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Abstract Recently the XHSTT format for (High)
School Timetabling was introduced, which provides a
uniform way of modeling problem instances and cor-
responding solutions. The format supports a big vari-
ety of constraints, and currently 38 real-life instances
from 11 di�erent countries are available. Thereby the
XHSTT format serves as a common ground for re-
searchers within this area. This paper describes the
�rst exact method capable of handling an arbitrary
instance of the XHSTT format. The method is based
on a Mixed-Integer linear Programming (MIP) model,
which is solved in two steps with a commercial general-
purpose MIP solver. Computational results show that
our approach is able to �nd previously unknown op-
timal solutions for 2 instances of XHSTT, and proves
optimality of 4 known solutions. For the instances not
solved to optimality, new non-trivial lower bounds were
found in 11 cases, and new best-known solutions were
found in 9 cases. Furthermore the approach is shown
to be competitive with the �nalist of Round 2 of the
International Timetabling Competition 2011.
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1 Introduction

The problem of scheduling lectures to time slots and/or
resources at high schools is known as the High School

Timetabling (HST) problem. This is an important prob-
lem for high schools in many countries, and a large
amount of di�erent solution approaches have been pro-
posed, see the survey Schaerf (1999).

It is well recognized that the speci�cations of the
HST problem varies signi�cantly depending on the
country of which the problem originates, and that the
problem in general is hard to solve. With the introduc-
tion of the XHSTT format (Post et al, 2012a), a large
number of instances from various origins became pub-
licly available in standardized form. The format is based
on the Extensible Markup Language (XML) standard,
and all instances are available online (Post, 2013a). One
purpose of the format is to serve as a common test-
bed for school timetabling, in an attempt to promote
research within this area. In this context, "school time-
tabling" denotes the area covering high school time-
tabling and university course timetabling, as the for-
mat has also been shown capable of modeling some in-
stances of the latter problem (see Kingston (2013a) for
an overview of educational timetabling problems).

This paper describes the �rst exact method capa-
ble of handling an arbitrary instance of the XHSTT
format. The method is based on a Mixed-Integer lin-

ear Programming (MIP) model, which is solved in two
steps with a commercial general-purpose MIP solver.
Computational results are performed for all the real-
life instances currently available. Thereby we are able to
�nd previously unknown optimal solutions, and prove
optimality of already known solutions.

To the best of our knowledge, all previous solution
methods for the XHSTT format have been heuristic in
nature. Therefore no proof of optimality has been made
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for any instance, except for those instances where a so-
lution with objective value 0 is known, since 0 is a triv-
ial lower bound for any XHSTT instance. The obvious
advantage of Integer Programming (IP) over heuristic
methods is the capability to issue certi�cates of op-
timality. Therefore it is remarked that a big advance
within general-purpose MIP solvers has happened in
recent years, see e.g. Bixby (2012). Even though the
MIP we will present is inevitable complex in nature,
it will be shown that it can be used to �nd optimal
solutions for several instances of the XHSTT archive
ALL_INSTANCES. For those instances where an optimal
solution cannot be found, we are able to show a non-
trivial lower bound on optimum in the majority of cases.
These are signi�cant results for high school timetabling
in general.

The outline of this paper is as follows. Section 2
presents related literature. Section 3 presents the MIP
model of XHSTT. Section 4 describes computational re-
sults. Finally, Section 5 concludes and describes future
research possibilities.

2 Related Literature

The Third International Timetabling Competition
(ITC2011) considered the HST Problem, based on in-
stances of the XHSTT format (Post et al, 2012b). Four
teams were part of the �nal round: The overall winner
(Team Goal) used Simulated Annealing and Iterated
Local Search to perform local search around a gener-
ated initial solution (Fonseca et al, 2012). Participant
from the University of Nottingham (HySTT) used a
method based on Hyper-heuristics (Kheiri et al, 2012).
Team Lectio used Adaptive Large Neighborhood Search
(ALNS) (Sørensen et al, 2012). Romrös and Homberger
(2012) (Team HFT) used an Evolutionary Algorithm.
The results of the competition can be found at the of-
�cial homepage of ITC2011 (Post (2013b)).

Pimmer and Raidl (2013) describe a 'timeslot-
�lling' heuristic for XHSTT, which iteratively �lls se-
lected timeslots with sets of events. Two state-of-the-
art solutions were found for instances of the archive
XHSTT-2012. Ter Braak (2012) presents a Hyper-
heuristic and several other heuristics for the XHSTT.

Valouxis et al (2012) describe a two-phase approach
based on MIP used to solve the Greek case of the HST
problem. This includes two instances which are part of
the XHSTT project, and which were both solved to op-
timality (solutions were found with an objective value
of 0).

In terms of Integer Programming and HST prob-
lems not based on XHSTT, the following contribution

are mentioned: Santos et al (2012) present a Column

Generation approach for establishing bounds for a set
of datasets originating from Brazil. Birbas et al (2009)
present an approach for Greek datasets where the Shift
Assignment Problem is solved �rst, and the timetable is
constructed on the basis on these work-shifts for teach-
ers. The paper of Sørensen and Stidsen (2013) describes
a complex MIP of the Danish case of high school time-
tabling, and establishes computational results for 100
real-life instances. Avella et al (2007) present an algo-
rithm based on Very Large-Scale Neighborhood search
where the neighborhood is explored by a MIP, for Ital-
ian cases of high school timetabling.

3 Problem Description and a Mixed Integer

Programming Formulation

In this section a brief description of the speci�cations
of the XHSTT format is given, and a MIP model is for-
mulated. The entire documentation of XHSTT is avail-
able at Post (2013a). We do not intend to describe all
properties of the format, but only those necessary to
formulate the MIP.

An instance of XHSTT consists of times (denoted T
in the following), time groups (denoted T G), resources
(denotedR), events (denoted E), event groups (denoted
EG) and constraints (denoted C). An event e ∈ E has
a duration De ∈ N, and a number of event resources
which we each denote er ∈ e. An event resource de�nes
the requirement of the assignment of a resource to the
event, and this resource can be speci�ed to be preas-
signed. If the resource is not preassigned, a resource of
proper type must be assigned. Furthermore an event re-
source er can undertake a speci�c roleer, which is used
to link the event resource to certain constraints.

