
This is a repository copy of A note on reverse scheduling with maximum lateness
objective.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79237/

Version: Accepted Version

Article:

Li, SS, Brucker, P, Ng, CT et al. (2 more authors) (2013) A note on reverse scheduling with
maximum lateness objective. Journal of Scheduling, 16. 417 - 422. ISSN 1094-6136

https://doi.org/10.1007/s10951-013-0314-4

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

A Note on Reverse Scheduling with Maximum Lateness Objective

S.S. Li , P. Brucker , C.T. Ng , T.C.E. Cheng , N.V. Shakhlevich , J.J. Yuan ¤

College of Science, Zhongyuan University of Technology, Zhengzhou 450007, PR China

University of Osnabrueck, Faculty of Mathematics/Informatics, 49069 Osnabrueck, Germany

Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong
School of Computing, University of Leeds, Leeds, LS2 9JT, U.K.

Department of Mathematics, Zhengzhou University, Zhengzhou 450001, PR China

Abstract

The inverse and reverse counterparts of the single-machine scheduling problem 1jjmax are

studied in [2], in which the complexity classi�cation is provided for various combinations of

adjustable parameters (due dates and processing times) and for �ve di¤erent types of norm:

1 2 1 § , and max . It appears that the (2)-time algorithm for the reverse problem

with adjustable due dates contains a �aw. In this note we present the structural properties

of the reverse model, establishing a link with the forward scheduling problem with due dates

and deadlines. For the four norms 1 1 
§

 , and max , the complexity results are derived

based on the properties of the corresponding forward problems, while the case of the norm 2 is

treated separately. As a by-product, we resolve an open question on the complexity of problem

1jj
P


2

 .

Keywords: Reverse scheduling; Maximum lateness

In this note we consider one of the models studied by Brucker and Shakhlevich [2] in the context

of inverse/reverse optimization. The model deals with the reverse version of problem 1jjmax.

Unlike the traditional forward problem, in which the exact values of the due dates are given for all

the jobs and the objective is to �nd a job permutation minimizing the maximum lateness, in the

reverse version typical values of the due dates are given and they are to be modi�ed in order to

achieve a target value of maximum lateness.

Formally, in the reverse version of problem 1jjmax, the jobs in the job set N = f1 2     g

are available at time 0 for processing on a single machine. Associated with each job  2 N are two

main characteristics, namely the processing time  and due date , both of which are integers.

In a schedule induced by a job permutation , the jobs are scheduled consecutively without idle

time and their completion times are denoted by (),  2 N . The lateness of job  is de�ned

as (d) = () ¡  and the maximum lateness is max(d) = maxf(d)j 2 Ng. It is

required that the maximum lateness does not exceed a given target value ¤. In order to achieve

the target value, one has to �nd an optimal permutation  and adjusted due dates b belonging to
¤Corresponding author. E-mail address : yuanjj@zzu.edu.cn (J.J. Yuan).

1

their variability intervals [  ],  ¸ 0, so that the adjustment cost kbd¡ dk is minimum. Thus
the reverse problem can be formulated as

Problem R: min kbd¡ dk
s.t. max( bd) · ¤ for some permutation 

 · b ·  

Notice that for each  2 N , its initial due date  belongs to [  ]. Clearly, there exists an

optimal solution with b ¸ ,  2 N , so in what follows we consider the due date boundaries

[ ] µ [  ].

The deviation jjbd¡ djj is calculated in accordance with one of the following norms:

1 (Manhattan): kbd¡ dk1 =
P

=1 

³
b ¡ 

´


2 (Euclidean): kbd¡ dk2 =
r
P

=1 

³
b ¡ 

´2


1: kbd¡ dk1 = max=1

n


³
b ¡ 

´o


§ (Hamming): kbd¡ dk§ =
P

=1 sgn
³
b ¡ 

´


max (Hamming): kbd¡ dkmax = max=1

n
sgn

³
b ¡ 

´o


where all the coe¢cients  are non-negative.

