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Abstract In this paper we address a cyclic scheduling problem: finding a periodic
schedule with minimal period for unitary resource constrained cyclic scheduling prob-
lem. The main originality is to cope with both precedence delays and complex resources
settings which make the problem AP-complete in general.

A guaranteed approach, called Decomposed Software Pipelining, has been proposed
by Gasperoni and Schwiegelshohn [1], followed by the retiming method by Calland,
Darte and Robert [2] to solve the problem assuming parallel identical processors and
ordinary precedence constraints. In this paper, an extension of this approach to unitary
resource-constrained cyclic scheduling problems with precedence delays is analyzed and
its worst, case performance ratio is provided.

1 Introduction

Cyclic scheduling problems [3] have numerous practical applications in production sys-
tems [4], [5], [6] as well as in embedded systems [7], [8], [3] used for devices such as
mobile, automotive and consumer electronics. Our research in this field is particu-
larly motivated by the advances in hardware technology, but our results are also valid
for mass production systems. In fact, instruction scheduling, also known as software
pipelining [9] is produced by the compiler in embedded architectures and aims to re-
duce the operating frequency given real-time processing requirements. The high-quality
of such schedules is then a performance critical optimization that has a direct impact
on the overall system cost and energy consumption. Most of today’s high performance
applications uses instruction level parallel processors such as VLIW processors [10].
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To benefit from these parallel structure, software pipelining techniques aim to exploit
parallelism across more than one basic block of the code. Since most of the programs
are composed with loops with a very large number of iterations (Image processing is
a typical example), the parallelism should be extracted from loops. Hence, to achieve
efficiency, instruction scheduling can be modeled by a cyclic scheduling problem given
by a bivalued (uniform) cyclic precedence graph and resource constraints.

Among the different cyclic scheduling frameworks, modulo (periodic) scheduling
[11], [3], [7] is the most successful in compilers (for example the LAO compiler of STMi-
croelectronics) and production systems [12],[5],[6] since it induces a short description
of schedules that optimizes the memory requirements of the loop code provided by
the compiler, as well as the way schedules are executed in production systems. In this
approach, each task is repeated periodically every A time units. The aim is then to
provide a periodic schedule with minimal period A. This problem is N"P-hard even if
unitary processing times, no precedence delays and parallel processors are assumed [3].
If no resource constraints are involved, then the problem can be solved in polynomial
time - all references can be found in ([8], p. 103-128). Notice that polynomial subprob-
lems have been investigated when the precedence graph is acyclic [3], or when some
decisions are made on the ordering of tasks on resources [5],[6].

In order to model the software pipelining problem, [7] introduces the RCMSP (Re-
source Constrained Modulo Scheduling Problem) as an extension of the usual resource
constrained scheduling problem RCPSP [13] with precedence delays and provides an
integer programming model. This choice is driven by the fact that RCMSP enables
to model both ressource and precedence constraints induced by the features of VLIW
processors. These processors are composed of functional units of different types. An
instruction may use several types of functional units at the same time (for example
memory access an floating point unit). We consider the special case, denoted unitary
RCMSP, where the resource demands are unitary. This restriction is motivated by
the VLIW structure, where usually no more than one functional unit of each type is
needed by an instruction. Moreover, VLIW functional units are usually pipelined. This
means that they can start a new instruction whereas the previous instruction is still
in progress. Hence the precedence constraints induced by data dependences between
instructions are subject to precedence delays in the RCMSP.

Although periodic scheduling heuristics are commonly used in instruction schedul-
ing of modern VLIW architectures, in the classic modulo scheduling framework [11],
[14], [15], [16], the theoretical efficiency of the corresponding schedules is not estab-
lished. However, the noticeable Decomposed Software Pipelining (DSP) approach in-
troduced in [1], [17], [2] has been proved to be among the most efficient in practice
[18], and provides the only algorithms with a worst case performance bound. The idea
of DSP is to decompose the periodic scheduling problem into two parts: a polynomi-
ally solvable graph problem, and a resource constrained non cyclic scheduling problem.
The solutions of the two problems can then be recombined to get a feasible periodic
schedule. Notice that the performance bound given in [2] assumes simple precedence
constraints and parallel machines, then it is extended, in [18], to the case of precedence
constraints with delays.



O J oy U b WD

OO U UG U OTOIOTOTOT A DS DS SEDEWWWOWWWWWWWIONRNONNRNONNNONND R R R R R
O WNRPOWVWOJIONNEWNR,OWVW®OJIANUNBEWNRFROWOW®O®JANTBEWNROWVW®O-JIOUBWNRLOWWJOU S WNR O L

The goal of this paper is to explore more deeply the Decomposed Software Pipelin-
ing approach and to extend it to deal with unitary RCMSP resource settings and
arbitrary non-negative start to start precedence delays. We then provide a worst case
performance analysis that generalizes the ones of [1] and [2] which have been developed
for parallel processors and simple precedences. Our performance guarantee outperforms
the bound given by [18] and extends it to the case of specialized processors. We show
that Decomposed Software Pipelining is still a guaranteed algorithm in this context
although the theoretical worst case ratio increases with the number of resource types.

