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Abstract

In many industries mixed-model assembly systems are increasingly supplied
out of third-party consignment stock. This novel trend gives rise to a new
short-term sequencing problem which decides on the succession of models
launched down the line and aims at minimizing the cost of in-process inven-
tory held by the manufacturer. In this work, we investigate the mathematical
structure of this part oriented mixed-model sequencing problem and prove
that general instances of the problem are NP-hard in the strong sense. More-
over, we develop a new Beam Search heuristic, which clearly outperforms
existing solution procedures.

Keywords: Mixed-model assembly line; Sequencing; Consignment stock; Com-
plexity proof; Beam Search

1 Introduction

The problem of optimally sequencing mixed-model assembly systems has been the subject
of extensive research for more than four decades. Various exact and heuristic solution
approaches have been developed for several well-known sequencing approaches like mixed-
model sequencing (Thomopoulos, 1967; Tsai, 1995), car sequencing (Parello et al., 1986;
Gagné et al., 2006) and level scheduling (Kubiak, 1993; Monden, 1998). An in-depth
overview on model sequencing is provided by Boysen et al. (2007a). However, these
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Figure 1: Schematic representation of the assembly line

traditional sequencing approaches are not su�cient to cover the recent industry trend of
consignment stocks:
Nowadays, Original Equipment Manufacturers (OEMs) more and more reorganize their

material supply by relying on third-party consignment stock, which serves the assembly
line with required material. In such a setting, the structure of the sequencing problem is
much di�erent from traditional model sequencing approaches. The material is supplied
just-in-time by cargo carriers of a �xed size from a consignment stock operated by a
third-party logistics provider (3PL) adjacent to the line. In order to reduce the inventory
held in possession by the OEM and to free valuable maneuvering space, a manufacturer
in principle seeks to follow three simple policies, which are depicted in the schematic
representation of the line in Figure 1:

(a) There is only a single cargo carrier per part in the possession of the OEM at a time
from which a worker removes the required material part by part and assembles it
into a workpiece which requires the respective product feature.

(b) Once the cargo carrier is emptied out by the worker, it is instantaneously removed
from the station to free manoeuvering space. With regard to today's trend of de-
creasing vertical integration and, thus, an ever increasing number of parts to be
assembled per station, the space at the assembly line is typically very scarce (see
Klaemp�, 2006; Boysen et al., 2007c).

(c) A new cargo carrier is issued as late as possible, that is, only if the current inventory
of a part is zero and the respective part is required again by a model in the production
sequence. Once a new cargo carrier crosses the line of demarcation, which typically
separates the OEM's inventory from the consignment stock, the parts contained
therein are automatically charged to the OEM by an online billing system.

Obviously, the model sequence heavily in�uences the demand pattern of parts, so
that model sequencing in a consignment stock setting aims at a demand pattern, which
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P set of parts (index p)
T number of production cycles (index t)
M set of models (index m)
bpm integer demand coe�cients for part p and model m
dm demand of model m
cp inventory holding cost for storing a unit of part p during a

cycle
Gp capacity of the cargo carrier for part p
Sp quantity of part p initially stored in OEM's stock
ypt number of cargo carriers for part p taken from consignment

stock up to cycle t
xmt number of scheduled copies of model m up to cycle t
lpt quantity of part p in the OEM's stock stored during cycle t
rpt quantity of part p removed from actual cargo carrier up to

cycle t
zpt total quantity of part p demanded by the model sequence

up to cycle t

Table 1: Notation

minimizes OEM's inventory costs. For this purpose, Boysen et al. (2007b) introduce
the so called part inventory model sequencing problem (PIMSP), whose mathematical
structure is presented in Section 2. The paper on hand broadens the work of Boysen et
al. (2007b) in two directions. First (Section 3), we prove NP-hardness (in the strong
sense) for general instances of PIMSP, which was only conjectured in the aforementioned
paper. For the solution of PIMSP the preceding paper proposes an exact Bounded
Dynamic Programming approach suited for small instances and two heuristic approaches
(Goal Chasing and an Ant Colony approach) for instances of real world size. The paper
on hand describes a heuristic Beam Search procedure (Sections 4.1 and 4.2), which clearly
outperforms the existing procedures (Section 4.3). Finally, Section 5 concludes the paper.