It is stated in [2] that the reverse problem R can be solved in (2) time by an algorithm

that iteratively increases the due dates of the critical jobs in the earliest due date (EDD) schedule.

However, the proposed algorithm has a �aw, as can be seen from a two-job counter-example with

parameters 1 = 1 = 1, 2 = 2 = 2, 1 2 [0 10], 2 2 [0 10], 1 = 1, 2 = 100, and ¤ = 0. In

this note we �x the �aw by reducing problem R to a forward scheduling problem with due dates

and deadlines and by exploiting properties of that problem.

Lemma 1 Depending on the type of the norm
°°°bd¡ d

°°°, the reverse problem R is equivalent to one

of the following forward scheduling problems:

(A) 1jdue dates d0 deadlines d00j
P

, if norm 1 is used;

(B) 1jdue dates d0 deadlines d00j
qP

 2 , if norm 2 is used;

(C) 1jdue dates d0 deadlines d00jmax fg, if norm 1 is used;

(D) 1jdue dates d0 deadlines d00j
P

, if norm § is used;

(E) 1jdue dates d0 deadlines d00jmax fg, if norm max is used

where the due dates d0 and deadlines d00 are de�ned as

d
0 = d+ ¤ (1)

d
00 = d+ ¤ (2)

Notice that in the equivalent forward problems, the parameters  and ,  2 N , are the same as

those in the reverse problem R.

2

Proof. We present a proof of Case (A) by establishing a one-to-one correspondence between a

solution to the reverse problem R given by a job permutation  and a solution to problem A given

by the same permutation . In particular, we show that if  is feasible for the reverse problem, it

is also feasible for problem A, and vice versa. Moreover, the optimum objective value for a �xed 

is the same for both problems. This implies that the two problems are equivalent and the global

optimal solutions are the same. Note that for both problems we can consider left-shifted schedules

given by .

Permutation  is feasible for the reverse problem R if there exist adjusted due dates b ,  2 N ,
for which the target max-value is achieved, and the due date boundaries are satis�ed:

()¡ b · ¤ (3)

 · b ·  (4)

Permutation  is feasible for problem A if the job completion times under  do not exceed their

deadlines 00 =  + ¤ for all  2 N :

() ·  + ¤ (5)

Clearly, if (3)-(4) hold for the reverse problem, then (5) is satis�ed for problem A.

Alternatively, if (5) holds for problem A, then by setting b in the reverse problem as

b = max f ()¡ ¤g ,  2 N  (6)

we obtain a solution to the reverse problem satisfying conditions (3)-(4). Indeed, condition (3) and

the left-hand-side of condition (4) immediately follow from (6). To show that the right-hand side

of (4) holds, we observe that (5) implies ()¡ ¤ · , and together with  · , we get

b = max f ()¡ ¤g ·  

Denote by R() and A() the optimal objective values of the reverse problem R and of

problem A, respectively, under the assumption that the job permutation  is �xed. For the reverse

problem R with a �xed , the optimal adjusted due dates are given by (6) since any larger values of
b are non-optimal: they can be reduced without violating (3)-(4), leading to a smaller adjustment
cost. Hence

R() =
X

2N



³
b ¡ 

´
=
X

2N

 max f0 ()¡ ¤ ¡ g 

For problem A with a �xed ,

A() =
X

2N

 =
X

2N

 max
©
()¡ 0  0

ª
=
X

2N

max f()¡  ¡ ¤ 0g 

Thus R() = A() and case (A) is proved. The proofs of cases (B)-(E) are similar.

The theorem below is based on a one-to-one correspondence between the solutions to the reverse

problem R and the solutions to problems A-E.

