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Abstract
This paper investigates co-scheduling algorithms for processing a set of parallel applications. Instead of executing

each application one by one, using a maximum degree of parallelism for each of them, we aim at scheduling several
applications concurrently. We partition the original application set into a series of packs, which are executed one by
one. A pack comprises several applications, each of them with an assigned number of processors, with the constraint
that the total number of processors assigned within a pack does not exceed the maximum number of available pro-
cessors. The objective is to determine a partition into packs, and an assignment of processors to applications, that
minimize the sum of the execution times of the packs. We thoroughly study the complexity of this optimization prob-
lem, and propose several heuristics that exhibit very good performance on a variety of workloads, whose application
execution times model profiles of parallel scientific codes. We show that co-scheduling leads to to faster workload
completion time and to faster response times on average (hence increasing system throughput and saving energy), for
significant benefits over traditional scheduling from both the user and system perspectives.

1 Introduction
The execution time of many high-performance computing applications can be significantly reduced when using a large
number of processors. Indeed, parallel multicore platforms enable the fast processing of very large size jobs, thereby
rendering the solution of challenging scientific problems more tractable. However, monopolizing all computing re-
sources to accelerate the processing of a single application is very likely to lead to inefficient resource usage. This is
because the typical speed-up profile of most applications is sub-linear and even reaches a threshold: when the number
of processors increases, the execution time first decreases, but not linearly, because it suffers from the overhead due to
communications and load imbalance; at some point, adding more resources does not lead to any significant benefit.

In this paper, we consider a pool of several applications that have been submitted for execution. Rather than
executing each of them in sequence, with the maximum number of available resources, we introduce co-scheduling
algorithms that execute several applications concurrently. We do increase the individual execution time of each ap-
plication, but (i) we improve the efficiency of the parallelization, because each application is scheduled on fewer
resources; (ii) the total execution time will be much shorter; and (iii) the average response time will also be shorter. In
other words, co-scheduling increases platform yield (thereby saving energy) without sacrificing response time.

In operating high performance computing systems, the costs of energy consumption can greatly impact the total
costs of ownership. Consequently, there is a move away from a focus on peak performance (or speed) and towards
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improving energy efficiency [12, 20]. Recent results on improving the energy efficiency of workloads can be broadly
classified into approaches that focus on dynamic voltage and frequency scaling, or alternatively, task aggregation or
co-scheduling. In both types of approaches, the individual execution time of an application may increase but there can
be considerable energy savings in processing a workload.

More formally, we deal with the following problem: given (i) a distributed-memory platform with p processors,
and (ii) n applications, or tasks, Ti, with their execution profiles (ti,j is the execution time of Ti with j processors),
what is the best way to co-schedule them, i.e., to partition them into packs, so as to minimize the sum of the execution
times over all packs. Here a pack is a subset of tasks, together with a processor assignment for each task. The constraint
is that the total number of resources assigned to the pack does not exceed p, and the execution time of the pack is the
longest execution time of a task within that pack. The objective of this paper is to study this co-scheduling problem,
both theoretically and experimentally, We aim at demonstrating the gain that can be achieved through co-scheduling,
both on platform yield and response time, using a set of real-life application profiles.

On the theoretical side, to the best of our knowledge, the complexity of the co-scheduling problem has never been
investigated, except for the simple case when one enforces that each pack comprises at most k = 2 tasks [21]. While
the problem has polynomial complexity for the latter restriction (with at most k = 2 tasks per pack), we show that
it is NP-complete when assuming at most k ≥ 3 tasks per pack. Note that the instance with k = p is the general,
unconstrained, instance of the co-scheduling problem. We also propose an approximation algorithm for the general
instance. In addition, we propose an optimal processor assignment procedure when the tasks that form a pack are given.
We use these two results to derive efficient heuristics. Finally, we discuss how to optimally solve small-size instances,
either through enumerating partitions, or through an integer linear program: this has a potentially exponential cost, but
allows us to assess the absolute quality of the heuristics that we have designed. Altogether, all these results lay solid
theoretical foundations for the problem.