2 Problem statement

In a consignment stock setting, model sequencing seeks to reduce the in-process inven-
tory of parts, where the number of units lpt stored for part p during a cycle t can be
calculated by determining the total number ypt of issued cargo carriers of part p up to
cycle t and the cumulative part usage, which in turn depends on the total number of
scheduled model copies xmt over all types m assigned up to cycle t. With the help of
the notation summarized in Table 1, the PIMSP model contains of objective function (1)
and constraints (2)-(8):
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(PIMSP) Minimize C(X, Y, L) =
∑
p∈P

(cp ·
T∑

t=1

lpt) (1)

∑
m∈M

xmt = t ∀ t = 1, . . . , T (2)

xmT = dm ∀m ∈ M (3)∑
m∈M

xmt · bpm + lpt = ypt ·Gp + Sp ∀ p ∈ P ; t = 1, . . . , T (4)

0 ≤ xmt − xmt−1 ≤ 1 ∀m ∈ M ; t = 2, . . . , T (5)

0 ≤ ypt − ypt−1 ≤ 1 ∀ p ∈ P ; t = 2, . . . , T (6)

ypt ∈ N0; lpt ≥ 0 ∀ p ∈ P ; t = 1, . . . , T (7)

xmt ∈ N0 ∀m ∈ M ; t = 1, . . . , T (8)

The objective function (1) minimizes the total cost of inventory summing up the quan-
tities lpt of all parts p stored in all cycles t each of which is weighted with the part-speci�c
inventory holding cost factor cp. Constraints (2) and (5) ensure that in each cycle t ex-
actly one model copy is produced, whereas equations (3) enforce that the demand dm

of each model m is met at the end of the planning horizon. The balance equations (4)
de�ne the quantity lpt stored per part p and cycle t as the di�erence between the overall
number of issued units (number of issued carriers ypt times carrier size Gp) plus initial
stock Sp and the cumulative consumption of the part by previously scheduled model
copies. Constraints (6) enforce the integer variables ypt to monotonically increase over
time.

3 Complexity of PIMSP

3.1 Restatement of PIMSP

First, we will equivalently restate the original problem formulation of PIMSP to ease the
formalization of the proof. Note that the number of part units rpt of part p which have
been removed from the actual cargo carrier at time t can be calculated as follows:

rpt = zpt + Gp − Sp −
⌊

zpt + Gp − Sp

Gp

⌋
·Gp = (zpt + Gp − Sp) mod Gp (9)

where zpt denotes the total number of part units consumed by the model sequence up to
cycle t, i.e., zpt =

∑
m∈M xmt · bpm and 'mod' refers to the modulo division. If for a part p

initial stock is positive (Sp > 0), it follows that there is a container for p at the beginning
of the planning horizon from which Gp − Sp units have already been removed. It holds
for all t subsequent cycles within the horizon, that demands zpt are additionally removed
from this and all further containers, each of which has size Gp. The modulo operation
thus yields the exact number of units removed from the current container in t, as all prior
containers were emptied out completely, i.e., Gp units were removed respectively.
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It follows that the actual number of stored units of part p at cycle t amounts to:

lpt = (Gp − rpt) mod Gp (10)

where the additional modulo division ensures that whenever no part unit is required from
the next cargo carrier in cycle t (rpt = 0), its issuance is postponed, so that the current
inventory is zero.
Equations (9) and (10) can now be used to rewrite the model formulation as follows.