Theorem 1 Depending on the type of the norm kbd¡ dk, the reverse problem R is

3

(A) NP-hard in the strong sense if norm 1 is used and NP-hard in the ordinary sense if the

unit-weight norm 1 is used ( = 1 for all  2 N);

(B) NP-hard in the strong sense if norm 2 is used;

(C) solvable in ( log) time if norm 1 is used;

(D) NP-hard in the ordinary sense if norm § is used; it remains NP-hard if the unit-weight norm

§ is used ( = 1 for all  2 N) and the upper bounds on the due dates d are restrictive

( 
P

=1  ¡ ¤);

(E) solvable in ( log) time if norm max is used.

Proof. We start with the NP-hardness results and then proceed with the polynomially solvable

cases.

For the NP-hardness results, consider an instance of the reverse problem R with

 ¸
X

=1

 ¡ ¤ (7)

which implies

 ·
X

=1

 ·  +¤ = 00

for all the left-shifted schedules C = ()

=1. Thus we can ignore the deadline constraints in the

equivalent problems listed in Theorem 1.

The complexity results for version (A) of the reverse problem follow from the NP-hardness in

the strong sense of problem 1jj
P

 [8, 10] and the NP-hardness in the ordinary sense of problem

1jj
P

 [3].

The strong NP-hardness of version (B) of the reverse problem is proved in the Appendix. To

the best of our knowledge, prior to this research the complexity status of its forward counterpart

1jj
qP

 2 or equivalently 1jj
P


2
 has been open, see, e.g., [12].

The NP-hardness in the ordinary sense of version (D) of the reverse problem follows from a

similar result known for problem 1jj
P

 [6]. In the case of unit costs  = 1,  2  , the

problem is solvable in ( log) time [11] if the deadlines 00 are unrestrictive, which happens, e.g.,

if they satisfy (7); in the case of small deadlines, problem 1jdue dates d0 deadlines d00j
P

 is

NP-hard in the ordinary sense [9].

We now turn to the polynomially solvable cases. Consider version (C) of the reverse problem

and its equivalent counterpart 1jdue dates d0 deadlines d00jmax fg. The optimal value of the

objective in the latter problem is no larger than , where

 = max
=1

fg £
X

=1

 (8)

provided that  ¸ 0.

Instead of dealing with deadlines d00, we consider an equivalent problem without deadlines

but with precedence constraints between jobs, namely 1jdue dates d0 precjmax fg. For this

purpose, in addition to the main jobs f1 2     g, we introduce  auxiliary jobs f + 1  +

4

2     2g. For each auxiliary job  + , it is required that the main job  precedes it. The

parameters + and 
0
+ for the auxiliary jobs are as follows:

+ = 0

0+ = 00 

where 00 is the deadline parameter of the main job , 1 ·  · , de�ned by (2). The -parameters

for the auxiliary jobs are selected as su¢ciently large numbers in order to force these jobs to be

scheduled before their due dates 0+. For example, if

+ = 2 for  = 1     

then the optimal schedule for problem 1jdue dates d0 precjmax fg has an objective value

no larger than  only if each auxiliary job  +  completes before 0+. Due to the precedence

constraints, in that schedule the associated main job  is completed before job + , so it is before

its deadline 00 , as needed.

For problem 1jdue dates d0 precjmax fg we can apply the (+  log)-time algorithm

proposed in [4] for problem 1jprecjmax fg, where  is the number of precedence constraints.

Since in our case  = , we can �nd a solution to problem 1jdue dates d0 precjmax fg with

auxiliary jobs in ( log) time and use it as a solution for problem 1jdue dates d0 deadlines d00j

max fg. Finally, (6) provides the optimal adjusted due dates bd for the reverse problem. Clearly,
the time complexity of this approach is ( log).

We treat case (E) in a similar fashion by formulating an ( log)-time algorithm for its

equivalent counterpart 1jdue dates d0 deadlines d00jmax fg. Introduce an equivalent prob-

lem, namely 1jdue dates d0 precjmax fg, without deadlines but with precedence constraints

between the given jobs  = 1 ¢ ¢ ¢   with due dates 0 and auxiliary jobs + 1 ¢ ¢ ¢  2 such that

+ = 0 0+ = 00  + = 2

where  = max f j = 1     g is the largest value of the objective function. Furthermore, we

add the precedence constraints  ! +  for all  = 1 ¢ ¢ ¢  .

