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Abstract We study the following online problem. There
are n advertisers. Each advertiser ai has a total demand di

and a value vi for each supply unit. Supply units arrive one by
one in an online fashion, and must be allocated to an agent
immediately. Each unit is associated with a user, and each
advertiser ai is willing to accept no more than fi units associ-
ated with any single user (the value fi is called the frequency
cap of advertiser ai ). The goal is to design an online alloca-
tion algorithm maximizing the total value. We first show a
deterministic 3/4-competitiveness upper bound, which holds
even when all frequency caps are 1, and all advertisers share
identical values and demands. A competitive ratio approach-
ing 1 − 1/e can be achieved via a reduction to a different
model considered by Goel and Mehta (WINE ‘07: Workshop
on Internet and Network, Economics: 335–340, 2007). Our
main contribution is analyzing two 3/4-competitive greedy
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algorithms for the cases of equal values, and arbitrary val-
uations with equal integral demand to frequency cap ratios.
Finally, we give a primal-dual algorithm which may serve as
a good starting point for improving upon the ratio of 1−1/e.
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1 Introduction

Display advertising, consisting of graphic or text-based ads
embedded in webpages, constitutes a large portion of the
revenue from Internet advertising, totaling billions of dollars
in 2008. Display, or brand, advertising is typically sold by
publishers or ad networks on a pay-per-impression basis, with
the advertiser specifying the total number of impressions she
wants (the demand) and the price she is willing to pay-per-
impression.1

Since display ads are sold on a pay-per-impression rather
than on a pay-per-click or pay-per-action basis, effective
delivery of display ads is very important to maximize adver-
tiser value—each impression that an advertiser pays for must
be shown to as valuable a user as possible. One aspect of
effectively delivering display ads, which has been widely
studied, is good targeting—matching ads to users who are
likely to be responsive to the content of the ad. Another very
important, but less studied, aspect is limiting user exposure
to an ad—displaying the same ad to a user multiple times
diminishes value to the advertiser, since the incremental ben-
efit from repeatedly displaying the same ad to a user is likely

1 In contrast, sponsored search advertisers typically pay-per-click or
per action, and usually have budgets, rather than a demand, or quota,
on the total number of impressions.
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to be small (a user is unlikely to react to an ad after he has
seen it a few times).

The notion of limiting the number of times a user is
exposed to a particular ad is called frequency capping,2 and
is often cited as a way to avoid banner ad burnout. That is,
frequency capping prevents ads from being displayed repeat-
edly to the point where visitors are being overexposed, and
response drops.3 Serving frequency capped ads is a very
real requirement to maximize the value delivered to dis-
play advertisers, particularly in the pay-per-impression struc-
ture of the display advertising market. This is recognized
by a number of publishers and ad networks (for instance,
RightMedia, Google, and Yahoo!) who already offer, or
implicitly implement, frequency capping for their display
advertisers.

Serving display ads subject to a frequency capping con-
straint poses an online assignment problem since the supply
of users, or impressions, is not known to the ad server in
advance. How should the ad server allocate impressions to
advertisers when it does not know which users’ impressions
will arrive in the future? In this paper, we study the sim-
plest abstractions of the assignment problems motivated by
frequency capping.

Problem statement There are n advertisers. Advertiser i has
value per impression vi , which is the price she is willing to
pay for an impression, and a demand di , which is the max-
imum number of impressions she is interested in. In addi-
tion, she also has a frequency cap fi , which is the maximum
number of times her ad can be displayed to the same user.
That is, advertiser ai pays vi only for impressions from users
who have not seen her ad more than fi times. The set of
advertisers, and their parameters, is known to the ad server
in advance.

Impressions from users arrive online. We say an adver-
tiser is eligible for an impression if she still has leftover
demand, and has not yet exhausted her frequency cap for
the user associated with this impression. When an impres-
sion arrives, the ad server must immediately decide which
ad of which advertiser, among the set of eligible advertisers,
to display for that impression. The total revenue obtained by
an algorithm is the sum of the revenues from all impres-
sions it allocates. We want to design algorithms that are
competitive against the optimal offline allocation, which
knows the supply of impressions (with their associated users)
in advance. We note that this problem is captured by the
model of Goel and Mehta (2007), see Sect. 1.1 for more
details.

2 See, e.g., http://www.marketingterms.com/dictionary/frequency_cap.
3 While it might be argued that displaying an ad more than once to a
user reinforces the advertiser’s message, repeated display without an
upper limit clearly diminishes value.

In the absence of the frequency capping constraints
( fi = ∞), the natural greedy algorithm, assigning each arriv-
ing impression to the eligible advertiser with the highest per-
impression value vi , is optimal. However, with the frequency
capping constraint, the ad server faces a tradeoff between
assigning an arriving impression to an advertiser with high
vi but large frequency cap (since the supply can stop any-
time) and a lower value advertiser with a smaller frequency
cap (since small fi means this advertiser needs to be assigned
to many distinct users). In fact, even when all advertisers have
identical values (with arbitrary tie breaking), the greedy algo-
rithm is not optimal, as the following example shows: there
are two advertisers, the first with v1 = 1, f1 = n, and the
second with v2 = 1 − ε and f2 = 1; both advertisers have
demand n (the 1− ε is used for tie breaking). The sequence
of users is u1, . . . , un, un+1, . . . , un+1, where the last user
appears n times (n impressions). The greedy allocation gets
a value of n + 1, whereas the optimal offline allocation gets
2n.

As the next example shows, however, it is not even the
different frequency caps that lead to the suboptimality of the
greedy algorithm: suppose there are n + 1 advertisers each
with fi = 1. The first n advertisers have value 1 and demand
1, and the last advertiser has value 1− ε and demand n. With
the same arrival sequence of users, a greedy allocation, again,
gets a value of n+1, whereas the optimal value is 2n. In fact,
as we will show in Sect. 3, even when all values and demands
are equal and all frequency caps are 1, no deterministic algo-
rithm can have a competitive ratio better than 3/4.

Distinction from online matching Finding a matching in a
bipartite graph, where one side is known and the other side
is exposed one vertex at a time, is known as online match-
ing. While the problem of online allocation with frequency
capping constraints appears to be similar to online matching,
they are actually quite different. In the frequency capping
problem, a-priori each impression can be assigned to any of
the advertisers. Now, as the impressions arrive, in the lan-
guage of online matching, the existence of an edge between
an advertiser and an arriving impression depends on the pre-
vious assignments made by the algorithm because of the fre-
quency capping constraint. Specifically, if the algorithm has
already assigned enough impressions from user j to adver-
tiser i, or has exhausted i’s demand, there is no edge between
advertiser i and a newly arrived impression of user j; oth-
erwise, there is an edge. This means that an adversary can
no longer control the set of edges hitting each new impres-
sion; instead, the online algorithm determines the set of edges
using indirect means. While we expect this property to trans-
late into better competitive ratios for the frequency capping
problem, taking advantage of it is not easy; a fact which is
demonstrated by the involved analysis for the natural greedy
algorithm for the problem.
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Results Our online assignment problem can also be stated
abstractly as follows. There are n agents, each one has a total
demand di and a value vi for items. Items of different types
arrive one by one in an online fashion, and must be allocated
to an agent immediately. Agent i wants no more than fi copies
of any single type of item. How should an online algorithm
assign each arriving item to agents to maximize value? This
abstract statement suggests the following simpler algorithmic
questions.

