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Abstract This paper presents a comprehensive review on
methods for real-time schedule recovery in transportation
services. The survey concentrates on published research on
recovery of planned schedules in the occurrence of one or
several severe disruptions such as vehicle breakdowns, acci-
dents, and delays. Only vehicle assignment and rescheduling
are reviewed; crew scheduling and passenger logistics prob-
lems during disruptions are not. Real-time vehicle sched-
ule recovery problems (RTVSRP) are classified into three
classes: vehicle rescheduling, for road-based services, train-
based rescheduling, and airline schedule recovery problems.
For each class, a classification of the models is presented
based on problem formulations and solution strategies. The
paper concludes that RTVSRP is a challenging problem that
requires quick and good quality solutions to very difficult
and complex situations, involving several different contexts,
restrictions, and objectives. The paper also identifies research
gaps to be investigated in the future, stimulating research in
this area.
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1 Introduction

Many optimization-based algorithms have been developed
in the last decades for generating vehicle schedules in trans-
portation services. However, the planned schedules are some-
times disrupted by unforeseen events. Some of these disrup-
tions are severe enough to prevent the system from operating
as planned, such as inclement weather, terrorist events, and
vehicle breakdowns. When these situations occur, reschedul-
ing is approached as a real-time vehicle schedule recovery
problem (RTVSRP). The main objective of this paper is to
review and synthesize the literature on contributions toward
solving such problems for ground and airline transportation
services.

Clausen et al. (2010) classify a disrupted situation where
the deviation from the plan is sufficiently large to impose
a substantial change in operations. Severe weather condi-
tions, accidents, maintenance, and the breakdown of vehi-
cles are the examples of possible disruptions that demand
the rescheduling of vehicles. Disruption data in transporta-
tion services are impressive. In 2008, on average 17.67 %
of the Brazilian commercial flights were delayed more than
30 min, and on average 2.67 % were canceled according to
Brazilian Civil Aviation Agency (2010). Similar numbers are
presented by Eggenberg et al. (2010) for European flights.
In the railway sector, Jespersen-Groth et al. (2009) reported
that the Dutch railway network has approximately 17 dis-
ruptions per day with an average duration of 1.8 h, 35 % of
them being related to technical failures and 35 % related to
the third parties (e.g., accidents). For transit service exam-
ples, San Francisco Municipal Transportation Agency had
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only 71 % bus trips on time from 2007 to 2010 (see http://
www.sfog.us/sfmuni.htm). SunTran transit agency in Tuc-
son, Arizona, had 82 road calls in July 2011 (see SunTran
2011), where small accidents were fixed quickly by drivers,
but some serious accidents led to towing the disabled bus
back to a depot.

The economic impact of disruptions is also significant.
Disruptions introduce additional costs and decrease in ser-
vice level. Based on data from the Air Transportation of
America, Ball et al. (2007) reported that US$ 6.5 billion
were spent in 2000 by customers and airline companies to
deal with delays. According to Guarino and Firestine (2010)
several snowstorms in the USA during February 2010 gener-
ated the greatest proportion of weather-related cancelations
on record, with 4.2 % of all flights being canceled (20,206
flights). These cancelations were estimated to have a cost
of about $80–$100 million. Severe weather has also caused
delays and cancelations in Swedish railways. During the win-
ter of 2010–2011, heavy snowfall and record cold resulted
in approximately four million hours in delays and $372 mil-
lion in lost working hours (Swedish Transport Administra-
tion 2011).

Until recently, real-time vehicle schedule recovery was
exclusively conducted by human schedulers, based on their
experience and common sense. However, the implementa-
tion of new information and communication technologies
(e.g., automatic vehicle locaters, the global positioning sys-
tem, geographical information systems, and wireless com-
munication) in transportation systems and the unprecedented
increase in the capacity of the computers to solve large
instances of problems enables providing real-time informa-
tion and implement real-time disruption recovery algorithms
at reasonable costs. As a consequence, a growing body of
contributions on several aspects of real-time vehicle sched-
ule recovery in transportation services has appeared in the
operations research and related literature. Indeed, some of
the recently proposed models present increased levels of real-
ism and incorporate a large variety of needed constraints and
operational requirements that have resulted in effective com-
puter algorithms used by transportation/logistic companies.

An interesting alternative to address disruption problems
is to build robustness into the schedule throughout sched-
ule design process. The main idea of robust schedule is to
incorporate the possibility of disruptions during the schedule
design to enhance potential recovery actions, such as adding
buffers or slack time between operations in schedules or hav-
ing standby vehicles and part-time crews. Ahuja et al. (2009)
present a compilation of papers dealing with robust opti-
mization theory in transportation systems. Robust schedul-
ing is becoming an important topic in transportation services
and several research papers have appeared in the last two
decades on this subject. Huisman et al. (2004), Kramkowski
et al. (2009), and Amberg et al. (2012) deal with robust bus

scheduling; Zwaneveld et al. (1996), Zwaneveld et al. (2001),
Fischetti et al. (2009), and Caprara et al. (2010) consider
robust train scheduling; Ageeva (2000), Lan et al. (2006), Lee
et al. (2007), Weide et al. (2009), Borndörfer et al. (2009),
and Dück et al. (2012) address robust aircraft scheduling. As
pointed out by Ahuja et al. (2009) and Clausen et al. (2010),
robust scheduling and real-time vehicle schedule recovery
are tightly coupled problems. The former constitutes a proac-
tive approach, while the latter assumes a reactive approach to
deal with disruptions during operation. This paper is focused
on the real-time vehicle schedule recovery problem.

Another related aspect in the rescheduling context is sta-
bility. This term refers to schedules where “there is little
deviation between the pre-[initial] schedule and the executed
schedule” (Leus and Herroelen 2005). Stability should be an
important consideration in the schedule design so that during
rescheduling, perturbations in the initial scheduling are small
(Rangsaritratsamee et al. 2004), so that the costs involved in
the disruption management process are also small. In the
transportation context, stability can be a schedule character-
istic that relates to the ability to return to normal operation
after a disturbance occurs (D’Ariano 2008). Although this
term is often used in production management as a reschedul-
ing performance index (Herroelen and Leus 2004; Raheja
and Subramaniam 2002), stability has not been a major con-
sideration due to the complex dynamics of the disruption
management in transportation.

From a modeling point of view, the RTVSRP is modeled
and solved using similar models, but not the same, as their off-
line planning counterparts. In general, an underlying network
structure representing the problem is designed. This network
representation describes how vehicles can be rescheduled,
taking into consideration the current planned schedule, the
current situation when the disruption occurred, and technical
and timing constraints. Based on the network representation,
optimization- and heuristic-based methods are developed.
The most important modeling difference between the real-
time recovery problem and the schedule planning problem is
that the underlying network is dependent on the existing sit-
uation and feasible alternatives to address the disruption. As
the number of alternatives increases, the complexity of the
problem increases exponentially. Clearly, the RTVSRP also
differs with the industry. In the airline industry, the problem
is characterized by the high costs involved and the highly reg-
ulated environment. In bus public transportation services, the
number of alternatives to recover the disruptions is extremely
large when the transportation systems of large cities are con-
sidered. In the railway sector, the sharing of some resources
(tracks) is critical in its operations, and additional techni-
cal constraints demand the introduction of several new fea-
tures in the modeling approaches. However, schedule recov-
ery requires solutions to be provided very quickly. The main
challenge for the scheduling researchers is to develop pow-
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erful and robust algorithms for quickly solving these large
and complex problems.

This paper reviews most of the recent contributions deal-
ing with RTVSRP regarding both airline and ground trans-
portation. We have emphasized textual description, given the
heterogeneity of formulations and models presented in the
literature. Most of the formulations reviewed have been pro-
posed in the last decade. This survey mostly focuses on papers
in OR-oriented journals. Also, the authors limit this survey to
vehicle rescheduling. Crew scheduling and passenger logis-
tics problems during disruption are not reviewed and even
though many studies in these areas are certainly relevant to
the real-time disruption management. The paper does not
review vessel schedule recovery problems, since there is lit-
tle reported research on this problem. An exception is the
work of Dirksen (2011) which presents mathematical mod-
els for disruption in shipping inspired by developments for
the aircraft schedule recovery problem. For a deeper under-
standing on ship routing and scheduling see the survey by
Christiansen et al. (2004).

The paper is organized as follows. Section 2 discusses the
general concepts for the real-time schedule recovery prob-
lem, including general definitions and network structures
developed to solve the problem. Sections 3, 4, and 5 survey
the vehicle rescheduling problem (VRSP) for bus/freight ser-
vices, the rescheduling of train services after disruptions, and
the aircraft rescheduling problems, respectively. Section 6
presents some concluding remarks, focusing on similari-
ties and differences among road, railway, and aircraft-based
transportation. The paper ends presenting some directions
for further research.

2 Basic models and problem formulations

Real-time vehicle schedule recovery problem can be stated as
follows. Given a set of depots (or stations), a set of vehicles,
and a series of trips with fixed starting and ending times or
with service time windows, given the travel times between all
pairs of locations, given a serious disruption that interrupts
at least one currently scheduled trip and given the current
location and the current status of the vehicles in the system,
find a feasible schedule that optimizes a set of (sometimes
conflicting) objectives, in which trips are either rescheduled
(some with delays) or canceled, and each vehicle performs a
feasible sequence of trips (or track segments, in the case of
trains). When the vehicles are buses or trucks, the problem
will be referred to as vehicle rescheduling problem (VRSP).
When the vehicle is a train, the problem will be called train
rescheduling problem (TRP). Finally, when the vehicle is
an airplane, the problem will be called aircraft rescheduling
problem (ARP).

A very important aspect in the rescheduling process is the
strategy used. Based on the literature (Acuna-Agost et al.
2011; Ionescu et al. 2010), it is possible to identify three
rescheduling strategies: dynamic, predictive (also called off-
line), and reactive (also called on-line). In dynamic strategy,
trains are dispatched using local information with a decen-
tralized control method based on rules. The strategy is widely
used by human schedulers, since it is easy to implement and
offer solutions very quickly. Predictive schedules are gen-
erated within robust scheduling contexts, where the main
objective is to generate schedules able to deal with minor
disturbances. In such situation, all disruptions and scenarios
are known in advance. Reactive strategies consist on finding
a new schedule after the occurrence of one or several events,
including severe disruptions, minimizing some measure of
the effects. This strategy is based on an accurate monitor-
ing of the resources involved, in terms of capacity, position,
and speed. New schedules are generated in real-time. Ionescu
et al. (2010) compared these strategies for the airline recov-
ery problem using data from an European airline. Two crite-
ria were used to evaluate them: punctuality of flight arrival
and run-time efficiency. The dynamic strategy, as expected,
offered poor solutions very quickly. They also concluded that
the offline approach, although more efficient, is not a practi-
cable recovery technique in comparison with the online strat-
egy, although it provides a theoretical lower bound for the
recovery problem.

Since all classes of RTVSRPs are strongly related to the
counterpart schedule planning problems, they are usually for-
mulated and solved using similar, but not identical network
models. In these problems, the network will be referred to as
the underlying recovery network. Based on such networks,
mathematical formulations and solution methods are devel-
oped and tested.