It is the job of any solver for XHSTT to decide how
each event should be split into sub-events. A sub-event
se is de�ned as a fragment of a speci�c event e ∈ E ,
has a duration Dse ≤ De, and inherits the requirement
of resources de�ned by the event, such that each sub-
event has the exact same resource requirements as the
event. Let SE denote the entire set of sub-events, and
let se ∈ e specify that sub-event se is part of event e.
The total duration of all sub-events for event e ∈ E in a
solution cannot exceedDe. In our model formulation we
create the 'full set' of sub-events with di�erent lengths,
i.e. all possible combinations of sub-events for a given
event can be handled. E.g. if an event has duration 4,
the set of sub-events for this event has the respective
lengths 1, 1, 1, 1, 2, 2, 3 and 4. As a constraint it is then
speci�ed that the summed duration of the active sub-
events in a solution must equals 4. A sub-event is active
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if it is assigned a starting time or a non-preassigned re-
source. An active sub-event is analogous to the concept
of solution events de�ned in the XHSTT documenta-
tion.

The times T are ordered in chronological order, and
we let ρ(t) denote the index number of time t in T . A
time group T G de�nes a set of times, and we let t ∈ tg
denote that time t is part of time group tg.

Each constraint c ∈ C is of a speci�c type, and the
set C can contain several constraints of the same type.
Each constraint applies to certain events, event groups
or resources, and penalizes certain characteristics of the
timetable for these entities.

The following notation shorthand is made: By the
notions e ∈ c, r ∈ c, eg ∈ c we denote that constraint
c ∈ C applies to event e ∈ E , resource r ∈ R, and event
group eg ∈ EG, respectively.

The set of resources and times are both extended
with a dummy-index, denoted the dummy-resource rD
and the dummy-time tD, respectively. These are neces-
sary to ensure feasibility as we create all combinations
of sub-events for each event, and not all of these can
be assigned a time or the required resources without
the duration of the active sub-events exceeding the du-
ration of the event. Thereby these dummy-elements in
fact represent that an event resource is not assigned a
resource, and that a sub-event is not assigned a starting
time, respectively.

3.1 Objective Function

Each XHSTT constraint penalizes timetables with cer-
tain characteristics, which contributes to the objective
function of the MIP. Each constraint c ∈ C has a set
of point-of-applications (indexed by p ∈ c). With each
point-of-application is associated a set of deviations (in-
dexed by d ∈ p), and each deviation has a non-negative
cost associated with it. How this cost is calculated de-
pends on the constraint type. The cost of a point-of-
application is found on basis of the cost of the devi-
ations, and is in�uenced by an indication on the con-
straint whether the constraint is a hard or a soft con-
straints, the weight of the constraint (ωc ∈ N) and an
indication of which CostFunction to use. For each con-
straint c ∈ C we let the variable sc,p,d ∈ N be the
penalty value of the deviation d ∈ p of the point-of-
application p ∈ c. The set of point-of-applications and
deviations should be understood in an abstract context;
E.g. depending on the type of the constraint, a point-
of-application could be an event, a resource, etc., and
likewise for the deviations.

The objective of a solution consists of a value for
both the hard constraints (denoted hard cost) and a

value for the soft constraints (denoted soft cost). Usu-
ally the objective value of a solution is written as
(hard cost, soft cost). The hard cost always takes pri-
ority over the soft cost, i.e. solutions are �rst ranked
on their hard cost, and secondly on the soft cost. How
this type of objective function is handled in context of
a MIP is described in Section 3.4.

The cost of a constraint c ∈ C which contains slack
variable sc,p,d is denoted f(sc,p,d),

f(sc,p,d) = ωc · CostFunction(sc,p,d) (1)

Five di�erent types of CostFunction are allowed. The
most trivial one is Sum, which simply sums the penalty
value of all deviations for all point-of-applications. In
the following each CostFunction is formulated in linear
terms. Let the variable objc ∈ N0 denote the value of
the of the CostFunction of constraint c ∈ C.
� Sum: Sum the deviations.

objc =
∑

p∈c,d∈p

sp,d,c ∀c ∈ C (2)

� SumSquare: Sum the squares of the deviations.
To cope with this non-linear cost function, the vari-
able sc,p,d,i ∈ {0, 1} is introduced, which takes value
1 if the deviation d ∈ p of the point of application
p ∈ c of constraint c ∈ C has the penalty i ∈ I,
and 0 otherwise. The objective value is de�ned as
follows:

objc =
∑

p∈c,d∈p,i∈I

i2 · sc,p,d,i ∀c ∈ C (3)

However we also need to make sure that only a single
integer value is selected,∑
i∈I

sc,p,d,i = 1 ∀c ∈ C, p ∈ c, d ∈ p (4)

The amount of elements in the set I determines
the maximum possible penalty for a deviation, and
thereby in�uence the maximum possible penalty for
a constraint. To maintain optimality of the model,
it is therefore important that the size of I is selected
su�ciently large. This is elaborated in Section 4.

� SquareSum: Square the sum of deviations.
The binary slack variable usquaresumc,p,j ∈ {0, 1} is in-
troduced, which takes value 1 if the point of appli-
cation p ∈ c of constraint c ∈ C has the deviation
j ∈ J , and 0 otherwise.

objc =
∑

p∈c,j∈J
j2 · usquaresumc,p,j ∀c ∈ C (5)

∑
j∈J

usquaresumc,p,j = 1 ∀c ∈ C, p ∈ c (6)

∑
d∈p

sp,d,c =
∑
j∈J

j · usquaresumc,p,j ∀c ∈ C, p ∈ c (7)
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Table 1 Di�erent constraint types in the XHSTT format (Post et al, 2012b)

Constraint Description

Assign Resource Event resource should be assigned a resource
Assign Time Event should be assigned a time
Split Events Event should split into a constrained number of sub-events
Distribute Split Events Event should split into sub-events of constrained durations
Prefer Resources Event resource assignment should come from resource group
Prefer Times Event time assignment should come from time group
Avoid Split Assignments Set of event resources should be assigned the same resource
Spread Events Set of events should be spread evenly through the cycle
Link Events Set of events should be assigned the same time
Order Events Set of events should be ordered
Avoid Clashes Resource's timetable should not have clashes
Avoid Unavailable Times Resource should not be busy at unavailable times
Limit Idle Times Resource's timetable should not have idle times
Cluster Busy Times Resource should be busy on a limited number of days
Limit Busy Times Resource should be busy a limited number of times each day
Limit Workload Resource's total workload should be limited

Like the set I, the size of the set J must be selected
su�ciently large to maintain optimality, see Section
4.