– Equal values, arbitrary di , fi Suppose agents (advertis-
ers) have identical values for items (impressions), that is,
vi = 1 for all i. Now, the goal of the online algorithm is
simply to assign as many items as possible. Our main tech-
nical contribution is the analysis of a novel greedy algo-
rithm, proving that it is 3/4-competitive; which is optimal
for a deterministic algorithm. The first step towards this
result is to show that we can assume without loss of gen-
erality that every advertiser has frequency cap of 1, i.e.,
wants no more than one impression from each user (the
reduction is independent of advertisers having the same
value, and also applies when advertisers have arbitrary
values). This reduction is simple, yet crucial—for each
of the cases we study, designing algorithms directly, with
arbitrary frequency caps, turns out to be rather hard.
We then analyze our greedy algorithm, which assigns
arriving impressions in decreasing order of total demand
amongst eligible advertisers, for instances with unit fre-
quency cap. (Assigning greedily according to maximum
residual demand does not work; this algorithm cannot do
better than 2/3.) The unit frequency cap means that an
advertiser is eligible for an impression if she has leftover
demand, and has not yet been assigned an impression of
this user. We first prove that any non-lazy algorithm has a
competitive ratio of 3/4 when all demands are equal (in
addition to the equal values); then we build on this analy-
sis to account for the fact that advertisers have unequal
demands.
Combinatorial analysis of online algorithms is usually
done via a potential function argument which shows that
at each step, the change in the potential function plus
the algorithm’s revenue are comparable to the gain of the
optimal solution. Surprisingly, our analysis considers only
the final assignment, disregarding the way in which it is
reached. This allows us to avoid coming up with a poten-
tial function (which in many cases seems to come “out
of nowhere”), and skip the tedious consideration of each
possible step.
Our result is especially interesting in light of the known
upper bounds for unweighted online matching: 0.5 and
1 − 1/e ≈ 0.63 for deterministic and randomized algo-
rithms, respectively (Karp et al. 1990).

– Arbitrary values, equal integral di/ fi The ideas used in
the analysis of the equal values case can be extended to
analyze the case where advertisers have different values,
but the same integral ratio of demand to frequency cap.
We show here that the natural greedy algorithm, which
assigns in decreasing order of value, has a competitive
ratio of 3/4 for this case; again, this is optimal in the sense
that no deterministic algorithm can do better.

– Arbitrary values, di and fi Finally, for the general case
with arbitrary values, demands and frequency caps, we
design a primal-dual algorithm whose competitive ratio
approaches 1−1/e ≈ 0.63 for di/ fi � 1; we also show an
upper bound of 1/

√
2 ≈ 0.707 for this case. A competitive

ratio of 1 − 1/e for the general case is already known
from the work of Goel and Mehta (2007), also under an
assumption similar to ours.
Our online primal-dual algorithm has an interesting fea-
ture: during the execution of the algorithm, it both
increases and decreases primal variables. (We refer to
our online problem as the dual problem.) The same algo-
rithm and competitive ratio also apply when advertisers
have target sets, i.e., they have value vi for impressions
from a set Si of users, and value of 0 for other impres-
sions. For this case, we have a matching upper bound for
deterministic online algorithms, using the upper bound on
online b-matching (Kalyanasundaram and Pruhs 2000).
(See Sect. 1.1 for a discussion regarding Goel and Mehta
(2007) and online primal-dual algorithms.)

1.1 Related work

The maximization of revenue in online ad auctions has
received much attention in recent years (Blum et al. 2004;
Blum and Hartline 2005; Mehta et al. 2007; Mahdian and
Saberi 2006; Bansal et al. 2010; Buchbinder et al. 2007;
Feldman et al. 2009a). The problem of designing online algo-
rithms to maximize advertising revenue was introduced by
the adwords model (Mehta et al. 2007): advertisers have bud-
gets, and bids for different keywords. Keywords arrive online,
and the goal is to match advertisers to keywords to maximize
revenue, while respecting the advertisers’ budget constraints.
Goel and Mehta (2007) extend the adwords model, allowing
advertisers to specify bids for keywords which are decreas-
ing functions of the number of impressions (of the keyword)
already assigned to the advertiser. Our frequency capping
problem is, in fact, a special case of the model of (Goel
and Mehta 2007) (but not of the adwords model of Mehta
et al. (2007)), where keywords correspond to users, and the
decreasing function takes the form of a step function with a
cutoff equal to the frequency cap fi of the advertiser. Hence,
the (1−1/e)-competitive online algorithm of Goel and Mehta
(2007) applies to our problem as well. On the other hand, the
upper bounds in Goel and Mehta (2007) do not apply to our
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problem since the model of Goel and Mehta (2007) also cap-
tures online matching. Improving upon the ratio of 1−1/e in
special cases is posed as an open problem in Goel and Mehta
(2007).

Our greedy algorithms in Sects. 3 and 4 obtain a ratio of
3/4, improving upon this ratio of 1 − 1/e. While the com-
petitive ratio of our algorithm in Sect. 5 is the same as that
in Goel and Mehta (2007), the algorithms are quite different.
Moreover, our model does not inherit the upper bound of
1− 1/e, and in fact, the best upper bound4 for the case with-
out target sets is 1/

√
2. Also, while the most general problem

we solve in this paper remains within the model of Goel and
Mehta (2007), the most general and realistic version of the
frequency capping problem (Sect. 6) cannot be stated as a
special case of the model of Goel and Mehta (2007). For this
model the question of both a competitive algorithm and an
upper bound (tighter than 1− 1/e) are open.

The primal-dual framework for online problems, first
introduced by Buchbinder and Naor (2009), has been shown
to be useful in many online scenarios including ad auctions,
see Bansal et al. (2012a,b), Alon et al. (2006, 2009), Buch-
binder and Naor (2006), Buchbinder et al. (2007). Unlike
these primal-dual algorithms, which update the primal vari-
ables monotonically in each round, our primal-dual algorithm
is novel in that it reassigns primal variables several times dur-
ing the execution of the algorithm; hence, the primal variables
do not necessarily increase monotonically with each round
of new supply.

Feldman et al. (2009b) consider frequency capping in a
stochastic model, but they leave open the question of improv-
ing upon the 1 − 1/e ratio in this model. Finally, the work
in Abrams and Vee (2007) also addresses user fatigue in the
context of sponsored search; however, the model and algo-
rithms substantially differ from ours.

2 Preliminaries

We denote by ALG(σ ) the revenue of algorithm ALG on
a sequence σ of arrivals of impressions, and by O PT (σ )

the revenue of the optimal offline algorithm, which knows σ

in advance. Our goal is to design an online algorithm ALG
that assigns each impression, immediately upon arrival, to
produce a feasible allocation whose total value ALG(σ ) is
competitive against O PT (σ ) for any arrival sequence σ of
impressions. The natural greedy algorithm for the problem,
denoted by G RE E DYV , allocates each arriving impression

4 While 1−1/e is the best possible competitive factor for the model of
Goel and Mehta (2007) since this model captures the adwords model of
Mehta et al. (2007), the frequency capping problem does not generalize
the adwords model of Mehta et al. (2007). Therefore, it does not follow
that 1− 1/e is an upper bound for our problem.

to the eligible advertiser with the highest value (breaking ties
arbitrarily, but consistently). The examples in the introduc-
tion show that G RE E DYV is no better than 1/2-competitive.
The next theorem shows that these examples are tight. The
proof of the theorem is based on matching every impression
assigned by G RE E DYV to up to two impressions of O PT .

Theorem 1 The competitive ratio of G RE E DYV is 1/2.

