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Abstract

We study a number of variants of an abstract scheduling problem inspired by the scheduling

of reclaimers in the stockyard of a coal export terminal. We analyze the complexity of each of

the variants, providing complexity proofs for some and polynomial algorithms for others. For

one, especially interesting variant, we also develop a constant factor approximation algorithm.
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plexity

1 Introduction

We investigate a scheduling problem that arises in the management of a stockyard at a coal export
terminal. Coal is marketed and sold to customers by brand. The brand of coal dictates its charac-
teristics, for example the range in which its calorific value, ash, moisture and/or sulphur content
lies. In order to deliver a brand required by a customer, coal from different mines, producing
coal with different characteristics, is “mixed” in a stockpile at the stockyard of a coal terminal to
obtain a blended product meeting the required brand characteristics. Stackers are used to add coal
that arrives at the terminal to stockpiles in the yard and reclaimers are used to reclaim completed
stockpiles for delivery to waiting ships at the berths.

We focus on the scheduling of the reclaimers. The stockyard motivating our investigation has
four pads on which stockpiles are build. A stockpile takes up the entire width of a pad and a
portion of its length. Each pad is served by two reclaimers that cannot pass each other and each
reclaimer serves two pads, one on either side of the reclaimer. Effective reclaimer scheduling,
even though only one of component of the management of the stockyard management at a coal
terminal, is a critical component, because reclaimers tend to be the constraining entities in a coal
terminal (reclaiming capacity, in terms of tonnes per hour, is substantially lower than stacking
capacity).

In order to gain a better understanding of the challenges associated with reclaimer scheduling,
we introduce an abstract model of reclaimer scheduling and study the complexity of different
variants of the model as well as algorithms for the solution of these variants. Our investigation
has not only resulted in insights that may be helpful in improving stockyard efficiency, but has also
given rise to a new and intriguing class of scheduling problems that has proven to be surprisingly
rich. One reason is that the travel time of the reclaimers, i.e., the time between the completion of
the reclaiming of one stockpile and the start of the reclaiming of a subsequent stockpile, cannot
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be ignored. Another reason is the interaction between the two reclaimers, caused by the fact that
they cannot pass each other.

The remainder of the paper is organized as follows. In Section 2, we provide background
information on the operation of a coal export terminal and the origin of the reclaimer scheduling
problem. In Section 3, we provide a brief literature review. In Section 4, we introduce the abstract
model of the reclaimer scheduling problem that is the focus of our research and we introduce a
graphical representation of schedules that will be used throughout the paper. In Sections 5 and
6, we present the analysis of a number of variants of the reclaimer scheduling problem. In Section
7, we give some final remarks and discuss future research opportunities.

2 Background

The Hunter Valley Coal Chain (HVCC) refers to the inland portion of the coal export supply chain
in the Hunter Valley, New South Wales, Australia, which is the largest coal export supply chain
in the world in terms of volume. Most of the coal mines in the Hunter Valley are open pit mines.
The coal is mined and stored either at a railway siding located at the mine or at a coal loading
facility used by several mines. The coal is then transported to one of the terminals at the Port
of Newcastle, almost exclusively by rail. The coal is dumped and stacked at a terminal to form
stockpiles. Coal from different mines with different characteristics is “mixed” in a stockpile to
form a coal blend that meets the specifications of a customer. Once a vessel arrives at a berth at
the terminal, the stockpiles with coal for the vessel are reclaimed and loaded onto the vessel. The
vessel then transports the coal to its destination. The coordination of the logistics in the Hunter
Valley is challenging as it is a complex system involving 14 producers operating 35 coal mines, 27
coal load points, 2 rail track owners, 4 above rail operators, 3 coal loading terminals with a total
of 8 berths, and 9 vessel operators. Approximately 1700 vessels are loaded at the terminals in the
Port of Newcastle each year. For a more in-depth description of the Hunter Valley Coal Chain see
Boland and Savelsbergh (Boland et al. (2012)).

An important characteristic of a coal loading terminal is whether it operates as a cargo assembly
terminal or as a dedicated stockpiling terminal. When a terminal operates as a cargo assembly
terminal, it operates in a “pull-based” manner, where the coal blends assembled and stockpiled
are based on the demands of the arriving ships. When a terminal operates as dedicated stockpiling
terminal, it operates in a “push-based” manner, where a small number of coal blends are built
in dedicated stockpiles and only these coal blends can be requested by arriving vessels. We focus
on cargo assembly terminals as they are more difficult to manage due to the large variety of coal
blends that needs to be accommodated.

Depending on the size and the blend of a cargo, the assembly may take anywhere from three to
seven days. This is due, in part, to the fact that mines can be located hundreds of miles away from
the port and getting a trainload of coal to the port takes a considerable amount of time. Once the
assembly of a stockpile has started, it is rare that the location of the stockpile in the stockyard
is changed; relocating a stockpile is time-consuming and requires resources that can be used to
assemble or reclaim other stockpiles. Thus, deciding where to locate a stockpile and when to start
its assembly is critical for the efficiency of the system. Ideally, the assembly of the stockpiles for
a vessel completes at the time the vessel arrives at a berth (i.e., “just-in-time” assembly) and the
reclaiming of the stockpiles commences immediately. Unfortunately, this does not always happen
due to the limited capacities of the resources in the system, e.g., stockyard space, stackers, and
reclaimers, and the complexity of the stockyard planning problem.

A seemingly small, but in fact crucial component of the planning process is the scheduling
of the reclaimers, because reclaimers tend to be the constraining entities in a coal terminal (the
reclaiming capacity is substantially lower than the stacking capacity).

The characteristics of the reclaimer scheduling problems studied in this paper are motivated by
those encountered at a stockyard at one of the cargo assembly terminals at the Port of Newcastle.
At this particular terminal, the stockyard has four pads, A, B, C, and D, on which cargoes are
assembled. Coal arrives at the terminal by train. Upon arrival at the terminal, a train dumps
its contents at one of three dump stations. The coal is then transported on a conveyor to one of
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the pads where it is added to a stockpile by a stacker. There are six stackers, two that serve pad
A, two that serve pad B and pad C, and two that serve pad D. A single stockpile is built from
several train loads over several days. After a stockpile is completely built, it dwells on its pad for
some time (perhaps several days) until the vessel onto which it is to be loaded is available at one
of the berths. A stockpile is reclaimed using a bucket-wheel reclaimer and the coal transferred to
the berth on a conveyor. The coal is then loaded onto the vessel by a shiploader. There are four
reclaimers, two that serve pad A and pad B and two that serve pad C and pad D. Both stackers
and reclaimers travel on rails at the side of a pad. Stackers and reclaimers that serve that same
pads cannot pass each other.

A brief overview of the events driving the cargo assembly planning process is presented next.
An incoming vessel alerts the coal chain managers of its pending arrival at the port. This an-
nouncement is referred to as the vessel’s nomination. Upon nomination, a vessel provides its
estimated time of arrival (ETA) and a specification of the cargoes to be assembled to the coal
chain managers. As coal is a blended product, the specification includes for each cargo a recipe
indicating from which mines coal needs to be sourced and in what quantities. At this time, the
assembly of the cargoes (stockpiles) for the vessel can commence. A vessel cannot arrive at a
berth prior to its ETA, and often a vessel has to wait until after its ETA for a berth to become
available. Once at a berth, and once all its cargoes have been assembled, the reclaiming of the
stockpiles (the loading of the vessel) can begin. A vessel must be loaded in a way that maintains
its physical balance in the water. As a consequence, for vessels with multiple cargoes, there is a
predetermined sequence in which its cargoes must be reclaimed. The goal of the planning process
is to maximize the throughput without causing unacceptable delays for the vessels.

For a given set of vessels arriving at the terminal, the goal is thus to assign each cargo of a
vessel to a location in the stockyard, schedule the assembly of these cargoes, and schedule the
reclaiming of these cargoes, so as to minimize the average delay of the vessels, where the delay of
a vessel is defined to be the difference between the departure time of the vessel (or equivalently
the time that the last cargo of the vessel has been reclaimed) and the earliest time the vessel could
depart under ideal circumstances, i.e., the departure time if we assume the vessel arrives at its
ETA and its stockpiles are ready to be reclaimed immediately upon its arrival.

When assigning the cargoes of a vessel to locations in the stockyard, scheduling their assembly,
and scheduling their reclaiming, the limited stockyard space, stacking rates, reclaiming rates, and
reclaimer movements have to be accounted for.

Since reclaimers are most likely to be the constraining entities in the system, reclaimer activities
need to be modeled at a fine level of detail. That is all reclaimer activities, e.g., the reclaimer
movements along its rail track and the reclaiming of a stockpile, have to be modeled in continuous
time.

When deciding a stockpile location, a stockpile stacking start time, and a stockpile reclaiming
start time, a number of constraints have to be taken into account: at any point in time no two
stockpiles can occupy the same space on a pad, reclaimers cannot be assigned to two stockpiles at
the same time, reclaimers can only be assigned to stockpiles on pads that they serve, reclaimers
serving the same pad cannot pass each other, the stockpiles of a vessel have to be reclaimed in a
specified reclaim order and the time between the reclaiming of consecutive stockpiles of a vessel
can be no more than a prespecified limit, the so-called continuous reclaim time limit, and the
reclaiming of the first stockpile of a vessel cannot start before all stockpiles of that vessel have
been stacked. We focus on some of the aspects of real world reclaimer scheduling as specified in
Section 4.

The reclaiming of a stockpile using a bucket wheel reclaimer is conducted in a series of long
travel bench cuts. For each cut, the reclaimer moves along the whole length of the stockpile with
a fixed boom position. Then the boom is adjusted for the next cut, the reclaimer turns around
and moves along the stockpile in the opposite direction as indicated in Figure 1. The reclaiming
process is fully automated and a typical stockpile is reclaimed in three benches with approximately
55 cuts. In our simplified model we assume that a stockpile is reclaimed while a reclaimer moves
along it exactly once.
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Figure 1: A cross section (left) and an aerial view (right) of a stockpile, illustrating the long travel
bench cut.