� SumStep: This penalizes by the number of positive
deviations, irrespective of their value.
The binary variable usumstep

c,p,d ∈ {0, 1} is introduced,
which takes value 1 i� sc,p,d > 0 for constraint c ∈ C,
point-of-application p ∈ c and deviation d ∈ p, and
0 otherwise.

objc =
∑

p∈c,d∈p

usumstep
c,p,d ∀c ∈ C (8)

M · usumstep
c,p,d ≥ sc,p,d ∀c ∈ C, p ∈ c, d ∈ p (9)

where M ∈ N is some su�ciently large number.
� StepSum: This CostFunction penalizes by investi-
gating whether the constrain contains at least one
positive deviation. If this is not the case, the penalty
is 0.
The binary variable ustepsumc ∈ {0, 1} is introduced,
which takes value 1 if there exists at least one posi-
tive deviation for the constraint c ∈ C, and 0 other-
wise.

objc = ustepsumc ∀c ∈ C (10)

M · ustepsumc ≥ sc,p,d ∀c ∈ C, p ∈ c, d ∈ p (11)

where M ∈ N is some su�ciently large number.

3.2 Mixed-Integer Programming Formulation

In this section the variables and the constraints of the
MIP are described. As a basis for our approach is the

variable xse,t,er,r ∈ {0, 1}, which takes value 1 if sub-
event se ∈ SE has been assigned time t ∈ T as starting
time and resource r ∈ er is assigned to event resource
er ∈ se, and 0 otherwise. To simplify notation, and to
reduce the amount of non-zeros in the MIP, three aux-
iliary variables are introduced which all 'inherits' their
values directly from xse,t,er,r. Let the binary variable
yse,t ∈ {0, 1} take value 1 if sub-event se ∈ SE has been
assigned time t ∈ T as starting time, and 0 otherwise.
The variable vt,r ∈ N0 denotes the number of times
resource r is used in time t by any set of sub-events.
Let variable wse,er,r ∈ {0, 1} take value 1 if sub-event
se ∈ SE is assigned resource r ∈ R for event resource
er, and 0 otherwise.

3.2.1 Base Constaints

Besides all the constraints described in the speci�ca-
tions of the XHSTT, some basic constraints are needed
to ensure feasibility. First of all we need to make sure
that a sub-event is assigned only one starting time and
that the number of resource assigned is exactly the same
as the number of event resources of the event.∑
t∈T ,r∈R

xse,t,er,r = 1 ∀se ∈ SE , er ∈ se (12)

The following constrains variable yse,t, and together
with (12) ensures that a sub-event is not spread across
multiple times. We denote by |er|se∈e the amount of
event resources for event e of sub-event se.∑
er∈se,r∈R

xse,t,er,r = |er|se∈e · yse,t ∀se ∈ SE ,
t ∈ T

(13)
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The link to variable vt,r is shown in eq. (15). For time
t ∈ T and se ∈ SE is found the set of possible starting-
times for se which will cause resource r ∈ R to be used
in time t ∈ T . Let the set T start

se,t ⊆ T be the set of times
which sub-event se lies in if it is assigned starting time
t, i.e.

T start
se,t = {t′ ∈ T \ tD | ρ(t)−Dse + 1 ≤ ρ(t′) ≤ ρ(t)}

(14)

∑
se∈SE,er∈se,t′∈T start

se,t

xse,t′,er,r = vt,r ∀t ∈ T \ tD, r ∈ R

(15)

The link to variable wse,er,r looks as follows:∑
t∈T

xse,t,er,r = wse,er,r ∀se ∈ SE , er ∈ se, r ∈ er (16)

A sub-event cannot be assigned a start time if there
is not enough continuous times after the start time to
ful�ll the duration, ensured by the constraint:

yse,t = 0 ∀se ∈ SE , t ∈ T \ tD, ρ(t) +Dse − 1 > |T |
(17)

Active Sub-events

As we create all possible sub-events for a given
event, only a subset of these should be active in the
�nal solution. The binary variable use ∈ {0, 1} takes
value 1 if sub-event se ∈ SE is active and 0 otherwise.
Recall that a sub-event is active if its assigned a start-
ing time, or if is assigned at least one non-preassigned
resource. Let the parameter PAer ∈ {0, 1} take value
if event resource er has a preassigned resource, and 0
otherwise. The following constraints are imposed.∑
r∈er\rD

wse,er,r ≤ use ∀se ∈ SE , er ∈ se, PAer = 0

(18)

∑
t∈T \tD

yse,t ≤ use ∀se ∈ SE (19)

∑
t∈T \tD

yse,t +
∑

r∈er\rD

wse,er,r ≥ use ∀se ∈ SE ,
er ∈ se,
PAer = 0

(20)

Constraint (20) is necessary to ensure events are not set
as active, even though they do not meet the required
criteria.

The duration of active sub-events for a given event
must be exactly the same as the total duration of the
event (by de�nition of a valid XHSTT solution),∑
se∈e

Dse · use = De ∀e ∈ E (21)

A number of constraints require that the value of
a deviation V ∈ N should be within an upper-limit
Bc ∈ N and a lower-limit Bc ∈ N. This means that
the penalty is de�ned as the amount which the value
of a deviation exceeds Bc or falls short of Bc. To sim-
plify notation for these cases, we introduce the function
UBc,Bc

V , which is de�ned as follows:

s ≥ UBc,Bc
V ⇒

{
s ≥ V −Bc

s ≥ Bc − V
(22)

Thereby the slack-variable s is forced to take the actual
value of the imposed penalty.

A resource is busy at some time if it attends at least
one solution event at that time, and busy at some time
group if it is busy at one or more times within times
of that time group. Let variable qr,t ∈ {0, 1} take value
1 if resource r ∈ R is busy in time t ∈ T , and 0 oth-
erwise. Similarly, let the binary variable pr,tg ∈ {0, 1}
take value 1 if resource r ∈ R is busy in time group
tg ∈ T G, and 0 otherwise. The values of the two vari-
ables are determined by the following constraints.

|SE| · qr,t ≥ vt,r ∀r ∈ R, t ∈ T \ tD (23)

qr,t ≤ vt,r ∀r ∈ R, t ∈ T \ tD (24)

pr,tg ≥ qr,t ∀r ∈ R, tg ∈ T G, t ∈ tg (25)

pr,tg ≤
∑
t∈tg

qr,t ∀r ∈ R, tg ∈ T G (26)

Constraints (23) and (25) establishes lower bounds for
the variables qr,t and pr,tg, i.e. ensures that these must
take value 1 in case the resource is actually busy in
the respective time/time group. Constraints (24) and
(26) are necessary to ensure that in case the resource
is in fact not busy in the respective time/time group,
variables qr,t and pr,tg must take value 0.

