 10000 20000 30000 40000 50000

O
b
je

c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-21

TS
GALS

HGATS

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 10000 20000 30000 40000 50000

O
b

je
c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-22

TS
GALS

HGATS

 3

 4

 5

 6

 7

 8

 9

 0 10000 20000 30000 40000 50000

O
b

je
c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-23

TS
GALS

HGATS

 8.3

 8.35

 8.4

 8.45

 8.5

 8.55

 8.6

 8.65

 8.7

 8.75

 8.8

 0 5000 10000 15000 20000 25000

O
b

je
c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-24

TS
GALS

HGATS

Fig. 3 Dynamic performance of algorithms on different problem instances.

15

Table 4 The t-test values of comparing algorithms on different problem instances

PECTP Df SCP
HGATS−GALS HGATS−TS GALS−TS HGATS−GALS HGATS−TS GALS-TS

2007-1 − s+ s+ + s+ s+
2007-2 s+ s+ s+ s+ s+ +
2007-3 ∼ + + s+ s+ s+
2007-4 + s+ s+ s+ s+ +
2007-5 ∼ ∼ ∼ + + +
2007-6 s+ s+ s+ s+ s+ +
2007-7 ∼ ∼ ∼ + s+ s+
2007-8 s+ s+ + + s+ +

2007-9 + ∼ − + s+ s+
2007-10 ∼ ∼ ∼ s+ s+ +
2007-11 s− s+ s+ s+ s+ +
2007-12 ∼ s+ s+ s+ s+ +
2007-13 ∼ s+ s+ + s+ s+
2007-14 ∼ s+ s+ s+ s+ s+
2007-15 ∼ ∼ ∼ s+ s+ s+
2007-16 ∼ ∼ ∼ s+ s+ s+
2007-17 ∼ ∼ ∼ + s+ s+
2007-18 ∼ ∼ ∼ + s+ +
2007-19 + + + s+ s− s−
2007-20 + + + s− s− +
2007-21 s+ s+ s+ s− + s+
2007-22 s+ s− s− s+ s+ s+
2007-23 s+ ∼ s+ s+ s+ s+
2007-24 s+ ∼ s− + s+ +

Table 5 Percentage of feasible solutions obtained by HGATS after phase I and phase II over 50 runs on each ITC-2007 problem
instances

Problem Instances
HGATS Phase 1 2 3 4 5 6 7 8 9 10 11 12

Phase I (GSGA) 52% 64% 92% 96% 82% 78% 78% 100% 48% 52% 100% 80%
Phase II (TS) 92% 100% 100% 98% 100% 100% 94% 100% 82% 100% 100% 96%

Problem Instances
HGATS Phase 13 14 15 16 17 18 19 20 21 22 23 24

Phase I (GSGA) 86% 86% 100% 90% 100% 100% 20% 26% 30% 48% 48% 50%
Phase II (TS) 100% 100% 100% 100% 100% 100% 54% 68% 94% 70% 96% 100%

when the first algorithm is significantly better than,

significantly worse than, insignificantly better than, in-

significantly worse than, or statistically equivalent to

the second algorithm, respectively.

From Table 4, it can be seen that the performance of

HGATS is significantly better than the performance of

the other two algorithms on most problem instances. It

can also been observed that the performance of GALS
is significantly better than the performance of TS on

most problem instances. This result indicates that a

single heuristic is not enough for solving a PECTP.

These results show that the integration of proper LS
with guided search techniques can greatly improve the

performance of GAs for the PECTP.

In order to show the benefit of introducing the sec-

ond phase (i.e., the TS heuristic) in HGATS, we also
recorded the percentage of feasible solutions obtained

by HGATS after Phase I and Phase II over 50 runs

on each ITC-2007 PECTP instances. The results are

shown in Table 5. From Table 5, it can be seen that the

TS heuristic is beneficial to the performance of HGATS

on most test PECTP instances.