Minimize C(X) =
T∑

t=1

∑
p∈P

cp · (Gp − rpt) mod Gp (11)

s.t. (2), (3), (5), (8)

rpt = (zpt + Gp − Sp) mod Gp ∀ p ∈ P ; t = 1, . . . , T (12)

zpt =
∑

m∈M

xmt · bpm ∀ p ∈ P ; t = 1, . . . , T (13)

The rewritten objective function (11) is still minimizing part inventory cost, merely
the current inventory is now calculated di�erently. Note, that rpt and zpt along with
restrictions (12) and (13) are introduced to ease the presentation, so that the only vari-
ables really required in the restated formulation are the model assignments xmt. The
exact cycles in which new cargo carriers have to be issued (ypt) can be easily determined
for any given sequence by retrieving the actual cycles in which the number of removed
units rpt just exceeds a new multiple of Gp for any part p.

3.2 Proof of NP-hardness for PIMSP

On the basis of the restated model formulation, we will proof NP-hardness for the general
version of PIMSP. For this purpose we show how to transform instances of the 3-Partition
Problem to PIMSP. The 3-Partition Problem is well known to be NP-hard in the strong
sense (see Garey and Johnson, 1979) and can be summarized as follows.

3-Partition Problem: Given 3q positive integers at (t = 1, . . . , 3q) and a positive in-
teger B with B/4 < at < B/2 and

∑3q
t=1 at = qB, does there exist a partition of the set

{1, 2, . . . , 3q} into q sets {A1, A2, . . . , Aq} such that
∑

t∈Ai
at = B ∀i = 1, . . . , q ?

Transformation of 3-Partition to PIMSP: Consider an instance of PIMSP with two
parts P = {1, 2}, T = 3q production cycles and M models in the set M = {1, 2, . . . ,M}
with demands dm ≥ 1 ∀m ∈ M and

∑
m∈M dm = 3q. Let inventory holding cost equal

one and initial inventories be zero (cp = 1, Sp = 0 for p = 1, 2). The demand coe�cients
are

b1m = αm

b2m = B − αm
∀m ∈ M, (14)
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where αm are positive integer values such that B/4 < αm < B/2 and
∑

m∈M αm · dm =
q ·B and B is a positive integer.
Such a PIMSP instance can be derived in polynomial time from any instance of 3-

Partition by grouping the set {1, 2, . . . , 3q} into M subsets {A∗
1, A

∗
2, . . . , A

∗
M
}, so that all

integers in such a subset are of the same size. That is, for each pair t, j ∈ A∗
m of each

subset m ∈ M , we have at = aj , while at 6= aj is true for all pairs t, j from di�erent
subsets A∗

m and A∗
n with m 6= n. The demand coe�cients for parts are then determined

via αm = at for all t ∈ A∗
m,m ∈ M and model demands are equal to dm = |A∗

m| for all
m ∈ M .
Let the size of the two cargo carriers further be G1 = B and G2 = 2B. When

replacing rpt in (11) by the expression de�ned in (12) and considering the assumptions
on cp and Sp, we can rewrite the objective function as follows (notice that the equivalence
(x + y) mod y ≡ x mod y holds for integers x and y):

C =
T∑

t=1

(B − z1t mod B) mod B +
T∑

t=1

[2B − z2t mod (2B)] mod (2B)

=
T∑

t=1

(B − z1t mod B) mod B + [2B − z2t mod (2B)] mod (2B) (15)

We will now show that the instance of 3-Partition is a YES-instance if and only if there
exists a solution to the respective PIMSP instance with C ≤ 3qB.
The rewritten objective function in (15) can be rearranged to C =

∑3q
t=1 Ct with

Ct = (B − z1t mod B) mod B + [2B − z2t mod (2B)] mod (2B). Due to the structure
of demand coe�cients it further holds that in any cycle t the cumulated requirement of
both parts together is a integer multiple of B, i.e., we get

z1t + z2t = t ·B for t = 1, . . . , T, (16)

which follows directly from the fact that b1m +b2m = αm +B−αm = B for each m ∈ M .
As further bpm > 0 is true for all p ∈ {1, 2} and m ∈ M , part consumption is strictly
monotonically increasing:

zp,t+1 > zpt for p ∈ {1, 2} and t = 1, . . . , T − 1 (17)

In dependence of the actual size of z2t it can be shown that:

Ct =


0 , if z2t mod (2B) = 0

2B , if 0 < z2t mod (2B) < B

B , otherwise

∀t = 1, . . . , T (18)

In the following, these three cases are treated separately.