Section 2 presents the mathematical formulation of the cyclic unitary resource con-
strained modulo scheduling problem RCMSP with precedence delays, illustrated by a
loop issued from the ST200 (ST Microelectronics) compiler. In section 3, we introduce
the Decomposed Software Pipelining approach and we define a generic algorithm Ex-
tended DSP to solve our problem. Section 4 is devoted to the worst case analysis of
the extended DSP algorithm. Section 5 concludes the paper.

2 Problem formulation

Let us now define more formally the problem adressed in this paper. Denotations are
mainly issued from the classical cyclic scheduling papers [3].

2.1 Resources, tasks, precedences

An instance of a unitary resource-constrained cyclic scheduling problem can be defined

by:

1. An architecture model characterized by k resource types. The availability of re-
source type r € {1,...,k} is denoted by m,. The resource type r may be viewed
as my parallel processors.

2. Aset T of n tasks or instructions {7} }1 <<, with integer processing time {p; }1<i<n.-
To each task 7; is associated a binary vector {bi}lg,ngk over the resource types,
such that 7; uses be units of type r resource during its execution. Notice that a task
might use several processors but of different types. Each task T; must be performed
an infinite number of times. We call T; at iteration ¢ and denote by (73, ¢) the qth
execution of T5.

3. An inner loop modeled by a cyclic precedence bivalued graph G = (T, &) where £
is a set of edges defining uniform dependence relations. An edge between two tasks
(T3, Tj) € € is characterized by two integers:

Its height h;; is a non-negative integer.

Its delay [;; is an integer such that the scope d;; = p; +1;; > 0.

This edge models the fact that for any iteration number ¢, the task T} at
iteration g + h;; has to be issued at least p; +1;; time units after the starting time
of task T; at iteration q.

Usually, G is depicted by giving to each edge (73,T}) the value (p; + 5, hij)
(see figure 2).

This model generalizes the classical parallel processors statements (in which k& = 1
-i.e. there is a unique resource type) as well as typed tasks systems where each binary
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vector {bfn}1<r< 1. has only one positive component. Moreover usual cyclic precedences
13], [1], [2] are defined by null delays.

As shown in the example section, positive delays allows to model data dependences
between tasks performed by pipelined functional units, whereas negative delays [;; such
that p; + l;; > 0 may model synchronization between tasks.

2.2 Schedules and problem statement

A resource-constrained cyclic schedule o assigns a starting time o (7}, q) for each task
occurrence (1}, q) such that for all r € {1,--- , k} and for each time slot ¢, the number
of tasks using resource type r at time ¢ is at most equal to m,, and

(13, Tj) € € = o(T3,q9) + pi + lij < o(Tj,q+ hij) YgeN

Among the different software pipelining frameworks, periodic scheduling [11] is the
most successful in compilers since their compact representation makes them easy to
implement, shortening the program size. A periodic schedule o is defined by its period
A and the schedule of the first iteration o (77, 0)ieq1,...,n}"

Vze{laan}>quN O’(,T’laq):U(Tl:O)J’_q)\

In this paper we consider the problem of finding a periodic schedule o with minimal
period A such that:

1. Precedence constraints are met:
V(T;,Ty) € €, o(1},0) — o(T13,0) > p; + lij — Ahij

2. Resource constraints are met : for any time slot ¢t and any resource type r, the
number of tasks T; using r (i.e. such that by. = 1) that are beeing processed at time
t is not greater than m;.

2.3 Assumptions and notations

Let us denote, for any circuit ¢ of G, by H(c) the sum of the heights of the arcs of ¢,
and by L(c) the sum of the scopes of its arcs (processing times plus delays).

It is well known [8], [3] that the precedence graph is consistent (i.e. assuming no
resource constraints, there exists an infinite schedule) if and only if for any circuit ¢ of
G, either H(c) > 0, or H(c) = L(c) = 0.

As we consider here models for loops, a circuit ¢ with H(c) = L(c) = 0 is unlikely
to exist. This would mean that all tasks of the circuit are to be scheduled at the same
time in each iteration, and such constraints are not induced by data dependences nor
by usual synchronizations. So we assume that for any circuit ¢ of G, H(c) > 0.

We note 0™ an optimal periodic schedule for the problem considering unbounded
resources (thus relaxing the resource constraints) and A*° its period. This schedule can
be computed in polynomial time using graph algorithms. Indeed, according to many
authors (see [3] for references),

max L(C)
c circuit of G H(C)’

A =
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The computation of this value can be done in polynomial time. A review of efficient
graph algorithms for this problem can be found in [19], and a polynomial parametric
algorithm is given in [20]. Moreover, if we define the value of an arc (1j,7}) to be
pi+1lij — A hyj, and the value of a path by the sum of values of its arcs, then (T, 0)
can be defined as the maximum value of a path to T;.