In the following the constraint types of the XHSTT
documentation are formulated one by one. Each con-
straint type is described in brief terms, and we refer
to Kingston (2013b) for more details. The formulation
of these constraints in terms of a Mixed-Integer Linear
Programming model has not been published before. We
let the 'pseudo-set' C̄ ⊆ C denote constraints of a cer-
tain type depending on the context, for instance the
set of all assign resource constraints. Furthermore we
in the following make use of the general slack variable
sc,p,d, and will for each type of constraint implicitly de-
�ne a corresponding slack variable with the appropriate
indices for point-of-applications and deviations.
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3.2.2 Assign Resources

Applies to: Events
Point-of-application: Event-resource
An Assign Resource constraint penalizes event re-
sources that are not assigned resources. Speci�cally, the
deviation at one point of application (an event resource
with the appropriate role) is the sum of the duration
of the sub-events of the respective event which are not
assigned a resource. The cost of this constraint is given
by:

De −
∑
se∈e

r∈er\rD

Dse · wse,er,r = sassignresc,er ∀c ∈ C̄, e ∈ c,
er ∈ e,
roleer = rolec

(27)

3.2.3 Assign Time

Applies to: Events
Point-of-application: Events
The assign time constraint penalizes sub-events which
are not assigned times. The deviation at one point of
application is the total duration of those sub-events
derived from a speci�c event that are not assigned a
time.

De −
∑

t∈T \tD
se∈e

Dse · yse,t = sassigntime
c,e ∀c ∈ C̄, e ∈ c (28)

3.2.4 Split Events

Applies to: Events
Point-of-application: Events
A Split Event constraint places limits on the number
of sub-events that may be derived from a given event,
and on their duration. Let the parameters Bamount

c ∈ N
and B

amount

c ∈ N denote the minimum and maximum
amount of sub-events which is used for a given event,

respectively. And let Bdur
c ∈ N and B

dur

c ∈ N be the
minimum and maximum duration a sub-event can have
for a given event, respectively.

The cost of this constraint is given by the number of
sub-events whose duration is less than Bdur

c or greater

than B
dur

c , and the amount by which the number of

sub-events fall short of Bamount
c or exceed B

amount

c . The
following constraints are imposed:

U
Bamount

c ,B
amount

c

∑
se∈e

use ≤ sspliteventamount
c,e ∀c ∈ C̄, e ∈ c

(29)

∑
se∈e

Bdur

c >Dse∨B
dur

c <Dse

use = sspliteventdurc,e ∀c ∈ C̄, e ∈ c (30)

The full deviation for constraint c ∈ C̄ and event e ∈ c
is given by sspliteventdurc,e + sspliteventamount

c,e .

3.2.5 Distribute Split Event

Applies to: Events
Point-of-application: Events
The Distribute Split Event constraints set limits on the
number of sub-events which may be derived from an
event. Let Dc ∈ N be the duration of the sub-events
for which this constraint applies, and let Bc and Bc be
the minimum and maximum number of sub-events of
duration Dc which may be derived from a given event.

UBc,Bc

∑
se∈e

Dse=Dc

use ≤ sdistspliteventc,e,er ∀c ∈ C̄, e ∈ c (31)

3.2.6 Prefer Resources

Applies to: Events
Point-of-application: Event-resources
This constraint de�nes that an event resource has dif-
ferent preferences for certain resources. The deviation is
calculated by taking all the solution resources derived
from the event resource that are assigned a resource
that is not one of the preferred resources, and summing
the duration of the sub-events that those resources lie
in. Let r ∈ c denote a preferred resources.∑

se∈e
r/∈c,r 6=rD

Dse · wse,er,r = spreferresc,er ∀c ∈ C̄, e ∈ c,
er ∈ e, PAer = 0,
roleer = rolec

(32)

3.2.7 Prefer Times constraints

Applies to: Events
Point-of-application: Events
Like the Prefer Resources constraint, events might also
have preferences for certain times. The deviation is cal-
culated for each event by summing the duration of all
sub-events which is assigned a time which is not one
of the preferred time. The constraint has an optional
duration-property, denoted Dc ∈ N0. If this property is
given, only sub-events of duration Dc are considered.
Let t ∈ c denote a preferred time.∑

se∈e
t/∈c,t6=tD
Dc=Dse

Dse · yse,t = sprefertime
c,e ∀c ∈ C̄, e ∈ c (33)
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3.2.8 Avoid Split Assignments

Applies to: Evengroups
Point-of-application: Eventgroups
Each solution resource can only have one resource as-
signed. However, when an event is split into sub-events,
each of its event resources is split into several solution
resources, and a di�erent resource may be assigned to
each of these solution resources. This constraint penal-
izes the assignment of di�erent resource to these solu-
tion resources. The constraint examines all the solution
resources derived from those event resources, and calcu-
lates the number of distinct resources assigned to them,
ignoring unassigned solution resources. The deviation is
the amount by which this number exceeds 1. Let vari-
able kc,eg,r ∈ {0, 1} take value 1 if event e is assigned to
resource r with respect to avoid split assignment con-
straint c, and 0 otherwise.∑
er∈e,PAer=0
rolec=roleer

wse,er,r ≤ kc,eg,r ∀c ∈ C̄, eg ∈ c,
e ∈ eg, se ∈ e

(34)

∑
r∈R

kc,eg,r − 1 ≤ savoidsplitassc,eg ∀c ∈ C̄, eg ∈ c (35)

3.2.9 Spread Events

Applies to: Eventgroups
Point-of-application: Eventgroups
The Spread Event constraint has a deviation for each
time group tg ∈ c ∈ C̄. Let Bc,tg and Bc,tg be the min-
imum and maximum number of sub-events of a given
event which can be placed in time group tg of constraint
c, respectively. The deviation for each time group is
given by the amount of which the number of sub-events
for the given event which fall short of Bc,tg or exceeds
Bc,tg.