The algorithm presented below is an adapted version of the algorithm of Lawler [7] (see, e.g.,

Section 4.1.1 in [1]). Considering the set  of unscheduled jobs without successors, the algorithm

selects a job  2  with the smallest value  £ sgnmax
n
0 ¡ 0

o
and schedules it to �nish at

time , where  is the sum of the processing times of all the jobs that have not been scheduled yet.

The scheduled job  is eliminated from , its predecessor (if any) is added to ,  is updated, and

the algorithm proceeds in a similar manner.

Algorithm for Problem (E)

1.  :=
P

=1  ; := f+ 1 ¢ ¢ ¢  2g ; max := 0;

2. While  6= ? do

3. Schedule a job  2  with the smallest value  :=  £ sgnmax
n
0 ¡ 0

o
to �nish

at time ;

4.  := ¡ ;

5

5.  := n fg;

6. If  has a predecessor (), then  :=  [f()g;

7. max := max fmax g

Endwhile;

8. If max = 2, then there exists no feasible schedule

For e¢cient implementation of the algorithm, we keep

² all the jobs  2  in a list  in non-increasing order of the 0-values, and

² all the jobs  2  with 0   in a second list  in non-decreasing order of the -values.

To calculate  in Step 3, consider the �rst job  in list  having the largest 
0
-value. If  · 0,

then  = 0 and  is eliminated from . Otherwise, for all the jobs  2 , condition 0   holds

and among these jobs the one with the smallest -value can be found as the �rst job in  . It will

be eliminated from  and  .

When  is decreased in Step 4, the relevant jobs have to be eliminated from  . This can be

done using list .

If a job  is added to , then  is added to , and in case 0  , it is also added to  .

To perform insertion into and deletion from the lists in an e¢cient way,  and are organized

as doubly linked lists. Furthermore, we add a pointer from each job  2  to its position in the

lists. Thus, each insertion and deletion can be executed in at most  (log) time. Since there are

at most  () insertions and deletions, we have an  ( log)-time algorithm.

Remark: As shown in the proof of case (D) of Theorem 1, NP-hardness in the ordinary sense

of problem R under the norm § follows from the NP-hardness in the ordinary sense of problem

1jdue dates d0 deadlines d00j
P

. Notice that no pseudo-polynomial time algorithm is known

for the latter problem even if  = 1 for all  2 N , and it is an open question whether problem

1jdue dates d0 deadlines d00j
P

 is NP-hard in the strong sense. This implies that the same

open question remains for the reverse problem under the norm §.

Appendix

The proof of Theorem 1, Case (B). The decision version of problem R is clearly in NP. We

perform a reduction from the strongly NP-complete problem 3-PARTITION [5].

3-PARTITION: Given a set of 3 positive integers 1 2     3 and an integer  such thatP3
=1  =  and 4    2 for 1 ·  · 3, can the index set  = f1 2     3g be

split into  disjoint 3-element subsets 1 2      such that
P

2
 = , 1 ·  · ?

Given an instance (1 2     3;) of 3-PARTITION, let  =
q

1
6
(+ 1)(2+ 1) and

 = 1
2
( + 1)(2 + 1)2 = 32. An instance of the reverse problem R is characterized by the

following parameters:

6

² job set N = f1 2     4g consisting of normal jobs f1 2     3g and partition jobs f3 +

1 3+ 2     4g;

² for the normal jobs,  =  =  ,  = 0,  = (+) 1 ·  · 3;

² for the partition jobs,  = (+) + 1, 3+ = , 3+ = + ( ¡ 1), 3+ = 3+,

1 ·  · ;

² the target value of the maximum lateness is ¤ = 0;

² the threshold value of the due date adjustment cost is  = (+) .

In the decision version of the reverse problem R, we are required to �nd out whether there exists

a job permutation  and adjusted due dates bd such that max( bd) · ¤ and jjbd¡ djj2 ·  .