Proof For a particular sequence of arrivals, let o(t) and g(t)
be the advertisers for which an impression t is assigned by
O PT and G RE E DYV , respectively. Let f denote the num-
ber of impressions assigned by both O PT and G RE E DYV

to the same advertiser, i.e., |{t | o(t) = g(t)}|.
If v(o(t)) > v(g(t)), and the reason G RE E DYV does not

allocate impression t to advertiser o(t) is that G RE E DYV

has already allocated the maximum allowed number of
impressions of the same user to o(t), then there must be
t ′ �= t such that t and t ′ are impressions of the same user,
g(t ′) = o(t) and o(t ′) �= o(t). Swapping the assignment of t
and t ′ in O PT (i.e., allocating t to advertiser o(t ′) and t ′ to
advertiser o(t)) does not change its value, and increases the
value of f by 1. Repeat this process for all such impressions.
Since f is upper bounded by the total number of impressions,
the process is repeated only a finite number of times. At the
end of the process, if v(o(t)) > v(g(t)) for some impression
t , the reason that G RE E DYV does not allocate t to o(t) must
be that G RE E DYV has exhausted the demand of o(t).

For each impression t with v(o(t)) > v(g(t)), we map t
to a distinct impression allocated, by G RE E DYV , to adver-
tiser o(t). Since G RE E DYV exhausts the demand of o(t),
such a mapping is one-to-one. Therefore, each allocation of
G RE E DYV is counted at most twice to cover the allocation
of O PT , so G RE E DYV is 1/2-competitive. �	

We now establish a reduction from general frequency caps
to unit frequency caps which greatly simplifies our algo-
rithms. The following theorem allows us to assume fi = 1
in the rest of the paper.

Theorem 2 (Reduction to unit frequency cap) For every
frequency capping instance there is an equivalent instance
where all frequency caps are 1. Moreover, any solution to the
equivalent instance can be transformed in an online fashion
to an equivalent solution of the original instance.

Proof For any given instance I (vi , di , fi ), we construct a
new instance I ′, so that every feasible allocation of I can
be mapped to a feasible allocation of I ′, and vice versa.
We replace each advertiser ai in I having di > fi with
fi new dummy advertisers with value vi , frequency cap 1,
and demand either 
di/ fi� or �di/ fi
 such that the sum of
demands of these fi advertisers is di . If di ≤ fi , replace
ai by di dummy advertisers with value vi and demand and
frequency cap 1 each.
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Given a feasible allocation in I ′, allocate all impressions
assigned to the copies of advertiser ai in I ′ to ai in I. This
allocation is feasible—for an advertiser with di > fi , there
are fi dummy advertisers each with frequency cap 1 in I ′, so
ai does not receive more than fi impressions from any single
user since I ′ is a feasible allocation. Also, since the sum of
the demands of the dummy advertisers in I ′ is equal to the
demand di , the allocation in I does not exceed demand either.
A similar argument applies for advertisers with di < fi . This
process can be done in an online fashion.

Conversely, given an allocation in I, construct an alloca-
tion in I ′ as follows. Assuming fi ≤ di , let ai (1), . . . , ai ( fi )

denote the dummy new advertisers in I ′ corresponding to a(i)
in I (the other case, di > fi , is similar), ordered according
to non-increasing demand. Note that the demand difference
between any two dummy advertisers is at most 1. Let Q(i)
be the set of impressions allocated to a(i) in I. Order the
impressions in Q(i) such that all impressions that belong to
the same user are subsequent. Then allocate the impressions
to the advertisers ai (1), . . . , ai ( fi )one by one in a cyclic way.
That is, allocate the j-th impression in Q(i) to advertiser j
mod fi . Since no user occurs in Q(i) more than fi times, no
user is assigned to any dummy advertiser more than once.
Finally, this cyclic allocation maintains the invariant that the
difference in residual demand of any two dummy advertisers
is at most 1. Moreover, the allocation method always allo-
cates the next impression to one of the dummy advertisers
that have maximal residual demand. Thus, if the j-th impres-
sion in Q(i) cannot be allocated due to demand overflow it
means that all advertisers have residual demand 0. However,
this cannot happen since |Q(i)| ≤ di , i.e., Q(i) is not larger
than the total demand of the dummy advertisers. Thus, the
instances I and I ′ are equivalent. �	

3 Identical valuations

In this section, we assume all advertisers have identical val-
uations, i.e., for each advertiser ai , vi = 1. Let us begin with
an upper bound on any deterministic online algorithm.

Theorem 3 No deterministic online algorithm is better than
3/4-competitive, even if all advertisers have identical values,
demands, and frequency caps.

Proof Suppose there are two advertisers a1 and a2 with
demand 2 each. Consider any deterministic online algorithm
ALG. Assume the first three impressions belong to users
u1, u2, and u3. If ALG refuses to allocate any one of these
impressions, then it cannot be better than 2/3-competitive,
since O PT accepts them all. Otherwise, necessarily, one of
the advertisers was assigned two impressions, and the other
one was assigned only one impression. Assume, w.l.o.g., u1

is the user whose impression was assigned on its own to an

advertiser. Let the fourth impression belong to user u1, then
ALG cannot allocate the last impression, while O PT allo-
cates all four impressions, yielding a ratio of 3/4. �	

We now turn to online algorithms. A natural greedy algo-
rithm is one that assigns an arriving impression to an eligi-
ble advertiser with the maximum residual demand. However,
assigning according to residual demand, breaking ties arbi-
trarily, cannot have a competitive ratio better than 2/3, as the
following example shows. There are two advertisers, with
d1 = 1 and d2 = 2, with ties broken in favor of a1. The
sequence of arrivals is u1, u2, u1. The residual demand algo-
rithm allocates only two impressions: the first impression to
a2 and then the second impression to a1. The optimal assign-
ment, however, can assign all three impressions.

We show that an alternative greedy algorithm, named
G RE E DYD , which assigns according to total demand, has
a competitive ratio of 3/4. Hereby is algorithm G RE E DYD :

1. Sort advertisers a1, . . . , an in a non-decreasing demand
order (d1 ≥ · · · ≥ dn).

2. Upon arrival of a new impression, assign it to the first
eligible advertiser according to the above order.

We need the following notation. Let yi denote the number
of impressions assigned by G RE E DYD to advertiser ai , and
let y∗ = mini yi . Let k denote the number of advertisers
whose demand is exhausted by G RE E DYD . In Sect. 3.1,
we analyze the case of equal demands (and vi = 1), and
in Sect. 3.2 we build on this analysis to deal with the case
where demands are arbitrary. We include the proof of the
equal demands case since it is simpler, yet gives some insight
into the proof of the general case.

3.1 Equal demand case

Algorithm G RE E DYD has the property that it is non-lazy,
i.e., it allocates every impression it receives, unless no adver-
tiser is eligible for it. We show that any non-lazy algorithm,
including G RE E DYD , is 3/4-competitive when all adver-
tisers have equal demand, denoted by d.

Theorem 4 Let ALG be a non-lazy algorithm, and let σ be
a sequence of input impressions. Then, ALG(σ )

O PT (σ )
≥ 3/4.

Before going into the proof of Theorem 4, consider the
example depicted in Fig. 1. The rectangle is divided into
three areas: R1 is the total allocation of advertisers who have
exhausted their demand, R2 is the total allocation of advertis-
ers who have not exhausted their demand, and R3 is “unused”
demand. We use two upper bounds on O PT (σ )− ALG(σ ):

|R3| ≤ (d − y∗) · (n − k) ≤ |R2| · (d − y∗)/y∗,
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Fig. 1 An assignment constructed by the online algorithm ALG. Each
column is an advertiser and each row corresponds to a unit demand

and

k · y∗ ≤ |R1| · y∗/d.