Case 1 (z2t mod (2B) = 0): Since z2t is a multiple of 2B it follows from (16) that
z1t is a multiple of B, too, and consequently z1t mod B = 0. It directly follows that
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Ct = B mod B + 2B mod (2B) = 0.

Case 2 (0 < z2t mod (2B) < B): Due to z2t mod (2B) < B, the following equiva-
lence holds: z2t mod (2B) ≡ z2t mod B. So, we get [2B − z2t mod (2B)] mod (2B) ≡
[2B − z2t mod B] mod (2B) ≡ 2B − z2t mod B. As at the same time the condition
of case 2 means that z2t is no multiple of B then due to (16) also z1t is no multiple of
B. From these preconditions it follows that Ct = B − z1t mod B + 2B − z2t mod B =
3B − (z1t mod B + z2t mod B) = 3B −B = 2B.

Case 3 (B ≤ z2t mod (2B) < 2B): As z2t mod (2B) is bounded from above by 2B
this is the only case which remains to be investigated. Due to z2t mod (2B) ≥ B we get
z2t mod (2B) ≡ B + z2t mod B and (2B −B − z2t mod B) mod (2B) ≡ B − z2t mod B,
so that Ct = (B − z1t mod B) mod B + B − z2t mod B. Now, we distinguish between
two sub-cases:

(a) If z2t mod (2B) = B then z2t is a multiple of B and due to (16), also z1t is a multiple
of B so that Ct = (B−z1t mod B) mod B+B−z2t mod B = B mod B+B−0 = B.

(b) If z2t is not a multiple of B then due to (16) also z1t is not a multiple of B,
so that 0 < z1t mod B < B and Ct = B − z1t mod B + B − z2t mod B =
2B − (z1t mod B + z2t mod B) = 2B −B = B.

It can further be shown that any solution to such an instance will at least have q slots
where 0 < z2t mod (2B) < B and at maximum q slots where z2t mod (2B) = 0. The
latter follows directly from the fact that z2T = 2qB and further (17) holds, so that only
q multiples of 2B can be met. The former is due to the fact that because of (14) all
demand coe�cient of part 2 are smaller than B. It follows that in the �rst cycle and
subsequently in any cycle where z2t just exceeds a new multiple of 2B the di�erence
between this multiple and z2i has to be smaller than B so that z2t mod (2B) < B. This
has to occur q times to reach z2T = 2qB. As further due to (18) the remaining q cycles
show at least a cost of B, it follows that CLB = 3qB is a lower bound on the objective
value.
We can transform the solution of any YES-instance of 3-Partition to a solution of

PIMSP by simply arranging the sets Ai in an arbitrary order and replacing each element
j ∈ Ai by the number of the model m to which it is assigned in the PIMSP-instance,
i.e., j ∈ Am