Suppose the constructed instance of 3-PARTITION has a solution 1 2     . Without loss

of generality, we assume that  = f3 ¡ 2 3 ¡ 1 3g, 1 ·  · . We show that the permutation

 = (3+ 1 1 2 3 3+ 2 4 5 6     3+  3 ¡ 2 3 ¡ 1 3     4 3¡ 2 3¡ 1 3)

and the vector bd of adjusted due dates,

b = () 1 ·  · 3
b3+ = 3+  1 ·  · 

de�ne a feasible solution to the decision version of the reverse problem R.

Indeed, the due dates of all the jobs satisfy the boundaries
£
 

¤
, 1 ·  · 4. The total

processing time of each triple of normal jobs 3¡2 3¡1 3 positioned in  between two partition

jobs is  so that

( bd) = ()¡ b = 0 1 ·  · 4

and the target value of max is achieved .

To demonstrate that jjbd¡ djj2 ·  we use the following conditions

b ¡  = () ·
l

3

m
(+) 1 ·  · 3

b ¡  = 0 3+ 1 ·  · 4

It follows that

³
jjbd¡ djj2

´2
=

3X

=1


2
 () ·

X

=1

(3¡2 + 3¡1 + 3) [(+)]2 = (+)2
X

=1

2

= (+)2 £
1

6
(+ 1)(2+ 1) =  2

On the other hand, suppose that ( bd) is a solution to the instance of the reverse problem with
max( bd) · ¤ and jjbd¡ djj2 ·  . We denote by N the subset of normal jobs that appear in

 after the partition job 3+  and by  their total processing time. For completeness, we de�ne

+1 = 0. The following sequence of statements proves that 3-PARTITION has a solution.

1. There are no idle times in the schedule given by .

2. The partition jobs satisfy () ·  , 3+ 1 ·  · 4.

7

3. The partition jobs appear in permutation  in the order of their numbering.

4. The total processing time of the jobs in N satis�es  ¸ (¡  + 1).

5. The total processing time of the jobs in N satis�es  · (¡  + 1).

6. Between the two partition jobs 3+  and 3+  + 1, there are three normal jobs NnN+1,

and their total processing time is .

Statement 1 is satis�ed since the last job completes at time
P4

=1  = (+) and it cannot

exceed its adjusted due date bounded by max1··4
©

ª
= (+).

Statement 2 holds since b cannot exceed  and  =  for any partition job.

To prove Statement 3, suppose that for   , a partition job 3+  appears before a partition

job 3+ . Let 3+  be the �rst partition job with this property. Then, taking into account that

all the partition jobs are of length , 3+() ¸ ( + 1), which exceeds the maximum allowed

due date 3+ = + (¡ 1):

3+()¡ 3+ ¸ (+ 1)¡ ¡ (¡ 1) = ¡ (¡ 1)  ¡   0

To prove Statement 4, we consider the fragment of the schedule starting with the partition job

3 + . Job 3 +  is followed by  ¡  partition jobs of total length (¡ ) and by the normal

jobs N of total length . Due to Statement 1, the completion time of the last job is (+):

3+() + (¡ )+  = (+)

Since job 3+  should be completed no later than 3+ = + ( ¡ 1), we obtain:

 =  + ¡3+() ¸  + ¡ (+ ( ¡ 1)) = (¡  + 1)

To prove Statement 5, we use the estimate:

³
jjbd¡ djj2

´2
¸

3X

=1


2
 () ¸

X

=1

( ¡ +1)()
2 = 2

X

=1

(2 ¡ 1)

Suppose that  ¸ ( ¡  + 1) + 1 for some 1 ·  · . Since for the remaining values,  ¸

(¡  + 1) due to Statement 4, we obtain:

³
jjbd¡ djj2

´2
¸ 2

Ã


X

=1

(2 ¡ 1)(¡  + 1) + (2 ¡ 1)

!