Note that y∗ > 0, since an advertiser who has received no
impressions can always be assigned at least one impression
without violating the frequency cap constraint. The theorem
now follows from these bounds together with the observation
|ALG(σ )| = |R1| + |R2|.

Let us now begin the formal proof of Theorem 4. Let A be
the set of impressions allocated by O PT , and let B ⊆ A be
of size O PT (σ ) − ALG(σ ). Associate each impression of
B with an advertiser, such that up to d − yi impressions of B
are associated with each advertiser ai . This is possible since

n∑

i=1

(d−yi )=nd−ALG(σ ) ≥ O PT (σ )−ALG(σ )=|B|.

Lemma 1 |B| = O PT (σ )− ALG(σ ) ≤ y∗k.

Proof Let ai∗ be an advertiser for which yi∗ = y∗. If y∗ =
d, then ALG(σ ) = nd = O PT (σ ), so we can assume
y∗ < d. Thus, each impression that ALG fails to allocate
belongs to a user that already has an impression allocated to
ai∗ (otherwise, ALG could have assigned it to ai∗ ). Hence,
there are at most y∗ users having impressions that are not
allocated to all advertisers. Each such user u can have at most
k more impressions allocated by O PT than by ALG (if u
has an unassigned impression, all n−k advertisers with non-
exhausted demands must have been assigned an impression
of u). �	

Next, for the purpose of analysis, we define two types
of payments received by each impression x ∈ B. Suppose
impression x is associated with advertiser ai . The first pay-
ment x gets is px = yi/(d − yi ), and the second payment is
p′x = d/y∗.

Lemma 2 The total payment received by all impressions of
B is at most ALG(σ ).

Proof Let E denote the set of advertisers whose demand is
not exhausted by ALG (i.e., |E | = n − k). Let ai ∈ E .
For each impression x associated with ai , we have px = yi/

(d− yi ) and the number of such impressions is at most d− yi .
Therefore, the first type of payment received by impressions
associated with ai sums up to at most yi . Adding up over
all advertisers of E , the sum of the first type payments to all
impressions in B is at most

∑
ai∈E yi . Since payments of the

second type are all equal, they add up to

|B| · d

y∗
≤ y∗k · d

y∗
= dk.

Note that dk+∑
ai∈E yi = ALG(σ ), since ai �∈ E ⇒ yi =

d, completing the proof. �	
Lemma 3 For each impression x ∈ B, px + p′x ≥ 3.

Proof Suppose x is associated with an advertiser ai . The total
payment received by x is:

yi

d − yi
+ d

y∗
≥ y∗

d − y∗
+ d

y∗
= y∗2 + d(d − y∗)

y∗(d − y∗)

= 3+ (2y∗ − d)2

y∗(d − y∗)
≥ 3.

�	
Corollary 1 ALG(σ ) ≥ 3|B|.

The proof of Theorem 4 is now immediate:

ALG(σ )

O PT (σ )
= ALG(σ )

ALG(σ )+ |B| ≥
3|B|

3|B| + |B| =
3

4
. (1)

3.2 General case

In this section we prove the main result of our paper. Unfor-
tunately, the proof from the previous section does not readily
generalize; the core of the difficulty is that it is no longer pos-
sible to sort the advertisers in a non-decreasing demand order
in which all exhausted advertisers appear before the non-
exhausted advertisers. Instead, exhausted and non-exhausted
advertisers might be interleaved in every non-decreasing
demand ordering of the advertisers. Thus, it is hard to guaran-
tee the extent to which impressions of exhausted advertisers
can be charged. A simple approach to overcome this diffi-
culty is to split the advertisers into blocks, making sure that
within each block the exhausted advertisers appear before
the non-exhausted ones. However, this fails since O PT and
G RE E DYD may place impressions in different blocks. To
circumvent this problem we consider subsets of advertis-
ers having demand above a given threshold. The proof then
makes a connection between the difference in number of
impressions allocated by O PT and G RE E DYD to a subset
of the advertisers and the number of exhausted advertisers in
the subset, yielding a lower bound on the payment that can be
extracted from the impressions of the exhausted advertisers.

The next theorem shows that the competitive ratio of
G RE E DYD is 3/4 even when the demands are arbitrary.
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Theorem 5 Let σ be a sequence of input impressions. Then,

G RE E DYD(σ )

O PT (σ )
≥ 3/4.

The rest of this section is devoted for proving Theorem 5.
Let ki be an indicator for the event that the demand of adver-
tiser ai is exhausted by the algorithm, i.e., ki = 1 if di = yi ,
and ki = 0 otherwise. Note that k =∑n

i=1 ki . Let O PTi (σ )

denote the number of impressions allocated by O PT to
advertiser ai .

We first prove a convenient property of the optimal solu-
tion. We construct a flow network N where there is a node
for each user u j and advertiser ai , together with source node
s and sink node t . The edges of the network are as follows:

– For each user u j with m j impressions, there is an edge of
capacity m j from s to u j .

– For each advertiser ai with demand di , there is an edge of
capacity di from ai to t .

– For each pair of user u j and advertiser ai , there is an edge
of capacity 1 from u j to ai , representing the frequency
cap which we assume, by Theorem 2, is 1.

Observation 1 Every feasible integral flow f in the network
N corresponds to a legal assignment of impressions to adver-
tisers with revenue | f |, such that the number of impressions
assigned to advertiser ai is equal to the flow on the edge
(ai , t). The reverse direction holds as well.

Using this observation we can prove the next lemma:

Lemma 4 For any input sequence σ of impressions, and a
feasible assignment S of impressions to advertisers, there is
an optimal assignment S′ such that for each advertiser ai , S′
assigns to ai at least as many impressions as S does.

Proof Let S′′ be any optimal integral assignment. Using
Observation 1, assignments S and S′′ define flow functions f
and f ′′, respectively, in the network N. Flow function f ′′− f
is a legal flow function in the residual network of f , and it
can be decomposed into a collection of augmenting cycles
and simple augmenting paths from s to t . Therefore, every
augmenting path in f ′′ − f can only increase the flow on
the edges going from the advertisers to the sink t . Let f ′ be
the flow resulting from f by the addition of all augmentation
paths in f ′′ − f , and let S′ be the corresponding assignment.
Inevitably, S′ is optimal, and has at least as many impressions
assigned to each advertiser as in S. �	

Applying Lemma 4 to the solution produced by
G RE E DYD , we can assume that for each advertiser ai ,
O PTi (σ ) ≥ yi .

Observation 2 If i < j , then y j ≤ yi . That is, the number
of impressions allocated by G RE E DYD to the advertisers
is non-increasing.

Proof If yi = di the observation holds, since y j ≤ d j ≤
di . Else, each impression G RE E DYD allocates to a j must
belong to a user that already has an impression allocated to
ai . �	

We now extend Lemma 1 to the general demands setting.

Lemma 5 For every advertiser ai , if ki = 0, then
∑i

j=1[
O PTj (σ )− y j

] ≤ yi ·∑i
j=1 k j .