The main purpose of the underlying recovery network is to
represent all possible alternatives for rescheduling. The def-
inition of the network is dependent on the pre-assigned con-
figuration of the system when a disruption occurs, the status
of the vehicles in the system, and the times needed to perform
compatible sequences of trips (flight legs in the airline con-
text; track segments in the railway context). As identified by
Clausen et al. (2010), the literature on airline recovery gen-
erally uses three types of network representations; namely,
connection networks (CNs), time-line networks (TLN), and
time-band networks (TBN). CNs are activity-on-node net-
works, where nodes represent trips, stations, airports, etc.,
and the arcs describe connections between the nodes, repre-
senting, for example, deadheading. Each path of a source to
a sink refers to a feasible sequence of a trip for a vehicle.
CNs are widely used in planning schedules and their appli-
cation to recovery problems is quite natural. Examples of
CNs abound in the literature (see Freling et al. 2001; Bert-
simas and Patterson 2000, and Li et al. 2004). The other
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Table 1 Hypothetical train
scheduling

Trains Train
number

Station of
origin

Station of
destination

Train
departure

Train
arrival

Travel
time

Train A 01 LED SHL 17:00 18:30 1:30

02 SHL LED 19:00 20:30 1:30

Train B 11 HFD NVP 16:20 17:10 0.50

12 NVP HFD 17:20 18:20 1:00

13 HFD NVP 19:00 20:00 1:00

14 NVP HFD 20:15 21:15 1:00

Train C 31 SHL HFD 15:10 16:10 1:00

32 HFD LED 16:30 17:10 0:40

33 LED HFD 17:30 18:10 0:40

34 HFD SHL 18:50 20:00 1:10

Fig. 1 The time-line network
of the sample schedule (based
on Clausen et al. 2010)
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two network types have their main applications in recov-
ery problems. TLN are activity-on-edge networks, in which
all events (represented in the nodes) of a resource (such as
station, airport, and track segments) are placed on a time-
line corresponding to that resource. Arcs connect events in
the same time-line (which involves the same resource) or in
different time-lines (when different resources are involved).
TBN were developed by Argüello et al. (1997) to specifically
deal with aircraft recovery. They are networks positioned
with respect to two-dimensional axes, one representing time
and the other one space or stations. A node placed in this
space represents specific activities at a station during a seg-
ment of time. Arcs represent arrival to or departures from a
station if they are directed into a node or originated from a
node, respectively. In order to illustrate these networks, we
use a hypothetical example, with four Netherland train sta-
tions, as follows: Schiphol (SHL), Hoofddorp (HFD), Lei-
den (LED), and Niew Vennep (NVP), and three trains, which
stop at each station for a period for passenger embarking and
disembarking, and cleaning activities. Table 1 presents the
trains’ timetable. Figures 1, 2, and 3 show the TLN, TBN,
and CNs, respectively, for this sample schedule. The TBN
represents a network that can be constructed dynamically as

disruptions occur. For the hypothetical example of Table 1,
suppose that train C becomes out of service from 15:00 to
22:00 for unplanned maintenance. We defined the time-bands
to be around 30 min. Figure 2 shows not all, but some of the
possible new schedules for the two remaining trains, one
starting in LED and the other one in HFD; and ending in
either LED or HFD. In Fig. 2, an illustrative case for a recov-
ery rotation for train B is SHL-31-11 (delayed 40 min)—
12 (delayed 70 min)—34 (delayed 70 min)—SHL for which
the complete path is SHL (source)—HFD—NVP—HFD—
SHL—SHL (sink).

Considering these network models, the RTVSRP has
been formulated based on the classical network problem
formulations such as the minimum cost flow problem, the
multi-commodity network flow, and the set packing prob-
lem; by adding some binary variables, together with con-
straints representing problems peculiarities, and expanding
the objective function to include delay and cancelation costs
(Clausen et al. 2010; Törnquist 2006). The literature does
not present a generic formulation for this problem, given the
heterogeneity of contexts where this problem can be applied
both in terms of the disruption and the attendant recovery
decisions. However, based on the models available in the lit-
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Fig. 2 A partial time-band
network of the sample schedule
(based on Clausen et al. 2010)
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Fig. 3 The connection network
of the sample schedule (based
on Clausen et al. 2010)
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erature, it is possible to formulate a generic model for the
RTVSRP based on a CN, where the nodes are represented
by trips, and the arcs connect two compatible pair of trips.
Trips i and j are a compatible pair of trips if the same vehicle
can reach the starting point of trip j after it finishes trip i and
the vehicle has technical and capacity attributes to perform
both the trips. It should be noted that several relevant aspects
found in real-world rescheduling problems are missing in
this representation. Peculiarities found in the train reschedul-
ing problem, such as the sharing of uni- or bi-directional
tracks in a single or double line or the slot sharing at airports

in the context of ARP, are for now intentionally excluded
for the sake of generality for the three classes of problems.
The main objective now for introducing the underlying CN
is to explicitly illustrate the main constraints involved in a
large fraction of instances of the problems described in the
literature.

Before giving the formulation, we introduce the following
notation:

Bi = prescribed starting time of trip i.
Wi = prescribed time of trip i.
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Tij = travel time from the ending point of trip i to the
starting time of trip j.
Di = maximum delay allowed for trip i.
U = service time at station.
Pi = trip i delay cost.
Ci = trip i cancelation cost.
F = time of the disruption.

Let A be the set of trips that are being served by vehicles
at the instant of a trip disruption. Let N denote the set of all
future service trips, including the disrupted trip (which still
needs to be served), numbered according to non-decreasing
starting times. Trips in set N might be re-assigned to different
vehicles from their pre-assigned ones in the initial schedule,
while trips in set A cannot be reassigned. Set A ∪ B can be
seen as the set of all unfinished trips. Let Z denote the set
of all compatible pair of trips (i, j), in which j starts after
F . Assume that each vehicle k ∈ K in the network can be
rescheduled at time F . In reality, this number could be much
smaller than the number of vehicles in the system because
technical and capacity constraints, as well as the position of
the vehicles in the network in time F , will limit this number.
The model has three sets of decision variables, sti, the starting
time of trip i ∈ A ∪ B and two binary ones, namely xk

ij and

zi, where xk
ij = 1 if vehicle k ∈ K is assigned to trip j ∈ N

directly after trip i ∈ A∪ B, and zi = 1 if service trip i ∈ N is
canceled. Thus the RTVSRP can be formulated as follows:

Min
∑

(k∈K )

∑

(i,j)∈Z

ck
ijx

k
ij +

∑

(i∈N )

Cizi +
∑

(i∈N )

Pi(sti − Bi) (1)

subject to
∑

j:(i,j)∈N

xk
ij =

∑

j:(i,j)∈N

xk
ji ∀i ∈ N , k ∈ K (2)

∑

(k∈K )

∑

j:(i,j)∈Z

xk
ij + zi = 1 ∀i ∈ N (3)

sti = Bi ∀i ∈ A (4)

sti ≥ Bi ,∀i ∈ N (5)

sti ≤ Bi + Di ∀i ∈ N (6)

stj ≥ (
sti + U + Tij

)
xk

ij ∀ (i, j) ∈ Z , k ∈ K (7)

xk
ij ∈ {0, 1} ∀ (i, j) ∈ Z , k ∈ K (8)

sti ≥ 0, zi ∈ {0, 1} ∀i ∈ A ∪ B (9)

where ck
ij is the distance-based cost of arc (i, j) by vehicle k to

perform trips i and j. This ck
ij could take into account aspects

such as fixed and operation costs of vehicle k (applicable
mostly for airplanes and trains), distance traveled, and penal-
ties due to rescheduling. The objective function (1) mini-
mizes the weighted sum of operations, delay, penalty, and
trip cancelation costs. Constraints (2) guarantee flow conser-
vation for vehicles. Constraints (3) assure that any trip i ∈ N

is either serviced or canceled. Constraints (4) set the starting
time of trips in A as the prescribed starting time, since they
cannot be rescheduled. Constraints (5) and (6) guarantee that
the starting time of any trip i ∈ N is not earlier than its pre-
scribed starting time and does not exceed its delay limit. Con-
straints (7) establish that the starting time of each future trip
j ∈ N is dependent on the required deadheading (traveling
plus unloading) times of its previous trip i ∈ N . Constraints
(7) are nonlinear. Li et al. (2008) has showed that this term
can be easy linearized using the big-M technique. Constraints
(8)–(9) define the domain of the decision variables.

The RTVRSP has also been formulated and solved based
on models and methods developed for the real-time sched-
ule recovery of machines (Raheja and Subramaniam 2002),
mainly in the railway transportation. Vehicles can be viewed
as jobs, and trips or block segments (in railway context) as
machines. The processing of a job by a machine for a given
amount of time, characterizing an operation, corresponds to
the allocation of a vehicle to a trip. Each operation can be
processed by only one machine, in the manufacturing con-
text, and a trip can only be allocated to a vehicle in the trans-
portation area. Machine breakdowns and delay in operations
can be approached as vehicle breakdowns and trip delays,
respectively. Based on these similarities, the TRP was for-
mulated as a job shop problem with additional constraints
(Sahin 1999; D’Ariano et al. 2007a; D’Ariano et al. 2008).
The most interesting additional constrain is the so-called
blocking constraint. While in the machine context, infinite
buffer capacity can be considered between two consecutive
machines, this is not the case in transportation. However, the
real-time machine recovery problem presents some peculiar-
ities, such as the possibility of changes in the routes of jobs
and flexible machines. As a result, this problem is very diffi-
cult to solve optimally, given the large number of alternative
solutions, even for a very small number of machines and
jobs. The real-time machine recovery has been solved using
mainly heuristic procedures, based on artificial intelligence
techniques, and simulation. As a consequence, the real-time
machine recovery methods and techniques are having lit-
tle impact on road vehicles and aircraft recovery problems,
where optimization-based methods prevail.

The complexity of the problem is related to the number
of rescheduling alternatives currently assigned trips, viewed
as binary variables in a mathematical programming formu-
lation. The difficulty of solving integer programming prob-
lems with a large number of variables is well known. The
literature presents complexity analysis for some classes or
subclasses of the RTVSRP. Li et al. (2009) showed that the
VRSP is an NP-hard problem. Corman et al. (2010) demon-
strated that the train conflict detection and resolution (CDR),
a sub-class of the TRP, is NP-complete, while Berger et al.
(2011b) proved that the online railway delay management
(ORDM) problem is PSPACE-hard (Arora and Barak 2009).
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Fig. 4 Scheduling and
disruption decision-making
process (Li et al. 2007a)

Concerning the aircraft rescheduling problem, Liu et al.
(2008) and Babić et al. (2010) showed that the problem is
NP-hard for multi-fleet scheduling, while Luo and Yu (1997)
showed the NP-hardness of the problem when ground delay
is the considered disruption.

The most important aspect of the RTVSRP is the dynamic
environment in which the rescheduling process has to take
place. That is, while the rescheduling is being performed, the
status of the transportation system is changing at the same
time. As a consequence, to be used in the real-world, the
RTVSRP requires quick solutions. Since the rescheduling
problems that have to be solved are large and complex, the
realization of short computation times for exact reschedul-
ing algorithms is still a large scientific challenge (Kroon and
Huisman 2011). The next sections discuss how these chal-
lenges have been addressed in the RTVSRP for ground ser-
vices, trains, and airlines.