In the rest of the paper, we use the following notations:

Mmaez = Max My
1<r<k
lmar = max(0, max l;;)
(T3, T;)ee "
in = min p; = max p;
Pmin 1Si§np% Pmax 1§i§npl
_ lmax
p= Pmin
2.4 Example

Let us illustrate the problem adressed in this paper with the following example, given
in Figure 1, which represents a C program source code and the corresponding ST200
VLIW processor operations ([7], p.270). We will work on this example throughout the
paper.

. . L7_0.8:
int p“’d(‘gt P, short all, short ) 5y g131 = 0.G127 loads ali] in register g131
{ ”}t e MULL.2  gl32 = G126, gl3l  multiplies afi] by b
OT(Z _ 0; 4 <’?’ it ADD_3 G129 = G129, g132  adds the result to s
} st = ali] +b; ADD_4 G128 = G128, 1 increments i
roburn s: ADD_5 G127 = Gl127,2 computes the address of ali]
: o CMPNE_6  bl35 = G118, G128  compares i and p
BRF_T b315 s L7.0_8: branches to the loop body

Fig. 1 A sample C program and inner loop body compiler representation.

The loop has n = 7 unit processing time tasks (instructions) displayed on the right
and numbered from top to bottom. Each one is executed N times, where N is a given
parameter representing the number of iterations that can be very large, and thus is
assumed infinite.

Each instruction is composed with an operation code and register numbers. For
example, ADD_3 G129 = (G129, g132 means that registers G129 and ¢g132 are added
and the result is stored in register G129.

The resources availabilities and the resource requirements of each operation type
are displayed in Table 1.

Resource Issue | Memory | Control | Align
Availability | 4 T T 2
LDH 1 1 0 0
MULL 1 0 0 1
ADD 1 0 0 0
CMPNE 1 0 0 0
BRF 1 0 1 1

Table 1 Resources availabilities and operation requirements.
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The resources are: Issue for the instruction issue width; Memory for the memory
acces unit; and Control for the control unit. An artificial resource Align is also in-
troduced to satisfy some encoding constraints. There are in our example 5 types of
operations: ADD and CMPNE correspond to arithmetic operations. MULL, LDH and
BRF are repectively multiply, memory and control operations.

The associated precedence graph G(T,€&) is given in Figure 2. A dummy node 0
represents the start of an iteration and a dummy node n + 1 = 8 represents the end of
an iteration.

For example, consider the edge between nodes 1 and 2 with valuation (3,0). T}
loads in register g131 the memory word (a[i]) whose address is in G127, whereas Th
multiplies g131 (thus a[é]) by G126 in which b is stored. So T at any iteration ¢ must
output its result in register g131 before 15 at the same iteration reads it. As the loading
operation is performed by a pipelined unit, the data in g131 is available only 3 time
units after T starts.

Consider now the edge between nodes 6 and 4 with valuation (0, 1). T compares
the two registers containing values of ¢ (G128) and p (G118), whereas 1 increments
G128. In order to observe the loop semantic, (T4, q + 1) cannot modify G128 before
(Ts, q) compares it.

This model can also handle buffer constraints. Indeed, assume that G127 is a buffer
of capacity 4. For any iteration g, (15, q) writes G127, so there must be a free position
in the buffer. Hence the task 7% at iteration ¢ — 4 must have already read the buffer,
leading to an arc from node 5 to node 1 with valuation (1, 4).

Fig. 2 A precedence graph G(T,&). Values (p; + l;5,hi;j) are displayed next to the corre-
sponding arc.

Figure 3 displays a periodic schedule of G(T, ) with A = 2, in which each operation
is suffixed by the iteration number. The tasks of the first iteration are highlighted.
Notice that if unbounded resources are assumed, the optimal period \*° = 1, since

there is no circuit ¢ in the graph such that II}((?) > 1.




O J oy U b WD

OO U UG U OTOIOTOTOT A DS DS SEDEWWWOWWWWWWWIONRNONNRNONNNONND R R R R R
O WNRPOWVWOJIONNEWNR,OWVW®OJIANUNBEWNRFROWOW®O®JANTBEWNROWVW®O-JIOUBWNRLOWWJOU S WNR O L

(o)
Issue

Memony[ 10 ] L1 | 12 J

Control

Align  [emeemmmmeee —m—————— - B B W —
20 | 217 | 22 23

Fig. 3 An optimal periodic schedule of G(T,¢E).

3 Decomposed Software Pipelining

Generating an optimal resource constrained cyclic scheduling with minimal period is
known to be N'P-hard [3]. The Decomposed Software Pipelining is a heuristic approach
introduced simultaneously by [1] and [17]. The main idea is to decompose the problem
into two subproblems: a graph problem, and a standard scheduling problem (acyclic)
for which efficient algorithms are known.