On the experimental side, we study the performance of the heuristics on a variety of workloads, whose application
execution times model profiles of parallel scientific codes. We focus on three criteria: (i) cost of the co-schedule, i.e.,
total execution time; (ii) packing ratio, which evaluates the idle time of processors during execution; and (iii) response
time compared to a fully parallel execution of each task starting from shortest task. The proposed heuristics show very
good performance within a short running time, hence validating the approach.

The paper is organized as follows. We discuss related work in Section 2. The problem is then formally defined in
Section 3. Theoretical results are presented in Section 4, exhibiting the problem complexity, discussing sub-problems
and optimal solutions, and providing an approximation algorithm. Building upon these results, several polynomial-
time heuristics are described in Section 5, and they are thoroughly evaluated in Section 6. Finally we conclude and
discuss future work in Section 7.

2 Related work
In this paper, we deal with pack scheduling for parallel tasks, aiming at makespan minimization (recall that the
makespan is the total execution time). The corresponding problem with sequential tasks (tasks that execute on a
single processor) is easy to solve for the makespan minimization objective: simply make a pack out of the largest p
tasks, and proceed likewise while there remain tasks. Note that the pack scheduling problem with sequential tasks has
been widely studied for other objective functions, see Brucker et al. [4] for various job cost functions, and Potts and
Kovalyov [18] for a survey. Back to the problem with sequential tasks and the makespan objective, Koole and Righter
in [13] deal with the case where the execution time of each task is unknown but defined by a probabilistic distribution.
They showed counter-intuitive properties, that enabled them to derive an algorithm that computes the optimal policy
when there are two processors, improving the result of Deb and Serfozo [7], who considered the stochastic problem
with identical jobs.

To the best of our knowledge, the problem with parallel tasks has not been studied as such. However, it was
introduced by Dutot et al. in [8] as a moldable-by-phase model to approximate the moldable problem. The moldable
task model is similar to the pack-scheduling model, but one does not have the additional constraint (pack constraint)
that the execution of new tasks cannot start before all tasks in the current pack are completed. Dutot et al. in [8]
provide an optimal polynomial-time solution for the problem of pack scheduling identical independent tasks, using a
dynamic programming algorithm. This is the only instance of pack-scheduling with parallel tasks that we found in the
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literature.
A closely related problem is the rectangle packing problem, or 2D-Strip-packing. Given a set of rectangles of

different sizes, the problem consists in packing these rectangles into another rectangle of size p × m. If one sees
one dimension (p) as the number of processors, and the other dimension (m) as the maximum makespan allowed,
this problem is identical to the variant of our problem where the number of processors is pre-assigned to each task:
each rectangle ri of size pi ×mi that has to be packed can be seen as the task Ti to be computed on pi processors,
with ti,pi = mi. In [22], Turek et al. approximated the rectangle packing problem using shelf-based solutions: the
rectangles are assigned to shelves, whose placements correspond to constant time values. All rectangles assigned to a
shelf have equal starting times, and the next shelf is placed on top of the previous shelf. This is exactly what we ask
in our pack-scheduling model. This problem is also called level packing in some papers, and we refer the reader to a
recent survey on 2D-packing algorithms by Lodi et al. [16]. In particular, Coffman et al. in [6] show that level packing
algorithm can reach a 2.7 approximation for the 2D-Strip-packing problem (1.7 when the length of each rectangle is
bounded by 1). Unfortunately, all these algorithms consider the number of processors (or width of the rectangles) to
be already fixed for each task, hence they cannot be used directly in our problem for which a key decision is to decide
the number of processors assigned to each task.

In practice, pack scheduling is really useful as shown by recent results. Li et al. [15] propose a framework to predict
the energy and performance impacts of power-aware MPI task aggregation. Frachtenberg et al. [9] show that system
utilization can be improved through their schemes to co-schedule jobs based on their load-balancing requirements
and inter-processor communication patterns. In our earlier work [21], we had shown that even when the pack-size
is limited to 2, co-scheduling based on speed-up profiles can lead to faster workload completion and corresponding
savings in system energy.