3 Schedule recovery for road–vehicle services

In this section, we focus on rescheduling of transportation
services that operate vehicles on roads and streets, for exam-
ple bus services and pick-up and delivery services, when the
availability of vehicles decreases due an unforeseen event
such as a vehicle breakdown. The VRSP can be approached
as a dynamic version of the classical vehicle scheduling prob-
lem (VSP) except now assignments are generated dynami-
cally. Real-time rescheduling tools should be very useful in
helping decision-makers in disruption situations, especially
when fleet size is limited, but, unfortunately the numbers
of companies/agencies that use computerized rescheduling
algorithms for generating new candidate schedules are few,

since most of them reschedule vehicles are based solely on
the experience of a human scheduler.

This section is divided into two parts: (i) in the first subsec-
tion the vehicle rescheduling context and recovery decision
process are discussed, and (ii) in the second, schedule recov-
ery models and solution approaches are discussed.

3.1 Rescheduling context and decision process

The VRSP arises in the operation context of a bus/truck trans-
portation system when a previously assigned trip is seriously
disrupted. Such problem involves the dynamic reschedul-
ing of the fleet, ensuring that all previously scheduled trips
are either completed in a reasonable amount of time or can-
celed. Traffic accidents, medical emergencies, and vehicle
breakdowns are examples of possible disruptions that require
vehicle rescheduling. Instances of VRSP happen in appli-
cations such as school bus transportation, public transit ser-
vices, industrial/hospital refuse collection, mail delivery, etc.

Li et al. (2007b) presented a decision diagram show-
ing the interactions between schedule planning, disruption
decision-making processes, and rescheduling (Fig. 4). First,
the scheduling process can be characterized as the classical
single-depot VSP (SDVSP) when only one depot is involved
(otherwise it is the multi-depot version). Second, the severity
of disruption is defined by the experience of human sched-
ulers. Small disruptions usually need few adjustments and, in
general, the initial schedule is not changed by much. Other-
wise, when the disruptions are larger, this initial schedule is
used as a basis for rescheduling the remaining unfinished and
future trips; then the current schedule could change substan-
tially. We notice that, in order to develop a rescheduling deci-
sion support, information technology is essential to capture
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information on disruptions, such as time and place disruption,
number of passengers or vehicle cargo size, and subsequently
to quickly compute and communicate new candidate sched-
ules. Much of this schedule recovery process applies also to
the other two domains reviewed in the paper—rescheduling
of trains and planes.

3.2 Vehicle rescheduling models

Bunte and Kliewer (2009) presented a comprehensive
overview on vehicle scheduling models and found that much
research has been done on it in the last decades, but consider-
ations on vehicle rescheduling are still relatively unexplored.
Major contributions toward solving VRSP are found in Huis-
man et al. (2004) and Li et al. (2004).

Huisman et al. (2004) considered an environment with
significant traffic jams and developed a cluster-reschedule
heuristic to solve what they called a “dynamic” VSP problem.
The “dynamic” aspect was mainly related to delays in the pre-
viously assigned trips. The problem formulation was based
on the multi-depot VSP (MDVSP) and solved as a sequence
of optimization problems. First, trips were clustered using the
static VSP, and then rescheduled for each depot. Real data of
a public transport company was used to test their approach.
The results indicated that the number of trips starting late
was reduced at the price of using a few extra vehicles. In a
later paper, Huisman and Wagelmans (2006) integrated the
dynamic VSP with crew scheduling, solving the integrated
system dynamically. Two algorithms were developed. The
first one uses a sequential approach (first schedule vehicles
and then schedule crews); the other uses what the author
called an “integrated approach.” The integrated approach
consists of solving a sequence of integrated vehicle and crew
scheduling problems, formulated as binary linear programs.
Historical data from a large bus company in the Netherlands
for a period of 10 days were used for some computational
tests. Two problem sizes were tested: a small single-depot
(164 trips) instance and a medium-sized multiple-depot (304
trips) instance. The integrated approach significantly outper-
formed the sequential approach for the larger problems; for
the smaller problems, the performances were not that differ-
ent. A limitation of the integrated approach is that computa-
tion times may be too high for practical real-time operations.

In Huisman’s papers, delays on trips due to disruptions
were the major considerations in their predictive reschedul-
ing strategies. A different approach is taken by Li et al.
(2004), which considers disruptions due to vehicle break-
downs or severe vehicle accidents for schedule recovery,
introducing the reactive strategy for this problem class. The
problem is modeled as several VSPs, each one corresponding
to the use of a different vehicle as an alternative for backing
up the disrupted trip. Each backup vehicle k ∈ K generates a
CN, G(k), referred as a feasible network. The paper describes

an algorithm to find all possible backup vehicles for a serious
disruption, considering the peculiarities of the transportation
service being addressed, for example, bus routes may partly
share the same itinerary. In order to solve the problem, a
parallel auction algorithm has been developed. The parallel
algorithm has proven to be computationally efficient in ran-
dom generated instances up to 1,300 trips. Li et al. (2007a)
improved the solution time of the parallel auction algorithm
by introducing the common feasible network (CFN) notion.
The CFN can be obtained from the intersection of all possi-
ble feasible networks as follows: C F N = ∩k∈K G(k). The
idea is to find a good set of initial “prices” using the CFN,
characterizing a better initial assignment, to speed up the auc-
tion algorithm. The algorithm performs well for a large num-
ber of trips and vehicles. However, the modeling approach
was based on the following two restrictive assumptions: (i)
rescheduled trips, except the disrupted trip, cannot suffer
delays; and (ii) there are no restrictions on the number of
trips that may be reassigned. In practice, these assumptions
reduce the size of the problem, restricting the number of pos-
sible rescheduling alternatives.

In order to minimize the restrictive assumptions involv-
ing auction-based algorithm, Li et al. (2009) developed a
Lagrangian heuristic approach for the VRSP. The heuristic
approach incorporates Lagrangian relaxation, a sub-gradient
search and an insertion-based primal heuristic. The devel-
oped formulation expands the applicability of the model by
simultaneously taking into account the previously neglected
real-world aspects such as reducing trip cancelation costs,
and decreasing the number of rescheduled trips (toward facil-
itating the crew rescheduling, since several bus crews will be
familiar with the complete itinerary of a subset of all possible
trips). Li et al. (2009) observed that the Lagrangian heuristic
did not demonstrate many improvements in situations where
a large number of remaining trips exist, when a backup vehi-
cle is available at the depot, or when the vehicle breaks down
at the beginning of the disrupted trip.

The importance of rescheduling in practice was also
recognized by Li et al. (2007b, 2008). In Li et al. (2007b)
a decision support system (DSS) was developed to facili-
tate a practical application for rescheduling trucks for solid
waste collection in a Brazilian city. The approach helps to
solve the complex problem of recovery from severely dis-
rupted trips, minimizing the involved disruption costs. The
SDVRSP was treated as a sequence of SDVSPs. A quasi-
assignment formulation and a combined forward–backward
auction algorithm were used to model and solve, respec-
tively, the SDVSPs within the DSS. CPLEX was used to
solve computational experiments with randomly generated
data. The results indicated that the DSS has potential as an
effective and efficient tool for real-time operational planning
in transportation/logistic companies. In a following paper,
Li et al. (2008) proposes a nonlinear programming formula-
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tion for the waste-collection problem, minimizing not only
disruption costs, but also trip delays. The big-M technique
was used to linearize the formulation, simplifying its solu-
tion. The main objective of the model was to minimize the
sum of operation costs, fixed vehicle costs and delay costs,
under the conditions that all incomplete trips have to be fin-
ished (including the disrupted one), and trip assignments into
waste-recycling facilities were balanced. In that paper, each
vehicle operating in the network at the time of the disrup-
tion could be considered as a pseudo-depot with unit capac-
ity, making the mathematical formulation now being based
on the MDVSP. Experiments based on real-world data were
carried out using CPLEX as the commercial solver, since the
instances used were small, consisting of 23 vehicles and 31
trips. The developed model decreased both the total distance
traveled and total trip delay when comparing with the manual
recovery strategy used by the company.

Ernst et al. (2007) developed a software to solve the
dynamic scheduling of vehicles, referred to as the Dynamic
Vehicle Assignment and Scheduling System (D-VASS), assist-
ing a large New Zealander recreational-vehicle-rental com-
pany in its daily operations. The main purpose of D-VASS
was to respond to availability queries by reservation staff
and to incorporate new bookings into the schedule. It also
adjusted the schedule in response to operational contin-
gencies, like vehicle breakdowns and late returns. D-VASS
applies a heuristic improvement method based on the suc-
cessive shortest path for solving the assignment problem and
perform updates as quickly as possible. The model only con-
sidered the beginning and end data of a trip, but did not con-
sider important information like the place and time that the
vehicle suffers the disruption; also public transport applica-
tions were not considered.

Table 2 summarizes the reviewed literature and highli-
ghts some attributes of interest in the developed models.
In sum mary, the models, formulations, and solution pro-
cedures developed for the VRSPs are much related to their
static counterpart, mostly using the connection network as
the representation of the problem, and the MDVSP solution
methods as inspiration for the design of algorithms for the real
problems. The applications of VRSP include the scheduling
of buses, trucks, and rental vehicles (Ernst et al. 2007). The
computational experiences reported include some large prob-
lem instances, up to 1,300 unfinished trips when a disruption
occurs.

4 Rescheduling train services during disruptions

Rail transportation provides services for passenger traffic
and freight shipping. However, train scheduling is a difficult
problem primarily due to its size and the significant inter-
dependencies between the train movements and operational
constraints.

4.1 Train rescheduling considerations

Jespersen-Groth et al. (2009) noted that trains do not always
run on time due to unexpected events like infrastructure mal-
functions, rolling stock break downs, accidents, and weather
conditions. The so-called “snow ball effect” (that is a devi-
ation from the planned operations of a train which can
have a cascading effect on several other trains’ operations
in the surrounding traffic area due to sharing of physical
resources, such as tracks and stations) is a major complex-
ity in train rescheduling. The compounding factors include
(Acuna-Agost et al. 2011; Tornquist and Persson 2007):

a. Trains cannot share the same track in opposite directions
at the same time. To avoid collisions, railway networks
are often composed of blocks, which are track sections
that can be used by at most one train at a time due to safety
restrictions. The lengths of block segments are variable
and are dependent on traffic density. To increase safety,
a buffer space of one or two blocks between two trains is
exerted by several train control systems;

b. There is a much diversity in railway infrastructure; some
blocks are single-tracked, others are double-tracked or
even n-tracked;

c. The train traffic is quite heterogeneous; heavy cargo trains
share tracks with passenger trains;

d. There are minimum and maximum idle times of trains
at each station. Although these values can be changed in
case of a disruption, it can cause itinerary problems to
passengers.

For more details on the constraints related to train schedul-
ing refer to Cordeau et al. (1998) and Jespersen-Groth et al.
(2009).

The TRP consists in defining a new re-allocation of trains
to blocks, modifying the original timetable while respect-
ing all the required technical and commercial constraints and
(usually) attempting to minimize the total train (or passenger)
delay. In addition, given the real-time aspect of the problem,
the new schedule has to be consistent with the current state
of the system and has to be generated very quickly, since
the solution must take into consideration that some trains are
already delayed at the moment, the new schedule is imple-
mented (Acuna-Agost et al. 2011).