The authors of [1] give an efficiency bound on the period A for the problem with
m identical processors and precedence without delays using this approach. Let A°P! be
the optimal (smallest) period, this bound is given by the following inequality:

1\ ot 1 .
A (2o )3 (12 5) (e =)

In [2], a heuristic based on circuit retiming algorithms improves slightly this effi-
ciency bound.

In this paper, we generalize this approach for our problem. Several new elements
have to be taken into account: extended resource constraints and precedence delays.

Notice first that the simplest way to compute a periodic schedule for a loop is to
schedule the first iteration of the loop so that precedence relations within the first
iteration - i.e. those for which h;; = 0- and resource constraints are met. Then, it is
always possible to find a value A larger than the makespan of this schedule and repeat
the first schedule every A time units to get a feasible periodic schedule. This approach is
particularly inefficient in general, since efficiency relies on the interleaving of iterations.
Retiming algorithms, as introduced by [2], aimed to improve this simple approach.

We first use the definition of [2] for a legal retiming:

R:T = Z, V(1;,1T) € €, R(Tj) + hij — R(1;) > 0

The intuition behind retiming is that (753, q), that is interpreted as the ¢ + 1—th
execution of the first task (7}, 0), can also be interpreted as the ¢+ 1+R(1;)—th execu-
tion of a new first task T} = (T}, —R(T;)). Changing the definition of first occurences
of tasks allows to interleave tasks of different iterations into the new first iteration.
Precedence relations also move: if (13, q) precedes (1},q + h;;) then (1},q) precedes
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(T](, q+ R(T}) + hij — R(13)). So the value R(T}) + h;j — R(1};) is the height of a new
cyclic precedence relation.

Moreover, if R(1;) + hi; — R(1;) = 0 then (1},q) precedes (T;,q) for any large
enough integer q. Otherwise, (T}, q) precedes an occurrence (TJ’», q') with ¢’ > ¢. Hence
for these new generic tasks (Til)lgz'gn: the first iteration fulfills the precedence relations
given by a graph called G® computed from G by keeping only the arcs for which
R(T};) + hi; — R(13) = 0. Notice that G is acyclic since G has no zero height circuit.

We now show how G™ can be used to get a periodic schedule of G. We add two
dummy tasks T'5iqr¢ and Tgyop with null processing times and no resource use. For
each task T;, we add arcs (T'siqre, 15) and (13, T's40p) and we need to define valuations
(delays) of these new arcs.

Let A\ be any value. We say that the valuations are consistent with G® and A if

(T3, Tj) € G\G™, Ui stop + Ustart,y 2 lij = MR(T)) + hig = R(T) = 1), (1)

Notice that consistent valuations with G™ and X arc also consistent with G™ and
A > . Moreover, consistent valuations can always be defined as follows for each task
T;, with A = 0, for example by setting :

lstart,i =0 .
2
l; = max lij.
B5P T o meaar

In the last section, we will show that other values might be more efficient while the
worst case bound can be obtained using condition (2).

Assume that we get such consistent valuations with a given A and let 7 be any (non
cyclic) schedule of G that fulfills the resource constraints as well as the precedences
with delays induced by G*®. We note m; the start time of task 7} in this schedule. Then,
setting A® = max (A, Tsiop) and for any task T;,

o™ (Ly,q) = mi + (g + R(L) AT
we get the following result:
Lemma 1l o® isa feasible periodic schedule of G with period AR

Proof. First, we prove that, at any time slot ¢, the tasks scheduled at time ¢ in oR meet
the resource constraints. Let us note F¢ the set of tasks for which one of occurrence is
processed at time ¢. Let T; and T} be two tasks in I;. We note q and ¢’ their occurrences
such that o™(T},q) <t < UR(TZ-,q) + i, UR(Tj,q/) <t< JR(Tj,q') + p;. Hence,

t=0"(Ti.q) +s = o™(Tj.q) +
mi+ (g + RN +s = 75+ (¢ +R(Ty) AR+
7ri—77j+s—s/—(R(Tj)—R(E)—Fq/—q))\R:O. 3)

Since m; + s < m +Pi < TSop < A" and similarly m; + s < /\R7 AR <

™+ s— i — s' < AR, Hence, the equality (3) gives:

mi+s=mj+s and R(1}) +q=R(1;)+q
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So,

T; and T} are performed at the same time 7; + s in the acyclic schedule 7. Thus,

Tj € Fr,+s and then Fy C Fsqr,. Since 7 fulfills the resource constraints induced by
GR,| Fy, (and therefore F}) meets the resource constraints.

For precedence constraints, we need to prove that, V(1;,T;) € £, Vg € N:

&+ @+ RINAN 4 pi+1; < 75+ (¢ + R(Ty) + hig) A®

oR(Ty,q) +pi +1lij < o™(Tj,q+ hij)

Hence, we have to check that inequality (4) is satisfied for each (13,7}) in & and
for any g € N

T — T +pi+lij < (R(Tj)—R(Ti)-i-hij) )\R. (4)

Case 1 : (13,13) € GR
Then, R(T;) — R(T;) + h;; = 0. Since = fulfills the precedence constraints induced

by GR®

Hence,

)

™+ pi + 1 <7y

inequality (4) is satisfied.