5.3 Comparison with algorithms from the literature

In this section, in order to justify the performance of
our proposed algorithm, we compare the experimental

results of HGATS with the available results of other al-

gorithms on the ITC-2007 PECTP instances. Another

reason for comparing our results to the available results

is that we are interesting to see the behaviour of GAs
for highly constraint PECTPs among different heuristic

and optimization methods, which has not been inves-

tigated yet in the literature. The algorithms compared

are described as follows:

– HGATS: The hybrid approach proposed in this pa-

per.

16

Table 6 Comparison of algorithms on different problem instances

HGATS CTI MMA HA ACO LSA
PECTP df BSCP df BSCP df BSCP df BSCP df BSCP df BSCP

2007-1 0 523 0 61 0 571 0 1482 0 15 0 1861
2007-2 0 342 0 547 0 993 0 1635 0 0 39 2174
2007-3 0 379 0 382 0 164 0 288 0 391 0 272
2007-4 0 234 0 529 0 310 0 385 0 239 0 425
2007-5 0 0 0 5 0 5 0 559 0 34 0 8
2007-6 0 0 0 0 0 0 0 851 0 87 0 28
2007-7 0 0 0 0 0 6 0 10 0 0 0 13
2007-8 0 0 0 0 0 0 0 0 0 4 0 6

2007-9 0 1102 0 0 0 1560 0 1947 0 0 162 2733
2007-10 0 515 0 0 0 2163 0 1741 0 0 161 2697
2007-11 0 246 0 548 0 178 0 240 0 547 0 263
2007-12 0 241 0 869 0 146 0 475 0 32 0 804
2007-13 0 0 0 0 0 0 0 675 0 166 0 285
2007-14 0 0 0 0 0 1 0 864 0 0 0 110
2007-15 0 0 0 379 0 0 0 0 0 0 0 5
2007-16 0 0 1 91 0 2 0 1 0 41 0 132
2007-17 0 0 0 1 0 0 0 5 0 68 0 72
2007-18 0 0 0 0 0 0 0 3 0 26 0 70
2007-19 0 121 267 1862 0 1824 0 1868 0 22 197 2268
2007-20 0 304 0 1215 0 445 0 596 665 2735 0 878
2007-21 0 36 0 0 0 0 0 602 0 33 0 40
2007-22 0 1154 0 0 0 29 0 1364 0 0 0 889
2007-23 0 963 0 430 0 238 0 688 11 1275 0 436
2007-24 0 274 0 720 0 21 0 822 0 30 0 372

– Mixed meta-heuristic approach (MMA): In the pa-

per [18], Hadrien et al. proposed the MMA, which
includes TS and simulated annealing used in con-

junction with various neighborhood operators.

– CTI: Mitsunori et al. [12] proposed a technique that

is the combination of a general purpose constraint
satisfaction solver, TS, and iterated LS techniques.

– Hybrid algorithm (HA): In the paper [20], Chiaran-

dini et al. proposed a HA that combines a construc-

tive procedure for achieving the feasibility, followed

by LS and simulated annealing for satisfying the soft
constraints.

– ACO: In the paper [47], Nothegger et al. proposed

an ACO algorithm in conjunction with a local im-

provement search routine.
– LS based algorithm (LSA): Müller [46] used an LSA

with routines taken from the Constraint Solver Li-

brary. Various neighborhood search algorithms are

also used to eliminate violations of hard and soft

constraints.

Table 6 gives the comparison results, where the term

“Df” represents the distance to feasibility and “BSCP”

means the best SCP value over 10 runs. One thing to

note is that the ITC-2007 competition results of other
algorithms were based on 10 runs per instance. For fair

comparison, we also show our results based on 10 runs

per instance here.