We calculate the sum on the right hand side:

X

=1

(2 ¡ 1)(¡  + 1) =
X

=1

(2¡ 22 + 2 ¡ +  ¡ 1) =
X

=1

((2+ 3) ¡ 22)¡ 2 ¡ 

= (2+ 3)£
1

2
(+ 1)¡

2

6
 (+ 1) (2+ 1)¡ 2 ¡ 

=
1

6
 (+ 1) (2+ 1) +

1

6
 (+ 1)£ 6¡ 2 ¡  =

1

6
(+ 1)(2+ 1)

8

It follows that

³
jjbd¡ djj2

´2
¸ 2

µ
1

6
(+ 1)(2+ 1) + (2 ¡ 1)

¶
= 2

¡
2 + (2 ¡ 1)

¢

¸ 2
¡
2 + 1

¢
= 22 + 32  (+)22 =  2

a contradiction to the assumption that jjbd¡ djj2 ·  .

As a consequence of Statements 4 and 5, we conclude that  = (¡  +1), 1 ·  · . Hence

the normal jobs between the partition jobs 3 +  and 3 +  + 1 have a total processing time ,

1 ·  ·  ¡ 1. Since 4   =   2 for 1 ·  · 3, each such set must contain exactly

three jobs. Thus the splitting of the normal jobs into triples de�nes a solution to the instance of

3-PARTITION.

Notice that the proof can be easily extended for the case of equal upper bounds for all the due

dates, i.e.,

 = (+) =
4X

=1

  1 ·  · 4

In spite of the large , each partition job , 3 + 1 ·  · 4, is forced to be completed no later

than  since completing it at time  + 1 or later incurs a high cost for adjusting b and results
in jjbd ¡ djj2 ¸ (+ ) + 1   . Thus the equivalent problem 1jj

P


2
 with unrestrictive

deadlines is strongly NP-hard as well.

Acknowledgement

This research was supported in part by NSFC (11171313) and NSFC (11271338).

References

[1] Brucker, P. (2004). Scheduling Algorithms, Springer, Berlin.

[2] Brucker, P., & Shakhlevich, N.V. (2009). Inverse scheduling with maximum lateness objective.

Journal of Scheduling, 12, 475-488.

[3] Du J., & Leung, J.Y.-T. (1990). Minimizing total tardiness on one machine is NP-hard. Math-

ematics of Operations Research, 15, 483-495.

[4] Fields, M.C., & Frederickson, G.N. (1990). A faster algorithm for the maximum weighted

tardiness problem. Information Processing Letters, 36, 39-44.

[5] Garey, M.R. and Johnson, D.S. (1979). Computers and Intractability: A Guide to the Theory

of NP-Completeness, Freeman, San Francisco, CA.

[6] Karp, R.M. (1972). Reducibility among combinatorial problems. In R.E. Miller & J.W.

Thatcher (Eds) Complexity of Computer Computations, Plenum Press, 85-103.

9

[7] Lawler, E.L. (1973). Optimal sequencing of a single machine subject to precedence constraints.

Management Science, 19, 544-546.

[8] Lawler, E.L. (1977). A �pseudopolynomial� algorithm for sequencing jobs to minimize total

tardiness. Annals of Discrete Mathematics, 1, 331-342.

[9] Lawler, E.L. (1982). Scheduling a single machine to minimize the number of late jobs. Preprint,

Computer Science Division, University of California, Berkeley.

[10] Lenstra, J.K., Rinnooy Kan, A.H.G., & Brucker, P. (1977). Complexity of machine scheduling

problems. Annals of Discrete Mathematics, 1, 343-362.

[11] Moore, J.M. (1968). An  job, one machine sequencing algorithm for minimizing the number

of late jobs, Management Science, 15, 102-109.

[12] Valente, J.M.S., & Schaller, J.E. (2012). Dispatching heuristics for the single machine weighted

quadratic tardiness scheduling problem. Computers & Operations Research, 39, 2223-2231.

10