Several recent publications [2, 5, 11] consider co-scheduling at a single multicore node, when contention for
resources by co-scheduled tasks leads to complex tradeoffs between energy and performance measures. Chandra et
al. [5] predict and utilize inter-thread cache contention at a multicore in order to improve performance. Hankendi
and Coskun [11] show that there can be measurable gains in energy per unit of work through the application of their
multi-level co-scheduling technique at runtime which is based on classifying tasks according to specific performance
measures. Bhaduria and McKee [2] consider local search heuristics to co-schedule tasks in a resource-aware manner
at a multicore node to achieve significant gains in thread throughput per watt.

These publications demonstrate that complex tradeoffs cannot be captured through the use of the speed-up measure
alone, without significant additional measurements to capture performance variations from cross-application interfer-
ence at a multicore node. Additionally, as shown in our earlier work [21], we expect significant benefits even when we
aggregate only across multicore nodes because speed-ups suffer due to of the longer latencies of data transfer across
nodes. We can therefore project savings in energy as being commensurate with the savings in the time to complete a
workload through co-scheduling. Hence, we only test configurations where no more than a single application can be
scheduled on a multicore node.

3 Problem definition
The application consists of n independent tasks T1, . . . , Tn. The target execution platform consists of p identical
processors, and each task Ti can be assigned an arbitrary number σ(i) of processors, where 1 ≤ σ(i) ≤ p. The
objective is to minimize the total execution time by co-scheduling several tasks onto the p resources. Note that the
approach is agnostic of the granularity of each processor, which can be either a single CPU or a multicore node.

Speedup profiles – Let ti,j be the execution time of task Ti with j processors, and work(i, j) = j × ti,j be the
corresponding work. We assume the following for 1 ≤ i ≤ n and 1 ≤ j < p:

Non-increasing execution time: ti,j+1 ≤ ti,j (1)

Non-decreasing work: work(i, j) ≤ work(i, j + 1) (2)

Equation (1) implies that execution time is a non-increasing function of the number of processors. Equation (2) states
that efficiency decreases with the number of enrolled processors: in other words, parallelization has a cost! As a
side note, we observe that these requirements make good sense in practice: many scientific tasks Ti are such that ti,j
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first decreases (due to load-balancing) and then increases (due to communication overhead), reaching a minimum for
j = j0; we can always let ti,j = ti,j0 for j ≥ j0 by never actually using more than j0 processors for Ti.

Co-schedules – A co-schedule partitions the n tasks into groups (called packs), so that (i) all tasks from a given
pack start their execution at the same time; and (ii) two tasks from different packs have disjoint execution intervals.
See Figure 1 for an example. The execution time, or cost, of a pack is the maximal execution time of a task in that
pack, and the cost of a co-schedule is the sum of the costs of each pack.

k-IN-p-COSCHEDULE optimization problem – Given a fixed constant k ≤ p, find a co-schedule with at most k
tasks per pack that minimizes the execution time. The most general problem is when k = p, but in some frameworks
we may have an upper bound k < p on the maximum number of tasks within each pack.

P1 P2 P3 P4

time

processors

Figure 1: A co-schedule with four packs P1 to P4.

4 Theoretical results
First we discuss the complexity of the problem in Section 4.1, by exhibiting polynomial and NP-complete instances.
Next we discuss how to optimally schedule a set of k tasks in a single pack (Section 4.2). Then we explain how to
compute the optimal solution (in expected exponential cost) in Section 4.3. Finally, we provide an approximation
algorithm in Section 4.4.

4.1 Complexity
Theorem 1. The 1-IN-p-COSCHEDULE and 2-IN-p-COSCHEDULE problems can both be solved in polynomial time.

Proof. This result is obvious for 1-IN-p-COSCHEDULE: each task is assigned exactly p processors (see Equation (1))
and the minimum execution time is

∑n
i=1 ti,p.