3 Literature Review

The scheduling of bucket wheel reclaimers in a coal terminal has some similarities to the scheduling
of quay and yard cranes in container terminals. When a vessel arrives at a container terminal,
import containers are taken off the vessel and mounted onto trucks by quay cranes and then
unloaded by yard cranes at various locations in the yard for storage. In the reverse operation,
export containers are loaded onto trucks by yard cranes at the yard, are off-loaded at the quay,
and loaded onto a vessel by quay cranes. Both reclaimers and cranes move along a single rail track
and therefore cannot pass each other, and handle one object at a time (a stockpile in the case of a
bucket wheel reclaimer and a container in the case of quay or yard cranes). Furthermore, in coal
terminals as well as container terminals maximizing throughput, i.e., minimizing the time it takes
to load and/or unload vessels, is the primary objective, and achieving a high throughput depends
strongly on effective scheduling of the equipment.

However, there are also significant differences between the scheduling of bucket wheel reclaimers
in a coal terminal and the scheduling of quay and yard cranes in the container terminals. The
number of containers that has to be unloaded from or loaded onto a vessel in a container terminal
is much larger than the number of cargoes that has to be loaded onto a vessel in a coal terminal.
As a result, the sequencing of operations (e.g., respecting precedence constraints between the
unloading/loading of containers) is much more challenging and a primary focus in crane scheduling
problems. On the other hand, containers and holds of a vessel has fixed length whereas stockpiles
can have an arbitrary length. As a consequence, the time between the completion of one task and
the start of the next task (to account for any movement of equipment) can only take on a limited
number of values in crane scheduling problems at a container terminal, especially in quay crane
scheduling, and can take on any value in reclaimer scheduling problem.

Below, we give a brief overview of the literature on scheduling of quay and yard cranes in
container terminals.

Most of the literature on quay crane scheduling focuses on a static version of the problem in
which the number of vessels, berth assignments, and the quay crane assignments for each vessel
are known in advance for the entire planning horizon.

Daganzo (1989) studies the optimal assignment quay cranes (QCs) to the holds of multiple
vessels. In the considered setting, a task refers to the loading or unloading of a single hold of a vessel
and any precedence constraints between the containers of a single hold are not accounted for. Crane
movement time between different holds is assumed to be negligible. The fact that QCs cannot
pass each other is not explicitly considered. A mixed integer programming formulation minimizing
the (weighted) sum of departure times of the vessels is presented. Some heuristics for a dynamic
variant, in which vessel arrival times are uncertain are also proposed. Peterkofsky and Daganzo
(1990) develop a branch-and-bound algorithm for the same problem that is able to solve larger
problem instances.

Kim and Park (2004) studies the scheduling of multiple QCs simultaneously operating on a
single vessel taking into account precedence constraints between containers and no-passing con-
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straints between QCs. In their setting, a task refers to a “cluster”, where a cluster represents a
collection of adjacent slots in a hold and a set of containers to be loaded into/unloaded from these
slots. The objective is to minimize a weighted combination of the load/unload completion time of
the vessel and the sum of the completion times of the QCs, with higher weight for the load/unload
completion time. The sum of the completion times of the QCs is included in the objective to
ensure that QCs will be available to load/unload other vessels as early as possible. The problem is
modeled as an parallel machine scheduling problem. A MIP formulation is presented and branch-
and-bound algorithm is developed for its solution. A greedy randomized adaptive search procedure
(GRASP) is developed to handle instances where the branch-and-bound algorithm takes too much
time. Moccia et al. (2006) have strengthened the MIP formulation of Kim and Park (2004) by de-
riving sets of valid inequalities. They propose a branch-and-cut algorithm to solve the problem to
optimality.

Ng and Mak (2006) also study the scheduling of multiple QCs for a single vessel with the
objective of minimizing the loading/unloading time. In their setting, a task refers to the load-
ing/unloading of a single hold, but no-passing constraints for the QCs are explicitly taken into
account. A heuristic that partitions the holds of the vessel into non-overlapping zones and assigns
a QC to each zone is proposed. The optimal zonal partition is found by dynamic programming.
Zhu and Lim (2006) consider the same setting, but formulate a mixed integer programming model
and propose a branch-and-bound algorithm for its solution (which outperforms CPLEX on small
instances). A simulated annealing algorithm is developed to handle larger instances.

Liu et al. (2006) study a dynamic variant of the problem considered by Daganzo (1989), which
accounts for movement time of QCs and that QCs cannot pass each other, and enforces a minimum
separation between vessels. By limiting the movement of QCs to be unidirectional, i.e., either from
“stern to bow” or from “bow to stern” when loading/unloading a vessel, it becomes relatively easy
to handle the no-passing constraint and to enforce a minimum separation. The objective is to
minimizing the time to load/unload multiple vessels. A heuristic is proposed for the solution of
the problem. Lim et al. (2007) study a static, single vessel setting and also adopt a unidirectional
movement restriction for QCs to handle the no-passing constraint. When a task refers to the
loading/unloading of a hold, it is shown that there always exists an optimal schedule among the
unidirectional schedules. Since a unidirectional schedule can be easily obtained for a given task-
to-QC assignment, a simulated annealing algorithm is proposed to explore the space of task-to-QC
assignments.

For a more detailed, more comprehensive survey of crane scheduling, the reader is referred to
Bierwirth and Meisel (2010).

Recently Legato et al. (2012) presented a refined version of an existing mixed integer program-
ming formulation of the QC scheduling problem incorporating many real-life constraints, such as
QC service rates, QC ready and due times, QC no-passing constraints, and precedence constraints
between groups of containers. Unidirectional QC movements can be captured in the model as well.
The best-known branch-and-bound algorithm (i.e., from Bierwirth and Meisel (2009)) is improved
with new lower bounding and branching techniques.

Yard crane (YC) scheduling is another critical component of the efficient operation of a con-
tainer terminal. The yard is typically divided into several storage blocks and YCs are used to
transfer containers between these storage blocks and trucks (or prime movers). YCs are either rail
mounted or rubber wheeled. The rubber wheeled YCs have the flexibility to move from one yard
block to another while rail mounted YCs are restricted to work on a single yard block.

Kim and Kim (1999) study the problem of minimizing the sum of the set up times and the
travel times of single YC. Their mixed integer programming model determines the optimal route for
the YC as well as the containers to be picked up by the YC in each of the storage blocks. Because
of the excessive solve times of the mixed integer program for large instances, two heuristics are
proposed in Kim and Kim (2003).

Zhang et al. (2002) study the problem of scheduling a set of YCs covering a number of storage
blocks so as to minimize the total tardiness (or delays). A mixed integer programmodel determines
the number of YCs to be deployed in each storage block in each planning period and a lagrangian
relaxation based heuristic algorithm is employed to find an optimal solution.
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Ng and Mak (2005b,a) studied the problem of scheduling a YC that has to load/unload a
given set of containers with different ready times. The objective is to minimize the sum of waiting
times. The problem is formulated as mixed integer programming problem, and a branch-and-
bound algorithm is developed for its solution. Ng (2005) expands the study to the scheduling
of multiple YCs in order to minimize the total loading time or the sum of truck waiting times.
Because more than one YC can serve a storage block, a no-passing constraint has to be enforced.
A dynamic programming based heuristic is proposed to solve the problem and a lower bound is
derived to be able to assess the quality of the solutions produced by the heuristic.

Petering (2009) investigates how the width of the storage blocks affects the efficiency of the
operations at a container terminal, given that the number of prime movers, the number of YCs,
the service rates of the YCs remain unchanged. A simulation study indicates that the optimal
storage block width ranges form 6 to 12 rows, depending on the size and shape of the terminal
and the annual number of containers handled by the terminal. Their experimental results further
show that restrictive YC mobility due to more storage blocks gives better performance than a
system with greater YC mobility.

Only recently, researchers have started to examine the scheduling of equipment in bulk goods
terminals. Hu and Yao (2012) consider the problem of scheduling the stacker and reclaiming at
a terminal for iron ore. It is assumed that all tasks (stacking and reclaiming operation) are
known at the start of the planning horizon. The terminal configuration is such that a single
stracker/reclaimer serves two pads, so there is no need to consider a no-passing constraint. A
sequence dependent set-up time, as a result of the movement of the stacker/reclaimer between
two consecutive tasks, is considered. A mixed integer programming formulation is presented and
a genetic algorithm is proposed. Sun and Tang (2013) study the problem of scheduling reclaimers
at an iron ore import terminal serving the steel industry. Each reclaim task has a release date
and due date, and the goal is to minimize the completion of a set of reclaim tasks. The terminal
configuration is not specified and no mention is made of no-passing constraints. A mixed integer
programming formulation is presented and a Benders decomposition algorithms is proposed for its
solution.

For the single reclaimer case, the fact that the reclaimer has to travel along every stockpile
gives it a traveling salesman flavor. The basic traveling salesman problem is trivial when all nodes
are on a line, but it becomes difficult when additional constraints, such as time windows, are added
(Psaraftis et al. (1990), Tsitsiklis (1992)). In our problem, the single reclaimer case becomes a
traveling salesman problem on a line with prescribed edges: the nodes are the endpoints of the
stockpiles, and for every stockpile the edge connecting its endpoints has to be traversed in the
solution.

4 Problem Description

The practical importance of reclaimer scheduling at a coal terminal prompted us to study a set of
simplified and idealized reclaimer scheduling problems. These simplified and idealized reclaimer
scheduling problems turn out to lead to intriguing and, in some cases, surprisingly challenging
optimization problems.

We make the following basic assumptions:

• There are two reclaimers R0 and R1 that serve two pads; one on either side of the reclaimers.

• Reclaimer R0 starts at one end of the stock pads and Reclaimer R1 starts at the other end
of the stock pads.

• Stockpiles are reclaimed by one of the two reclaimers R0 and R1 that move forward and
backward along a single rail in the aisle between the two pads.