Jespersen-Groth et al. (2009) introduced a schematic view
of the train disruption management process (see Fig. 5). The
process can be briefly summarized as follows: when a dis-
ruption occurs, the Network Traffic Control (NTC) needs to
decide about the final dispatching plan for all trains in the net-
work and communicate it to the Local Traffic Control (LTC)
and to the operators. The LTC has to implement the new
train routes and to change platform assignments, accordingly.
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Fig. 5 Train disruption
management (Jespersen-Groth
et al. 2009)

The Network Operations Control (NOC) monitors and mod-
ifies the rolling stock and crew scheduling based on the new
train routes. The Local Operations Level coordinates the local
activities at the stations, such as the shunting processes.

Until recently, the TRP was solved manually, evaluating
a limited number of possible corrective actions of reorder-
ing and/or rerouting trains. The increased capacities and
speeds of computational resources available and the recent
advances on solving large integer linear programming prob-
lems have resulted in algorithmic-based decision support that
quickly gives better solutions. The next section will briefly
discuss some of these TRP solution methods. Since railway
crew rescheduling problem is beyond the scope of this review
paper, we refer to Potthoff et al. (2010) and Veelenturf et al.
(2012) for this related topic.

4.2 Train rescheduling models

Törnquist (2006) has presented an overview of research on
train scheduling and dispatching. Of the reviewed 48 articles,
published between 1973 and 2005, 21 dealt with reschedul-
ing. The major objective of the reviewed models was the min-
imization of the total delay. Some small variations, like the
introduction of weights to emphasize the delay of some trains,
are also addressed. The reader is referred to Törnquist (2006)
for a pre-2005 review of train rescheduling; this review
focuses on train rescheduling work reported after 2005.

Different infrastructure representations have been addres-
sed, including lines and general networks, bidirectional or
unidirectional tracks, parallel tracks, etc. In general, the most
complex models cannot deal efficiently with more than 30
trains. Table 3 presents a summary of the main characteristics

of the reviewed papers. Unlike the VRSP, which usually relies
on mathematical programming solution approaches, TRP
methods reported include a greater variety of approaches.
Improvement heuristics, construction heuristics, and simu-
lation have been used as alternative methods to find good
solutions in reasonable time, which are justified due to the
complexity of the real-world TRPs. An interesting aspect of
contemporary literature on the TRP is that almost all papers
present experimental evaluations with real-data, demonstrat-
ing the applicability of the developed tools.

Tornquist and Persson (2007) developed an interesting
mathematical formulation for the rescheduling of n-tracked
railway traffic. The railway network studied included several
merging and crossing points. The problem was formulated as
a mixed-integer linear program (MILP), based on an event-
driven representation of time, and solved using CPLEX 8.0.
An event was defined as the conditional resource request by a
train for a segment of a track. Two alternative objective func-
tions have been considered: minimize the total final delay of
traffic, and minimize the total costs associated with delays
of trains at the final destinations. Since the authors noticed
that only few modifications in the initial timetable were nec-
essary to obtain a good solution, different strategies, such as
“allow swaps of tracks but maintain order,” were evaluated
on large practical size problems. The solution approaches,
based on different strategies, seemed to perform well with
respect to run-time efficiency and solution quality in sev-
eral cases. Acuna-Agost et al. (2011) proposed an exten-
sion of this model, allowing the possibility of two trains in
the same direction to use the same track segment simulta-
neously. The MILP formulation presented, which used the
same notation as Tornquist and Persson (2007), attempts to

123



J Sched

Ta
bl

e
3

Su
m

m
ar

y
of

re
vi

ew
ed

tr
ai

n
re

sc
he

du
lin

g
pr

ob
le

m
s

A
ut

ho
rs

Pr
ob

le
m

de
fin

iti
on

Pr
ob

le
m

fo
rm

ul
at

io
n

O
bj

ec
tiv

e
In

fr
as

tr
uc

tu
re

Sp
ec

ia
lc

on
st

ra
in

ts
R

ea
l-

lif
e

da
ta

So
lu

tio
n

m
et

ho
d

Fe
as

ib
le

ne
tw

or
k

St
ra

te
gy

L
in

e
N

et
w

or
k

Pa
ss

en
ge

r
co

nn
ec

tio
n

T
ra

in
co

nn
ec

tio
n

Pl
at

fo
rm

/li
ne

al
lo

ca
tio

n
C

re
w

sc
he

du
lin

g

N
or

io
et

al
.

(2
00

5)
T

ra
in

re
sc

he
du

lin
g

N
A

M
in

im
iz

e
pa

ss
en

ge
rs

’
di

ss
at

is
fa

ct
io

n

x
Y

es
PE

R
T

(p
ro

gr
am

ev
al

ua
tio

n
an

d
re

vi
ew

te
ch

ni
qu

e)
an

d
si

m
ul

at
ed

an
ne

al
in

g

C
on

ne
ct

io
n

R
ea

ct
iv

e

To
rn

qu
is

t
an

d
Pe

rs
so

n
(2

00
7)

T
ra

in
re

sc
he

du
lin

g
M

IL
P

M
in

im
iz

e
to

ta
l

de
la

y
an

d
to

ta
l

co
st

x
x

Y
es

B
&

B
T

im
e-

lin
e

R
ea

ct
iv

e

D
’A

ri
an

o
et

al
.

(2
00

7a
)

T
ra

in
sc

he
du

lin
g

A
lte

rn
at

iv
e

gr
ap

h
M

in
im

iz
e

th
e

m
ax

im
um

de
la

y

x
Y

es
B

&
B

C
on

ne
ct

io
n

R
ea

ct
iv

e

D
’A

ri
an

o
et

al
.

(2
00

7b
)

R
ea

l-
tim

e
tr

ai
n

di
sp

at
ch

in
g

A
lte

rn
at

iv
e

gr
ap

h
M

in
im

iz
e

th
e

m
ax

im
um

de
la

y

x
x

Y
es

Si
m

pl
e

di
sp

at
ch

in
g

ru
le

s,
gr

ee
dy

he
ur

is
tic

,a
nd

br
an

ch
-a

nd
-b

ou
nd

al
go

ri
th

m

C
on

ne
ct

io
n

R
ea

ct
iv

e

D
’A

ri
an

o
et

al
.

(2
00

8)

T
ra

in
sc

he
du

lin
g

an
d

ro
ut

in
g

A
lte

rn
at

iv
e

gr
ap

h
M

in
im

iz
e

th
e

m
ax

im
um

de
la

y

x
x

x
x

Y
es

B
&

B
an

d
lo

ca
l

se
ar

ch
al

go
ri

th
m

C
on

ne
ct

io
n

R
ea

ct
iv

e

N
ie

ls
en

(2
00

8)
R

ol
lin

g
st

oc
k

re
sc

he
du

lin
g

pr
ob

le
m

M
IL

P
M

in
im

iz
e

ca
nc

el
in

g
tr

ip
s,

ch
an

ge
s

to
th

e
sh

un
tin

g
pl

an
s,

an
d

of
f

ba
la

nc
es

x
x

x
Y

es
B

&
B

an
d

he
ur

is
tic

fo
r

ba
la

nc
in

g
th

e
en

d-
of

-d
ay

in
ve

nt
or

ie
s

C
on

ne
ct

io
n

R
ea

ct
iv

e

G
ar

cí
a-

R
ód

en
as

et
al

.
(2

00
9)

T
ra

in
co

or
di

na
-

tio
n

N
A

M
in

im
iz

e
to

ta
l

w
ai

tin
g

tim
e

of
th

e
sy

st
em

x
x

N
o

C
on

st
ru

ct
iv

e
he

ur
is

tic
al

go
ri

th
m

C
on

ne
ct

io
n

R
ea

ct
iv

e

L
ue

th
ie

ta
l.

(2
00

9)
R

ea
l-

tim
e

tr
ai

n
re

sc
he

du
lin

g
N

A
M

in
im

iz
e

to
ta

l
tr

ai
n

de
la

y
x

x
Y

es
R

ai
lw

ay
si

m
ul

at
io

n
C

on
ne

ct
io

n
R

ea
ct

iv
e

Sa
to

et
al

.
( 2

00
9)

C
re

w
an

d
tr

ai
n

re
sc

he
du

lin
g

0–
1

in
te

ge
r

pr
og

ra
m

m
in

g
fo

rm
ul

at
io

n

M
in

im
iz

e
to

ta
lc

os
ts

x
x

Y
es

Pa
rt

ia
le

xc
ha

ng
e

he
ur

is
tic

,l
oc

al
se

ar
ch

he
ur

is
tic

s

C
on

ne
ct

io
n

R
ea

ct
iv

e

D
’A

ri
an

o
an

d
Pr

an
zo

(2
00

9)

R
ea

l-
tim

e
tr

ai
n

di
sp

at
ch

in
g

A
lte

rn
at

iv
e

gr
ap

h
M

in
im

iz
e

to
ta

l
tr

ai
n

de
la

y
x

x
x

x
Y

es
B

&
B

,fi
rs

tc
om

e
fir

st
se

rv
ed

(F
C

FS
)

C
on

ne
ct

io
n

R
ea

ct
iv

e

C
or

m
an

et
al

.
(2

01
0)

T
ra

in
re

sc
he

du
lin

g
an

d
ro

ut
in

g

A
lte

rn
at

iv
e

gr
ap

h
M

in
im

iz
e

th
e

m
ax

im
um

de
la

y

x
x

x
Y

es
Ta

bu
se

ar
ch

C
on

ne
ct

io
n

R
ea

ct
iv

e

123



J Sched

Ta
bl

e
3

co
nt

in
ue

d

A
ut

ho
rs

Pr
ob

le
m

de
fin

iti
on

Pr
ob

le
m

fo
rm

ul
at

io
n

O
bj

ec
tiv

e
In

fr
as

tr
uc

tu
re

Sp
ec

ia
lc

on
st

ra
in

ts
R

ea
l-

lif
e

da
ta

So
lu

tio
n

m
et

ho
d

Fe
as

ib
le

ne
tw

or
k

St
ra

te
gy

L
in

e
N

et
w

or
k

Pa
ss

en
ge

r
co

nn
ec

tio
n

T
ra

in
co

nn
ec

tio
n

Pl
at

fo
rm

/li
ne

al
lo

ca
tio

n
C

re
w

sc
he

du
lin

g

M
en

g
et

al
.