This proof is more involved for 2-IN-p-COSCHEDULE, and we start with the 2-IN-2-COSCHEDULE problem to get
an intuition. Consider the weighted undirected graph G = (V,E), where |V | = n, each vertex vi ∈ V corresponding
to a task Ti. The edge set E is the following: (i) for all i, there is a loop on vi of weight ti,2; (ii) for all i < i′, there is
an edge between vi and vi′ of weight max(ti,1, ti′,1). Finding a perfect matching of minimal weight in G leads to the
optimal solution to 2-IN-2-COSCHEDULE, which can thus be solved in polynomial time.

For the 2-IN-p-COSCHEDULE problem, the proof is similar, the only difference lies in the construction of the
edge set E: (i) for all i, there is a loop on vi of weight ti,p; (ii) for all i < i′, there is an edge between vi and vi′ of
weight minj=1..p (max(ti,p−j , ti′,j)). Again, a perfect matching of minimal weight in G gives the optimal solution to
2-IN-p-COSCHEDULE. We conclude that the 2-IN-p-COSCHEDULE problem can be solved in polynomial time.

Theorem 2. When k ≥ 3, the k-IN-p-COSCHEDULE problem is strongly NP-complete.

Proof. We prove the NP-completeness of the decision problem associated to k-IN-p-COSCHEDULE: given n indepen-
dent tasks, p processors, a set of execution times ti,j for 1 ≤ i ≤ n and 1 ≤ j ≤ p satisfying Equations (1) and (2), a
fixed constant k ≤ p and a deadline D, can we find a co-schedule with at most k tasks per pack, and whose execution
time does not exceed D? The problem is obviously in NP: if we have the composition of every pack, and for each task
in a pack, the number of processors onto which it is assigned, we can verify in polynomial time: (i) that it is indeed a
pack schedule; (ii) that the execution time is smaller than a given deadline.
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We first prove the strong completeness of 3-IN-p-COSCHEDULE. We use a reduction from 3-PARTITION. Consider
an arbitrary instance I1 of 3-PARTITION: given an integer B and 3n integers a1, . . . , a3n, can we partition the 3n
integers into n triplets, each of sum B? We can assume that

∑3n
i=1 ai = nB, otherwise I1 has no solution. The

3-PARTITION problem is NP-hard in the strong sense [10], which implies that we can encode all integers (a1, . . . , a3n,
B) in unary. We build the following instance I2 of 3-IN-p-COSCHEDULE: the number of processors is p = B, the
deadline is D = n, there are 3n tasks Ti, with the following execution times: for all i, j, if j < ai then ti,j = 1 + 1

ai
,

otherwise ti,j = 1. It is easy to check that Equations (1) and (2) are both satisfied. For the latter, since there are only
two possible execution times for each task, we only need to check Equation (2) for j = ai − 1, and we do obtain that
(ai − 1)(1 + 1

ai
) ≤ ai. Finally, I2 has a size polynomial in the size of I1, even if we write all instance parameters in

unary: the execution time is n, and the ti,j have the same size as the ai.
We now prove that I1 has a solution if and only if I2 does. Assume first that I1 has a solution. For each triplet

(ai, aj , ak) of I1, we create a pack with the three tasks (Ti, Tj , Tk) where Ti is scheduled on ai processors, Tj on aj
processors, and Tk on ak processors. By definition, we have ai + aj + ak = B, and the execution time of this pack is
1. We do this for the n triplets, which gives a valid co-schedule whose total execution time n. Hence the solution to
I2.

Assume now that I2 has a solution. The minimum execution time for any pack is 1 (since it is the minimum
execution time of any task and a pack cannot be empty). Hence the solution cannot have more than n packs. Because
there are 3n tasks and the number of elements in a pack is limited to three, there are exactly n packs, each of exactly
3 elements, and furthermore all these packs have an execution time of 1 (otherwise the deadline n is not matched). If
there were a pack (Ti, Tj , Tk) such that ai+aj +ak > B, then one of the three tasks, say Ti, would have to use fewer
than ai processors, hence would have an execution time greater than 1. Therefore, for each pack (Ti, Tj , Tk), we have
ai + aj + ak ≤ B. The fact that this inequality is an equality for all packs follows from the fact that

∑3n
i=1 ai = nB.