Proof Every impression that G RE E DYD fails to allocate to
one of the advertisers a1, . . . , ai must belong to a user already
having an impression allocated to ai (since ki = 0). There-
fore, there are at most yi users who have impressions that are
not allocated to advertisers a1, . . . , ai . Each such user can
have at most

∑i
j=1 k j more impressions allocated to adver-

tisers a1, . . . , ai by O PT than by G RE E DYD , completing
the proof. �	

We now order the impressions allocated by O PT (σ ) to
the advertisers. An impression x assigned to advertiser a′(x)

(by O PT (σ )) precedes an impression y assigned to adver-
tiser a′(y) (again, by O PT (σ )) if a′(x) appears before a′(y)

in the order define by G RE E DYD . If x and y are assigned to
the same advertiser, the order between them is arbitrarily cho-
sen. Let A be the set of impressions allocated by O PT . Define
B ⊆ A as the following subset of impressions. For each
advertiser ai , all impressions O PT allocates to ai belong
to B, except for the first yi impressions (if O PTi (σ ) = yi ,
then none of the impressions O PT allocates to ai belongs to
B). See Fig. 2 for a graphical representation of the relation-
ship between A, B, O PT (σ ) and G RE E DYD(σ ). For any
impression x ∈ B, let B≤x denote the set of impressions in
B which appear before x in the above order, including x.

Observation 3 If impression x ∈ B is allocated to adver-
tiser ai by O PT (σ ), then ki = 0.

Proof Otherwise, yi = di , and no impression allocated by
O PT to ai belongs to B. �	

Fig. 2 An assignment constructed by G RE E DYD . The set A contains
the impressions assigned by O PT (σ ). The set B contains O PTi (σ )−yi
impressions of A from every advertiser ai (recall that we assumed
O PTi (σ ) ≥ yi ). Thus, B and G RE E DYV (σ ) add up to O PT (σ )
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Observation 4 O PT (σ ) = G RE E DYD(σ )+ |B|.
We now define, for analysis purposes, two types of pay-

ments made by the impressions allocated by G RE E DYD to
the impressions of B. Consider an impression x ∈ B allocated
to advertiser ai by O PT . Then, the impressions allocated to
ai by G RE E DYD contribute px = yi/(di − yi ) to x (recall
that di− yi is not zero since x ∈ B, and therefore ki = 0). Let
h be the minimal integer such that: yi ·∑h

j=1 k j ≥ |B≤x |.5
Then, the impressions allocated to ah by G RE E DYD con-
tribute p′x = dh/yi to x.

Lemma 6 For each impression x ∈ B allocated by O PT
to ai , The payment p′x is relieved from impressions that are
allocated by G RE E DYD to an advertiser ah with h < i and
kh = 1.

Proof Since x ∈ B is assigned to ai , it must hold that:

|B≤x | ≤
i∑

j=1

[
O PTj (σ )− y j

]
.

Also, by Lemma 5,

i∑

j=1

[
O PTj (σ )− y j (σ )

] ≤ yi ·
i∑

j=1

k j .

Combining both inequalities, we get |B≤x | ≤ yi ·∑i
j=1 k j ,

and can conclude h ≤ i . Notice that kh = 1, otherwise h
could be replaced by h − 1 without changing yi ·∑h

j=1 k j .
On the other hand, ki = 0 since x ∈ B, and therefore,
h �= i . �	
Lemma 7 For each impression x ∈ B, px + p′x ≥ 3.

Proof Suppose O PT allocates x to advertiser ai . Let ah be
the advertiser whose impressions contribute to p′x . Clearly,
px + p′x = yi/(di − yi ) + dh/yi . By Lemma 6, h < i , and
therefore, dh ≥ di . Hence,

px + p′x =
yi

di − yi
+ dh

yi
≥ yi

di − yi
+ di

yi
≥ 3, (2)

where the last inequality follows from the same arguments
used in the proof of Lemma 3. �	

For an advertiser ah , we use the term the total contribution
made by the impressions allocated to ah to denote the total
payment that is associated with the impressions that were
allocated to it by G RE E DYD .

Lemma 8 Let ah be an advertiser with kh = 0, then the
total contribution made by the impressions allocated to ah

(by G RE E DYD) is at most yh.

5 Following Lemma 5, every advertiser with an exhausted demand can
be “blamed” for at most yi impressions in B. The definition of h attempts
to isolate the advertiser ah which is to be blamed for the fact that x ∈ B.

Proof By Lemma 6, the impressions allocated to ah con-
tribute, for any impression x, only to px (and not to p′x ). Each
contribution is yh/(dh − yh). A contribution is made only to
impressions allocated by O PT to ah which are in B, and the
number of such impressions is O PTh(σ )− yh ≤ dh − yh . �	
Lemma 9 Let ah be an advertiser with kh = 1, then the
total contribution made by the impressions allocated to ah

(by G RE E DYD) is at most yh = dh.

Proof Let x ∈ B be the last impression whose p′x is con-
tributed by the impressions allocated to ah by G RE E DYD ,
and let ai be the advertiser to which O PT allocated x. Con-
sider any impression z ∈ B such that |B≤z | ≤ |B≤x | − yi .
Necessarily, z is allocated to an advertiser ai ′ with i ′ ≤ i ,
hence, yi ≤ yi ′ . Implying:

|B≤z | ≤ |B≤x | − yi ≤ yi

⎛

⎝
h∑

j=1

k j

⎞

⎠− yi

= yi ·
h−1∑

j=1

k j ≤ yi ′ ·
h−1∑

j=1

k j .

Therefore, by definition, z gets its p′z contribution from the
impressions allocated to advertiser ah−1 or advertisers pre-
ceding it. By the choice of x and z this implies that there
are at most yi impressions in B which get their p′x contribu-
tion from the impressions allocated to ah by G RE E DYD .
The total contribution the impressions of ah contribute is,
therefore, at most yi · (dh/yi ) = dh . �	
Corollary 2 G RE E DYD(σ ) ≥ 3|B|.
Proof By Lemmata 8 and 9, the total contribution of all the
impressions assigned to some advertiser by G RE E DYD is
at most G RE E DYD(σ ). On the other hand, by Lemma 7,
the contribution for each impression of B is at least 3. �	

The proof of Theorem 5 is now immediate:

G RE E DYD(σ )

O PT (σ )
≥ G RE E DYD(σ )

G RE E DYD(σ )+ |B|
≥ 3|B|

3|B| + |B| =
3

4
.

4 Equal demands, arbitrary valuations

In this section, we assume advertisers have different val-
ues, but the same integer ratio of demand to frequency cap
(this can happen, for example, when each advertiser has fre-
quency cap fi and wants to advertise to the same number
of distinct users u, so that di = fi u). The reduction to unit
frequency cap makes this equivalent to the assumption that
demands are equal (di = d) and all frequency caps are 1.

123



J Sched (2014) 17:385–398 393

The following theorem shows that the natural greedy algo-
rithm G RE E DYV , which assigns in decreasing order of
value (breaking ties arbitrarily), has a competitive ratio of
3/4. Note that by Theorem 3, this ratio is optimal.

Theorem 6 Let σ be a sequence of input impressions. Then,
under the above assumptions,

G RE E DYV (σ )

O PT (σ )
≥ 3/4.

The rest of this section is devoted for proving Theo-
rem 6. Algorithm G RE E DYV sorts the advertisers in a
non-decreasing value order, a1, a2, . . . , an . Let yi denote the
number of impressions G RE E DYV allocates to advertiser
ai . Let k denote the number of advertisers whose demand
was exhausted (i.e., k = |{i |yi = d}|). Let O PTi denote the
number of impressions allocated by O PT to ai and let v(Z)

denote the total value that a set z of impressions contributes
to O PT (σ ).