From Table 6, it can be seen that our proposed

HGATS achieved the feasibility on all of the problem
instances over 10 runs. It can also be seen that the

chance of HGATS getting optimal solutions is higher

than other algorithms. HGATS achieved the optimal

solution on 10 out of 24 problem instances. It gives the
best result on problem instances 2007-4, 2007-5, 2007-

16, and 2007-20 over all the compared algorithms. From

the results, we can see that the guided search strategy

and appropriate combination of local and tabu search

approaches can help to minimize the objective values
and give better results for the PECTP compared to

other population-based and heuristic-based algorithms

in the literature.

6 Conclusion and future work

This paper presents a hybrid approach, which com-

bines a guided search genetic algorithm (GSGA) and

a tabu search heuristic, to solve the post enrolment

course timetabling problem (PECTP). In the GSGA,
a guided search strategy uses a data structure to store

useful information, i.e., a list of room and time slot pairs

for each event that is extracted from the best individu-

als selected from the population and has a zero penalty
value. This data structure is used to guide the gener-

ation of offspring into the next population. The main

advantage of this data structure lies in that it provides

17

parts of former good solutions, which otherwise would

have been lost in the selection process, and reuses the

stored information in the following generations. This

can enable the algorithm to quickly retrieve the best

solutions corresponding to the previous and new pop-
ulations. In the proposed HGATS algorithm, two LS

techniques are used to improve the quality of individu-

als through searching six neighborhood structures. As

the second phase of HGATS, a TS scheme is used to
further improve the best solution obtained by GSGA

in the first phase.

In order to test the performance of HGATS for the
PECTP, experiments were carried out to analyze the

sensitivity of parameters and the effect of the guided

search strategy for the performance of HGATS based

on a set of benchmark ITC-2007 PECTP instances.

The experimental results of HGATS were also com-
pared with several state-of-the-art methods from the

literature on these benchmark ITC-2007 PECTP in-

stances. The experimental results show that the pro-

posed hybrid algorithm is competitive and work well
across all test PECTP instances in comparison with

other approaches studied in the literature. Generally

speaking, with the help of the guided, local and tabu

search strategies, HGATS is able to efficiently find opti-

mal or near-optimal solutions for the PECTP and hence
can act as a powerful tool for the PECTP.

There are several works to pursue in the future.

One future work will be to further analyze the neigh-
borhood techniques toward the performance of HGATS

and make it more powerful for highly constrained prob-

lem. We also intend to test our approach particularly

on ITC-2007 examination competition benchmarks and

other problem instances that are available in the litera-
ture. Improvement of genetic operators and new neigh-

borhood techniques based on different problem con-

straints will also be investigated. We believe that the

performance of HGATS for the PECTP can be im-
proved by applying advanced genetic operators and

heuristics.

Acknowledgements The authors would like to thank the

anonymous reviewers for their thoughtful comments and con-

structive suggestions. This work was supported by the Engineer-

ing and Physical Sciences Research Council (EPSRC) of UK un-

der Grant EP/E060722/01 and Grant EP/E060722/02.

References

1. Abdullah, S., Burke, E. K., & McCollum, B. (2005). An inves-
tigation of variable neighborhood search for university course
timetabling. Proc. of the 2nd Multidisciplinary Conference
on Scheduling: Theory and Applications, 413–427.

2. Abdullah, S., Burke, E. K., & McCollum, B. (2007). Using
a randomised iterative improvement algorithm with compos-
ite neighborhood structures. Proc. of the 6th Int. Conf. on

Metaheuristic, 153–169.
3. Abdullah, S., Shaker, K., McCollum, B., & McMullan,

P. (2010). Incorporating Great Deluge with Kempe Chain

Neighborhood Structure for the Enrolment-based Course
Timetabling Problem. The Fifth International Conference on
Rough Set and Knowledge Technology, LNAI 6401, 70–77.

4. Abdullah, S., Turabieh, H., McCollum, B., & McMul-
lan, P. (2010). A Multi-objective Post Enrolment Course
Timetabling Problems: A New Case Study. IEEE Congress
on Evolutionary Computation,Barcelone, Spain.

5. Abdullah, S., & Turabieh, H. (2008). Generating university
course timetable using genetic algorithm and local search.
Proc. of the 3rd Int. conf. on Hybrid Information Technol-
ogy, 254–260.