• The reclaimers cannot pass each other but they can go along side by side.

• The reclaimers are identical, i.e., they have the same reclaim speed and the same travel
speed.
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• Each stockpile has a given length and a given reclaim time (derived from the stockpile’s size
and the reclaim speed of the reclaimers).

• When a stockpile is reclaimed, it has to be traversed along its entire length by one of the
reclaimers, either from left to right or from right to left.

• After reclaiming the stockpiles, the reclaimers need to return to their original position.

Using these basic assumptions, we define a number of variants of the reclaimer scheduling
problem:

• Both reclaimers are used for the reclaiming of stockpiles or only one reclaimer (R0) is used
to reclaim of stockpiles.

• The positions of the stockpiles on the pads are given or have to be decided. If the positions
on the pad are given, it is implicitly assumed that the stockpile positions are feasible, i.e.,
that stockpiles on the same pad do not overlap. If the positions have to be decided, then
both the pad and the location on the pad have to be decided for each stockpile.

• Precedence constraints between stockpiles have to be observed or not. When precedence
constraints have to be observed, the reclaim sequence of the stockpiles is completely specified.
That is, the precedence constraints form a chain involving all the stockpiles.

The goal in all settings is to reclaim all stockpiles and to minimize the time at which both
reclaimers have returned to their original positions.

We use the following notation. When the positions of the stockpiles are given, we have two
sets J1 = {1, . . . , n1} and J2 = {n1 + 1, . . . , n} of stockpiles located on the two identical and
opposite pads P1 and P2. We represent a pad by segment [0, L], with L being the length of the
pad. Stockpile j ∈ J1 occupies a segment [lj , rj ] on pad P1 (0 6 lj < rj ≤ L). Similarly, stockpile
j ∈ J2 occupies a segment [lj , rj ] on pad P2. Stockpiles cannot overlap on the same pad and we
assume that rj 6 lj+1 for j ∈ {1, . . . , n1 − 1} and for j ∈ {n1 + 1, . . . , n − 1} and that rj , lj for
j ∈ {1, . . . , n} and L are integers.

Reclaimers start and finish at the two endpoints of the rail, reclaimer R0 at point 0 and
reclaimer R1 at point L, and can reclaim stockpiles on either one of the pads (we assume there
is no time required to switch from one pad to the other), but they cannot pass each other. A
reclaimer can stay idle or move forward and backward at the given speed s. When reclaiming a
stockpile the speed cannot be larger than s. Without loss of generality, we assume that the reclaim
speed is equal to 1 and the travel speed is s > 1. Thus, the time necessary to reclaim stockpile j
is pj = rj − lj, the length of stockpile j.

When the positions of the stockpiles are not given but have to be decided, we are given the
length pj ∈ Z of each stockpile j (0 < pj 6 L) and we have to decide the pad on which to locate
the stockpile (either P1 or P2), the position (lj , rj) of that pad that the stockpile will occupy, and
the reclaimer schedules.

4.1 Graphical representation of a feasible schedule

The schedule Hk of reclaimer Rk (k = 0, 1) with makespan Ck can be described by a piecewise
linear function representing the position of the reclaimer on the rail as a function of time. Such a
function can be represented by an ordered list of breakpoints

Bk =
((

t
(k)
i , x

(k)
i

)

∈ R
+ × [0, L] : i = 0, 1, . . . , qk

)

in the time-space Cartesian plane, where 0 = t
(k)
0 < t

(k)
1 < · · · < t

(k)
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(k)
0 = x

(k)
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(k)
i , t

(k)
i+1] we have

Hk(t) = x
(k)
i +

x
(k)
i+1 − x

(k)
i

t
(k)
i+1 − t

(k)
i

(
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(k)
i

)

,

and the slope between consecutive points (t
(k)
i , x

(k)
i ) and (t

(k)
i+1, x

(k)
i+1) is either:

7



• 0, the reclaimer is idle;

• +s, the reclaimer is moving to the right without processing any stockpile;

• −s, the reclaimer is moving to left without processing any stockpile;

• +1, the reclaimer is moving to right while processing a stockpile on either one of the two
pads; and

• −1, the reclaimer is moving to left while processing a stockpile on either one of the two pads.

This is illustrated in Figure 2. A pair (H0, H1) of reclaimer schedules is feasible if:

time

space

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7

R0

R1

Figure 2: Reclaimer movement in time-space.

1. the two functions H0 and H1 satisfy the inequality H1(t) > H0(t), ∀t > 0 (the reclaimers do
not pass each other);

2. each interval [lj, rj ] is traversed at least once at speed 1 (either from left to right or from
right to left); and

3. all other constraints are satisfied, e.g., precedence constraints between stockpiles.

The makespan of a feasible schedule (H0, H1) is C = max(C0, C1). Next, we analyze a number
of variants of the reclaimer schedule problem. We start by considering variants in which the
positions of the stockpiles are given, which means only the schedules of the reclaimers have to
be determined. This is followed by considering variants in which the positions of the stockpiles
are not given, but have to be determined, which means that both the stockpile positions and the
reclaimer schedules have to be determined.

5 Reclaimer Scheduling Without Positioning Decisions

5.1 No precedence constraints

5.1.1 Single reclaimer

For variants with a single reclaimer, we assume that the active reclaimer is reclaimer R0 with
initial position x0 = 0, and that the schedule of reclaimer R1 is H1(t) = L for t > 0.

We start by observing that the optimal makespan C∗ cannot be less than twice the time it
takes to reach the farthest stockpile endpoint r = max{rn1

, rn} at speed s plus the additional time
to process the stockpiles, i.e.,

C∗
> 2

r

s
+

n
∑

j=1

[

(rj − lj)−
rj − lj

s

]

(1)
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Algorithm 1 Forward-Backward

Input: n1 and {(lj, rj)| j = 1, . . . , n}

Initialize q = 0 and B = ( (0, 0) )
for j = 1, . . . , n1 do

if lj 6= xq then add (tq + (lj − xq)/s, lj) to B and increase q by 1
Add (tq + (rj − lj), rj) to B and increase q by 1

for j = n, n− 1, . . . , n1 + 1 do
if rj 6= xq then add (tq + |rj − xq| /s, rj) to B and increase q by 1
Add (tq + (rj − lj), lj) to B and increase q by 1

if ln1+1 6= 0 then add (tq + ln1+1/s, 0) to B and increase q by 1

Output: C = tq and B

Next, we consider the Forward-Backward (FB) algorithm given in Algorithm 1, where we omit
the index k for the reclaimer which is understood to be 0.

Theorem 1. Algorithm 1 computes an optimal schedule for a single reclaimer in time O(n).

Proof. The schedule that is returned by Algorithm 1 is optimal because by construction its
makespan equals the lower bound given by (1). The algorithm runs in time O(n).

5.1.2 Two reclaimers

Unfortunately, optimally exploiting the additional flexibility and extra opportunities offered by a
second reclaimer is not easy as we have the following theorem.

Theorem 2. Determining an optimal schedule for two reclaimers when the positions of the stock-
piles are given and the stockpiles can be reclaimed in any order is NP-hard.

Proof. We provide a transformation from Partition. An instance is given by positive integers
a1, . . . , am and B satisfying a1 + · · · + am = 2B and the problem is to decide if there is an
index set I ⊆ {1, . . . ,m} with

∑

i∈I ai = B. We reduce this to the following instance of the
reclaimer scheduling problem. The length of the pad is L = 6B, the travel speed is s = 5B,
and we have n = m + 2 stockpiles which are all placed on pad P1, i.e., n1 = n. The stockpile
lengths are ai (i = 1, . . . ,m) for the first m stockpiles and the two additional stockpiles have
both length 2B. The positions of the stockpiles on the pad are given by (lm+1, rm+1) = (0, 2B),

(lm+2, rm+2) = (4B, 6B), and (li, ri) = (2B +
∑i−1

j=1 ai, 2B +
∑i

j=1 ai) for i = 1, . . . ,m. We claim
that a makespan 6 3B + 1 can be achieved if and only if the Partition instance is a YES-
instance. Clearly, if there is no I with

∑

i∈I ai = B, we cannot divide the stockpiles between
the two reclaimers in such a way that the total stockpile length for both reclaimers is 3B, which
implies that one of the reclaimers has a reclaim time of at least 3B + 1, hence its makespan is
larger than 3B+1 (as the reclaimer also has to travel without reclaiming a stockpile). Conversely,
if there is an I with

∑

i∈I ai = B, we can achieve a makespan of less than or equal to 3B + 1 as
follows. Reclaimer R0 moves from x = 0 to x = 4B while reclaiming (from left to right) stockpile
m + 1 and the stockpiles with index in I, and then it returns to its start point at time 3B + 1.
Reclaimer R1 moves from x = L to x = 2B without reclaiming anything, and then it moves back
to x = L, reclaiming (from left to right) the stockpiles with index in {1, . . . ,m} \ I and stockpile
m + 2. There is no clashing because the region that is visited by both reclaimers is the interval
[2B, 4B], and reclaimer R0 enters this interval at time 2B and leaves it at time 2B + 3/5, while
reclaimer R1 enters at time 2/5 and leaves at time B + 1.

To be able to analyze the quality of schedules for two reclaimers, we start by deriving a lower
bound. For this purpose, we allow preemption, i.e., we allow a stockpile to be split and be processed
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either simultaneously or at different times by any of the two reclaimers. Let

S1 =

n1
⋃

j=1

[lj , rj ] and S2 =

n
⋃

j=n1+1

[lj, rj ] (2)

be the subsets of [0, L] that represent occupied space on pads P1 and P2, respectively. Furthermore,
let

Q1 = S1△S2, Q1 = S1 ∩ S2, and E = [0, L] \ (S1 ∪ S2)

be the subsets of [0, L] with stockpiles on one side, with a stockpile on both sides, and with no
stockpile on either side, respectively. Note that E is a union of finitely many pairwise disjoint
intervals, say

E = [a1, b1] ∪ [a2, b2] ∪ · · · ∪ [ar, br]. (3)

For a subset X ⊆ [0, L] let ℓ(X) denote the (total) length of X . The set Q2 has to be traversed
twice with speed 1 and the set Q1 has to be traversed once with speed 1 and once with traveling
speed s, hence C1 + C2 > 2ℓ(Q2) + ℓ(Q1) + ℓ(Q1)/s, which implies the lower bound

C = max{C0, C1} >
1

2
[2ℓ(Q2) + ℓ(Q1) + ℓ(Q1)/s] .