Case 2 : (13,1}) ¢ G Thus, R(T}) — R(1;) + hy; > 0. Using condition (1), we get:
m— 15+ pi+lij < Wt pi+ i stop + ,start ¥ ANC(R(TY) + hig — R(T;) — 1) = m;

As mj > U stare and T + i + L Stop < Tstop = A<, we get:
mi— 5+ pi+liy < AN(R(Ty) + hij — R(Ty) — 1) + Tst0p

< AR(R(Ty) = R(T;) + hij)

which achieves the proof. m

Now, the idea, previously used by [1] and [2] is to choose a particular retiming,
then to use a guaranteed algorithm to get a schedule 7w of G®, and finally to extend
the guarantee to the induced periodic schedule.

List scheduling algorithms are the most used heuristics for scheduling with prece-

dence and resource constraints, trying to minimize the makespan Cyqe. We thus pro-
pose the following generic algorithm 1 to solve our problem, by using a list algorithm
to produce .

Algorithm 1: Extended DSP

1.
2.

3.

4.

L

Find a legal retiming R for G;

for (T;,Tj) € £ do

if 'R(Tj) — R(T;) + hij = 0 then
keep (1},1}) in G’*; add nodes Start and Stop and valuations satisfying
condition (1) for some A not greater than a lower bound of A™ (for
example satisfying condition (2));

Perform a list scheduling on GR coping with both precedence and resource
constraints. Compute 7; the start time of task 7; in this schedule and
AR = Cmax(GR) = TStop;
Define the cyclic schedule o® by:
for 1 <¢< N do
for T; € T do
L oR(T3,q) = m + AR (g + R(TY))
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A legal retiming for ¢ of Figure 2 is given in Table 2. The algorithms that might
be used to compute such retiming are discussed later in section 4.3.

Tasks 11 1> T3 Ty 15 1T 17

R(T,) 0 1 2 0 1 1 2

The only arcs of G' remaining in G are (Tg, T4) and (T3, T7)
Table 2 A retiming R of G.

The schedule built by algorithm 1 is depicted in Figure 4. The two arcs (Tg,T4)
and (13,1%) of G are shown, as well as the arcs (17,1%) and (1%,1%3) which are not
in G® and thus link tasks in two consecutive periods. Since p1 + l12 = pa + lag = 3,
the period AR, associated to the retiming of Table 2, is at least equal to 3.

Pattem of the schedule

3.0 31

Issue ‘ 6.0 ‘ 5.0

ol - 50
. 0 I I

0 1 2 3 4 5 6 7 s | o 10 11

—

bR

Fig. 4 A periodic cyclic schedule generated by algorithm 1: AR = 3.

We remark that some idle cycles have been introduced by the scheduling algorithm.
Hence, in order to define a worst case bound of algorithm 1, the idea is to bound the
number of idle cycles occuring in the schedule. The worst case behavior of this algorithm
is analyzed in the next section.

4 Worst case analysis

We first analyze the worst case performance of algorithm 1 in general. This is done by
first analyzing the performance o the list algorithm on GR (and in fact on any acyclic
graph). In the case of m identical processors with non-negative precedence delays, [21]
prove that list scheduling algorithms have the following worst case performance :

li 1
Comet < <2 - m) oot
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l
where p = M For systems with unit execution time tasks, positive delays, and

min
typed tasks, [22] give the following bound:
1

Mmax (lma:c + 1)

chist, < (k +1- ) CorL,

We combine and extend the proofs of [22] and [21] to handle the fact that a task
might use several resource types at the same time, and our slightly more general defi-
nition of precedence delays.

Then, we show that using some particular retimings, that can be computed in
polynomial time, we can get an overall guarantee for the extended DSP algorithm.

4.1 Minimal length of pattern

Consider a dependence graph G. An acyclic graph GR is obtained by a retiming R.
Then, we schedule G* by a list algorithm and we generate a pattern w. We note o
the length (sum of the delays and processing times) of the longest path in G*®. Let
A°P! be the optimal period of G.

We consider two types of bounds obtained from resource and precedence con-
straints.

4.1.1 Resource bound

Lemma 2 For each type r, let my be the number of machines of type r. Then,

noogq
APt S max 2ei=lUroPi
T 1<r<k my

Proof. The shortest time required to complete the tasks using resources of type r
n
on a single machine is Z by - p;. Hence, on m, parallel processors, the shortest time
o=l
D1 brpi

T
required to schedule these tasks once. m

required is . Furthermore, the optimal period A°?! is not less than the time

4.1.2 Precedence bounds

Let 7 be a schedule induced by a list algorithm on G®. In order to reveal the depen-
dencies among tasks, we classify the time slots into three kinds:

1. A full slot ¢/ is a time slot in which at least all the processors of a certain type are
executing tasks.

2. A partial slot tp is a time slot in which at least one processor of each type is idle
and this slot contains at least one non-idle processor.