(2
01

0)
T

ra
in

tim
et

ab
lin

g
an

d
tr

ai
n

re
sc

he
du

lin
g

N
A

M
in

im
iz

e
to

ta
l

tr
ai

n
de

la
y

x
Y

es
Im

pr
ov

ed
pa

rt
ic

le
sw

ar
m

op
tim

iz
at

io
n

(I
PS

O
)

al
go

ri
th

m

T
im

e-
lin

e
Pr

ed
ic

tiv
e

Sa
to

et
al

.
(2

01
0)

C
re

w
an

d
tr

ai
n

re
sc

he
du

lin
g

In
te

ge
r

pr
og

ra
m

m
in

g
fo

rm
ul

at
io

n

M
in

im
iz

e
to

ta
l

co
st

s
an

d
re

so
ur

ce
s

(v
eh

ic
le

or
cr

ew
)

x
x

Y
es

L
ag

ra
ng

ia
n

re
la

xa
tio

n
m

et
ho

d

C
on

ne
ct

io
n

R
ea

ct
iv

e

A
cu

na
-A

go
st

et
al

.(
20

11
)

T
ra

in
re

sc
he

du
lin

g
M

IL
P

M
in

im
iz

e
to

ta
lc

os
ts

x
x

x
x

Y
es

L
oc

al
se

ar
ch

he
ur

is
tic

s
T

im
e-

lin
e

R
ea

ct
iv

e

N
ie

ls
en

(2
01

1)
R

ol
lin

g
st

oc
k

re
sc

he
du

lin
g

M
IL

P
B

al
an

ce
of

m
ul

tip
le

s
ob

je
ct

iv
es

:m
in

im
iz

e
th

e
ch

an
ge

s
to

th
e

sh
un

tin
g

pl
an

s,
th

e
of

f-
ba

la
nc

es
,t

he
ca

nc
el

ed
tr

ip
s,

th
e

op
er

at
io

na
lc

os
t,

an
d

ad
eq

ua
te

se
at

ca
pa

ci
ty

x
x

x
x

Y
es

B
&

B
an

d
he

ur
is

tic
fo

r
ba

la
nc

in
g

th
e

en
d-

of
-d

ay
in

ve
nt

or
ie

s

C
on

ne
ct

io
n

R
ea

ct
iv

e

A
lm

od
óv

ar
an

d
G

ar
cí

a-
R

ód
en

as
(2

01
3)

T
ra

in
re

sc
he

du
lin

g
G

ra
ph

s
M

in
im

iz
e

th
e

to
ta

lt
im

e
in

sy
st

em

x
x

x
Y

es
A

lte
rn

at
iv

e
gr

ee
dy

he
ur

is
tic

C
on

ne
ct

io
n

R
ea

ct
iv

e

B
er

ge
r

et
al

.
(2

01
1b

)
O

nl
in

e
ra

ilw
ay

de
la

y
m

an
ag

em
en

t

E
ve

nt
gr

ap
h

M
in

im
iz

e
th

e
to

ta
ld

el
ay

of
al

lp
as

se
ng

er
s

x
x

x
Y

es
si

m
ul

at
io

n
N

A
R

ea
ct

iv
e

B
er

ge
r

et
al

.
(2

01
1a

)
R

ea
l-

tim
e

tr
ai

n
di

sp
os

iti
on

E
ve

nt
gr

ap
h

M
ax

im
iz

e
pa

ss
en

ge
rs

’
sa

tis
fa

ct
io

n

x
x

x
Y

es
U

nc
ap

ac
ita

te
d

m
ul

ti-
co

m
m

od
ity

flo
w

T
im

e-
lin

e
Pr

ed
ic

tiv
e

Fe
ke

te
et

al
.

(2
01

1)
T

ra
in

re
sc

he
du

lin
g

In
te

ge
r

lin
ea

r
pr

og
ra

m
m

in
g

(I
L

P)

M
ax

im
iz

in
g

th
e

nu
m

be
r

of
tr

ip
s

th
at

st
ill

w
ill

be
se

rv
ed

in
th

e
re

-o
pt

im
iz

ed
di

sp
at

ch
in

g
tim

et
ab

le

x
x

x
Y

es
B

&
B

T
im

e-
sp

ac
e

R
ea

ct
iv

e

Sa
to

an
d

Fu
ku

m
ur

a
(2

01
2)

T
ra

in
re

sc
he

du
lin

g
In

te
ge

r
pr

og
ra

m
m

in
g

fo
rm

ul
at

io
n

M
in

im
iz

e
th

e
to

ta
lw

or
kl

oa
d

x
x

Y
es

co
lu

m
n

ge
ne

ra
tio

n
C

on
ne

ct
io

n
R

ea
ct

iv
e

123



J Sched

minimize the total rescheduling cost based on the total
delay. The performance of four solution methods were eval-
uated and compared as follows: (i) Right-shift rescheduling
(RS) keeps most of the system characteristics, postponing
each remaining trip after disruption by the amount of time
needed to make the schedule feasible, limiting the propaga-
tion delays; (ii) MILP-based local search method using RS as
initial solution; (iii) IP-based local search method + CPLEX;
and (iv) Iterative MILP-based local search method (LS). Two
different real rail networks have been used for the computa-
tional experiments: the first is a line located in France, and
the second is a railway network in Chile. The Iterative MILP-
based local search procedure was able to obtain better solu-
tions (average gap <1 %) within 5 min of computational time;
thus it seems to be viable for real-world situations.

Nielsen (2008) presented a generic framework for the
rolling stock rescheduling problem, when several changes to
the timetable may occur and the circulation has to be updated
every time. The problem is formulated as a MILP. The objec-
tive function minimizes simultaneously the number of can-
celed trips, changes to the original rolling stock plan, and
changes on the planned end-of-day balance of rolling stock
on each depot. The instances used in the experiments come
from rolling stock circulations used by Netherlands Railways
and solved using CPLEX 10.1. The observed computation
times varies from a few seconds to a minute depending on
the size of the considered instance. There is a direct positive
correspondence between the experienced computation times
and the length of the considered time horizon (in hours). In his
PhD thesis, Nielsen (2011) studied the disruption manage-
ment in a context of rescheduling of passenger railway rolling
stock. The model contemplates real-life aspects and penal-
izes cancelations of trains, changes on shunting processes,
carriage kilometers, seat shortage kilometers, as well as devi-
ations from the planned end-of-day rolling stock off-balances
on each depot. The previously developed model is expanded
considering the dynamics of passenger flows and incorpo-
rates the passenger behavior by applying an iterative solution
procedure that unifies the optimization of the rolling stock
assignment with detailed simulation of the passenger flow.
All the tested instances were based on real data from one of
the Dutch railway operators.

Berger et al. (2011a) developed an optimization tool for
solving the train disposition problem, concerned with defin-
ing whether a train should wait for an incoming delay train or
not. The problem is represented using an event-graph and for-
mulated as a variant of the uncapacitated multi-commodity
flow. The major objective of the model is the satisfaction
of passengers, through three different objective functions as
follows: (i) the overall lateness at the destination, (ii) the
deviation from original travel plans of passengers, and (iii)
the number of passengers that do not reach their destination.
The authors carried out experiments, considering real and

artificial delay scenarios (based on data from German Rail-
ways). The results have demonstrated that the approach is
fast enough to be applied in a real system, enabling quick
decisions.

Fekete et al. (2011) employed an ILP programming for-
mulation based on the event-activity network, suggested by
Serafini and Ukovich (1989), for schedule recovery of rail-
based urban mass transit systems. It focuses on scenarios
where the system faces a bottleneck, such as the direction
of a track is shutdown. The formulation incorporates con-
straints to cope with unplanned turns or unplanned returns
to a depot. The rescheduling objective was to maximize the
number of trips that will still be served after the disruption.
Since frequency of most subway systems is high and cancel-
ing few trips lead to only minor delays and inconveniences
for the passengers, minimizing the overall delay was only
a secondary objective. Four scenarios of real-life instances
have been evaluated, differing in shutdown location, tran-
sit times, topology of the switches, and turn possibilities.
CPLEX was used to solve the problems. This model has the
potential for real applications since good quality solutions
were found within a minute.

Some ad-hoc heuristics have been suggested for solving
the TPR. Norio et al. (2005) proposed a heuristic algorithm
for automatic train rescheduling, in which the main objec-
tive is to minimize passengers’ dissatisfaction measured by a
planned dissatisfaction index. The algorithm combined sim-
ulated annealing (SA) and Program Evaluation and Review
Technique (PERT). The PERT module enabled reducing the
search space for the SA procedure, resulting in an efficient
algorithm. To test the algorithm, a whole-day schedule for
564 trains was developed for an urban line in Tokyo, about
40 km long and containing 19 stations. New schedules were
obtained in approximately 1 min for recorded disruptions.
Meng et al. (2010) used particle swarm/genetic algorithms
for train timetabling and train rescheduling. Three different
algorithms were developed: normal particle swarm optimiza-
tion (PSO) algorithm, genetic algorithm, and improved parti-
cle swarm optimization (IPSO). The algorithms were evalu-
ated in double lines autolocking section in China, considering
five stations and 60 trains. The best results were obtained by
the IPSO algorithm.

Almodóvar and García-Ródenas (2013) studied a train
capacity problem where a service line is substantially dis-
rupted due to a heavy unexpected demand that exceeds the
service line capacity. A greedy heuristic and an event-based
simulation model were applied to determine the best vehi-
cle reassignment decisions. This approach provides near-
optimal solutions, but it involves a high computational
cost and does not currently seem applicable for real-time
response. García-Ródenas et al. (2009) also used simulation
models for schedule recovery. The authors dealt with on-line
management of public transport systems under disruptions,
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such as non-recurrent congestion and in situations in which
demand is greater than the capacity offered by the current
transit line. Their problem was to decide which vehicles, and
in which time instants, must be reassigned to the disrupted
line in order to minimize the waiting time in the system.
Some train network constraints were not taken into consid-
eration to decrease the complexity of the problem. Their on-
line optimization approach was based on a predictive sim-
ulation model, a queuing model, and a constructive heuris-
tic algorithm. Luethi et al. (2009) developed a simulation
model for the real-time train rescheduling aiming at reduc-
ing buffer times without impacting schedule reliability. The
simulation was carried out on a critical bottleneck block in
the Swiss rail network. Simulation experiments show that a
real-time rescheduling system could significantly reduce the
total delays even in the case where additional trains are added
to the timetable. Simulation has also been used by Berger et
al. (2011b) in order to solve the ORDM problem, in which
passengers have a fixed network route, but are allowed to
adapt the choices of the trains based on delays. The major
objective is to minimize the total delay of passengers. A web-
simulation platform has been developed where a simulation
framework and a heuristic approach have been integrated
to evaluate and compare different heuristics for solving the
ORDM considering stochastic delays. The model design and
application were directed to a robust rather than a real-time
context, developing a powerful tool to design policies for
coping with railway delay management.

Sato et al. (2009) added the crew rescheduling problem to
the TRP. They set up a scenario in which a train broke down
between stations for 2 h, resulting in a large-scale disruption
and several timetable changes, such as canceled train services
and extra trains. The problem was formulated as an integer
programming problem. The solution was based in a two-
phase approach. The first one uses a partial exchange heuris-
tic, generating a feasible solution by modifying the original
schedule. The second approach uses a local search for alter-
native solutions to search for alternatives that improve an
evaluation value that includes crew scheduling effects, while
maintaining the schedule feasibility. The results of numer-
ical experiments with real-world data showed that the pro-
posed method generated feasible solutions within a practi-
cal amount of time, and the two-phase solution approach
improved the solution quality. Later, Sato et al. (2010) used
a Lagrangian relaxation as a solution mechanism for the
crew and VRSP, formulated as network flow models. They
used real-world data from a Japanese railway line to conduct
numerical experiments for vehicle rescheduling.