We can improve this bound by taking into account the set E. Note that at most one of the
intervals in the partition (3) can contain points that are not visited by any reclaimer, because
otherwise the stockpiles between two such points are not reclaimed. Now we consider two cases.

Case 1. If every point of the set E is visited, then the set E is traversed (at least) twice with
speed s, so in this case the makespan C is at least

K0 =
1

2
[2ℓ(Q2) + ℓ(Q1) + ℓ(Q1)/s+ 2ℓ(E)/s] .

Case 2. If some point in the interval [ai, bi], i ∈ {1, . . . , r}, is not visited, then everything left of
ai is reclaimed by R0, while everything right of bi is reclaimed by R1, so in this case the
makespan C is at least

Ki = max

{

2ℓ(Q−
2 ) + ℓ(Q−

1 ) +
ℓ(Q−

1 )

s
+ 2

ℓ(E−)

s
, 2ℓ(Q+

2 ) + ℓ(Q+
1 ) +

ℓ(Q+
1 )

s
+ 2

ℓ(E+)

s

}

,

where Q−
2 = Q2 ∩ [0, ai], Q

+
2 = Q2 ∩ [bi, L], and similarly for Q1 and E.

Theorem 3. The optimal makespan for a preemptive schedule equals

K∗ = min{Ki : i = 0, 1 . . . , r},

and an optimal schedule can be computed in linear time.

Proof. By the above discussion, K∗ is a lower bound for the makespan of a preemptive schedule.
We define two functions f, g : [0, L]→ R as follows. Let f(x) be the return time of reclaimer R0 if
it moves from 0 to x, reclaiming everything on this part of pad P1, and then moves back to 0 while
reclaiming everything on this part of pad P2. Similarly, let g(x) be the return time of reclaimer
R1 if it moves from L to x reclaiming everything on this part of pad P1, and then moves back to
L, reclaiming everything on this part of pad P2. These are piecewise linear, continuous functions,
which can be expressed in terms of the sets Q1, Q2 and E:

f(x) = 2ℓ(Q−
2 (x)) + ℓ(Q−

1 (x)) +
ℓ(Q−

1 (x))

s
+ 2

ℓ(E−(x))

s
,

g(x) = 2ℓ(Q+
2 (x)) + ℓ(Q+

1 (x)) +
ℓ(Q+

1 (x))

s
+ 2

ℓ(E+(x))

s
,

where Q−
2 (x) = Q2 ∩ [0, x], Q+

2 (x) = Q2 ∩ [x, L], and similarly for Q1 and E. Note that Ki =
max{f(ai), g(bi)}. The functions f and g satisfy the following conditions:
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• f(0) = g(L) = 0 and f(L) = g(0) = 2K0,

• f(x) + g(x) = 2K0 for all x ∈ [0, L], and

• f is strictly increasing, and g is strictly decreasing.

This implies that there is a unique x∗ ∈ [0, L] with f(x∗) = g(x∗) = K0.

Case 1. There is at least one stockpile at position x∗, i.e., x∗ ∈ Q1 ∪ Q2. In this case, for any
interval [ai, bi] in the partition (3), either bi 6 x∗ or ai > x∗, henceKi = max{f(ai), g(bi)} >
K0, and consequently K∗ = K0. This value is achieved by reclaiming everything left of x∗

by reclaimer R0 and everything right of x∗ by reclaimer R1 as described in the definition of
the functions f and g.

Case 2. There is no stockpile at position x∗, i.e., x∗ ∈ [ai, bi] for some interval [ai, bi] in the
partition (3). Then Ki = max{f(ai), g(bi)} 6 f(x∗) = K0. For j < i, we have Kj > g(bj) >
g(x∗) = K0, and for j > i, Kj > f(aj) > f(x∗) = K0. Hence K∗ = Ki, and this value is
achieved by reclaiming everything left of ai by reclaimer R0 and everything right of bi by
reclaimer R1 as described in the definition of the functions f and g.

This concludes the proof of the optimality of the value K∗. In order to compute x∗, which defines
an optimal schedule, we order the numbers 0, l1, r1, . . . , ln, rn, L increasingly, which can be done
in linear time, because we assume that the stockpiles on each pad are already ordered from left to
right. This gives an ordered list

0 = x0 6 x1 6 x2 6 · · · 6 x2n+2 = L

of the breakpoints of the piecewise linear functions f and g. We can determine the values of f
and g at these points recursively, by f(x0) = 0,

f(xk) =











f(xk−1) + (xk − xk−1) · 2/s if [xk−1, xk] ⊆ E

f(xk−1) + (xk − xk−1) (1 + 1/s) if [xk−1, xk] ⊆ Q1

f(xk−1) + (xk − xk−1) · 2 if [xk−1, xk] ⊆ Q2

for k = 1, 2, . . . , 2n+2, and g(xk) = 2K0− f(xk). Then there is a unique index k with f(xk−1) 6
K0 < f(xk), and we obtain x∗ by

x∗ = xk−1 +
K0 − f(xk−1)

f(xk)− f(xk−1)
· (xk − xk−1).

In order to describe and analyze non-preemptive schedules, we introduce some additional no-
tation and a few more functions. For x ∈ [0, L], the region occupied by stockpiles left (resp. right)
of x on pad i is denoted by S−

i (x) (resp. S+
i (x)). More precisely, with S1 and S2 defined by (2),

S−
i (x) = Si ∩ [0, x], S+

i (x) = Si ∩ [x, L].

Furthermore, we define functions fi, gi : [0, L]→ R for i ∈ {1, 2} by

fi(x) = ℓ(S−
i (x)) +

x− ℓ(S−
i (x))

s
, gi(x) = ℓ(S+

i (x)) +
L− x− ℓ(S+

i (x))

s
.

Note that f(x) = f1(x) + f2(x) and g(x) = g1(x) + g2(x), where f and g are the functions defined
in the proof of Theorem 3.

Let j ∈ {1, . . . , n1} be a stockpile on pad P1, and let j′ ∈ {n1+1, . . . , n} be a stockpile on pad
P2. If R0 reclaims all stockpiles left of (and including) j on pad P1, and all stockpiles left of (and
including) j′ on pad P2, then its earliest possible return time is

F (j, j′) = f1(rj) + |rj − rj′ |/s+ f2(rj′ ). (4)
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lj rj lj+1
rj+1

lj′ rj′ lj′+1
rj′+1

lj rj lj+1
rj+1

lj′ rj′ lj′+1
rj′+1

reclaimer R0 reclaimer R1

P1

P2

P1

P2

Figure 3: Two stockpile assignments for non-preemptive schedules (indicated by the colors of the
stockpiles): at the top with min{lj+1, lj′+1} > max{rj , rj′} and at the bottom with lj′+1 < rj .

Similarly, if R1 reclaims all stockpiles right of (not including) j on pad P1, and all stockpiles right
of (not including) j′, then its earliest possible return time is

G(j, j′) = g1(lj+1) + |lj+1 − lj′+1|/s+ g2(lj′+1). (5)

See Figure 3 for an illustration. Observe that if lj′+1 > rj and lj+1 > rj′ , then no clashes will occur
between the two reclaimers and a makespan of C(j, j′) = max(F (j, j′), G(j, j′)) can be achieved.
On the other hand, if lj′+1 < rj or lj+1 < rj′ , then it can happen that one reclaimer has to wait.
Therefore, in order to specify a schedule, we have to

• Choose one of two options for the routing of R0: (1) first reclaim stockpiles 1, 2, . . . , j on pad
P1 from left to right and then stockpiles j′, j′ − 1, . . . , n1 + 1 on pad P2 from right to left,
or (2) first reclaim stockpiles n1 + 1, . . . , j′ on pad P2 from left to right and then stockpiles
j, j − 1, . . . , 1 on pad P1 from right to left;

• Choose one of two options for the routing ofR1: (1) first reclaim stockpiles n1, n1−1, . . . , j+1
on pad P1 from right to left and then stockpiles j′ +1, . . . , n on pad P2 from left to right, or
(2) first reclaim stockpiles n, n−1, . . . , j′+1 on pad P2 from right to left and then stockpiles
j + 1, . . . , n1 on pad P1 from left to right; and

• Choose which reclaimer waits.

Taking all possible combinations we have 8 different schedules for a given pair (j, j′) of stockpiles.
For p, q ∈ {1, 2} and k ∈ {0, 1}, let Cpqk be the makespan that results from routing option p
for R0, routing option q for R1, and letting Rk wait if necessary. We describe the computation
of Cpqk in detail for lj′+1 < rj and k = 1. The cases with lj+1 < rj′ or k = 0 can be treated
in the same way. Since R1 waits if necessary, the makespan of R0 is F (j, j′), defined in (4).
So Cpq1 = max{F (j, j′), C1

pq1}, where C1
pq1 is the corresponding makespan for R1 and can be

computed as follows. In each case we express C1
pq1 as G(j, j′) + w where G(j, j′) is the lower

bound for the makespan of R1 given in (5) and w is the waiting time which is the expression in
square brackets in the equations below.

Case 1. Both reclaimers start on pad P1. If g1(rj) > f1(rj), then no waiting is necessary and
C1

111 = G(j, j′). Otherwise R1 waits at x = rj until R0 arrives there at time f1(rj), hence

C1
111 = g1(rj) + [f1(rj)− g1(rj)] + (rj − lj′+1)/s+ g2(lj′ ).