6. Abramson, D. (1991). Constructing school timetables using
simulated annealing: equential and parallel algorithms. Man-
agement Science, 37(1), 98–113.

7. Acan, A. (2004). An External Memory Implementation in Ant
Colony Optimization. Proc. of the 4th Int. Workshop on Ant
Colony Optimization and Swarm Intelligence (ANTS 2004),
73–82.

8. Acan, A. & Tekol, Y. (2003). Chromosome Reuse in Genetic
Algorithms Proc. of the 2003 Genetic and Evolutionary Com-
putation Conference (GECCO 2003), 695–705.

9. Aladğ, Ç. H., & Hocaoğlu, G. (2007). A tabu search algorithm
to solve a course timetabling problem. Hacettepe Journal of
Mathematics and Statistics, 36(1), 53–64.

10. Al-Betar, M. A., Khader, A. T., & Gani, A. T. (2007). A
harmony search algorithm for university course timetabling.
Proc. of the 7th Int. Conf. on the Practice and Theory of
Automated Timetabling.

11. Atkin, J. A., Burke, E. K., Greenwood, J., & Reeson, D.
(2007). Hybrid meta-heuristics to aid runway scheduling at
london heathrow airport. Transportation Science, 41(1), 90–
106.

12. Atsuta, M., Nonobe, K., & Ibaraki, T. (2008). ITC2007
Track 2, An Approach using general CSP solver.
www.cs.qub.ac.uk/itc2007

13. Bonissone, P. P., Subbu, R., Eklund, N., & Kiehl,
T. R. (2006). Evolutionary algorithms + domain knowledge
= real-world evolutionary computation. IEEE Transactions
on Evolutionary Computation, 10(3), 256–280.

14. Burke, E. K., Causmaecker, P. D., Berghe G. V., & Lan-
deghem, H. V. (2004). The state of the art of nurse rostering
Journal of Scheduling , 7(6), 441-499

15. Burke, E. K., Elliman, D. G., & Weare, R. F. (1995). A
hybrid genetic algorithm for highly constrained timetabling
problems. Proc. of 6th Int. Conf. on Genetic Algorithms,
605–610.

16. Burke, E. K., Kendall, G., & Soubeiga, E. (2003). A tabu-
search hyper-heuristic for timetabling and rostering. Journal
of Heuristics, 9(6), 451–470.

17. Burke, E. K., & Petrovic, S. (2002). Recent research direc-
tions in automated timetabling. European Journal of Opera-
tion Research, 140(2), 266–280.

18. Cambazard, H., Hebrard, E., OŚullivan, B., & Papadopoulos,
A. (2008). Local search and constraint programming for the
post enrolment-based course timetabling problem. Proc. of
the 7th Int. Conf. on the Practice and Theory of Automated
Timetabling (PATAT 2008).

19. Carter, M. W., & Laporte, G. (1998). Recent developments
in practical course timetabling. Proc. of the 2nd Int. Conf. on
Practice and Theory of Automated Timetabling, LNCS 1408,
3–19.

18

20. Chiarandini, M., Fawcett, C., & Hoos, H. H. (2008). A mod-
ular multiphase heuristic solver for post enrollment course
timetabling. Proc. of the 7th Int. Conf. on the Practice and

Theory of Automated Timetabling (PATAT 2008).
21. Chiarandini, M., Birattari, M., Socha, K., & Rossi-Doria,

O. (2006). An effective hybrid algorithm for university course
timetabling. Journal of Scheduling, 9(5), 403–432.

22. Colorni, A., Dorigo, M., & Maniezzo. (1990). Genetic algo-
rithms - A new approach to the timetable problem. NATO
ASI Series, Combinatorial Optimization, LNCS, F(82), 235–
239.