UBc,tg,Bc,tg

∑
se∈e∈eg

t∈tg

yse,t ≤ sspreadeventc,eg,tg ∀c ∈ C̄,
eg ∈ c,
tg ∈ c

(36)

3.2.10 Link Events

Applies to: Eventgroups
Point-of-application: Eventgroups
A Link Event constraint speci�es that some events
should be assigned the same times. For each event of
a given event group we build the set of times that the
sub-events derived from that event are running (not
just starting times). The deviation is then the number
of times that appear in at least one of these sets but not
in all of them. Let variable oe,t ∈ {0, 1} take value 1 if

at least one sub-event of event e ∈ c ∈ C̄ is assigned to
time t ∈ T , and 0 otherwise. Let variable leg,t ∈ {0, 1}
take value 1 if at least one event of event group eg ∈ c
is assigned to time t ∈ T , and 0 otherwise. Constraints
(37) and (39) ensure that these variables take correct
values. The slack of Link Events constraints is de�ned
in (40). Constraint (38) is necessary to restrict oe,t to
take value 1 in cases where the event is in fact not as-
signed to the particular time, which would avoid the
penalty given by constraint (40), if any.∑
t′∈T start

se,t

yse,t′ ≤ oe,t ∀e ∈ E , se ∈ e, t ∈ T \ tD (37)

∑
se∈e

t′∈T start

se,t

yse,t′ ≥ oe,t ∀e ∈ E , t ∈ T \ tD (38)

leg,t ≥ oe,t ∀eg ∈ EG, e ∈ eg, t ∈ T \ tD (39)

leg,t − oe,t ≤ slinkeventc,eg,t ∀c ∈ C̄, eg ∈ c, e ∈ eg,
t ∈ T \ tD

(40)

3.2.11 Order Events

Applies to: Pair of events
Point-of-application: Pair of events
An Order Event constraint speci�es that the times two
events are assigned should be in order, such that the
�rst event ends before the second event starts. Let the
parameters Bc ∈ N and Bc ∈ N be the minimum and
maximum number of times that may separate the two
events, respectively. Let (e, e′) ∈ c denote an EventPair

which this constraint applies to. Let the variable hlaste ∈
N be the ordinal number of the latest time assigned
to any sub-event of event e. Let the variable h�rste ∈
N be the ordinal number of the �rst assigned to any
sub-event of event e′. The deviation is then given by
the amount by which the di�erence between these two
numbers exceeds Bc or falls short of Bc.

ρ(t) · yse,t +Dse ≤ hlaste ∀c ∈ C̄, e ∈ c,
se ∈ e, t ∈ T

(41)

|T | − (|T | − ρ(t)) · yse,t ≤ h�rste ∀c ∈ C̄, e ∈ c,
se ∈ e, t ∈ T

(42)

UBc,Bc
(hlaste′ − h�rste ) ≤ sordereventsc,(e,e′) ∀c ∈ C̄,

(e, e′) ∈ c
(43)
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3.2.12 Avoid Clashes

Applies to: Resources
Point-of-application: Resources
These constraints specify that certain resources should
have no clashes, i.e. they should not be assigned two or
more events simultaneously. The constraint produces
a set of deviations at each point of application (each
resource). For each time a resource is assigned two or
more solution resource, there is one deviation with a
value equal to the number of solution resources minus
one.

vt,r − 1 ≥ savoidclashesc,r,t ∀c ∈ C̄, r ∈ c, t 6= tD (44)

3.2.13 Avoid Unavailable Times

Applies to: Resources
Point-of-application: Resource
An Avoid Unavailable Times constraint speci�es that
certain resources are unavailable for all events at certain
times. The deviation is the number of unavailable times
during which the resource attends at least one solution
event. t ∈ c denotes that t is an unavailable time for
constraint c ∈ C̄.∑
t∈c

qr,t = sunavailabletimes
c,r ∀c ∈ C̄, r ∈ c (45)

3.2.14 Limit Idle Times

Applies to: Resources
Point-of-application: Resources
A resource is idle at some time t ∈ tg wrt. time group
tg if it is not attending any sub-events at that time, but
it is busy at some earlier time and at some later time in
time group tg. The Limit Idle Times places limits on
the number of idle times a resources may have. Let the
variables h�rstr,tg ∈ N and hlastr,tg ∈ N indicate the ordinal
number of the �rst and the last time, respectively, where
resource r ∈ R is busy in time group tg. Let |tg| denote
the amount of times in time group tg. Let the variable
hr,tg ∈ N denote the number of idle times of resource
r ∈ R in time group tg ∈ T G.

|tg| − (|tg| − ρ(t)) · qr,t ≥ h�rstr,tg ∀r ∈ R, tg ∈ T G,
t ∈ tg

(46)

ρ(t) · qr,t ≤ hlastr,tg ∀r ∈ R, tg ∈ T G, t ∈ tg (47)

hlastr,tg − h�rstr,tg + 1−
∑
t∈tg

qr,t = hr,tg ∀r ∈ R, tg ∈ T G

(48)

For each resource of the constraint the deviation is cal-
culated as follows. Calculate the total amount of idle
times for all times tg ∈ c, and �nd the amount which
this summed value falls short of minimum Bc ∈ N or
exceeds maximum Bc ∈ N. The deviation is then given
by the sum of these amounts.

UBc,Bc

∑
tg∈c

hr,tg ≤ sidletimes
c,r ∀c ∈ C̄, r ∈ c (49)

3.2.15 Cluster Busy Times

Applies to: Resources
Point-of-application: Resources
A Cluster Busy Times constraint limits the number of
time groups during which a resource may be busy. The
deviation is given by the amount of by which the num-
ber of given time groups during which the resource is
busy falls short of minimum, Bc ∈ N, or exceeds max-
imum, Bc ∈ N. Let tg ∈ c denote a time group which
this constraint applies to.

UBc,Bc

∑
tg∈c

pr,tg ≤ sclusterbusyc,r ∀c ∈ C̄, r ∈ c (50)

3.2.16 Limit Busy Times

Applies to: Resources
Point-of-application: Resources
The Limit Busy Times constraints places limits on the
number of times a resource may be busy within some
time groups. These constraints produces a set of devi-
ation at each point-of-application, one for each given
time group. The deviations are given by the amount by
which the number of times of the given time group that
the resource is busy falls short of minimum, Bc ∈ N, or
exceeds maximum Bc ∈ N.

− |tg| · (1− pr,tg) + UBc,Bc

∑
t∈tg

qr,t ≤ slimitbusy
c,r,tg

∀c ∈ C̄, r ∈ c, tg ∈ c (51)

3.2.17 Limit Workload

Applies to: Resources
Point-of-application: Resources
A workload of a solution resource is given byWe,se,er =
Dse·Ler

De
, where Ler ∈ N is the workload of event resource

er. The value is a �oating-point number. A Limit Work-

load Constraint places limits on the total workload of
solutions resources that certain resources are assigned
to. The deviation of this constraint is the amount by
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which the total workload of the solution resources as-
signed to that resource falls short of Bc ∈ N or exceeds
Bc ∈ N, rounded up to the nearest integer.