Case 2. R0 starts on pad P1 and R1 starts on pad P2. If g2(lj′+1) 6 f1(lj′+1), then no waiting
is necessary and C1

121 = G(j, j′). Otherwise R1 waits on its way to x = lj′+1 for a period of
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length f1(rj)− g2(rj) and the makespan is

C1
121 = g2(lj′+1) + [f1(rj)− g2(rj)] + (lj+1 − lj′+1)/s+ g1(lj+1).

Case 3. R0 starts on pad P2 and R1 starts on pad P1. If g1(rj) > f2(rj′ ) + (rj − rj′)/s, then R1

arrives at x = rj when R0 is already on its way back, no waiting is necessary, and C1
211 =

G(j, j′). Otherwise R1 waits at x = lj+1 for a period of length f2(rj′ )+ (rj − rj′ )/s− g1(rj)
and the makespan is

C1
211 = g1(lj+1) + [f2(rj′ ) + (rj − rj′ )/s− g1(rj)] + (lj+1 − lj′+1)/s+ g2(lj′+1).

Case 4. Both reclaimers start on pad P2. If g2(lj′+1) 6 f2(lj′+1), then R1 is already on its way
back when R0 arrives at x = lj′+1, no waiting is necessary, and C1

211 = G(j, j′). Otherwise
R1 waits to the right of x = rj for a period of length f2(rj′ )+(rj − rj′)/s+f1(rj)−f1(lj′+1)
to arrive at x = lj′+1 at the same time as R0 on its way back, and the makespan is

C1
221 = g2(lj′+1) + [f2(rj′ ) + (rj − rj′ )/s+ f1(rj)− f1(lj′+1)] + (lj+1 − lj′+1)/s+ g1(lj+1).

The necessary data to evaluate the 8 schedules associated with a pair (j, j′) can be computed in
linear time in the same way as the functions f and g are evaluated in the proof of Theorem 3.

In the discussion above, we have assumed that a schedule has the following properties:

• Each reclaimer changes direction exactly once.

• Reclaimer R0 reclaims everything between 0 and some point on one pad from left to right,
and then everything from some (possibly different) point to 0 on the other pad from right
to left.

• Reclaimer R1 reclaims everything between L and some point on one pad from right to left,
and then everything from some (possibly different) point to L on the other pad from left to
right.

In the following, we call such a schedule contiguous unimodal. Since every contiguous unimodal
schedule is associated with some stockpile pair, we have the following theorem.

Theorem 4. An optimal contiguous unimodal schedule can be computed in quadratic time.

The next example shows that it is possible that there is no optimal contiguous unimodal
schedule.

Example 1. Consider an instance with four stockpiles of lengths 2, 10, 10, 2 shown in Figure 4,
and let the travel speed be s = 5. Unimodal routing results in C = 15.2. However, when R0 first
travels to x = 10 without processing any stockpile, then processes stockpile 3 while coming back,
then travels to x = 2, and finally processes stockpile 1, and R1 first processes stockpile 2, then
turns and processes stockpile 4 on the way back, the resulting makespan is 14.4. This shows that
sometimes “zigzagging” can be beneficial.

Next, we analyze one particular schedule, which is obtained by a natural modification of the
optimal preemptive schedule and therefore can be computed in linear time.

Let x∗ be the optimal split point for a preemptive schedule as described in Theorem 3, and let
k be the index with xk−1 < x∗ 6 xk. If x

∗ ∈ E, i.e., there is no stockpile at x∗, then the optimal
preemptive schedule is actually non-preemptive, and yields an optimal solution with makespan
K∗, the optimal preemptive makespan. In general, the stockpiles are assigned according to the
following rules (see Figure 5).

1. All stockpiles j with rj 6 x∗ are assigned to R0, and all stockpiles j with lj > x∗ are assigned
to R1.
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R1

Figure 4: Instance demonstrating that unimodal routing is not always optimal. The assignment
between stockpiles and reclaimers is indicated by different colors, the numbers above the stockpiles
are the stockpile lengths while the numbers below are the stockpile indices.

2. If there is exactly one stockpile j with lj 6 x∗ 6 rj then this stockpile is assigned to R0 if
x∗ − lj > rj − x∗ and to R1 otherwise.

3. If there are two stockpiles j ∈ {1, . . . , n1} and j′ ∈ {n1 + 1, . . . , n} with lj 6 x∗ 6 rj and
lj′ 6 x∗ 6 rj′ then both of them are assigned to R0 if

(x∗ − lj) + (x∗ − lj′) + |lj − lj′ |/s > (rj − x∗) + (rj′ − x∗) + |rj − rj′ |/s, (6)

and otherwise both stockpiles are assigned to R1.

lj rj

x∗xk−1 xk

lj rj

lj′ rj′

P1

P2

P1

P2

x∗xk−1 xk

reclaimer R0 reclaimer R1

Figure 5: Possible assignments (indicated by colors) for contiguous unimodal schedules: x∗ ∈
S1 \ S2 (top), x∗ ∈ S1 ∩ S2 (bottom).

Let (H̃0, H̃1) be the best unimodal schedule associated with this stockpile assignment, and let
C̃ = max{C̃0, C̃1} be the makespan of this schedule.

Theorem 5. We have C̃ 6 2K∗. In particular, the schedule (H̃0, H̃1) provides a 2-approximation
for the problem of scheduling two reclaimers when the positions of the stockpiles are given and the
stockpiles can be reclaimed in any order. The factor 2 is asymptotically best possible (for s→∞).

Proof. To see that the factor of 2 cannot be improved, consider two stockpiles each of length L.
According to our rule, both stockpiles are assigned to the left reclaimer and this yields a makespan
of C̃ = 2L. On the other hand, assigning one stockpile to each reclaimer and reclaiming both of
them from right to left yields a makespan of C∗ = (1 + 2/s)L.
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Without loss of generality, we make the following assumptions.

• If x∗ ∈ S1△S2, then x∗ ∈ S1 \ S2 and for the stockpile j with lj < x∗ < rj , we have
x∗ − lj > rj − x∗, so that stockpile j is assigned to R0.

• If x∗ ∈ S1 ∩ S2, then for the two stockpiles j ∈ {1, . . . , n1} and j′ ∈ {n1 + 1, . . . , n} with
lj < x∗ < rj and lj′ < x∗ < rj′ , we have rj > rj′ and (6) holds, so that both stockpiles are
assigned to R0.

Furthermore, it turns out that in order to establish the factor 2 bound it is sufficient to consider
the setting where R0 starts on pad P1, R1 starts on pad P2, and R1 waits if necessary. We start
by bounding C̃0, the makespan for R0. If x

∗ ∈ S1 \ S2 then

C̃0 = f1(rj) + (rj − x∗)/s+ f2(x
∗) = f1(x

∗) + (rj − x∗)(1 + 1/s) + f2(x
∗) 6 2K∗,

where the last inequality follows from

K∗ = f1(x
∗) + f2(x

∗) > (x∗ − lj) + x∗/s > (rj − x∗)(1 + 1/s).

If x∗ ∈ S1 ∩ S2 then

C̃0 = f1(x
∗) + (rj − x∗) + (rj − rj′ )/s+ f2(x

∗) + (rj′ − x∗)

= K∗ + (rj − x∗) + (rj − rj′ )/s+ (rj′ − x∗) 6 2K∗.

The bound for the makespan C̃1 of R1 can be derived simultaneously for both cases after noting
that in our setting we have rj′ = xk. If g2(xk) 6 f1(xk) or g2(rj) > f1(rj) then no waiting is
necessary, and the makespan of R1 is

C̃1 6 g2(xk) + (rj − xk) + g1(rj) 6 g1(xk) + g2(xk) 6 K∗.

Otherwise the waiting time for R1 is

f1(rj)− g2(rj) = [f1(xk) + (rj − xk)]− g2(rj) < g2(xk)− g2(rj) + (rj − xk)

hence the makespan is (using g1(xk) = g1(rj) + (rj − xk))

C̃1 = g2(xk) + [g2(xk)− g2(rj) + (rj − xk)] + (rj − xk)/s+ g1(rj)

= [g1(xk) + g2(xk)] + [g2(xk)− g2(rj) + (rj − xk)/s] 6 2K∗.

Example 1 shows that unimodal routing might not be optimal. Next, we examine whether
contiguous assignment is always optimal, i.e., whether there always exists an optimal schedule
characterized by two stockpiles j ∈ {1, . . . , n1} on pad P1 and j′ ∈ {n1 + 1, . . . , n} on pad P2 and
an associated assignment of stockpiles {1, . . . , j, j′, j′ − 1, . . . , n1 + 1} to R0 and the remaining
stockpiles to R1. We call such a schedule a contiguous schedule. The next example shows that it
is possible that no contiguous schedule is optimal.

Example 2. Consider the instance (illustrated in Figure 6) with n = n1 = 5, i.e., all stockpiles
on pad P1, and stockpile positions (0, 1) (1, 2), (2, 4), (4, 5), (5, 6)}. The best we can do with a
contiguous schedule is to assign stockpiles 1 and 2 to R0 and the other stockpiles to R1, which
yields a makespan of 4 + 4/s. But by assigning stockpiles 1, 2 and 4 to R0 and stockpiles 3 and 5

to R1 we can achieve a makespan of 3 + 9/s. The ratio 4+4/s
3+9/s tends to 4/3 for s→∞.

We conjecture that Example 2 represents the worst case for the performance of contiguous
schedules.

Conjecture 1. An optimal contiguous schedule provides a 4/3-approximation for the problem of
scheduling two reclaimers when the positions of the stockpiles are given and the stockpiles can be
reclaimed in any order.
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Figure 6: An instance where contiguous scheduling is not optimal (with s = 18). At the top the
reclaimer movements and at the bottom the stockpile positions.

A natural approach for finding an optimal contiguous schedule is to determine an optimal
schedule for each pair (j, j′) ∈ {1, . . . , n1}× {n1 +1, . . . , n} and pick the best one. Unfortunately,
it is already an NP-hard problem to determine the best routing for a given contiguous assignment
of stockpiles to reclaimers.