Observation 5 If i < j , then y j ≤ yi . That is, the number
of impressions allocated by G RE E DYV to the advertisers
is non-increasing.

Proof Each impression G RE E DYV allocates to a j must
belong to a user that already has an impression allocated
to ai . Therefore, y j ≤ yi . �	
Corollary 3 The k advertisers whose demand was fulfilled
by G RE E DYV are the first k advertisers.

Lemma 10 For every advertiser ai with i > k,
∑i

j=1 O PTj

≤ yi k +∑i
j=1 y j .

Proof Each impression that G RE E DYV fails to allocate to
one of the advertisers a1, . . . , ai must belong to a user which
already has an impression allocated to ai by G RE E DYV

(because i > k, and therefore, there is still demand left for
ai ). Therefore, there are at most yi users who have impres-
sions that are not allocated to the advertisers a1, . . . , ai . Each
such user can have at most k more impressions allocated to
advertisers a1, . . . , ai by O PT , than by G RE E DYV . �	

Let A be the set of impressions allocated by O PT (i.e.,
v(A) = O PT (σ )). We order the impressions of A accord-
ing to the order of the advertisers defined by G RE E DYV ,
breaking ties arbitrarily (i.e., the impressions of A that O PT
allocates to a1 appear first in the order, then the impressions
of A that O PT allocates to a2 and so forth.). Define B as
the following set of impressions. For each advertiser ai , all
impressions O PT allocates to ai belong to B, except for the
first yi impressions. (If O PTi (σ ) ≤ yi , then none of the
impressions O PT allocates to ai belongs to B.)

For every set Z ⊆ A, let Z<x denote the set of impressions
in z which appear before x in the above order, excluding x,

and let Z≤x denote the same set including x if x ∈ Z . Notice
that if x �∈ Z then Z<x = Z≤x . Similarly, let us define Z>x

and Z≥x .
We define C ⊆ B as following. An impression x ∈ B

allocated by O PT to advertiser ai is in C if it satisfies the
following inequality:

i∑

j=1

y j < |(A − B)<x | + |B≤x | − |C<x |.

Although this definition uses the set C , it is not cyclic because
the membership of each impression x in C depends only on
the membership in C of impressions that appear before it
in the above order. The intuition behind the set C is that
it contains the impressions that give the “real” difference
between the solutions of O PT and G RE E DYV , i.e., C is a
subset of B of size equal to the difference between the number
of impressions assigned by O PT and G RE E DYV . The set
C was not necessary in the proof of Theorem 5 because there
we could assume yi ≤ O PTi , which would have implied
B = C given the above definition of C .

Observation 6 If impression x ∈ C is allocated by O PT
to ai , then i > k (otherwise yk = d, and no impression
allocated by O PT to ai could have been in B).

Let xi be the last impression of A that is allocated by O PT
to one of the advertisers a1, . . . , ai . xi may not exist, but then
no impressions arrived, and any algorithm is optimal; so it is
safe to assume xi exists.

Lemma 11 For 1 ≤ i ≤ n,
∑i

j=1

(
O PTj − y j

) ≤ |C≤xi |.
Proof Let zi be the last impression of (B − C)≤xi . If there
is no zi then B≤xi = C≤xi , and the proof is complete since
by definition

∑i
j=1

(
O PTj − y j

) ≤ |B≤xi |. Therefore, we
can assume that zi exists. Let ah be the advertiser that zi was
assigned to (by O PT ). Since zi �∈ C ,

h∑

j=1

y j ≥ |(A − B)<zi | + |B≤zi | − |C<zi |,

and therefore,

i∑

j=1

O PTj ≤
h∑

j=1

y j +
i∑

j=1

O PTj

−|(A − B)<zi | − |B≤zi | + |C<zi |

=
h∑

j=1

y j + |A>zi ∩ A≤xi | + |C<zi |.

Notice that by the definition of B we have: |(A − B)>zi ∩
(A − B)≤xi | ≤

∑i
j=h+1 y j . In addition, due to the way zi

was chosen, each impression of A>zi ∩ A≤xi is either in C ,
or not in B,therefore:

123



394 J Sched (2014) 17:385–398

|A>zi ∩A≤xi | = |(A−B)>zi ∩ (A−B)≤xi |+|C>zi ∩C≤xi |

≤
i∑

j=k+1

y j + |C≤xi | − |C≤zi |.

Plugging this into the previous inequality gives:

i∑

j=1

O PTj ≤
h∑

j=1

y j +
⎛

⎝
i∑

j=h+1

y j + |C≤xi | − |C≤zi |
⎞

⎠

+|C<zi | =
i∑

j=1

y j + |C≤xi |.

�	
Lemma 12 O PT (σ ) ≤ G RE E DYV (σ )+ v(C)

Proof Let us define vn+1 = 0 for consistency, then one

can easily observe that O PT =∑n
i=1

[
(vi − vi+1) ·∑i

j=1

O PTj
]
. Using Lemma 11, we get:

O PT (σ ) ≤
n∑

i=1

⎡

⎣(vi − vi+1) ·
⎛

⎝
i∑

j=1

y j + |C≤xi |
⎞

⎠

⎤

⎦

= G RE E DYV (σ )+
n∑

i=1

[
(vi − vi+1) · |C≤xi |

]

= G RE E DYV (σ )+ v(C),

where the inequality holds since vi − vi+1 ≥ 0, and the last
equality follows since |C≤xi | is the number of impressions
of C allocated to advertisers a1, . . . , ai by O PT . �	

We now define two types of payments that the impres-
sions allocated by G RE E DYV pay to the impressions of C .
Consider an impression x ∈ C allocated to advertiser ai by
O PT . The impressions allocated to ai by G RE E DYV pay
px = vi yi/(d− yi ) to x (recall that d− yi is not zero because
x ∈ C , and therefore, i > k). Let h be the minimal integer
such that hyi ≥ |C≤x |, then the impressions allocated to ah

by G RE E DYV pay p′x = vhdh/yi to x.

Lemma 13 For each impression x ∈ C allocated to ai by
O PT , p′x is contributed by the impressions allocated (by
G RE E DYV ) to an advertiser ah with h ≤ k < i .

Proof Since x ∈ C :
i∑

j=1

y j < |(A − B)<x | + |B≤x | − |C<x |.

Firstly notice that |C<x | = |C≤x |−1, and also
∑i

j=1 O PTj

≥ |A≤x | = |(A − B)<x | + |B≤x |. Plugging this into the
previous inequality gives:

i∑

j=1

y j <

i∑

j=1

O PTj − |C≤x | + 1⇒ |C≤x |

≤
i∑

j=1

O PTj −
i∑

j=1

y j .

From Lemma 10,
∑i

j=1 O PTj ≤ yi k +∑i
j=1 y j . Combin-

ing the last two inequalities we get |C≤x | ≤ yi k, and we
can immediately conclude h ≤ k. In addition, since x ∈ C ,
Observation 6 implies k < i . �	
Lemma 14 For each impression x ∈ C, px + p′x ≥ 3vi .

Proof Suppose O PT allocates x to advertiser ai , and let ah

be the advertiser whose impressions contribute to p′x . Then
px + p′x = vi yi/(d − yi ) + vhd/yi . By Lemma 13, h < i ,
and therefore, vh ≥ vi . Hence:

px + p′x =
vi yi

d − yi
+ vhd

yi
≥ vi ·

(
yi

d − yi
+ d

yi

)
≥ 3vi .