∗. Irrespective of the internal order within sets Ai, the restrictions imposed
on αm in (14) will lead to a production sequence where z11 < B/2 and B/2 < z21 < B.
Applying (18) we get C1 = 2B. Furthermore, B/2 < z12 < B and thus B < z22 < 2B
so that C2 = B. Finally, due to the de�nition of the partition we have z13 = B, so that
z23 = 2B and C3 = 0, which sums up to inventory cost of 3B for the �rst three cycles.
Note that after cycle 3 the total consumption of parts equals B and 2B for products 1
and 2, respectively, and the inventories are thus l13 = l23 = 0. As the same has to hold
for all subsequent triplets, the argumentation can be continued exactly q times, resulting
to a total objective value of C = 3qB.
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Conversely, let us consider that a solution with an objective value C ≤ 3qB actually
exists. As was argued above, such an objective value can only be realized if z2t becomes
a multiple of 2B exactly q times, which due to (16) means that z1t is also a multiple of
B for these slots. Now let us consider the part consumption at the beginning of such
a sequence. Because of (14) it holds that 0 < z12 < B and z14 < 2B, so that at the
same time due to (16) B < z22 < 2B and z24 > 2B. In other words, the cumulated
consumption of part 2 is always strictly lower than 2B up to slot 2, but strictly larger
than 2B after slot 4. If the consumption of part 2 is thus not equal to 2B at slot 3,
then due to (17) the �rst multiple of 2B cannot be met anymore and because of (18) the
objective value needs to increase by at least B, so that C ≥ (3q + 1)B. It follows that
for a solution with C ≤ 3qB it has to hold that z23 = 2B and thus z13 = B. As this
means that l13 = l23 = 0, the argumentation can be continued in the same fashion for
all subsequent triplets, so that z1,3·i = i ·B for all i = 1, . . . , q, which immediately yields
the required partition.
The answer to the question of whether there exists a solution to an instance of 3-

Partition is thus YES, if and only if there exists a solution with C ≤ 3qB for the
corresponding instance of PIMSP. As 3-Partition is NP-hard in the strong sense, so is
the general version of PIMSP.

4 A novel Beam Search procedure

4.1 General description

As the problem was shown to be NP-hard in the strong sense, heuristic solution ap-
proaches are required to solve problem instances of real-world size. Beam Search is a
truncated breadth-�rst tree search heuristic and was �rst applied to speech recognition
systems by Lowerre (1976). Ow and Morton (1988) systematically study the performance
of Beam Search compared to other well-known heuristics for two scheduling problems.
Since then, Beam Search was utilized within multiple �elds of application and many
extensions have been developed, e.g., stochastic node choice (Wang and Lim, 2007) or
hybridization with other meta-heuristics (Blum, 2005), so that Beam Search turns out
to be a powerful meta-heuristic applicable to many real-world optimization problems. A
review on these developments is provided by Sabuncuoglu et al. (2008).
Like other breadth-�rst search procedures, Beam Search relies on a tree representation

of the solution space. Unlike a breadth-�rst version of Branch&Bound, Beam Search
restricts the number of nodes per stage to be further branched to a promising subset,
which is determined by heuristic choices in a multi-stage �ltering process. A schematic
representation of Beam Search is depicted in Figure 2.
Starting with the root node of stage 0, all nodes (set V 1) of stage 1 are constructed

and form the set B1 of branched nodes. Then, the multi-stage �ltering process of Beam
Search starts to identify promising nodes of stage 1. First, a rough and computational
inexpensive measure is applied within rough �ltering. This measure, i.e. a priority rule
or lower bound on the remaining path from the current node to the �nal stage, assigns a
priority value to each node within set B1, so that the �rst FW nodes with regard to this
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Figure 2: Schematic representation of Beam Search

priority value are chosen to form the set F 1, where FW = |F 1| is a control parameter
called the �ltered beam width. In the following step, so called detailed �ltering is applied
to further reduce node set F 1 to set E1, which contains all nodes to be further branched in
the succeeding stage. To choose the respective number of |E1| = BW nodes, where BW
is a control parameter called beam width, a more detailed and time-consuming inspection
of nodes is applied. Typically, a more sophisticated lower bound procedure is utilized or
even upper bound solutions are constructed by completing partial solutions (represented
by the respective node) with a simple myopic priority rule based heuristic (e.g. Ow and
Morton, 1988). Only the selected nodes contained in set E1 are branched to build the set
B2 of branched nodes in stage 2, which is only a small subset of all possible nodes V 2.
These steps are repeated until the �nal stage T is reached, where the best solution out of
the set BT of constructed nodes is returned as the result of the Beam Search procedure.