Theorem 6. Suppose that we are given the stockpile positions and a contiguous assignment of the
stockpiles to two reclaimers. Then it is NP-hard to find an optimal schedule.

Proof. We provide a reduction from Partition. Let the instance be given by positive integers
a1, . . . , am whose sum is 2B. A corresponding instance of the reclaimer scheduling problem is
constructed as follows (see Figure 7 for an illustration). The pad length is L = 53B and the travel
speed is s = 2. On pad P1, there are m+3 stockpiles with lengths a1, . . ., am, 9B, 26B and 16B,
and on pad P2 there are 3 stockpiles with lengths 35B, 6B and 2B. The positions of the first m
stockpiles corresponding to the integers from the Partition instance are determined by

lj = L−

j
∑

i=1

ai, rj = lj + aj for j ∈ {1, . . . ,m}

and the positions of the 6 dummy stockpiles are [0, 9B], [9B, 35B], [35B, 51B], [0, 35B], [35B, 41B]
and [41B, 43B]. Let stockpiles 1, . . . ,m,m+ 2,m+3, and m+6 be assigned to reclaimer R1 and
let stockpiles m + 1, m + 4, and m+ 5 be assigned to reclaimer R0. We claim that the smallest
possible makespan for this assignment is 75B, and that this makespan can be achieved if and only
if the Partition instance is a YES-instance. First, suppose the instance is a YES-instance, and
that I ⊆ {1, . . . ,m} is an index set with

∑

i∈I ai = B. In this case, a makespan of 75B is achieved
by the following schedule (see Figure 7).

• R0 moves from x = 0 to x = 35B without reclaiming anything, and reaches x = 35B at
time t = 17.5B. Then it reclaims stockpile m+ 5 from left to right, moves back to x = 35B
(arriving at time t = 26.5B), reclaims stockpile m+4 from right to left, then stockpile m+1
from left to right, and finally returns to its starting point at time t = 75B.

• R1 moves from x = 53B to x = 51B while reclaiming the stockpiles j with j ∈ I, then it
reclaims stockpile m+3 from right to left, reaching x = 35B at time t = 17.5B. It moves to
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Figure 7: Reclaimer scheduling instance and optimal reclaimer movements used in the proof of
Theorem 6. The assignment of stockpiles to reclaimers is indicated by colors, the numbers above
the stockpiles are their lengths, and the numbers below the stockpiles are their indices.

x = 43B without reclaiming anything, reclaims stockpile m+ 6 from right to left, moves to
x = 35B, where it arrives at time t = 26.5B. Then it reclaims stockpile m+ 2, moves back
to x = 51B, and finally to x = 53B, reclaiming the stockpiles j with j ∈ {1, . . . ,m} \ I.

Next, we assume the existence of a schedule with a makespan of at most 75B. We want to show
that this implies that the instance is a YES-instance. For the sake of contradiction, assume that
the Partition instance does not have a solution. In order to reclaim the stockpile m+2, reclaimer
R1 has to spend a time interval of length 39B in the interval X = [9B, 35B]. It cannot enter this
interval before time 9B, and the latest possible time for leaving X is 75B − 9B = 66B. This
implies that R1 has to enter X between t = 9B and t = (66− 39)B = 27B. Let I, I ′ ⊆ {1, . . . ,m}
be the sets of stockpiles that R1 reclaims before and after its first visit to X , respectively. Note
that our assumption on the Partition instance implies

∑

j∈I aj 6= B.

Case 1. R1 enters X at time t0 < 26.5B. Since R0 cannot finish reclaiming stockpile m+ 5 and
be back at x = 35B before time 26.5B, this implies that R0 starts reclaiming stockpile m+5
after R1 has left X . If R0 does not reclaim both stockpiles m+1 and m+4 before stockpile
m+ 5, then its makespan is at least t0 + 39B + 6B + 16B + 9B > 79B. So we may assume
that R0 reclaims stockpiles m+ 1, m+ 4 and m+ 5 in this order. Its makespan is at least
t0 + 39B + 6B + 20.5B, hence t0 6 (75− 65.5)B = 9.5B. This implies that before entering
X , the maximal time that R1 can spend in the interval [51B, 53B] is 9.5B − 8B = 1.5B.
Together with our assumption that

∑

j∈I aj 6= B, this implies
∑

j∈I aj < B. On the other
hand, R0 does not leave the interval [35B, 53B] before time 9B+9B/2+41B+3B = 57.5B,
and this is the earliest time at which R1 can start reclaiming stockpile m+3. Consequently,
57.5B + 16B + B + 1

2

∑

j∈I′ aj 6 75B, i.e.,
∑

j∈I′ aj < B, which is a contradiction to the
fact that

∑

j∈I∪I′ aj = 2B.
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Case 2. R1 enters X at time t0 ∈ [26.5B, 27B]. 26.5B+39B+16B = 81.5B > 75B implies that
stockpile m+ 3 needs to be reclaimed before R1 enters X . From our assumption about the
Partition instance and

75B > 26.5B + 39B + 8B +B +
1

2

∑

j∈I′

aj = 74.5B +
1

2

∑

j∈I′

aj

it follows that
∑

j∈I′ aj < B, hence
∑

j∈I aj > B. Since 26.5B + 39B + 6B + 20.5B =
92B > 75B, we deduce that R0 reclaims stockpile m + 5 before R1 enters X , i.e., before
time 27B. This is only possible if m + 5 is the first stockpile reclaimed by R0, because
9B + 16B + 6B > 27.5B. Together with the makespan bound of 75B, this implies that R0

enters the interval [35B, 53B] at time 17.5B and leaves it at time 26.5B. From
∑

j∈I aj > B
it follows that R1 cannot finish reclaiming stockpile m + 3 at time 17.5B. This leaves two
possibilities.

Case 2.1. Stockpile m + 6 is reclaimed before R1 enters X . Then the entering time is at
least

3B/2 + 4B + 2B + 5B + 16B = 28.5B,

which is the required contradiction.

Case 2.2. Stockpile m+ 6 is reclaimed after R1 enters X . Then the makespan of R1 is at
least

26.5B + 39B + 3B + 2B + 5B = 75.5B,

which is the required contradiction.

5.2 Precedence constraints

5.2.1 Single reclaimer

In this section, for sake of simplicity, we assume that the stockpiles are indexed by their position
in the precedence chain, i.e., J = {1, 2, . . . , n} and 1 → 2 → · · · → n (where i → j means that
stockpile i has to be reclaimed before stockpile j). Furthermore, for convenience, we add two
dummy stockpiles, one at the beginning of the precedence chain (stockpile 0) and one at the end
of the precedence chain (stockpile n+ 1) with (l0, r0) = (ln+1, rn+1) = (0, 0).

Theorem 7. Determining an optimal schedule for a single reclaimer when the positions of the
stockpiles are given and the stockpiles have to be reclaimed in a prespecified order can be done in
time O(n).

Proof. Let fr(j) be the optimal makespan that can be obtained starting from the right endpoint
of stockpile j and processing stockpiles j + 1, . . . , n + 1. Similarly, let fl(j) to be the optimal
makespan that can be obtained starting from the left endpoint of stockpile j and processing
stockpiles j + 1, . . . , n+ 1. Naturally, we are interested to fr(0) = fl(0). The functions fr and fl
can be computed as follows.

fr(j) =

{

0 if j = n+ 1,

|rj+1 − lj+1|+min
{

|rj−lj+1|
s + fr(j + 1),

|rj−rj+1|
s + fl(j + 1)

}

if j 6 n.

fl(j) =

{

0 if j = n+ 1,

|rj+1 − lj+1|+min
{

|lj−lj+1|
s + fr(j + 1),

|lj−rj+1|
s + fl(j + 1)

}

if j 6 n.

and fl(0) can be computed backward from fl(n) and fr(n) in O(n) time.
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5.2.2 Two reclaimers

Each stockpile must be processed either from left to right or from right to left by a reclaimer.

Theorem 8. If the travel speed s is an integer, then an optimal schedule for two reclaimers when
the positions of the stockpiles are given and the stockpiles have to be reclaimed in a prespecified
order can be determined in pseudo-polynomial time, in particular O(nL3).

Proof. We consider n + 1 stages j = 0, 1, . . . , n and indicate with x
(j)
0 and x

(j)
1 the positions of

reclaimers R0 and R1 at stage j, respectively. At stage j = 0 reclaimers R0 and R1 are located

at positions x
(0)
0 = 0 and x

(1)
1 = L, respectively. At stage 0 < j < n one of the reclaimers has just

finished reclaiming stockpile j and the other reclaimer has repositioned. At stage n, the reclaimers

R0 and R1 move back to positions 0 and L, respectively (taking |x
(n)
0 − 0|/s and |x

(n)
1 − L|/s,

respectively).
The system evolves from stage j to stage j+1 according to the following rules. One reclaimer,

say R0 at position x
(j)
0 , is chosen to move either to point lj+1 and reclaim stockpile j+1 ending at

point rj+1 and taking time t = |x
(j)
0 − lj+1|/s+(rj+1− lj+1) or to point rj+1 and reclaim stockpile

j + 1 ending at point lj+1 and taking time t = |x
(j)
0 − rj+1|/s+ (rj+1 − lj+1). In either case, the

final position of R0 is denoted by x
(j+1)
0 . The other reclaimer, in this case R1 at position x

(j)
1 , will

reposition to a point in the set [x
(j+1)
0 , L]∩ [x

(j)
1 − ts, x

(j)
1 + ts]. That is, the position x

(j+1)
1 of R1

at stage j + 1 is restricted by the final position of R0, by the endpoint of the pad L, and by the
maximum distance ts that R1 can travel.