Recently, Sato and Fukumura (2012) focus on the
rescheduling of locomotives that haul freight trains in Japan.
Two problems have been formulated as integer program-
ming models, namely the train rescheduling problem and
the uncovered train detection problem. Both problems were

solved by column generation. They tested the model perfor-
mance with real data obtained in a Japan railway line with
high frequency. The results show that the proposed algo-
rithms provide satisfactory solutions within 30 s on a PC
(32-bit Windows PC Core i7 CPU, 3.2 GHz, 3 GB RAM)
for several studied cases.

Several papers in the TRP literature are specially focused
on the CDR problem in network railways, which is related
to the real-time train scheduling and routing (D’Ariano et al.
2007a,b; D’Ariano et al. 2008; D’Ariano and Pranzo 2009;
Corman et al. 2010). The CDR consists of changing dwell
times, train speeds as well as train ordering and routing
(Corman et al. 2010). Their modeling and solution methods
use alternative graph formulations (Mascis and Pacciarelli
2002). Alternative graph was especially developed to cope
with the scheduling problems where the response time is a
critical factor for the evaluation of a method. An example,
based on a slightly larger one presented in Mascis and Paccia-
relli (2000), illustrates the alternative graph. Figure 6 shows
a small railway with two trains traveling in opposite direc-
tions. Train A is moving from block section 1 to 10, while
train B is moving from section 9 to 1. Train B needs to pass
through platform 4. This railway has four block sections (1,
7, 9, and 10), three junctions (2, 5, and 8) and trains A and
B share four resources (sections 2, 5, 6, and 8).

Figure 7 shows the alternative graph for this small rail-
way. For sake of clarity, each node of the alternative graph
is indicated with a pair (train-block section), e.g., A2 indi-
cates that train A is traversing block section 2. There are four
pairs of alternative arcs, represented by connecting the two
paired arcs with a small circle. The initial position of train A
implies that train B is not allowed to precede train A in sec-
tion 2. The required time to pass through all track segments
is represented by α.

The main advantage of the alternative graph formulation
is the detailed representation of the network topology at the
level of railway signals and operational rules. D’Ariano et al.
(2007a) propose a truncated branch-and-bound (B&B) algo-
rithm for the CDR problem with fixed routing, aiming to min-
imize the maximum secondary delay for all trains at all visited
stations. Due to the interaction between trains, delays caused
by technical failures and disturbances may be propagated
to other trains in the network, defined as secondary delays.

7

5

4

1 2 3

A

9

B

6 108

Fig. 6 A small railway network for two trains in the opposite direction
(based on D’Ariano and Pranzo 2009)
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Fig. 7 The alternative graph
for the sample railway (based on
D’Ariano and Pranzo 2009)

A1 A10A3A2 A8A6A5

B9B8B6B2 B4 B5B1

Computational experiments were carried for a real rail net-
work and for multiple delayed trains. The model incorporates
a detailed description of the network topology, including rail-
way signals and safety rules. Effective static implementa-
tion rules for conflict resolution problem were developed. It
resulted in a significant reduction in the computation times
obtaining near-optimal schedules for practical size problems.
D’Ariano et al. (2007b) also studied a variable speed model
that coordinated speed among consecutive trains, based on
the alternative graph formulation where safe distance head-
way between trains is respected. The model simultaneously
considers speeds of all trains with the objective of minimiz-
ing the maximum delay due to conflicts. Three approaches
were used to solve the problem: simple dispatching rules, a
greedy heuristic based on the alternative graph formulation,
and a B&B algorithm. B&B provides better quality solutions,
but requires more computation time. Moreover, the results
indicated that fixed-speed model underestimates the conse-
quences of braking and acceleration, while the variable-speed
model presents more realistic solutions.

In D’Ariano et al. (2008), D’Ariano and Pranzo (2009),
and Corman et al. (2010), rolling stock and passenger con-
nections are included in the models. D’Ariano et al. (2008)
described the traffic management system railway traffic opti-
mization by means of alternative graphs (ROMA) which is
able to solve the CDR problem in real-time for moderate size
dispatching areas. A B&B algorithm was used to sequence
train movements, while a local search algorithm was used for
rerouting optimization purposes. Computational tests, car-
ried out for a Dutch dispatching area between Utrecht and
Den Bosch, including instances with multiple delayed trains
and different blocked tracks in the network, showed that sig-
nificant delay reductions were achieved by the rescheduling
of train movements.

D’Ariano and Pranzo (2009) extended ROMA to proac-
tively evaluate the effects of train rescheduling actions for
short-term prediction of train traffic. The truncated B&B
algorithm introduced by D’Ariano et al. (2007a) was reap-
plied with the first come first served scheduling rule by
D’Ariano and Pranzo (2009). The authors focused on distur-
bances caused by train delays and temporary unavailability of

some tracks. Since the prediction of railway traffic can result
in computationally intractable instances, the time horizon
was decomposed into smaller time intervals that are solved
sequentially, with the objective of improving train punctu-
ality. To detect and solve conflicts at each time interval, the
ROMA dispatching system was employed. The independent
solution of each hour of dispatching permits handling large
time horizons with a linear increase of computation time.
This approach was compared with a formulation in the prob-
lem for the full-time horizon, in order to evaluate the error
due to the problem decomposition. The temporal decompo-
sition proved to solve large scheduling problems; however,
the full time-horizon solution gave smaller time delays but
with much larger solution times.

Corman et al. (2010) considered passenger connections,
multiple delayed trains, and heavy network disruptions. With
the objectives of increasing the solution quality and reduc-
ing computation times, in comparison of the approaches in
D’Ariano et al. (2007a) and D’Ariano et al. (2008), they
developed a tabu search strategy. Their experiments on prac-
tical size problem instances, such as the Dutch dispatching
area between Utrecht and Den Bosch, showed that (i) the
tabu search strategy decreased the optimality gap for small
instances where the optimal solutions were known, and (ii)
for large instances, the solution quality was better and com-
putational times were lower.

5 Airline schedule recovery problem

The airline recovery problem is the most studied class of
problems in the RTVSRP. Since a disruption in the airline
traffic could have severe operational and economical conse-
quences (Ball et al. 2007), the development of fast and reli-
able recovery methods is of much interest to airline compa-
nies. In particular, airline passenger companies have become
very interested in this problem since passenger delay is a
major issue as the growth in air transportation has outpaced
the capacity at some busy airports (Petersen et al. (2012)).
The development of optimization models for airline schedule
recovery has been a challenge to the O.R community since
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Fig. 8 Airline disruption
management (Liu et al. 2008)

the eighties; Teodorovic and Guberinic (1984) is perhaps the
most cited early work. Since then, several optimization and
heuristic rescheduling methods have been developed.

5.1 Aircraft rescheduling considerations

The process of airline disruption management, developed
by Liu et al. (2008) is shown in Fig. 8. A small disrup-
tion might require no rescheduling, due to the inherent
flexibilities and slack in the original schedule. However, if
the deviation between the disrupted and original schedule
becomes large, rescheduling becomes a necessity. Unplanned
events that impact airport infrastructure and air traffic control,
extreme weather conditions, and emergencies to maintain
safety are examples of disruptions that can ripple throughout
the system, resulting in cancelation or delays. Three types of
disruptions—that could occur concurrently—might disturb
a planned aircraft schedule (Bisaillon et al. 2011):

1. Flight disruption—when a flight is delayed or canceled.
2. Aircraft disruption—when an aircraft is unavailable for

a period of time.
3. Airport disruption—the departure or arrival capacities of

an airport are temporarily reduced.

Often when an airport disruption occurs, a Ground Delay
Program (GDP) is issued at this airport. The GDP purpose is
to increase the time gap between successive flight landings
in order to ensure safe operations during the adverse con-
ditions period. Under most GDPs, the available number of
slots for flight landings becomes less than planned. There-
fore, a scheduled flight could be held at its origin, diverted

to a nearby airport, or in the worst case it could be canceled
(Abdelghany et al. 2008).

When a severe disruption occurs, many resources (crew,
aircraft, passengers, slots, catering, cargo, etc.) have to be
rescheduled. Large airlines usually react to this by solving
the rescheduling problems in a sequential fashion. First, the
aircraft rescheduling problem is solved. Next, the crew pair-
ing problem is solved. Finally, a solution for the crew ros-
tering problem is defined. Although the three rescheduling
problems are highly related, this paper focuses on the ARP.
We refer to Clausen et al. (2010) for an extensive review of
disruption management in the airline industry.

An ARP solution gives a new route for each aircraft, given
that a serious disruption occurred. The new routes must com-
ply with several technical, commercial, and regulatory con-
straints based on rules defined by national and international
aviation organizations. Airline companies’ policies, aircraft
capacity, and airports’ conditions typically define constraints
to be taken into consideration when determining a revised
schedule. The solution of the problem gives a set of feasible
routes that can minimize the adverse effects of the disruption.

5.2 Aircraft rescheduling models

As mentioned earlier, Clausen et al. (2010) provide an excel-
lent survey on airline disruption management. In their liter-
ature review of ARP, 34 papers identified were published
between 1984 and 2008. The authors concluded that the
majority of the mathematical models and solution methods
for solving the ARP are similar to the methods applied for
schedule planning. The ARP was formulated based on net-
work flow models (Jarrah et al. 1993; Cao and Kanafani
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1997a,b), TLN (Yan and Yang 1996; Thengvall et al. 2000),
TBN (Argüello et al. 1997; Bard et al. 2001), and the set parti-
tioning problem on CNs (Rosenberger et al. 2003; Andersson
and Värbrand 2004). To solve the formulated models, solu-
tions methods based on the out-of-kilter algorithm (Math-
aisel 1996), B&B (Bard et al. 2001), Lagrangian relaxation
(Yan and Yang 1996; Andersson and Värbrand 2004), greedy
randomized adaptive search procedure (Argüello et al. 1997),
and tabu search (Andersson 2006) have been proposed. Most
models and methods have been evaluated using real-life prob-
lem instances. Although most of the algorithmic approaches
are capable of considering several important real-life require-
ments, the solution times of many of them were not practical
for real-time applications.

For the sake of economy and to restraint excessive overlaps
with previous reviews, we focused on papers published from
2000 onwards. Bard et al. (2001) and Clausen et al. (2010)
offer comprehensive reviews of earlier paper related to ARP.
Table 4 summarizes the reviewed papers. With the exception
of Ionescu et al. (2010), analyzed on section 2, all reviewed
papers applied a reactive strategy.

Since weather-related disturbances are the main causes of
disruptions in the airline industry (Rosenberger et al. 2003),
aircraft disruption has been receiving less attention in the
literature compared with flight and airport disruptions. Air-
craft mechanical problems are included as possible events
causing flight disruptions. Eggenberg et al. (2010) also con-
sidered disruptions caused by maintenance events. A column
generation algorithm was implemented to solve the problem.
The advantage of the developed technique is that it is flexible
enough to be applied for aircraft, crew, or passenger recov-
ery problems. The algorithm is based on recovery networks,
encoding each unit’s (aircrafts, crew, or passengers) feasi-
ble route. The computational results show that the algorithm
is efficient, solving instances with real data and reasonable
complexity in low computation times.