UBc,Bc

∑
e∈c,t∈T \tD
se∈e,er∈e

We,se,er · xse,t,er,r ≤ slimitworkload
c,r

∀c ∈ C̄, r ∈ c (52)

3.3 Mixed-Integer Programming Model

Given the de�nitions of all constraint types of XHSTT,
and their respective slack variables, the objective of the
model can be stated as eq. (53), setting aside the fact
that some constraints are hard-constraints and some
are soft-constraints.

z =f(sassignresc,er ) + f(sassigntime
c,e )

+ f(sspliteventamount
c,e + sspliteventdurc,e )

+ f(sdistspliteventc,e,er ) + f(spreferresc,er ) + f(sprefertime
c,e )

+ f(savoidsplitassc,eg ) + f(sspreadeventc,eg,tg ) + f(slinkeventc,eg,t )

+ f(sordereventsc,(e,e′) ) + f(savoidclashesc,r,t )

+ f(sunavailabletimes
c,r ) + f(sidletimes

c,r ) + f(sclusterbusyc,r )

+ f(slimitbusy
c,r,tg ) + f(slimitworkload

c,r )

(53)

The full MIP would therefore consists of minimizing z,
subject to eqs. (12) to (52). However, we take a di�erent
approach, as described in the next section.

3.4 Solution Approach

Even though it would be natural to simply input the
MIP to a generic solver, a di�erent approach is taken,
which takes advantage of the XHSTT objective func-
tion. In this approach, the model is solved in two steps,
denoted Step 1 and Step 2 in the following.

By the de�nition of the XHSTT objective, hard
constraints always take priority over soft constraints.
Therefore the following approach is taken for solving
the model: In Step 1, a MIP is build which only con-
tains the hard constraints. This MIP is given as input to
the MIP solver, which is ran until the given time limit is
reached, or until the model is solved to optimality. The
found objective value is the hard cost of the solution.
In case the time limit is reached, all variables are �xed
to their �nal value (i.e. the value they take in the best
found solution), and all the soft constraints are added
to identify the true cost of the found solution. In case
the MIP is solved to optimality, Step 2 is performed:
All soft constraints are added and the solution process

is warm-started from its previous state, with the time
limit set to what remains of the original time limit.
Furthermore a constraint is added which ensures that
the optimal value of the hard cost is kept. Let zhard

denote the sum of all slack variables belonging to the
hard constraints. The following constraint is added:

zhard = hard cost (54)

Now this extended MIP model is solved. The cost of
the obtained solution, minus the hard cost found in
Step 1, is the value of the soft cost. Notice that the
nature of this solution method resembles lexicographic
multi-objective optimization.

This approach takes advantage of the capability of
MIPs to issue certi�cates of optimality. By this we mean
that focus is put on the hard constraints until a solu-
tion is found with the optimal hard cost, and then we
switch focus and consider the entire problem instance.
If a heuristic solution method was used the inevitable
question would be: When has su�cient e�ort been put
into minimizing the hard cost?

4 Computational Results

This section presents computational results of the de-
veloped exact method, and has two primary intentions:

� How does the MIP compete with the heuristics of
the ITC2011 round 2? Thereby the potential of this
MIP approach can be evaluated on fair terms with
well-performing heuristics. This is the subject of
Section 4.1.

� Are we able to improve the best-known solutions for
some instances, or even solve them to optimality?
See Section 4.2.

All tests were run on a machine with an Intel i7
CPU clocked at 2.80 GHz and 12GB of RAM, running
Windows 8 64 bit. In all cases the commercial state-
of-art MIP solver Gurobi 5.5.0 was used. Two distinct
sets of XHSTT instances have been used, both obtained
from the XHSTT website (Post, 2013a). All obtained
solutions have been veri�ed as being valid using the
evaluator HSEval (Kingston, 2013c).

As described in Section 3.1, an XHSTT objective
consists of both a hard cost, and a soft cost, usually
denoted (hard cost, soft cost). In case a solution has a
hard cost of value 0, the objective is simply written
as the soft cost, as is usually done in context of the
XHSTT format.

As discussed in Section 3.1, the size of the sets I
and J must be selected su�ciently high. Notice fur-
ther that if the size of these sets is selected high, it
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can have a big impact on the amount of variables in
the model. It would be possible to select these sizes
based on the properties of the constraints having Cost-
Function SumSquare or SquareSum, however this is a
quite complex operation as it must be derived based on
each constraint-type. Instead we have selected |I| = 10

|J | = 10, such that the maximum possible penalty is
92 = 81. This means that we cannot claim optimality
for solutions with objective > 81. An easy �x for this
issue is to simply perform a re-run of Gurobi if a so-
lution is claimed as optimal, with the size of the sets
set to a higher value. The same is applicable for lower
bounds of value > 81. We consider this is an implemen-
tation detail, and it will be seen that in practice it has
no impact of the obtained results.

4.1 International Timetabling Competition 2011

This section compares the exact method with the re-
sults obtained by the �nalists in Round 2 of ITC2011.
In this round the solver for each participating team was
tested on 18 previously unknown instances from the
archive XHSTT-ITC2011-hidden. The time limit for all
instances was nominated to 1000 seconds, but the or-
ganizers provided a tool to benchmark machines to �nd
the machine-dependent equivalent of this time limit. On
our machine this amended to 772 seconds. The possi-
bility to benchmark machines facilitates a fair compar-
ison with the competitors of ITC2011, except for the
fact that the rules of ITC2011 did not allow the use
of commercial software, which con�icts with our use of
Gurobi. The aim of this section is therefore to demon-
strate the potential of MIP in the context of timetabling
(which is often overlooked), and not to claim how our
approach would have positioned itself in ITC2011.

In terms of solver parameters, default settings are
used, except for the pseudo-parameter MIPFocus which
is set to value 1, emphasizing that we are mainly inter-
ested in �nding incumbent solutions. Gurobi was only
allowed to use a single CPU thread, as speci�ed in the
rules of ITC2011.

The participants of ITC2011 round 2 ran their al-
gorithm 10 times on each instance, to eliminate the
stochastic impact on the results. Since we are inter-
ested in the average performance of each participant for
comparison, the following processing of the results was
performed: For each instance and each participant, cal-
culate both the average hard cost and the average soft
cost, and round both to nearest integer. These numbers
then denote how this participant performed on this in-
stance.

Table 2 shows the obtained results. The value of
"Avg. Ranking" was calculated as follows. Each solu-

tion method was ranked 1 to 5 on each instance, 1 being
the best, and the average of these ranks was taken. Ac-
cording to this measure, the exact method of this paper
is competitive with the methods used at ITC2011. No-
tice in particular that the exact method performs well
on the smaller instances, and is generally not as com-
petitive on the larger instances. On three instances the
exact method gave the best results.