3. A delay slot tg is a time slot in which all processors are idle.

We note:

— p: the number of partial slots in 7.
— d: the number of delay slots in .
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Lemma 3 The partial-slots lemma:
If m contains p partial slots and d delay slots, then QSR >p+d.

Proof. We prove this lemma by finding a chain h =< Tj_,--- ,T; > in G® such that
the length of h is at least equal to p + d.

Let T, = Tstop and assume that we already have a chain < Tj,_,,---,T; >.
Consider, if it exists, the predecessor T}, of 1},_, such that m;, + pj, +1;, ., is
maximum. If such a predecessor cannot be found, set ¢ =i — 1.

The construction of h leads to the following observation: All the slots between
i, + pj; + 1, ji_, and m;,_, (resp. before m; ) are full slots such that there is no
available processor in a type of resource used by Tj, , (resp. Tj.). Otherwise, T}
(resp. 1}, ) would have been scheduled earlier by the list algorithm.

Therefore, all the p partial slots and d delay slots are covered by the intervals
(7., 75, +Dj; +1j; i, ), so that the length of h is not less than p+d. Thus, oR > p+d.
| |

R

i—1

Lemma 4 The delay-slots lemmas:

If lmaaz > 0 and if © contains d delay slots then ¢R >d+ "l d

max

-‘ Pmin-

Proof. The schedule is computed by a list algorithm, then the number of any consec-
utive delay slots is not greater than lmqz. Consider the chain h defined in the previ-
ous lemma. All the delay slots are included in Ui<i<c[m);, + Py, 75 + 04, + Ligioi)s
since during interval [r;,,7;, +pj,), T}, is performed. Now the length of each interval
(75, + 05> T + 04, + 1, 5,_1) is less than lmaaz. So it holds that ¢ - lmaea > d.

2

The length of h, which is ijl + 15,51 + Pjy, is thus not less than d plus the
i=c

processing time of the chained tasks, which is greater than ¢ pyin > L—
max

—‘ Pmin -

d
Thus, d)R >d+ "E-‘ Pmin- A

4.2 Performance bound

In order to analyze the worst case performance of the algorithm, we need to decompose
the schedule into idle and busy time units on each unit of the resources. An idle cycle
(resp. non idle) on processor P is a time unit for which P is idle (resp. busy). Here we
define the notations to be used below:
M= " mn
1<r<k
ur: the number of non-idle cycles on processors of type 7 in 7.
vr: the number of non-idle cycles on processors of type r in partial slots in 7.
V= Z vr: the number of non-idle cycles in partial slots in 7.
1<r<k

We now prove a first bound on the algorithm performance based on the longest
path in GR. The length of a path is assumed to be the sum of processing times of tasks
and precedence delays along the path. We denote by gbR the maximal length of a path
. AR
in G™.
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Theorem 1 Consider a dependence graph G. Let R be a legal retiming R on G. Then,

R R
S R T

Aopt = mmaz(p + 1) opt’

Proof. Consider the pattern m:
MR = number of non-idle cycles + number of idle cycles.

where the second term on the right hand side can be decomposed as the number of
idle cycles occurring during delay slots, partial slots and full slots.

1. The number of idle cycles per processor occurring during delay slots is equal to
Md.

2. The number of idle cycles per processor occurring during partial slots is not greater
than Mp —V.

3. Using Lemma 2, we now give a bound on the number of idle cycles occurring during
full slots.

. Up — U
Notice that for a resource type 7, there are at most r r

full slots in which

r
resource r is full. Thus the number of idle cycles in these slots is at most (M —
Ur — Ur

my) . Hence we get the following upper bound on the number of idle cycles

T
occurring in full slots:

< Z (M_mr)u

my
1<r<k
< 3 (]\/Ifmr)%f 3 (]\/Ifmr);;—r
1<r<k To1<r<k T
n 7 .
i—1 br D D o1<r<k Vi
< Z (M_m’“)lrélf‘i‘k#_(M_mmaw)%
15 <k <r< r max

< (kM — M)X°P — (M — mumaz)

Mmax

Then,
MAR < MAPY 4 (kM — M)AP — (M — mmaz)

+Mp—V + Md

Mmax

+Mp—V + Md

< kEMMPt — (M — mmm)mv

max

+ Mp+ Md

< kMNPt — M
Mmax
V' is the number of non-idle cycles in partial slots, since a partial slot contains at
least one non-idle cycle, V' > p. Thus,

AR <part - P 41y

max
1
<A (1- = )(p—|—d)+

max

d

Mmazx

Notice that if l;nez = 0, then there is no delay slot and all slots are either full or
partial in the schedule. Hence, d = 0 and using Lemma 3, we get