Where the last inequality follows from the same arguments
used in the proof of Lemma 3. �	
Lemma 15 Let ah be an advertiser with h > k, then the
total contribution made by the impressions allocated to ah

(by G RE E DYV ) is at most vh yh.

Proof By Lemma 13, the impressions allocated to ah con-
tribute, for any impression x, only to px (and not to p′x ).
Each contribution is vh yh/(dh − yh). A contribution is made
only to impressions allocated by O PT to ah which are in
C ⊆ B, and the number of such impressions cannot exceed
dh − yh . �	
Lemma 16 Let ah be an advertiser with h ≤ k, then the
total contribution made by the impressions allocated to ah

(by G RE E DYV ) is at most vh yh = vhd.

Proof Let x ∈ C be the last impression whose p′x is con-
tributed by the impressions allocated to ah , and let ai be the
advertiser x is allocated to by O PT . Consider any impres-
sion z ∈ C such that |C≤z| ≤ |C≤x | − yi . Necessarily, z
is allocated to an advertiser ai ′ with i ′ ≤ i , and therefore
yi ≤ yi ′ . This implies:

|C≤z | ≤ |C≤x | − yi ≤ yi h − yi = yi (h − 1) ≤ yi ′(h − 1).

Therefore, by definition, z gets its p′z payment from the
impressions allocated to advertiser ah−1 or an advertiser
before it. By the choice of x and z this implies that there are
at most yi impressions in C whose second payment is con-
tributed by the impressions allocated to ah by G RE E DYV .
The total contribution of the impressions of ah is, therefore,
at most: yi · (vhd/yi ) = vhd. �	
Corollary 4 G RE E DYV (σ ) ≥ 3v(C)

Proof By Lemmata 15 and 16, the total contribution of
all the impressions assigned by G RE E DYV is no greater
than G RE E DYV (σ ). On the other hand, by Lemma 14,
the payment received by each impression x ∈ C is at least
3v(x). �	
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The proof of Theorem 6 is now immediate:

G RE E DYV (σ )

O PT (σ )
≥ G RE E DYV (σ )

G RE E DYV (σ )+ v(C)

≥ 3v(C)

3v(C)+ v(C)
= 3

4
.

5 Arbitrary valuations

We now consider arbitrary valuations vi . We first prove an
improved upper bound for this case.

Theorem 7 No deterministic algorithm has a competitive
ratio better than 1/

√
2 ≈ 0.707.

Proof Consider any deterministic algorithm ALG and the
following instance: There are two advertisers: a1 withv1 = 1,
d1 = 1 and a2 with v2 = 1/

√
2, d2 = 2. At step one, a

user u1 comes. If ALG assigns to a2, the process stops. The
optimal algorithm will assign to a1. The ratio of the algorithm
is 1/
√

2. If ALG assigns to a1 at step one, a new user u2

comes with two impressions. ALG can only assign one of
them to a2, giving a total revenue of 1+1/

√
2. However, the

optimal algorithm assigns the three impressions to a2, a1, a2,
respectively, earning a total revenue of 1+2/

√
2. Hence, the

ratio of the algorithm is 1+1/
√

2
1+2/

√
2
= 1/
√

2. �	

5.1 A primal-dual algorithm

In order to apply the primal-dual approach to the problem,
we first formulate the offline allocation problem as a linear
program as follows. We refer to the allocation problem as the
dual problem, since it is a maximization problem. Let A be
the set of advertisers. Let B be the set of users. Finally, for
each user j ∈ B, let K ( j) be the number of impressions of
user j. We define variables y(i, j, k) indicating that the k-th
impression of user j is assigned to advertiser ai .

max
∑

ai∈A

vi

∑

j∈B

K ( j)∑

k=1

y(i, j, k) (D)

s.t.
∑

j∈B

K ( j)∑

k=1

y(i, j, k) ≤ di ∀ai ∈ A

K ( j)∑

k=1

y(i, j, k)≤ fi ∀ai ∈ A, j ∈ B

∑

ai∈A

y(i, j, k)≤1 ∀ j ∈ B, k ∈ {1, 2 . . . , K ( j)}

y(i, j, k) ≥ 0

The first set of constraints guarantees that at most di impres-
sions are assigned to advertiser ai . The second set of con-
straints guarantees the frequency cap of each advertiser.

Finally, the last set of constraints guarantees that each impres-
sion is assigned only once. For consistency with previous
work (Buchbinder and Naor 2009), we refer to the maxi-
mization problem as the dual problem. We now define the
primal problem. We have variable x(i) for each advertiser
ai , a variable w(i, j) for each pair of advertiser ai and user j
and variable z( j, k) for the k-th impression of user j.

min
∑

ai∈A

di x(i)+
∑

ai∈A, j∈B

fiw(i, j)+
∑

j∈B,k

z( j, k) (P)

s.t. x(i)+ w(i, j)+ z( j, k) ≥ vi∀ai ∈ A, j ∈ B, k
x, w, z ≥ 0

The allocation algorithm is as follows. We assume that the
reduction to the case where the frequency cap of each adver-
tiser is 1 has already been applied.

Allocation Algorithm: Upon arrival of impression k of
user j:

– Let S( j) be the set of advertisers not yet assigned
impressions of user j, and let S( j) = A \ S( j).

– Let m1 ∈ S( j) be the advertiser maximizing vi−x(i).
Let m2 ∈ S( j) \ m1 be the advertiser maximizing
vi − x(i).a

1. Assign impression k to advertiser m1.
2. For each advertiser i ∈ S( j) ∪ m1 set:

w(i, j)← max{0, (vi − x(i))− (
vm2 − x(m2)

)}.
3. For each advertiser i ∈ S( j) \ m1 set: w(i, j)← 0.
4. For each impression � ≤ k of user j set:

z( j, �)← vm2 − x(m2).

5. For advertiser m1: x(m1)← x(m1)
(

1+ 1
di

)
+ vm1

c·di

(where c is a constant to be determined later).

a If maxS( j)(vi − x(i)) ≤ 0, or S( j) = ∅, no assignment is made
and no variables are updated. If there is no m2, we view vm2−x(m2)

as equal to 0.

Notice that this algorithm differs from the standard online
primal-dual approach because it both increases and decreases
primal variables.

Theorem 8 The algorithm is (1−(c+1)−1)-competitive, for

c =
(

1+ 1
dmin

)dmin − 1, where dmin is the minimum demand

of any advertiser.

Proof The assignment of impressions to advertisers defines
a solution to the dual program. The algorithm generates a
primal solution online.

We start with a few useful observations. Note first that
the variables in the primal solution are always non-negative.
Next, observe that for each advertiser i, x(i) is monotoni-
cally increasing during the execution of the algorithm, and
vi−x(i) is monotonically decreasing. Also, observe that if at
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some point of time in which an impression of user j arrives,
vm2 − x(m2) = v′, then in the next time in which an impres-
sion of user j arrives, vm2 − x(m2) ≤ v′, i.e., vm2 − x(m2) is
also monotonically decreasing. This follows since m2 max-
imizes vi − x(i) among advertisers i that have not yet been
assigned an impression of user j (i.e., advertisers in S( j)),
vi − x(i) is monotonically decreasing and the set S( j) can
only shrink over time.

We now prove the following claims from which the theo-
rem readily follows.

1. The primal solution produced by the algorithm is feasible.
2. In each round (arrival of an impression) the change in the

dual profit is at least 1 − (c + 1)−1 times the change in
the primal cost.