Note that when x
(j)
0 and x

(j)
1 are integer points, the maximum distance ts that R1 can travel

is integer, and thus, if R1 travels the maximum distance, it will end up at an integer point.
Furthermore, if R1 does not travel the maximum distance, it will stop at a stockpile endpoint,
and, thus, travel an integer distance as well (stockpile endpoints are integers) and end up at an
integer point. Because both reclaimers start at integer points, both reclaimers will be at integer
points at every stage.

Let f(j, x0, x1) be the minimum makespan that can be obtained when the two reclaimers start
from x0 and x1, respectively, to process stockpiles j + 1, . . . , n. The optimal makespan f(0, 0, L)
can be computed by backward dynamic programming.

Let the set of points that can be reached by R0 from x in time t when R1 ends in point y be
denoted by

Γ0(x, y, t) = [0, y] ∩ [x− ts, x+ ts] ∩N.

Similarly, let the set of points that can be reached by R1 from x in time t when R0 stops in y be
denoted by

Γ1(x, y, t) = [y, L] ∩ [x− ts, x+ ts] ∩ N.

The recursion is given by f(n, x0, x1) = max{x0/s, (L−x1)/s} and f(j, x0, x1) = min{F1, F2, F3, F4}
for j < n, where

F1 =
|x0 − lj+1|

s
+ |rj+1 − lj+1|+ min

x∈Γ1(x1,rj+1,t)
f(j + 1, rj+1, x),

F2 =
|x0 − rj+1|

s
+ |rj+1 − lj+1|+ min

x∈Γ1(x1,lj+1,t)
f(j + 1, lj+1, x),

F3 =
|x1 − lj+1|

s
+ |rj+1 − lj+1|+ min

x∈Γ0(x0,rj+1,t)
f(j + 1, x, rj+1),

F4 =
|x1 − rj+1|

s
+ |rj+1 − lj+1|+ min

x∈Γ0(x0,lj+1,t)
f(j + 1, x, lj+1)

Thus, computing f(0, 0, L) does not require more than O(nL3) time, which is pseudo-polynomial
with respect to the instance size.

Remark 1. If the travel speed is rational, say s = a/b for integers a > b, then multiplying through
with b and repeating the proof of Theorem 8, we obtain an optimal solution in time O(n(bL)3).
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6 Reclaimer Scheduling With Positioning Decisions

6.1 No precedence constraints

6.1.1 Single reclaimer

Theorem 9. Positioning stockpiles and simultaneously determining an optimal schedule for a
single reclaimer is NP-hard.

Proof. Reduction from Partition to an instance with pad length L = 2B. We map each element
ai to a stockpile i of length ai and set s = 1. Partition has a solution if and only if the stockpiles
can be divided over the two pads in such a way that they take up an equal amount of space, i.e.,
if the makespan is equal to 2B.

6.1.2 Two reclaimers

Theorem 10. Positioning stockpiles and simultaneously determining an optimal schedule for two
reclaimers is NP-hard.

Proof. Reduction from Partition to an instance with pad length L = 2B. We map each element
ai to a stockpile i of length ai, add two dummy stockpiles each with length B, and set s = 1.
Partition has a solution if and only if the stockpiles can be divided equally over the two reclaimers
and equally over the two pads in such a way that they take up an equal amount of space, i.e., if
the makespan (for both reclaimers) is equal to 2B.

6.2 Precedence constraints

6.2.1 Single reclaimer

Note that our problem is feasible only if it is possible to place all stockpiles on the two pads. An
obvious necessary condition is that the sum of all stockpile lengths is at most 2L. This is clearly
not sufficient, as p1 = p2 = p3 = 6 and L = 10 give an infeasible instance, and if the sum of the
stockpile lengths is equal to 2L then it is actually NP-hard to decide if the instance is feasible.
With the stronger assumption that p1 + · · · + pn 6 3L/2 the problem is always feasible, and in
fact we can find an optimal solution as follows. Let P = p1 + · · ·+ pn be the sum of all stockpile
lengths, and let

P t =

t
∑

i=1

pi, P
t
=

n
∑

i=t+1

pi = P − P t

for t ∈ {0, . . . , n}. Let k be the unique index with P k−1 6 P
k
and P k > P

k+1
. The stockpiles are

positioned as follows.

Case 1. min{P k, P
k−1
} 6 L. If P k < P

k−1
, then place stockpiles 1, . . . , k on pad P1, one after

the other starting from 0 and place stockpiles k + 1, . . . , n on pad P2, one after the other in

reverse order starting from 0. If P k > P
k−1

, then place stockpiles 1, . . . , k − 1 on pad P1,
one after the other starting from 0 and place stockpiles k, . . . , n on pad P2, one after the
other in reverse order starting from 0. The stockpiles on pad P1 are reclaimed from left to
right and then the stockpiles on pad P2 are reclaimed from right to left.

Case 2. min{P k, P
k−1
} > L. In this case pk > max{L/2, P k−1, P

k
} and P − pk < L (because

we have assumed that P 6 3L/2). Place stockpiles 1, . . . , k − 1 on pad P1, one after the
other starting from 0, followed by k+ 1, . . . , n also on pad P1, one after the other in reverse
order starting from P − pk. Place stockpile k on pad P2 starting from max{P − 2pk, 0}.
The stockpiles 1, . . . , k are reclaimed from left to right, and the stockpiles k + 1, . . . , n are
reclaimed from right to left.
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Algorithm 2 Forward-Backward positioning

if min{P k, P
k−1
} 6 L then

if P k < P
k−1

then
for i = 1, . . . , k do (li, ri)← (P i−1, P i) (on pad 1)

for i = k + 1, . . . , n do (li, ri)← (P
i
, P

i−1
) (on pad 2)

else
for i = 1, . . . , k − 1 do (li, ri)← (P i−1, P i) (on pad 1)

for i = k, . . . , n do (li, ri)← (P
i
, P

i−1
)(on pad 2)

else
for i = 1, . . . , k − 1 do (li, ri)← (P i−1, P i) (on pad 1)

for i = k + 1, . . . , n do (li, ri)← (P k−1 + P
i
, P k−1 + P

i−1
) (on pad 1)

(lk, rk)← (max{P − 2pk, 0}, max{P − pk, pk}) (on pad 2)

The stockpile positions are described more precisely in Algorithm 2, and the schedule is completely
determined by the positions and the given reclaim directions.

Lemma 1. For instances with p1 + · · ·+ pn 6 3L/2, the stockpile positions determined by Algo-
rithm 2 with the reclaim directions described above achieve a makespan of

C = P + min
06t6n

∣

∣

∣
P t − P

t
∣

∣

∣
/s. (7)

Proof. By definition k is the index for which the minimum in (7) is obtained. In Case 1, there is
exactly one time interval in which the reclaimer moves without reclaiming anything, namely when
it moves from rk to rk+1 or from rk−1 to rk between reclaiming the stockpiles on pad P1 and the

stockpiles on pad P2. This takes time
∣

∣

∣
P k − P

k
∣

∣

∣
/s and the result follows.

In Case 2, there are three time intervals in which the reclaimer moves without reclaiming
anything, namely when it moves (1) from rk−1 to lk, (2) from rk to rk+1 and (3) from ln to 0.
These travel time intervals have lengths

P k−1 −max{P − 2pk, 0},

max{pk − (P − pk), 0} = max{2pk − P, 0},

P k−1,

and this yields a makespan

C = P +
P k−1 − P + 2pk + P k−1

s
= P +

2P k − P

s
= P +

P k − P
k

s
.

The next lemma states that the RHS of (7) is a lower bound on the makespan.

Lemma 2. For any placement of the stockpiles and any feasible reclaimer schedule, the makespan
C satisfies

C > P + min
06k6n

∣

∣

∣
P k − P

k
∣

∣

∣
/s.

Proof. Suppose we have an optimal stockpile placement together with an optimal reclaimer sched-
ule. Let x1 be the rightmost point reached by the reclaimer, and let t1 be the time when x1 is
reached for the first time. Let I be the set of stockpiles whose reclaiming is at or before time t1
and let J be the set of stockpiles whose reclaiming is finished after time t1. Clearly I = {1, . . . , k}
for some k, where k = 0 corresponds to I = ∅. The sets I and J can be partitioned according to
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the pads on which the stockpiles are placed: I = I1 ∪ I2 where I1 contains the stockpiles on pad
P1, and I2 contains the stockpiles on pad P2, and similarly for J = J1 ∪ J2. Let

Xi =
⋃

j∈Ii

[lj , rj ], Yi =
⋃

j∈Ji

[lj , rj ]

for i ∈ {1, 2}. Recall that the total length of a set X ⊆ [0, L] is denoted by ℓ(X). The total
stockpile length equals

P = ℓ(X1) + ℓ(X2) + ℓ(Y1) + ℓ(Y2). (8)

Between t = 0 and t = t1 the reclaimer has to visit (1) the set X1△X2 while reclaiming, (2) the
set X1 ∩X2 twice while reclaiming and at least once while moving without reclaiming, (3) the set
[0, x1] \ (X1 ∪X2) at least once without reclaiming. This yields

t1 > ℓ(X1) + ℓ(X2) +
ℓ(X1 ∩X2) + x1 − ℓ(X1 ∪X2)

s

= ℓ(X1) + ℓ(X2) +
x1 − ℓ(X1)− ℓ(X2) + 2ℓ(X1 ∩X2)

s
.

Applying the same argument to the time interval [t1, C] and the sets Y1 and Y2, we have

C − t1 > ℓ(Y1) + ℓ(Y2) +
x1 − ℓ(Y1)− ℓ(Y2) + 2ℓ(Y1 ∩ Y2)

s
.

Adding these two inequalities, taking into account (8), we obtain

C > P +
2(x1 + ℓ(X1 ∩X2) + ℓ(Y1 ∩ Y2))− P

s
.

Using x1 + ℓ(X1 ∩X2) > ℓ(X1)+ ℓ(X2) = P k and x1 + ℓ(Y1 ∩Y2) > ℓ(Y1)+ ℓ(Y2) = P
k
, we obtain

C > P +
2max{P k, P

k
} − P

s
= P +

∣

∣

∣
P k − P

k
∣

∣

∣
/s.