4.2 A Beam Search procedure for PIMSP

To apply the general procedure of Beam Search in a speci�c domain the following three
components must be speci�ed with regard to the respective problem: (i) the graph
structure and the measures for (ii) rough �ltering as well as (iii) detailed �ltering. In the
following, we describe these speci�cations for PIMSP:

Graph structure: The most obvious graph structure to be applied for sequencing
problems like PIMSP is to let nodes of a stage t represent partial sequences π of models
up to sequence position t. We call the graph structure resulting from such an explicit
enumeration scheme a sequence based graph. Thus, at every node of the resulting tree at
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Figure 3: Alternative graph structures

most |M | nodes are to be branched, one for every model which still needs to be scheduled.
However, there exists a more compact graph representation of PIMSP, where a node rep-
resents the number of occurrences of each single model up to stage t. In such an implicit
enumeration scheme, a node of stage t represents multiple subsequences of models, i.e.
all subsequences (�lled up to sequence position t) which share the same number of model
occurrences irrespective of their exact order. Consequently, after branching into at most
|M | additional nodes from each node of a stage t (like above) the resulting node set Bt+1

is to be consolidated by deleting duplicate nodes with identical model occurrences. In
such an occurrence based graph subsequences of models are represented by the di�erent
paths in the graph leading to a node. Figure 3 depicts both alternative graph structures
for an example with 3 models with a demand of one copy each.

An occurrence based graph can be applied whenever the contribution to the objective
value of a partial solution represented by a node at a current stage t, exclusively depends
on the occurrence of models instead of their exact partial sequence. This is the case for
PIMSP because inventory cost of cycle t only depends on the given initial inventories Sp

of part p, the cumulated production quantities Xtim, where Xtim denotes the number
of occurrences of model m of a node i in stage t and the size of the cargo carrier Gp.
The more compact occurrence based graph can be advantageous since the same node
implicitly represents multiple subsequences, which are all evaluated in the process. In
the sequence based graph each node merely represents a unique subsequence, so that
with identical beam width BW less sequences are evaluated. This relationship becomes
obvious in the example of Figure 3, where �ltered beam width FW and beam width
BW are assumed to be 2. If the sequence based graph (a) is applied only 2 sequences
are evaluated, whereas the occurrence based graph (b) allows for an evaluation of 3
sequences. The evaluation of the advantage when applying the occurrence based graph
is part of our computational study in Section 4.3.

Rough �ltering measure: To select a number of FW (�ltered beam width) nodes out
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of the set Bt into node set F t, we simply calculate the actual contribution of a partial
solution to the objective value. This contribution for an actual node (t, i) with cumulated
production quantities Xtim per model m can be calculated as follows:

The produced quantities of all models up to cycle t in a state (t, i) directly determine
the cumulative demands Dtip for all parts p:

Dtip =
∑

m∈M

Xtim · bpm ∀ p ∈ P (19)

The inventories Itip of the parts p ∈ P during a cycle t in state (t, i) are easily derived
by (20), because they are either units from initial stock Sp not consumed by cumulated
demand Dtip or residual units out of newly issued cargo carriers of size Gp. The special
case Itip = 0 arises when the carrier has been emptied at the beginning of t or was already
empty and no unit of p has been required in cycle t.

Itip =


Sp −Dtip, if Sp ≥ Dtip

0, else if (Dtip − Sp) mod Gp = 0
Gp − (Dtip − Sp) mod Gp, otherwise

∀ p ∈ P (20)

Because the state (t, i) directly determines the quantities stored for each part p ∈ P , the
corresponding node can be assigned with a unique partial objective value of Rti equal to
the inventory holding cost at cycle t as follows:

Rti =
∑
p∈P

cp · Itip ∀ t = 0, . . . , T ; i ∈ Vt (21)

Our rough �ltering selects the best FW nodes with regard to the partial objective values
Rti which form the set F t and are further evaluated by detailed �ltering.