4.2 Aiming at Optimality

In attempt to produce new (optimal) solutions, the
XHSTT archive ALL_INSTANCES was used, which con-
tains 38 non-arti�cial instances. According to the web-
site, this archive "contains all latest versions of the
contributed instances". For 10 of the instances, a so-
lution with cost 0 is already known, which consti-
tutes an optimal solution by the de�nition of XHSTT.
Hence these instances are skipped in this test. No-
tice that ALL_INSTANCES contains instances which orig-
inally came from XHSTT-ITC2011-hidden, but due to
bug-�xes in some of the instances, we consider them as
two separate sets of instances (by bug-�xes we mean
altering of certain constraints, such that objective val-
ues are incomparable). We refer to (Post, 2013a) for
instance-statistics.

This test was performed with the following setup:
Gurobi is allowed to use all CPU cores (which is 8 in
our case), and the time-limit is set to 24 hours for each
instance. As initial solution for each instance, the cur-
rent best known solution is provided. Default param-
eter settings of Gurobi were used. Table 3 shows the
obtained results. A gap between an incumbent solution
x and a lower bound LB is calculated by |x−LB|x .

For each instance a solution with XHSTT objective
(H,S) is found, as well as a lower bound (H,S). By the
de�nition of our solution method, we only have a lower
bound on the soft cost S i� an optimal solution for the
hard cost is known, i.e. H = H. If a lower bound or an
objective value is not found we write "-". Notice that
even though we give the current best known solution as
starting solution, Gurobi might still not �nd a solution
for Step 1, usually in case the instance in question is
of huge size. In Table 3, both the gap for the hard cost
and the soft cost is shown (in case the required costs
and lower bounds are available).

Table 3 shows that our method obtains better solu-
tions for 8 instances. 4 instances was solved to optimal-
ity, proving optimality of 3 previously known solutions
and �nding 1 new optimal solution. Furthermore, 11
new non-trivial lower bounds and 7 new best solutions
have been established for the instances which were not
solved to optimality.
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Table 2 Performance of the MIP using same running time as speci�ed in ITC2011. For each instance is listed
the average solution found from each of the competitors of ITC2011, and the solution obtained by the MIP
formulations. The best solutions are marked in bold. Objectives marked with ∗ are optimal solutions.

Instance GOAL HySST Lectio HFT Exact method

BrazilInstance2 (1, 62) (1, 77) 38 (6, 190) 46
BrazilInstance3 124 118 152 (30, 283) 39

BrazilInstance4 (17, 98) (4, 231) (2, 199) (67, 237) (5, 286)
BrazilInstance6 (4, 227) (3, 269) 230 (23, 390) 682
ElementarySchool 4 (1, 4) 3 (30, 73) 3

SecondarySchool2 1 23 34 (31, 1628) (1604, 3878)
Aigio 13 (2, 470) 1062 (50, 3165) (1074, 3573)
Italy_Instance4 454 6926 651 (263, 6379) 17842
KosovaInstance1 (59, 9864) (1103, 14890) (275, 7141) (989, 39670) (3626, 2620)
Kottenpark2003 90928 (1, 56462) (50, 69773) (209, 84115) (8491, 6920)
Kottenpark2005A (31, 32108) (32, 30445) (350, 91566) (403, 46373) (2567, 53)
Kottenpark2008 (13, 33111) (141, 89350) (209, 98663) - (14727, 5492)
Kottenpark2009 (28, 12032) (38, 93269) (128, 93634) (345, 99999) (17512, 140)
Woodlands2009 (2, 14) (2, 70) (1, 107) (62, 338) (1801, 705)
Spanish school 894 1668 2720 (65, 13653) (1454, 11020)
WesternGreece3 6 11 (30, 2) (15, 190) 25
WesternGreece4 7 21 (36, 95) (237, 281) 81
WesternGreece5 0 4 (4, 19) (11, 158) 15

Avg. Ranking 1.72 2.67 2.50 4.44 3.61

4.2.1 Alternative Formulation

The Limit Idle Times constraint is known to be dif-
�cult for solvers to handle (Dorneles et al (2012)).
In our formulation, this constraint is formulated using
Big-M notation (constraints (46) and (47)), which can
provide bad LP-relaxation, which in turn might slow
down the solution process. Furthermore this constraint
is part of most instances (29 of 38 instances in the
ALL_INSTANCES archive), so an alternate formulation
is proposed. The alternate formulation uses variable
hr,tg,t ∈ {0, 1} which takes value 1 if resource r ∈ R
has an idle time in time t ∈ tg in time group tg, and 0
otherwise. Constraints (46), (47) and (48) are replaced
by

qr,t′ − qr,t + qr,t′′ − 1 ≤ hr,tg,t ∀r ∈ R, tg ∈ T G,
t, t′, t′′ ∈ tg,
ρ(t′) < ρ(t) < ρ(t′′)

(55)

This yields more rows in the MIP; for each time
group tg ∈ T G the amount of additional constraints
is
(|tg|

3

)
. Furthermore, there is a great possibility that

the amount of variables increases due to the extra di-
mension on the h variable. However, no Big-M notation
is used.

Due to the possible big increase in the size of the
model, this alternative formulation is only tested on the

smaller instances from archive ALL_INSTANCES, skip-
ping those instances in which the optimal solution was
found in the previous test (Table 3). Since the goal is
to achieve is good solutions as possible, we restart the
procedure from the best found solution of Table 3 and
run it for additional 24 hours. This test-setup means
that we cannot compare the performance of the two
formulations. Table 4 shows the obtained results. The
table shows that this formulation is capable of �nding
2 new optimal solutions. For the instances not solved
to optimality, 6 lower bounds were improved, and new
best solutions were found for 6 instances.

5 Conclusion

This paper has shown the �rst exact method for (High)
School Timetabling instances in the XHSTT format. A
solution method which takes advantage of the struc-
ture of the objective function of XHSTT has been
proposed. For the most recent version of the archive
ALL_INSTANCES, we were able to produce 2 new op-
timal solutions and prove optimality of 4 previously
known solutions. For 11 other instances, new non-trivial
lower bounds were shown. For the instances not solved
to optimality, we were able to improve the best known
solution in 9 cases.
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Table 3 Performance of the MIP on ALL_INSTANCES. For each instance is listed the best previously known solution "Best",
and for the solution found by our approach is listed the time used to solve Step 1 "Time1", the time used to solve Step 2
"Time2". "Time" indicates the total solving time. All times have seconds as unit. Furthermore the objective "Obj" and the
lower bound "LB" is listed. The percentage gap between the objective and the lower bound is divided into the gap for the
hard constraints "Gap1" and the gap for the soft constraints, "Gap2". Objectives in bold denote new best solution while
optimal solutions are marked with ∗.