3. The dual solution produced is feasible.

Proof of (1) We prove feasibility by induction on the steps of
the algorithm. Initially, there are no primal constraints and
the primal solution is trivially feasible. Consider the step in
which impression k of user j arrives. The algorithm does
not change the value of variables w(i, j ′) and z( j ′, k) corre-
sponding to any user j ′ �= j . Thus, since x(i) only increases,
all the constraints corresponding to users j ′ �= j and impres-
sion � remain feasible, i.e., x(i)+ w(i, j ′)+ z( j ′, �) ≥ vi .

Next, consider the primal constraint corresponding to user
j, advertiser i, and impression � ≤ k: x(i) + w(i, j) +
z( j, �) ≥ vi . If advertiser i ∈ S( j) ∪ m1, i.e., i has already
been assigned an impression of user j, then:

w(i, j)+ z( j, �) (3)

= max{0, (vi − x(i))− (vm2 − x(m2))} + vm2 − x(m2)

≥ vi − x(i) .

and the constraint is satisfied. If advertiser i ∈ S( j) \ m1,
i.e., i has not been assigned an impression of user j, then:

w(i, j)+ z( j, �) = 0+ vm2 − x(m2) ≥ vi − x(i). (4)

The last inequality follows since m2 is the advertiser that
maximizes the quantity vi−x(i) in the set S( j)\m1, yielding
that the constraint is satisfied.

Proof of (2) We analyze the change in the primal cost
and the dual profit in the current round. Consider first the
contribution to the primal cost due to the change in the
w-variables and z-variables, excluding advertiser m1 and
impression ( j, k):

∑

i∈S( j)

w(i, j)+
∑

�<k

z( j, �). (5)

The first sum has k − 1 terms corresponding to advertisers
that were already assigned impressions belonging to user
j, and the second sum has also k − 1 terms corresponding

to the first k − 1 impressions of user j. We now match each
advertiser i ∈ S( j) with the variable z( j, �) corresponding to
the impression � assigned to i. The new values of the variables
satisfy:

w(i, j)+ z( j, �) = max{vi − x(i), vm2 − x(m2)}. (6)

Since both terms above can only decrease during the exe-
cution of the algorithm, the contribution to the primal cost
of advertiser i ∈ S( j) and impression � < k in the current
round is not higher than the contribution to the primal cost
of those advertisers and impressions in the previous round.

The only increase in the primal cost is, thus, due to the
increase in the variables w(m1, j), z( j, k) and x(m1). Their
contribution is:

w(m1, j)+ z( j, k)+ dm1 ·�x(m1) (7)

= vm1 − x(m1)+ x(m1)+ vm1

c
= vm1(1+ 1/c) .

The dual profit in this round is vm1 , so the ratio between the
dual profit and the primal cost is (1+ 1/c)−1 = c/(c+ 1) =
1− (c + 1)−1.

Proof of (3) The algorithm never assigns more than one
impression of user j to advertiser i. We only need to make
sure that the algorithm does not assign a total of more than
di impressions to advertiser i. It is easy to verify that after
assigning � impressions to advertiser i:

x(i) = vi

c
·
((

1+ 1

di

)�

− 1

)
. (8)

Thus, after di rounds x(i) ≥ vi if c = (1+ 1
dmin

)dmin − 1. At
this point all primal constraints corresponding to advertiser
i are satisfied and the algorithm is guaranteed not to assign
any further impressions to advertiser i. �	

Targeting constraints We assumed thus far that advertisers
valued all users equally. In practice, however, when buying
display ad space, advertisers can provide targeting informa-
tion, specifying which subset of impressions is acceptable.
That is, advertisers have value vi for acceptable impressions
that meet the targeting constraints and value of 0 for others
(contracts for display ads typically specify a single price-
per-impression that does not vary across the set of accept-
able impressions, i.e., vi does not take on different non-zero
values).

Suppose targeting information is user-dependent only, i.e.,
an advertiser may value only a subset of users with certain
characteristics (age, gender, location, etc.), but does not dis-
tinguish between different impressions (e.g., when visiting
different webpages) from the same user. In this case, adver-
tiser values have the following form: v(i, j) is either vi or
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0 (i.e., ai finds users with v(i, j) = vi acceptable, and the
rest unacceptable). We observe that the above algorithm also
works for this more general setting. The only change is that
the sets S( j) and S( j) include only advertisers that accept
user j. This implies the following.

Theorem 9 For c =
(

1+ 1
dmin

)dmin − 1, the algorithm is

(1 − (c + 1)−1)-competitive also when v(i, j) ∈ {0, vi } for
all i, j .

Proof Sketch In the dual objective function, advertisers do
not sums up their contribution over all users, but rather only
over their acceptable users. This corresponds in the primal
program to constraints that only contain an advertiser i and
an acceptable user j. The same analysis shows now that all
primal constraints remain feasible during the execution of
the algorithm.

The relation between the change in primal cost and dual
profit also follows by noting that if impression k of user j
is assigned, then every previous impression l ≤ k is also
assigned. So we can find an advertiser i to match every l ≤ k
as before. �	
Theorem 10 In the presence of targeting constraints, no
deterministic algorithm has a competitive ratio higher than
1− 1/e, even when demands are large.

Proof Online b-matching, which generalizes online match-
ing, is defined as follows: requests arrive online; a request
can be matched to any server to which it has an edge, but
no server can be used more than b times. An instance of
the b-matching problem can be mapped to an instance of
the frequency capping problem with targeting constraints:
advertisers correspond to servers, and each request corre-
sponds to a new user j; j ∈ Si for the set of servers to which
the request has edges. All advertisers have demand d = b,
fi = 1 and vi = 1. This reduction implies an upper bound
of 1 − 1(

1+ 1
d

)d , which follows from the upper bound on the

online b-matching problem given by Kalyanasundaram and
Pruhs (2000). For d � fi = 1, this upper bound tends to
1− 1/e. �	

6 Further directions

The frequency capping problem is an important practical
problem which imposes interesting algorithmic challenges.
Here are two main directions for further work.

– Improving 1-1/e for arbitrary valuations There is a gap
between the best upper bound of 1/

√
2 and the best algo-

rithm (1−1/e) for the case of arbitrary valuations without
targeting constraints, discussed in Sect. 5. The targeting

constraints are to be blamed for the “matching” aspects,
leading to the upper bound of 1−1/e in Theorem 10. By
removing these constraints, the difference between our
problem and online matching resurfaces, and the upper
bound of 1−1/e does not hold anymore. We believe that
our primal-dual algorithm is an excellent starting point
for a future online algorithm for frequency capping with
arbitrary values that will go beyond 1− 1/e.

– Content-based targeting specifications Targeting speci-
fications may be not only user-based, but also depend
on the webpage’s content. For instance, an advertiser
might want to display her ads only to males (user target-
ing) when they browse a sports related webpage (con-
tent targeting); targeting constraints are often of this
form. So, advertisers now have valuations of the form
v(i, j, k) ∈ {0, vi }, i.e., the value of the k-th impression
of the j-th user to advertiser i is either vi or 0 depending
on what page the user was surfing on his k-th impression.
Note that the model of Goel and Mehta (2007) does not
capture this problem, which entangles a matching aspect
with frequency capping. The questions of designing a
good online algorithm and finding the smallest upper
bound (of course, 1− 1/e is a trivial upper bound since
this problem generalizes arbitrary valuations with target-
ing) are both open.
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