23. Chu, S. C., & Frang, H. L. (1999) Genetic algorithm vs. tabu
search in timetabling scheduling Proc. of the 3rd Int. Conf. on
Knowledge-Based Intelligent Information Engineering Sys-
tem.

24. Datta, D., Deb, K., & Fonseca, C. M. (2007). Multi-objective
evolutionary algorithm for university class timetabling prob-
lem. In Dahal, K. P., Tan, K. C., & Cowling, P. I. (eds.),
Evolutionary Scheduling, Springer, 197–236.

25. Erben, W., & Keppler, J. (1995). A genetic algorithm solv-
ing a weekly course timetabling problem. Proc. of the 1st
Int. Conf. on Practice and Theory of Automated Timetabling,
LNCS 1153, 198–211.

26. Even, S., Itai, A., & Shamir, A. (1997). On the complexity of
timetable and multicommodity flow problems. SIAM Journal
on Computing, 5(4), 691–703.

27. Freisleben, B., & Merz, P. (1996). A genetic local search algo-
rithm for solving symmetric and asymmetric traveling sales-
man problems. Proc. of IEEE Int. Conf. on Evolutionary
Computation, 616–621.

28. Gaspero, L. D., & Schaerf, A. (2001) Tabu search eechniques
for examination timetabling. Practice and Theory of Auto-
mated Timetabling III, Springer, LNCS 2079, 104–117.

29. Gen, M., & Cheng, R. (1997). Genetic Algorithms and En-
gineering Design. Wiley-IEEE.

30. Glover, F., & Laguna, M. (1997). Tabu Search. Kluwer Aca-
demic Publishers.

31. Goldberg, D. (1989). Genetic Algorithms in Search, Op-
timization and Machine Learning. Reading, MA: Addison-
Wesley.

32. Gotlie, C. C. (1963). The construction of class-teacher
timetables. IFIP Congress, 62, 73–77.

33. Gunadhi, H., Anand, V. J., & Yong, Y. W. (1996) Auto-
mated timetabling using an object-oriented scheduler Expsert
Systems with Applications, 10(2), 243–256.

34. Hageman, J. A., Wehrens, R., Sprang, H. A., & Buydens,
L. M. C. (2003). Hybrid genetic algorithmtabu search ap-
proach for optimizing multilayer optical coatings. Analytica
Chimica Acta, 490, 211–222.

35. Jat, S. N., & Yang, S. (2009). A guided search genetic al-
gorithm for the university course timetabling problem. Proc.
of the 4th Multidisciplinary Int. Scheduling Conf: Theory and
Applications, 180–191.

36. Jat, S. N., & Yang, S. (2008). A memetic algorithm for the
university course timetabling problem. Proc. of the 20th IEEE
Int. Conf. Tools with Artif. Intell., 427–433.

37. Kendall, G., Knust, S., Ribeiro, C. C., & Urrutia, S. (2010).
Scheduling in Sports: An Annotated Bibliography Computers
and Operations Research, 37(1), 1–19.

38. Knauer, B. A. (1974). Solutions of a timetable problem Com-
puters and Operations Research, 1(3-4), 363–375.

39. Lewis, R. (2008). A survey of metaheuristic based techniques
for university timetabling problems. OR Spectrum, 30(1), 167–
190.

40. Lewis, R., & Paechter, B. (2005). Application of the grouping
genetic algorithm to university course timetabling. Proc. of
the 5th European Conf. on Evol. Comput. in Combinatorial
Optimization (EvoCOP 2005), LNCS 3448, 144–153.

41. Lewis, R., Paechter, B., & McCollum, B. (2007). Post en-
rolment based course timetabling: A description of the prob-
lem model used for track two of the second international

timetabling competition. Technical Report, Cardiff Univer-
sity, 2007.

42. Liu, Y. H. (2010). Different initial solution generators in ge-

netic algorithms for solving the probabilistic traveling sales-
man problem. Applied mathematics and computation, 216(1),
125–137.

43. Louis, S., & Li, G. (1997). Augmenting genetic algorithms
with memory to solve traveling salesman problem. Proc. of
the 1997 Joint Conference on Information Sciences, 108–111.