MIP solution method

Instance Best Time1 Time2 Time Obj LB Gap1 Gap2

AU BGHS98 (3, 494) >86400 - >86400 (3, 494) (-,-) - -
AU SAHS96 (8, 52) >86400 - >86400 (8, 52) (-,-) - -
AU TES99 (1, 140) >86400 - >86400 (1, 140) (0,-) 100.0 -
BR Instance1 42 0 >86400 >86400 40 28 0.0 30.0
BR Instance2 5 1 >86399 >86400 5 1 0.0 80.0
BR Instance3 47 1 >86399 >86400 26 19 0.0 26.9
BR Instance4 78 1 >86399 >86400 61 42 0.0 31.2
BR Instance5 43 1 >86399 >86400 30 10 0.0 66.7
BR Instance6 60 1 >86399 >86400 60 14 0.0 76.7
BR Instance7 122 1 >86399 >86400 122 22 0.0 82.0
DK Falkoner20121 (2, 23705) >86400 - >86400 (2, 23705) (0,-) 100.0 -
DK Hasseris20122 (293, 32111) >86400 - >86400 (293, 32111) (-,-) - -
DK Vejen20093 (20, 18966) >86400 - >86400 (20, 18966) (2,-) 90.0 -
UK StPoul 136 52 >86348 >86400 136 0 0.0 100.0
FI ElementarySchool 3 2 785 787 *3 3 0.0 0.0
FI HighSchool 1 1 >86399 >86400 1 0 0.0 100.0
FI SecondarySchool 88 1 >86399 >86400 88 77 0.0 12.5
GR UniInstance34 5 0 3 3 *5 5 0.0 0.0
GR UniInstance45 8 1 >86399 >86400 8 0 0.0 100.0
IT Instance1 12 1 4561 4562 *12 12 0.0 0.0
IT Instance4 78 12 >86389 >86400 62 27 0.0 56.5
XK6 Instance1 3 31 >86369 >86400 3 0 0.0 100.0
NL GEPRO (1, 566) >86400 - >86400 (1, 566) (0,-) 100.0 -
NL Kottenpark2003 1410 57 >86343 >86400 1410 (0,-) 0.0 -
NL Kottenpark2005 1078 88 >86312 >86400 1078 9 0.0 99.2
NL Kottenpark2009 9250 92 >86308 >86400 9035 160 0.0 98.2
ZA Woodlands2009 2 22 77878 77900 *0 0 0.0 0.0
ES School (3, 5966) 6525 >79875 >86400 357 322 0.0 9.8
1 Shorthand for instance FalkonergaardenGymnasium2012
2 Shorthand for instance HasserisGymnasium2012
3 Shorthand for instance VejenGymnasium2009
4 Shorthand for instance WesternGreeceUniversityInstance3
5 Shorthand for instance WesternGreeceUniversityInstance4
6 Kosova.

Establishing optimal solutions and lower bounds is
indeed a step forward for research within high school
timetabling, and for the XHSTT format in particular.
This gives researchers a possibility to compare their ob-
tained solutions with an (optimal) lower bound, which
is valuable for evaluating the quality of solutions.

As subjects for future research the following are
mentioned. The MIP could be used in context of Two-
Stage Decomposition (TSD), by �rst assigning times
to events, and secondly assigning resources to event

resources. Thereby the resource-assignments are done
subject to the times assigned to events. Such an ap-
proach was used with great success in the paper of Lach
and Lübbecke (2012) for the Curriculum-based Uni-

versity Timetabling Problem (the optimization prob-
lem used in the International Timetabling Competi-
tion 2007), and by Sørensen and Dahms (2013) for
the real-world case of High School Timetabling in Den-
mark. In both of these papers, the TSD is theoreti-
cally capable of producing near-optimal results, even
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Table 4 Performance of the alternative formulation on the smaller instances of archive ALL_INSTANCES. All the columns are
de�ned in analogous way to Table 3, except for "ObjT3" and "LBT3" which denote the objective value and the lower bound
found in Table 3.

MIP alternative formulation

Instance Best ObjT3 LBT3 Time1 Time2 Time Obj LB Gap1 Gap2

BR Instance1 42 40 28 0 1918 1918 *38 38 0.0 0.0
BR Instance2 5 5 1 0 290 290 *5 5 0.0 0.0
BR Instance3 47 26 19 1 >86399 >86400 23 21 0.0 8.7
BR Instance4 78 61 42 1 >86399 >86400 61 49 0.0 19.7
BR Instance5 43 30 10 1 >86399 >86400 26 15 0.0 42.3
BR Instance6 60 60 14 1 >86399 >86400 59 18 0.0 69.5
BR Instance7 122 122 22 1 >86399 >86400 84 26 0.0 69.1
FI HighSchool 1 1 0 1 >86399 >86400 1 0 0.0 100.0
FI SecondarySchool 88 88 77 1 >86399 >86400 84 77 0.0 8.3
GR UniInstance41 8 8 0 1 >86399 >86400 8 0 0.0 100.0
IT Instance4 78 62 27 6 >86394 >86400 57 27 0.0 52.6
ES School (3, 5966) 357 322 44 >86356 >86400 357 330 0.0 7.6
1 Shorthand for instance WesternGreeceUniversityInstance4

though the problem is split into two separate MIPs.
However, the XHSTT case is possibly less suited for
this type of decomposition as instances might contain
a majority of constraints related to resource assign-
ments. Since the assignments to times for events are
performed in the �rst stage of the decomposition, and
because these assignments cannot be altered when the
resource-assignments are performed, a TSD approach
would possibly be heuristic in nature. Obviously, if an
XHSTT instance have all resources preassigned to event
resources, a TSD would be unnecessary.

Our MIP formulation is exponential in size by the
amount of sub-events in the instance, as all possible
combinations of sub-events are generated. A better for-
mulation would be less dependent on this amount. One
could for instance solve the model iteratively, and 'in-
ject' new sub-events in the model on-the-�y. Another
possibility would be to consider a formulation which
simulate sub-events by an integer variable which de�ne
the lengths of each respective active sub-event. Such
improved formulations are subject for future research.
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