Detailed �ltering measure: Our detailed �ltering procedure choosesBW (beam width)
nodes out of node set F t. Only these BW remaining nodes are stored in set Et and are
considered for further branching. As a measure to prioritize single nodes (t, i) we com-
plete the partial solution represented by the respective node of stage t and determine an
upper bound solution. To do so, a simple myopic priority rule based approach is applied.

At each remaining decision point τ = t + 1, . . . , T only the set of possible alternatives
POSτ is relevant, which covers all models m whose demand is not satis�ed by the partial
solution of node (t, i) and preceding sequencing decisions between t + 1 and τ − 1. Let
Dp(τ,m) =

∑
m′∈M Xtim · bpm′ +

∑τ−1
t′=t+1 bpπt′ + bpm denote the cumulative demand for

units of type p provided that model m ∈ POSτ is assigned to the current decision point
τ Then, for each model m ∈ POSτ a priority value f(τ,m) has to be determined (see
(20)):
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f(τ,m) =
∑
p∈P

cp·


(Sp −Dp(τ,m)), if Sp ≥ Dp(τ,m)
0, else if (Dp(τ,m)− Sp) mod Gp = 0
(Gp − (Dp(τ,m)− Sp)) mod Gp, otherwise

(22)

Finally, with these priority values on hand, a greedy choice assigns the best model avail-
able to the sequencing position τ :

πτ = argminm∈POSτ
{f(τ,m)} (23)

Then, τ is incremented and choices are repeated until model vector π is completely �lled.
In such a manner, all nodes of set F t are completed to feasible solutions, and the best
BW nodes are further branched in the next stage.

Finally, when the last stage is reached the best solution value is returned as the solution
of our Beam Search approach for PIMSP.

4.3 Computational study

For our computational study we apply the 1458 test instances generated by Boysen et al.
(2007b), which are downloadable under www.assembly-line-balancing.de. The over-
all test bed is subdivided into small (486 instances with a number of production cycles
ranging between 10 and 20), medium (486 instances with 25-35 cycles) and large (486
instances with 100-300 cycles) instances. The methods described above have been imple-
mented in Visual Basic.NET (Visual Studio 2003) and run on a Pentium IV, 1,800MHz
PC, with 512MB of memory, which is the same con�guration applied by Boysen et al.
(2007b). Our computational study ought to answer the following three questions:

(i) Which parameter setting constitutes a reasonable compromise between solution
quality and solution time for the Beam Search approach?

(ii) Does the Beam Search approach which relies on the occurrence based graph (BSo)
outperform its counterpart relying on the sequence based graph (BSs)?

(iii) And �nally, which performance does the Beam Search procedure show compared to
the heuristic approaches provided by Boysen et al. (2007b)?

First, question (i) on a reasonable setting of control parameters FW (�ltered beam
width) and BW (beam width) is investigated. For this purpose, we vary these parameters
in the following ranges: FW ∈ {10, 15, 20, 25, 30, 35, 40} and BW ∈ {5, 10, 15, 20, 25}.
For any feasible combination of control parameters (note that FW ≥ BW has to hold)
we solve the set of small problem instances and relate the solution performance obtained
to the respective control parameter values. These results are depicted in Figure 4.
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Figure 4: Solution time and quality in dependence of control parameters

Figure 4 displays that the solution time roughly increases in a linear manner if both
BW and FW rise. However, this increase is smaller with regard to a rising FW than
BW , since the completion of FW partial solutions by the myopic priority rule approach
during detailed �ltering is computational inexpensive when compared to the more com-
plex branching process of BW nodes and the subsequent consolidation of duplicate nodes.
On the other hand, with rising FW and BW the solution quality increases. This result
is not astounding, because with increasing control parameter values a larger part of the
complete solution graph is explored. In view of these results, we apply a parameter set-
ting of FW = 35 and BW = 20 for the following computational tests, which turns out to
be a reasonable choice to level the trade-o� between solution quality and solution time.
To answer questions (ii) and (iii), we solve all 1458 instances with our novel Beam