5.2.1 Flight disruption

Bertsimas and Patterson (2000) set up a multi-aircraft opti-
mization model minimizing the weather delay cost, based
on deterministic weather scenarios. The problem was mod-
eled as a dynamic network flow model with additional con-
straints. The authors presented a mathematical programming
approach referred to as the Lagrangian generation algo-
rithm (LGA). The LGA comprises a Lagrangian relaxation
to generate aggregate flows; a randomized rounding heuris-
tic that decompose the aggregate flows into a collection of
flight paths for individual aircrafts as well as an integer pro-
gramming formulation of the packing problem whose solu-
tion generates feasible and near-optimal routes for individual
flights. The model did not explicitly allow flights to be can-
celed. Three scenarios were used to evaluate the algorithm

efficiency, with problem solution times varying between 116
and 330 s.

Thengvall et al. (2000) expanded the model developed by
Yan and Yang (1996), developing an integer network flow
model based on TLN to deal with flight delays and cancela-
tions in daily operations. A rounding heuristic was developed
to improve the LP-relaxation of the integer formulation. Real
data from Continental Airlines for B757 and B737 sched-
ules, solved separately, were used to evaluate the developed
model. Good quality solutions were obtained within reason-
able computational times, validating its application to real-
world cases.

Bard et al. (2001) developed a time-band optimization
model for generating new aircraft routings when groundings
and delays occur in the midst of daily operation. The problem
is represented as a TBN and modeled as a minimum cost
flow model with side constraints. Several experiments were
carried out to demonstrate the effectiveness of the approach,
using data from Continental Airlines. The reported results
show that very good solutions are obtained in 3 CPU minutes,
on average.

Løve et al. (2002) solved the ARP that included flights
delays and cancelation costs using two local search
approaches: the steepest ascent local search (SALS) and
the iterated local search. The heuristic methods were based
on a network formulation, where nodes are either aircraft
or flights. Assigning an aircraft to a given flight corre-
sponds to selecting the edge connecting the aircraft and
flight for the solution. Any candidate solution is altered by
swaps that exchange flights between two aircrafts. With ran-
domly generated data, the SALS approach quickly finds a
local optimum (2.11 s on average). Kohl et al. (2007) con-
firmed the results of Løve et al. (2002) on real-life data.
As part of the DESCARTES project, they also presented a
crew scheduling solver and described a prototype multiple-
resource rescheduling decision-support system for a disrup-
tion management of aircrafts, flights, and crews.

Dožić (2009) presented a formulation for the ARP which
had the objective of minimizing the total delay costs. The
model incorporated the following constraints: time-window
constraints, aircraft maintenance constraints, aircraft balance
constraints, and capacity constraints. A local search heuris-
tic was developed for obtaining a list of feasible solutions
ordered according to the objective function value. The heuris-
tic is based on rotation crossing of delayed flights, achieved
by removing part of one rotation and adding to another rota-
tion, or by interchanging parts of two rotations. A numerical
example for one operational day was conducted for 29 air-
craft (nine different aircraft types), assigned to 126 flights. A
feasible solution list is obtained in less than 10 s for selection
and implementation by a dispatcher.

Bratu and Barnhart (2006) proposed two optimization
models to generate integrated recovery plans for aircraft,
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crews, and passengers which allow to delay or cancel flight
departures, while ensuring the compliance of crew regula-
tions and aircraft maintenance requirements. Their objective
function finds the optimal trade-off between airline operating
costs and passenger delay costs. An airline operations control
center simulator was developed to evaluate the airline recov-
ery models for real instances of airline operations. Compared
to the actual operations data which included actual passenger
delays, the models of Bratu and Barnhart reduced the number
of disrupted passengers who stayed overnight by 17.2 %, and
reduced average passenger delay by 5.2 %.

Considering the crew connection problem, Aguiar et al.
(2011) developed an aircraft recovery approach, taking into
account a multi-objective approach that optimizes delays and
other costs associated to the use of aircrafts. To solve the
ARP, three different meta-heuristics were implemented: hill-
climbing, SA, and genetic algorithm. Although all developed
heuristics performed well in terms of obtaining acceptable
delays through time, the genetic algorithm implementation
presented the better results. The crew connecting problem is
solved by the solution obtained on the aircraft recovery. To
solve it, hill-climbing and SA algorithms were developed and
tested using data from TAP Portugal. Simulated annealing
presented better results in terms of wages decrease.

Testing another meta-heuristic, Zegordi and Jafari (2010)
solved the ARP with an ant colony algorithm, adding con-
siderations about disrupted passengers to the problem. To
achieve that, the authors consider aircraft rotations and pas-
sengers’ itineraries instead of flights. The aircraft recovery is
formulated as a MILP in which the objective is to minimize
the total cost associated to recovering all flights, aircrafts, and
passengers affected by the disruption. The ant colony algo-
rithm is tested on real-world instances obtained from Ander-
sson (2006), and solved the problem with good solutions
within few minutes of computation time. This same model is
solved in Jafari and Zegordi (2011), using real data instances
presented by Andersson and Värbrand (2004). LINGO was
employed to solve the problems. However, as the size of
the instances increase, the commercial solver could not find
solutions in a reasonable amount of time. Four preprocessing
steps were then developed to decrease the problem complex-
ity, aiming at reducing the number of integer variables and
constraints. The computational time for solving the problem
is not mentioned, but the costs are equal to or smaller than
those found by the precursor paper for the tested instances.

5.2.2 Airport disruption

Thengvall et al. (2001, 2003) extended their previous work
(Thengvall et al. 2000) to deal with hub closures in a multi-
fleet context. In the 2001 paper, three multi-commodity flow
problems were introduced aiming at maximizing the revenue
minus costs of disrupted flights. Two models (Models 1 and

2) are based on time-line networks, while the third model
(Model 3) is based on a TBN. Model 3 is quicker for shorter
closure times, but slower for larger closure times. A bundle
algorithm to solve the Lagrangian relaxation of Model 3 is
introduced in the 2003 paper. Optimal solutions were found
by the bundle method quicker in extensive experiments using
data from Continental Airlines.

Filar et al. (2007) studied airport disruptions, and devel-
oped a new optimization model called model for adaptive
rescheduling of flights in emergencies (MARFE). MARFE
modifies schedules for both aircrafts that are still on the
ground and for those that are already in the air, constrained
by airport capacity levels. MARFE attempts to minimize the
sum of delay costs, curfew violation costs, cancelation costs,
and diversion costs. MARFE took less than 5 min to solve
problems to optimality for real data obtained from the Syd-
ney airport in Australia, consisting of 517 flights a day, 261
flight arrivals, and 256 departures.

Liu et al. (2008) considered the situation of a 1-h tem-
porary closure of two airports. A multi-objective airline dis-
ruption management model was proposed. A genetic algo-
rithm (called MMGA) was developed to generate a time-
effective multi-fleet aircraft recovery aiming at simultane-
ously minimizing the cost for schedule recovery (consider-
ing additional assignment and crew reassignment costs), and
passengers’ inconvenience. The model formulation consid-
ered ground turn-around times, flight connection times, flight
swaps, total flight delay time, and a constraint on 30-min
maximum delay time from the original schedules. Real flight
schedules obtained from a Taiwanese domestic airline were
used for evaluation. No running times were given, but the
authors indicated that “simulation results demonstrate that
the application is capable of presenting high-quality solu-
tions in minutes”. In Liu et al. (2010) two soft constraints
were added to the previous model for a daily short-haul air-
craft schedule recovery problem to minimize delay time vari-
ance and the number of delayed flights. Suboptimal solutions
(with a 4 % optimality gap) were found in 3.6 min on average;
optimal solutions needed an average of 7.5 min.

Rosenberger et al. (2003) presented an aircraft recovery
approach based on the set partitioning problem that con-
siders both aircraft disruptions and station disruptions. The
optimization model reschedules legs and reroutes aircraft by
minimizing an objective function involving rerouting and
cancelation costs. An efficient aircraft selection heuristic
was included to identify the subset of aircraft that may be
rerouted. The model was validated by simulation experi-
ments considering 500 days of airline operations; three dif-
ferent fleets were analyzed separately.

Abdelghany et al. (2008) developed a decision support
tool, DSTAR, for airline schedule recovery during irregular
operations aimed at an integrated recovery of aircraft, pilots,
and flight attendants. The tool is composed of two integrated
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models, a schedule simulation and a resource assignment
optimization model. The first one predicts the list of disrupted
flights in the system as function of resource availability and
aviation rules. The second one seeks to find the optimal plan
of crew and aircraft swapping, reserve utilization, and flight
reassignment to recover the projected list of disrupted flights.
The recovery horizon was divided into stages, where the sim-
ulation model produces the list of disrupted flights for the
remaining horizon, and the optimization solver makes min-
imum cost resource reassignments. The recovery problem
at each stage is formulated as a MILP, aiming to minimize
the total recovering cost, including resource reassignment
cost, total delay cost, and cancelation cost. An experimen-
tal investigation using real data indicated that DSTAR has
saved approximately 5 % in recovery costs when compared
with human schedulers.

Petersen et al. (2012) presented an innovative research,
attempting at solving the fully integrated airline recovery
problem. The developed optimization-based approach seeks
to repair (in an integrated way, rather than sequentially) the
flight schedule, aircraft rotations, crew schedule, and pas-
senger itineraries. Given the extreme complexity of the inte-
grated ARP, a routine is included to limit the size of the prob-
lem, introducing the notion of disruptable flight set. The rou-
tine analyzes the flights that are directly affected by a resource
at the airport. Next, these flights are expanded to consider
aircraft, crews, and passengers. The disruptable flight set
receives all resources that force a delay or cancelation. The
solution method, based on a Benders decomposition scheme,
has a main objective to optimize passenger delay, consisting
in the integration of several complex subproblems, each one
corresponding to solve scheduling decisions affecting air-
crafts routes and rotations, crew, and passenger itineraries.
The authors use data from an American regional company,
involving 800 flights and 2 fleets, to evaluate their approach.
Solutions are found in reasonable time for several disruption
scenarios. Moreover, the quality of the solutions, considering
the integrated approach, is improved in comparison with the
more traditional sequential method.

6 Summary and conclusions

As transportation services become larger and more com-
plex to serve growing demands, the occurrence of severe
disruptions grows and their impacts are increasingly costly.
A severe disruption can cause significant economic loss and
many negative effects on the level and quality of service pro-
vided by transportation/logistics companies. The objective of
this paper is to present a state-of-the-art review in real-time
vehicle schedule recovery modeling and solution methods
within train, airline, and road-based transportation. Meeting
the challenges of solving RTSVRP quickly and with good

quality, considering different vehicle types and disruption
causes, provides operations researchers, systems engineers,
mathematicians, and computer scientists opportunities for
beneficial research and more discoveries.

Considering the flowchart presented in Figs. 4, 5, and 8,
it is possible to conclude that the schedule recovery process
for air, train, and road-based transportation is similar. The
process starts with an analysis of the disruption and its con-
sequence for the initial off-line planning. In general, an expe-
rienced staff is responsible for defining whether a disruption
is severe enough to ask for a complex recovery of the sys-
tem, involving reallocation of a set of resources (vehicles,
crew, passengers, tracks, cargo, etc.), or a simple recovery
heuristic is sufficient to handle the unexpected event. For this
initial decision, criteria such as costs and benefits, govern-
mental regulations, duration of the disruption, among others,
play very important roles. Clearly, some disruptions do not
deserve complex small recovery actions, as follows: traffic
delays in the road-based transportation; mishandled luggage
and overbooked flight legs in the airline sector; and exces-
sive time for dis/embarking in crowded train stations. The
generation of schedule recovery plans is the next step. This
process is done in a sequential way, first the vehicle sched-
ule is solved, followed by the crew rescheduling. Next, the
impact on passengers is addressed. The recovery process is
iterated until a feasible solution is reached for all resources.
Considering the diversity of resources involved, disruption
causes and contexts, government regulations, and user pref-
erences, the whole recovery problem presents several and
conflicting objectives and a very large number of constraints.