AR <A (1 L) #R

Mmax

Thus, the bound of Theorem 1 holds in this case. Now, if lyqe > 0,
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R opt 1 1 Pmin 1
AN < kX +(1— )(p—|—d)+ d(1+—) —
Mmax Mmax Imax 1+ l,:;;'
opt 1 1 d p
S kA + (1 - ) (p + d) + d + | Pmin 1
Mmax Mmazx Imax p+1
From Lemma 3, we have ¢™ > p + d and from Lemma 4,(157?‘ >d+ L d —‘ Pmin-
max
Then,
AR Sk)\oznt_k(l_;) (ZSR_i_#Ld)R
Mmax Mmaz P+ 1
<EAP 4 (1 ———— ) gR
- Mmax (p + 1) ¢

which achieves the proof. m

Notice that this theorem allows to extend of the bounds given by [22] and [21]
to the non cyclic scheduling problem where unitary RCPSP resource constraints and
precedence delays are considered. Let us denote by C%‘th the makespan of of a list

schedule, and by C’%’;x the optimal makespan for such a non cyclic instance. Then:

Corollary 1
1

list
C <lk+l- —F—
maxr —= < + 77Lmam(p+ 1)

) Crtae

Proof. In the proof of Theorem 1, G® could be any acyclic graph. As A% is the
makespan of the schedule, and as the resource bound of Lemma 2 is also met by C’,O,féx,
as well as the precedence bound (Cf,ﬁfx is not less than the length of the longest path in
the graph, figured by z;bR in the proof of Theorem 1), we come to the above inequality.
| |

4.3 Choosing a good retiming

In order to improve the performance bound, it seems important to minimize the ratio
between ¢™ and A\°Pt. So if we have a good lower bound LB of A°P!, using Theorem 7
in [23], we can check the existence of a legal retiming R’ such that d)R < LB < \oPt,
If such a retiming exists, we have the following performance guarantee:

AR 1

2 <kl —

Aopt — mmaz(l) + 1)

Two approaches have been investigated for parallel processors and usual precedence
constraints. The first one [1] bases a retiming on a schedule assuming unbounded
resources. The second one [2] uses algorithms to compute a retiming R for which d)R
is minimum. We investigate here the performances of these two approaches for our
problem.

4.8.1 Retiming based on an optimal schedule for unbounded resources

In this subsection, we show that using a retiming associated with the optimal periodic
schedule ™ of period A*° considering unbounded resources, one can define values of
the delays associated with the edges connected to the dummy nodes so that the worst
case performance ratio of the extended DSP algorithm can be provided.
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According to [1],[2], ¢°° can be used to produce a feasible retiming as follows: Let
us define 7 : T — [0, A> — 1] and R™ : T — Z such that:

G'OO(Ti,O) = ﬂ?c + )\OOROO(Tl) v1; €T
Then, the precedence constraint for each edge (13,T}) € &€ is:

o™(T;,0) +p; +li < 0™(T},0) + A%h;

7 4 pi Ly < w0+ X% (hy + R™(1)) — RE(13))

Let us define Croge = ax 75° + p;. Notice that Cheue < A + pmaz — 1, since
<i<n

for any task i, 75 < A% — 1.
The following lemma shows the properties of 7% with respect to the retiming R
that will be useful to analyze the performance of the algorithm.

Lemma 5 If we set for any task Tj, lsiare,i = 757 and Ui stop = Crvae — 75 — i then
these values satisfy condition (1). Moreover, ©°° is a feasible schedule of GR™ with
makespan Cyopy = &

Proof. Let us consider an edge (T3, T;) € &, such that h;; + R°(T;) — R°(T;) = 0,

we have

71',?0 +pi+1;; < W;O.
If now h; + R*°(T;) — R*(T;) > 0, thus (T3, 7}) is not an arc of GR™ | we know that
m5¢ > 4 pi o+ lij — A (hyy + RE(T)) = R (1)

Thus, lSmrt,j > Cr?zoax - li,Stop + lij - Crorfax (hij + ROO(TJ‘) - R> (Tz)) We come
naturally to condition (1):

lstart,j + i stop > lij — Covaz (hij + Roo(Tj) — R™(T;) — 1)

Now </>ROC > Cyvar according to the valuations of the incident arcs to the dummy
nodes. Conversely, any path from Tg;q; to a node T; has a valuation not greater
than 7$°. Hence if we add the arc (13, T'siop), the length of a path is not greater than
li,Stop +pi + 77;0 = Craz- ®

This lemma will lead to the following worst case bound for the schedule build
using this approach. Notice that this bound coincides with the one of [1] when parallel
processors (k = 1) and no delays (p = 0) are assumed.

Theorem 2 Consider a dependence graph G. Let R™ be a retiming on G based on
the schedule with unbounded resources.