44. Lü, Z., & Hao, J. K. (2010). Adaptive tabu search for
course timetabling. European Journal of Operational Re-
search, 200(1), 235–244.

45. Malim, M. R., Khader, A. T., & Mustafa, A. (2006). Artificial
Immune Algorithms for University Timetabling. In Burke,
E. K., and Rudova, H. (Eds.), Proc of the 6th Int. Conf. on
Practice and Theory of Automated Timetabling, 234–245.

46. Müller, T. (2008). ITC2007 Solver Description: A Hybrid
Approach Proc. of the 7th Int. Conf. on the Practise and
Theory of Automated Timetabling (PATAT 2008).

47. Nothegger, C., Mayer, A., Chwatal, A., & Raidl, G. (2008).
Solving the post enrolment course timetabling problem by ant
colony optimization Proc. of the 7th Int. Conf. on the Practice
and Theory of Automated Timetabling (PATAT 2008).

48. Pongcharoen, P., Promtet, W., Yenradee, P., & Hicks,
C. (2008). Schotastic optimization timetabling tool for uni-
versity course scheduling. International Journal of Production
Economics, 112, 903–918.

49. Prestwich, S., Tarim, A., Rossi, R., & Hnich, B. (2008). A
steady-state genetic algorithm with resampling for noisy in-
ventory control. Proc. of the 10th Int Conf on Parallel prob-
lem solving from Nature, LNCS 5199, 559–568.

50. Qu, R., Burke, E. K., McCollum, B., & Merlot,
L. T. G. (2009). A survey of search methodologies and au-
tomated system development for examination timetabling.
Journal of Scheduling, 12(1), 55–89.

51. Rossi-Doria, O., Sampels, M., Birattari, M., Chiarandini, M.,
Dorigo, M., Gambardella, L., Knowles, J., Manfrin, M., Mas-
trolilli, M., Paechter, B., Paquete, L., & Stützle, T. (2002). A
comparison of the performance of different metaheuristics on
the timetabling problem. Lecture Notes in Computer Science
2740, 329–351.

52. Rossi-Doria, O., & Paechter, B. (2004). A memetic algorithm
for university course timetabling. Proc. of Combinatorial Op-
timization (CO 2004), 56.

53. Sastry, K., Goldberg, D., & Kendall, G. (2005). Genetic al-
gorithms. In Burke, E. K., and Kendall, G. (Eds.), Search
Methodologies: Introductory Tutorials in Optimization and
Decision Support Techniques. Chapter 4, 97–125, Springer.

54. Schearf, A. (1999). A survey of automated timetabling. Ar-
tificial Intelligence Review, 13(2), 87–127.

55. Sigl, B., Golub, M., & Mornar, V. (2003). Solving timetable
scheduling problem using genetic algorithms. Proc. of the 25th
Int. Conf. on Information Technology Interfaces, 519–524.

56. Socha, K., Knowles, J., & Samples, M. (2002). A max-
min ant system for the university course timetabling problem.
Proc. of the 3rd Int. Workshop on Ant Algorithms (ANTS),
LNCS 2463, 1–13.

57. Thanh, N. D. (2006). Solving timetabling problem using
genetic and heuristics algorithms Journal of Scheduling, 9(5),
403–432.

58. Tuga, M., Berretta, R., & Mendes, A. (2007) A Hybrid sim-
ulated annealing with kempe chain neighborhood for the uni-
versity timetabling problem. Proc. of the 6th IEEE/ACIS
Int. Conf. on Computer and Information Science, 400–405.

19

59. Turabieh, H. & Abdullah, S. (2009) Incorporating Tabu
Search into Memetic Approach for enrolment-based course
timetabling problems. 2nd Data Mining and Optimization

Conference, 122–126.
60. Werra, D. (1986). An introduction to timetabling European

Journal of Operational Research, 19(2), 151–162.