Until recently, the generation of recovery plans was made
by human experts, employing common sense and past expe-
riences. They are content in producing a very small number
of viable plans (sometimes, just one), given the complexity
of the task (Clausen et al. 2010). The technological develop-
ments on real-time monitoring of mobile units and status of
transportation services, and the emergence of new algorithms
to solve large optimization models in the last two decades,
have resulted in the development of new models and solution
methods to cope with real-time recovery in transportation
services, especially for the RTVSRP. For two major reasons
modeling and solving vehicle recovering problems are more
complex than modeling and solving the counterpart planning
problems. First, large amounts of data are required to solve
the recovery problems and these must be collected in real-
time. Second, the recovery problems are quite complex and
need to be solved quickly.

The RTVSRP is a large class of problems, considering
different vehicle types, several different contexts (mainly
in terms of the disruption cause), and many objectives.
Although there is a great variety in the way RTVSRP
instances are formulated and solved, all reviewed papers fol-
low a similar modeling approach. The problems are initially
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represented using an underlying network structure to model
the schedules. In these structures, possible alternatives and
some constraints are explicitly represented. Based on these
networks, the problems are mathematically formulated and
solved using approaches that either decompose the prob-
lem into smaller easier-to-solve classical OR problems or
use heuristic search methods. Section 2 presents a generic
(and didactical) formulation for the RTVSRP. Next, we ana-
lyze the underlying networks, mathematical formulation, and
solution methods employed to solve the RTVSRP instances
for airline and ground transportation, identifying similarities
and differences.

Based on Tables 2, 3, and 4, three different network struc-
tures were identified in the RTVSRP literature, namely con-
nection, time-line, and time-band. The most commonly used
network for this problem is the connection. This is not a
surprise, since this structure is also the most used in off-
line scheduling processes. In the road-base transportation,
almost all problems with the exception of Ernst et al. (2007)
use this structure. But the problem is directed to recreational
rental vehicles rather than to public transportation, as usual
in the RTVSRP applied to road-based transportation. In the
railway-based transportation, the time-line network appears
in some papers (around 18 % of the revised papers). But it
is in the airline-based transportation that the alternative net-
works to connection seem to have an important role (44 %
of the revised papers use time-line or time-based networks).
Although time-line and TBN are more complex, they explic-
itly account for time and space simultaneously, while in the
connection only space is represented; time is only implicitly
represented in the arcs. We speculate that the costs involved
in the airline-based transportation demand more precise solu-
tions and better ways to generate recovery plans. Bard et al.
(2001) and Thengvall et al. (2001, 2003) claim that time-line
and TBN, however more complex to be generated, are able to
offer these benefits when solving real-world problems, orig-
inating mathematical models quicker to solve. In particular,
Thengvall et al. (2001) presents a comparison on the use of
these networks for the same problem. Time-band performed
better when the disruption time was lower. On the other hand,
time-line performed better when the disruption time was
larger. This can be explained by the greater level of detail
demanded by the TBN. As the disruption time increases, the
number of components being represented increases exponen-
tially, generating excessive binary variables in the respective
mathematical formulation.

The RTVSRP is often modeled using similar approaches
as their planning counterpart problems. Several mathematical
formulations are based on multi-commodity network flows,
set partitioning, and assignment problems. The real-time
perspective is represented by including a set of integer (in
general, binary) decision variables and side constraints. The
VRSP and the ARP present some similarities in the ways their

subproblems are formulated, based on classical integer linear
programming models such as the network flow problem, the
set partitioning problem, and the assignment problem. Spe-
cific technical-related constraints, involving track number,
track directions, and train types, make the TRP a little differ-
ent. TRP has been formulated considering event-activity net-
works, disjunctive programs, and event-driven MILP. As for
their computational complexity, both VRSP and ARP have
the same complexity, and are proven to be NP-hard problems.
Strotmann (2007) proved that TRP is NP-complete.

The solution methods used to solve the RTVSRP are
also similar to the ones used for off-line planning problems,
such as B&B, Lagrangian relaxation, column generation, soft
computing heuristics, and local-search based heuristics. The
solution approaches for VRSP are based on traditional opti-
mization methods developed for the schedule design process;
soft computing and local search based heuristics have been
neglected. Based on the reviewed literature, the TRP seems
to be the most difficult problem to solve in practice, as a con-
sequence of the following aspects: the severe security mea-
sures (two trains cannot occupy simultaneously the same seg-
ment); the number of resources involved (trains, segments,
blocks, and stations); the control of the decision is disperse
through different levels; and the generalized impacts of the
so-called “snow ball effect”. In the TRP, a common solving
approach clearly emerged due to its high complexity. The
problem is initially relaxed or transformed into a simpler one.
This problem is solved using the classical developed meth-
ods to handle large integer programming models (Lagrangian
relaxation and column generation). Soft computing and local
search based heuristics are then developed to improve or to
build a viable solution from this initial solution. In the ARP,
several different solving methods can be observed. Besides
the two approaches previously described for the VRSP and
the TRP, metaheuristic approaches have become popular in
the last years. The capacity of generating multiple solutions
with different characteristics in a very reasonable amount of
time (Andersson 2006), even for real-time context, justifies
its wide utilization in the ARP, highly dependent on a set of
alternative plans as presented in Fig. 8.

The analysis of the literature on the RTVSRP reveals some
additional interesting facts. The first is that the literature
on VRSP is scant compared with train and aircraft recov-
ery literature. This aspect was highlighted by Daduna and
Paixão (1995) and remains true today. Disruptions and real-
time recovery for buses and trucks are topics that need to be
further explored, mainly on the application of new solution
methods. A good starting point for some new approaches for
VRSP would be to apply some of the methods developed for
ARP, given the similarities of the problems.

Another observation based on the literature review is
the small number of papers related to major technical fail-
ures or severe accidents in the RTVSRP. The majority
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of the reviewed papers consider delays as the only cause
of disruption. Exceptions are Li et al. (2007a,b, 2008,
2009) for the VRSP, and Eggenberg et al. (2010) for the
ARP. Although not as common as delays, vehicle mechan-
ical problems and accidents have higher average durations
among vehicle disruptions (Acuna-Agost et al. 2011). Vehi-
cle breakdowns/accidents require the consideration of addi-
tional issues, such as the need to serve the passengers/cargo
involved in the disruption. Solution methods that solve for
only delays, in general, cannot be directly applied to mechan-
ical failures and accidents. Furthermore, new robust strate-
gies evolve when technical failures are considered, such as
the necessity of keeping spare vehicles parked in strategic
locations to recover the passengers/cargo.

Few papers integrate vehicle, crew, and passenger recov-
ery. For the VRSP, Huisman and Wagelmans (2006) analyzed
these aspects in an integrated way, but the developed solu-
tion method required high computation times. For the TRP,
Sato et al. (2009) integrated the TRP and crew reschedul-
ing problem based on a network flow model. The situation
is slightly better in the ARP, where Kohl et al. (2007) and
Abdelghany et al. (2008) integrated the aircraft and crew
scheduling, while Bratu and Barnhart (2006) and Petersen
et al. (2012) integrated aircraft, crew, and passenger recov-
ery. The solutions provided in the ARP context show the
great potential of integrated approaches for obtaining global
solutions for disruption management. In general, the opti-
mum solutions of the VRSP/ARP/TRP could be far from the
optimum integrated solution for a recovery.

7 Implications for future research

The RTVSRP provides OR scientists with an interesting and
challenging field of study. There is still much work to be done
and much to discover on the subject. The following subjects
are promising areas for future research.

The RTVSRP can also involve multiple and conflict-
ing objectives in regulated environments. Although several
papers formulate RTVSRPs to include costs and delays
in their objective functions, very few papers use multi-
objective optimization for solving the problem. Among
papers reviewed, Liu et al. (2008, 2010) are well-received
exceptions, adopting a multi-objective optimization approach
for the ARP. As multiple, often conflicting, objectives arise
naturally in the RTVSRP, multi-objective approaches, should
receive greater attention in the near future.

There is a clear trend in our review of solving the RTVRSP
to improve the operational efficiency of the transportation
service provider. Very few papers include or put emphasis
on passengers’ wishes and objectives in their formulations.
Nielsen (2008, 2011) and Berger et al. (2011a) in the TRP,
and Liu et al. (2008) and Petersen et al. (2012) in the ARP are

recent developments in this direction. The problem is quite
complex and several aspects such as passengers’ behavior
toward serious disruptions was not properly addressed. We
are quite sure that passenger disruption management will be
a very hot research topic in the near future.

Robust and real-time scheduling are highly correlated
themes of research. However, they have been treated as iso-
lated and completely independent problems. We believe that
the integration of these approaches into decision support sys-
tems can offer very effective tools to minimize the effects
of light as well as severe disruptions on daily operations of
transportation services. A promising field of study related
with robust scheduling is to introduce stability as a perfor-
mance measure index to analyze and evaluate rescheduling
in transportation.

The use of TLN is observed in the three types of trans-
portation services discussed in this paper, being more com-
mon in train and ARPs. Extensions of this kind of network,
called time-space networks, were developed for the off-line
scheduling processes. The time-space networks was first sug-
gested by Hane et al. (1995) and Clarke et al. (1996) for solv-
ing an airline scheduling problem. In a time-space network, a
node represents a specific location at a particular time while
an arc corresponds to a transition in time, representing actions
that can be performed by a vehicle. The dynamics within a
location is represented by using a time-line that connects all
possible start and end events that can occur in this location.
Pull-in/out arcs to/from stations or depots, and deadheading
arcs are added to model schedules. Additionally, these net-
works are modeled in a cycle, which forces the solution to be
a circulation flow through the network. Kliewer et al. (2006)
adapted them to solve the bus scheduling problem. Follow-
ing, Steinzen (2007) and Steinzen et al. (2010) expanded
these networks to be used in an integrated multiple depot
vehicle and crew scheduling problem. They also developed
techniques that lead to a drastic reduction of deadheading
arcs, reducing the network size in comparison to connec-
tion networks. The application of time-space networks to
the RTVRSP could generate very friendly networks, allow-
ing the development of innovative and less complex models
with quicker solution methods.

In the last decade, constraint programming (CP) has
been widely applied to scheduling problems (Lombardi and
Milano 2012). CP has as its major principle the “deduction
of additional constraints from existing ones by logical rea-
soning” (Baptiste et al. 2001). Although CP is aligned of
how RTVRSP is solved in practice, we could not find any
application of CP to this problem as CP has proven very suc-
cessful in scheduling, offering significant advantages such as
fast program development support, economic program main-
tenance, and efficient run time performance (Wallace 1996),
we believe that CP can be applied toward the development
of good and quick solution methods to the RTVRSP.
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