ART < <k+ 1- %) APty (1 - %) (Pmaz — 1).

mmax(ﬂ +1 mmax(ﬂ +1

Proof. This is a simple outcome of Theorem 1, using Lemma 5: replacing (ﬁRoo by
Cmaz and using Criaz < A + pmaz — 1 < APt 4 Pmaz — 1. A
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4.8.2 Retiming minimizing qﬁR

An another approach, introduced in [2], aims at minimizing the length of the longest
path of the reduced graph. There are well-known retiming algorithms [23] to minimize
¢R, or to be more accurate, to minimize <Z_)R, the length of a path excluding the two
dummy nodes T'gyqri and Tgyep. Let ROP! be a retiming for which ¢ is minimum. We
note ¢°Pt = gbRopt. We prove that this retiming can be used to get a performance ratio
of the extended DSP algorithm which is similar to the one of Theorem 2.

Lemma 6 Lel § = max g(pi +135) be the mazimum scope in G. Then,

i,1g
A 45— 1> ¢°Pt

Proof. Consider the retiming R™ associated with the schedule 0 defined in the
previous subsection. Let us define for any task 7T; the values lg;4,¢,; = 0 and I; 540p =
max L. Let h=<Tj,,---,Tj., Tsiop > be a path in GR™.
(1, 1) eG\GR> o Jer S 5top P
F?j +pj1. +lji,j1‘,+1 < 7T]?‘.’O+1, Vi € {1,~~- ,C— 1},

By summing up these ¢ — 1 inequalities, we have

c—1
77;?10 + Z(pj'i + lji,ji+1) < 77;)(0
=1
c—1
Thus, Z(pji + 1,50 < wf This inequality is true for any chain of G in par-
=1

ticular for the longest path in GR~ — {Tstart» Tstop}- Thus PR < o <A —1 As
3Pt < @R and ¢%Pt < P 4 5, we get

d)OptS/\OC—1+5

Finally, from Lemma 6, we deduce our last performance ratio.

Theorem 3 Consider a dependence graph G. Let R°Pt be a retiming on G that mini-
mize ¢R. Then,

AR < (k+1— ;> APt | (1— ;> (6 —1).

Mmaz(p + 1) Mmaz(p + 1)

Proof. Using Theorem 1 applied to RPt, we get:

/\’R"p"‘ < k/\opt+ 1+ ypopt
- ( Mmaz(p + 1))¢

<EXP (1 ———— YA 451

N +( mmax(ﬂ+1))( )

<EXP 4 (1 - ————— ) (AP 451

< +( 7,Lmam(p+1))( + )1

<4l ———— NP (1 ————— )51
_( mmafﬁ(p'"l)) ( mmaz(p+1))( )
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The two ways used to define an efficient retiming lead to similar performances, as
in the parallel processor case. Although this second bound is slightly worse than the
one of theorem 2, because of the additive constant, it is likely that improvements might
be made to tighten this bound by refining Leiserson’s algorithm in order to adjust the
values of the incident arcs to the dummy nodes to get the same worst case performance.

4.4 Tightness

In order to discuss the tightness of our bounds, we consider the class of acyclic graphs

given by [22] which asymptotically approaches the ratio (kz—f— 1-— for

makespan minimization on typed task systems with a special case of precedence de-
lays. We consider an acyclic graph G* in this class, with a dummy source Ts¢qr¢ and
a dummy sink 7', and set the height (h;;) of its arcs to 0. We then add an edge
from Tsiop t0 Tstart With lsiop start = 0 and hgiop Start = 1. This last edge express
the fact that tasks of the ¢—th iteration precede all tasks of iteration g + 1.

It is easy to see that the retiming R = (0,...,0) equals R™ as well as R°PL,
According to algorithm 1 the pattern of the cyclic schedule is given by scheduling
G* by list algorithm, and then the period is equal to the makespan of G*. Since the
makespan of G* provided by the list algorithm asymptotically reaches the worst case
bound, the period of the cyclic schedule reaches this bound too. Hence we built a class
of cyclic graphs for which the bound is asymptotically tight.

5 Conclusion

Instruction scheduling, which takes place when compiling applications for modern pro-
cessors, affects critically the performance of the the overall system cost and energy
consumption.

In this paper, we presented a generalized model of instruction scheduling but our
results might also be used for applications in cyclic production systems.

We have built upon results of [1],[2], [22] and extended them to propose a guaran-
teed heuristic for unitary resource-constrained modulo scheduling problems. A worst
case analysis of this heuristic is explored and a performance bound is established. It is
the first guarantee derived for cyclic scheduling problems in the case of many different
resources.

Now, what can be said if the resource demand is not unitary? Then, the Decom-
posed Software Pipelining algorithm still produces a feasible schedule. However, the use
of list scheduling for solving the acyclic problem seems to be less interesting. Moreover
our worst case analysis cannot be easily extended to handle general resource demands.

We point out that in all cases (unitary or not) it would be interesting to derive
new algorithms, more sophisticated than list scheduling, to improve this performance
bound. Finally, it would be worth to study the importance of choosing a good retiming
and its impact on the worst case performance.

Acknowledgements Many thanks to the anonymous reviewers for their helpful comments.
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