Search approaches BSs basing on the sequence based graph and BSo (occurrence based
graph) and compare their results with the so-called Goal Chasing (GC) procedure, which
is a simple myopic priority rule based heuristic, and the Ant Colony approach (ANT)
provided by Boysen et al. (2007b). Table 2 displays the aggregated results over all small
instances, where the results are compared in relation to optimal solution values. For the
medium and large test instances these optimal solutions are unknown, so that Table 3
lists the aggregated results for these two instance sets compared to the results of a lower
bound procedure (LB) introduced by Boysen et al. (2007b).

measure GC ANT BSs BSo

number of optimal solutions 89 323 340 435
average relative deviation from optimum in % 13.03 1.03 1.10 0.18
maximum relative deviation from optimum in % 123.08 11.2 30.0 5.42
average absolute deviation from optimum 17.3 1.9 1.59 0.36
maximum absolute deviation from optimum 246 44 33 22
average CPU-seconds <0.1 0.53 0.009 0.014

Table 2: Results aggregated over all 486 small instances
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measure GC ANT BSs BSo

average relative deviation from LB in % 22.72/26.68 9.37/16.28 7.61/9.30 5.21/6.90
maximum relative deviation from LB in % 120.3/148.7 70.4/69.4 85.0/60.37 55.6/50.7
average absolute deviation from LB 52.3/852.3 22.9/588.2 19.9/322.6 13.8/242.6
maximum absolute deviation from LB 528/8123 279/5613 263/3216 221/2554
average CPU-seconds <0.1/<0.1 1.09/40.92 0.01/0.73 0.03/3.36

Legend: medium/big instances

Table 3: Results aggregated over all medium and large instances

These results reveal that BSo easily outperforms all other approaches by far. For
instance, BSo solves 435 small instances to optimality with an average relative deviation
from the optimum of merely 0.18%. This is considerably better than the alternative
Beam Search approach BSs (1.1%) and the heuristic approaches provided by Boysen et
al. (2007b) (GC=13.03% and ANT=1.03%). Moreover, BSo is also considerably faster
than ANT. Analogously, BSo outperforms all other approaches when solving medium
and large test instances (see Table 3). Only with regard to the solution time BSs is
slightly superior, which can be explained by the fact that the sequence based graph does
not require a check for duplicate nodes. This consolidation step at each stage of the
graph, which is inevitable for the occurrence based graph, slows down BSo. However,
BSo is about 10 times faster than ANT and yields a considerably better solution quality.

5 Conclusion and Future Research

In this work, it was shown that general instances of PIMSP are NP-hard in the strong
sense. Although from a practical point of view, average algorithmic performance is more
conclusive with regard to the applicability of particular solution methods, the theoretic
computational complexity of a problem provides valuable insights with regard to the
choice of suited algorithms and constitutes a decisive step in understanding the prob-
lem's structure. For a problem which is NP-hard in the strong sense, the existence of an
exact algorithm with even pseudo-polynomial time complexity is highly unlikely, so that
the development of specialized heuristic approaches seems meaningful in order to solve
problem instances of real-world size. An appropriate Beam Search heuristic was addi-
tionally developed. A comprehensive computational study showed that this approach
clearly outperforms existing solution procedures.
Future research could investigate the question of whether special PIMSP-instances,

consisting exclusively of zero-one demand coe�cients (bpm ∈ {0, 1}), are also NP-hard
in the strong sense. Such a special structure of bills of material exists in some industrial
cases (see Cakir and Inman, 1993; Boysen et al., 2007b), so that a respective proof
would be a valuable contribution. Moreover other exact and heuristic algorithms could
be developed to further enhance the solution performance.
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