From Algorithm 2, and Lemmas 1 and 2 we get the following theorem.

Theorem 11. If the sum of the stockpile lengths is at most 3L/2 then the problem of finding
optimal stockpile positions and a corresponding schedule for a single reclaimer can be solved in
time O(n).

6.2.2 Two reclaimers

Theorem 12. Positioning stockpiles and simultaneously determining an optimal schedule for two
reclaimers when the stockpiles have to be reclaimed in a given order is NP-hard.

To prove the NP-hardness we use 1,6-Partition, the following variation of Partition:

1,6-Partition. Given a set A = {a1, . . . , an} of positive integers with
∑n

i=1 ai = 7B, can the
set A be partitioned into two disjoint subsets A1 and A2 such that

∑

ai∈A1
ai = B and

∑

ai∈A2
ai = 6B?

We illustrate the idea of the proof with the following example.

Example 3. Consider the following instance of 1,6-Partition: a set A = {a1, . . . , an} =
{5, 1, 6, 1, 1, 7} with

∑n
i=1 ai = 7B = 21, i.e., B = 3. Create the following instance of the re-

claimer scheduling problem: pad length L = 108, traveling speed s = 3, and a set of n + 4 = 10
stockpiles of lengths 30, 87, 3, 21, 5, 1, 6, 1, 1, 7, respectively, to be reclaimed in that order. Note
that four special stockpiles have been added that have to be reclaimed first.

An obvious lower bound on the objective function value is 162, the sum of the reclaim times
of the stockpiles. Next consider the stockpile placements and reclaimer assignments shown in
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Figure 8: Stockpile positions and reclaimer assignment (indicated by colors) for the reclaimer
scheduling instance in Example 3. The numbers above the stockpiles are their lengths, and the
numbers below the stockpiles indicate their position in the precedence order.

Figure 8, i.e., stockpiles 1 and 3 together with stockpiles 5, 7, and 10 are assigned to R0 and
stockpiles 2 and 4 together with stockpiles 6, 8, and 9 are assigned to R1. Furthermore, let R0

reclaim stockpile 1 going out and stockpiles 3, 5, 7, and 10 coming back, and let R1 reclaim
stockpile 2 going out and stockpiles 4, 6, 8, and 9 coming back.

Observe that R1 can complete the reclaiming of stockpile 4 at time 30+87+3+21 = 141 (the
value 3 corresponds to the travel time required to go from the left-most point of stockpile 2 to the
right-most point of stockpile 4. Furthermore, observe that the remaining reclaim time assigned to
Reclaimer R1 is 3 and that Reclaimer R1 also has to travel 108−30−21−3 = 54 to get back to its
starting position, which takes 18 for a total of 3+18 = 21. So Reclaimer R1 can return at time 162
if and only if it does not incur any waiting time, i.e., it can start reclaiming stockpiles 6, 8, and 9 as
soon as it reaches their left-most point. Their positions are chosen precisely to make this happen.
For example, the left-most position of stockpile 6 is 66, i.e., 15 away from 51, which implies that
while R0 is reclaiming stockpile 5, which takes 5, reclaimer R1 can move from the right-most
position of stockpile 4 to the left-most position of stockpile 6. While R1 reclaims stockpile 6,
reclaimer R0 waits at the right-most position of stockpile 7. And so on. Finally, observe that the
stockpiles 6, 8, and 9 correspond to a subset A1 with

∑

ai∈A1
ai = 1 + 1 + 1 = 3 = B and the

stockpiles 5, 7, and 10 correspond to a subset A2 with
∑

ai∈A2
ai = 5 + 6 + 7 = 18 = 6B.

More generally, for an instance of 1,6-Partition, we create a corresponding instance of the
reclaimer scheduling problem with pad length L = 36B, traveling speed s = 3, and a set of n+ 4
stockpiles of lengths 10B, 29B,B, 7B, a1, . . . , an, respectively, to be reclaimed in that order. We
will show that the instance is a yes-instance of 1,6-Partition if and only if there exists a reclaimer
schedule in which both reclaimers return to their starting positions at time 54B.

Proof. Suppose the instance of 1,6-Partition is a yes-instance, then the placements and assign-
ments shown in Figure 9, i.e., stockpiles 1 and 3 together with the stockpiles corresponding to the
subset A1 are assigned to R0 and stockpiles 2 and 4 together with the stockpiles corresponding
to the subset A2 are assigned to R1, (l1, r1) = (0, 10B), (l2, r2) = (7B, 36B), (l3, r3) = (6B, 7B),
and (l4, r4) = (10B, 17B), the stockpiles in A2 are placed on pad P2 in the interval [0, 6B] and the
stockpiles in A1 are placed on pad P1 in the interval [17B, 36B] in such a way that the distance

between two consecutive stockpiles i and j is 3
∑j−1

k=i+1 ak. It can easily be verified that schedule
S∗ has an objective function value equal to the lower bound of 54B.

Next, we prove that lower bound of 54B is not achievable if (1) stockpiles 1, 2, 3, and 4 are
placed differently or (2) the instance of 1,6-Partition is a no-instance.

First, observe that to achieve the lower bound there cannot be any time between the end of
the reclaiming of one stockpile and the start of the reclaiming of the next stockpile. Furthermore,
w.l.o.g., we can assume that stockpile 1 is assigned to R0 with placement (l1, r1) = (0, 10B).

Claim 1: The lower bound of 54B cannot be achieved if stockpiles 1 and 2 are assigned
to the same reclaimer.
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Figure 9: Stockpile positions and reclaimer assignment (indicated by colors) for the reclaimer
scheduling instance in the proof of Theorem 12.

This is obvious because the stockpiles cannot fit together on a single path and have different
lengths. Therefore, stockpile 2 has to be assigned to R1 and placed on pad P2. It also follows that
stockpile 2 has to be reclaimed from right to left.

Claim 2: The lower bound of 54B cannot be achieved if stockpile 3 is assigned to R1

or stockpile 4 to R0.
To avoid time between the end of reclaiming of stockpile 2 and the start of reclaiming of

stockpile 3, stockpile 3 has to be placed on pad P2 to the left of stockpile 2. As a consequence,
stockpile 4 has to be placed on pad P1, because there is not enough space left to place it on pad
P2. As a result, stockpile 3 and stockpile 4 cannot be reclaimed by the same reclaimer, because
the right-most position of stockpile 3 will be less than or equal to 7B and the left-most position
of stockpile 4 will be greater than or equal to 10B. Furthermore, if stockpile 4 would be assigned
to Reclaimer R0, then, because Reclaimer R0 always has to be to the left of Reclaimer R1, it is
unavoidable to incur travel time before the start of the reclaiming of stockpile 4. Thus, stockpile
4 has to be assigned to R1 and stockpile 3 to R0.

Claim 3: The lower bound of 54B cannot be achieved unless the travel time between
l2 and l4 is exactly B.

Since l2 6 7B and l4 > 10B, we have l4−l2
3 > B. Since stockpile 3 has length B and has to be

reclaimed between stockpile 2 and 4, if l4 > 10B or l2 < 7B, then there will be travel time of at
least l4−l2−B

3 in the schedule.
From the above three claims it follows that to be able to achieve the lower bound of 54B,

stockpiles 1 and 3 have to be assigned to R0, stockpiles 2 and 4 have to be assigned to R1, and
the four stockpiles have to be placed as follows: (l1, r1) = (0, 10B), (l2, r2) = (7B, 36B), (l3, r3) =
(6B, 7B), and (l4, r4) = (10B, 17B).

Claim 4: The lower bound of 54B is achievable iff the instance of 1,6-Partition is a
yes-instance.

Observe that R1 can complete the reclaiming of stockpile 4 at time 47B and at that time will
be at position 17B. The remaining space of 19B on pad P1 has to be allocated to stockpiles, say
x, and unoccupied space, say y. To reach its starting position at or before time 54B, the time
spend on reclaiming, i.e., x, and the time spend on traveling, i.e., y/3 should be less than or equal
to 7B. Thus, we have

x+ y = 19B

3x+ y 6 21B,

which implies x 6 B, i.e., the stockpiles placed on pad P1 should take up no more space than
B. However, given that the remaining space available for the placement of stockpiles on pad P2

is 6B, this implies that the stockpiles corresponding to a1, a2, . . . , an with
∑n

j=1 aj = 7B have to
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be partitioned into two subsets A1 and A2 with
∑

ai∈A1
ai = B and

∑

ai∈A2
ai = 6B, i.e., the

instance of 1,6-Partition is a yes-instance.

7 Final Remarks

We have studied a number of variants of an abstract scheduling problem inspired by the scheduling
of reclaimers in the stockyard of a coal export terminal. We leave the following open question for
future work.

1. For the following problems, we used reduction from Partition to prove that they are NP-
hard, but we did not decide if they are strongly NP-hard.

• Find an optimal schedule for two reclaimers with given stockpile positions and arbitrary
reclaim order (Theorem 2).

• Find an optimal schedule for two reclaimers with given stockpile positions and and
given assignment of stockpiles to reclaimers (Theorem 6).

• Find optimal stockpile positions and reclaimer schedules for two reclaimers with arbi-
trary reclaim order (Theorem 10).

• Find optimal stockpile positions and reclaimer schedules for two reclaimers with given
reclaim order (Theorem 12).

We conjecture that these problems are not strongly NP-hard.

2. We described a pseudo-polynomial algorithm for the problem to schedule two reclaimers
for given stockpile positions and given reclaim order (Theorem 8). We conjecture that this
problem can actually be solved in polynomial time.

One important aspect of the real-life reclaimer scheduling problem, which is ignored so far, is its
dynamic nature. Vessels arrive over time, and, as a result, the stockpiles that need be stacked and
reclaimed are not all known at the start of the planning horizon (and do not all fit together on the
pads). We are currently investigating multi-vessel variants of the problems studied in this paper
that explicitly take into account the time dimension of the reclaimer scheduling problem.
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