Finally, we conclude by saying that the set of triplets (ai, aj , ak) for every pack (Ti, Tj , Tk) is a solution to I1.
The final step is to prove the completeness of k-IN-p-COSCHEDULE for a given k ≥ 4. We perform a similar

reduction from the same instance I1 of 3-PARTITION. We construct the instance I2 of k-IN-p-COSCHEDULE where
the number of processors is p = B + (k − 3)(B + 1) and the deadline is D = n. There are 3n tasks Ti with the same
execution times as before (for 1 ≤ i ≤ 3n, if j < ai then ti,j = 1 + 1

ai
, otherwise ti,j = 1), and also n(k − 3) new

identical tasks such that, for 3n+1 ≤ i ≤ kn, ti,j = max
(
B+1
j , 1

)
. It is easy to check that Equations (1) and (2) are

also fulfilled for the new tasks. If I1 has a solution, we construct the solution to I2 similarly to the previous reduction,
and we add to each pack k − 3 tasks Ti with 3n + 1 ≤ i ≤ kn, each assigned to B + 1 processors. This solution
has an execution time exactly equal to n. Conversely, if I2 has a solution, we can verify that there are exactly n packs
(there are kn tasks and each pack has an execution time at least equal to 1). Then we can verify that there are at most
(k− 3) tasks Ti with 3n+1 ≤ i ≤ kn per pack, since there are exactly (k− 3)(B+1)+B processors. Otherwise, if
there were k − 2 (or more) such tasks in a pack, then one of them would be scheduled on less than B + 1 processors,
and the execution time of the pack would be greater than 1. Finally, we can see that in I2, each pack is composed of
(k−3) tasks Ti with 3n+1 ≤ i ≤ kn, scheduled on (k−3)(B+1) processors at least, and that there remains triplets
of tasks Ti, with 1 ≤ i ≤ 3n, scheduled on at most B processors. The end of the proof is identical to the reduction in
the case k = 3.

Note that the 3-IN-p-COSCHEDULE problem is NP-complete, and the 2-IN-p-COSCHEDULE problem can be
solved in polynomial time, hence 3-IN-3-COSCHEDULE is the simplest problem whose complexity remains open.

4.2 Scheduling a pack of tasks
In this section, we discuss how to optimally schedule a set of k tasks in a single pack: the k tasks T1, . . . , Tk are given,
and we search for an assignment function σ : {1, . . . , k} → {1, . . . , p} such that

∑k
i=1 σ(i) ≤ p, where σ(i) is the

number of processors assigned to task Ti. Such a schedule is called a 1-pack-schedule, and its cost is max1≤i≤k ti,σ(i).
In Algorithm 1 below, we use the notation Ti 4σ Tj if ti,σ(i) ≤ tj,σ(j):

Theorem 3. Given k tasks to be scheduled on p processors in a single pack, Algorithm 1 finds a 1-pack-schedule of
minimum cost in time O(p log(k)).
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Algorithm 1: Finding the optimal 1-pack-schedule σ of k tasks in the same pack.
procedure Optimal-1-pack-schedule(T1, . . . , Tk)
begin

for i = 1 to k do
σ(i)← 1

end
Let L be the list of tasks sorted in non-increasing values of 4σ;
pavailable := p− k;
while pavailable 6= 0 do

Ti? := head(L);
L := tail(L);
σ(i?)← σ(i?) + 1;
pavailable := pavailable − 1;
L := Insert Ti? in L according to its 4σ value;

end
return σ;

end

In this greedy algorithm, we first assign one processor to each task, and while there are processors that are not
processing any task, we select the task with the longest execution time and assign an extra processor to this task.
Algorithm 1 performs p − k iterations to assign the extra processors. We denote by σ(`) the current value of the
function σ at the end of iteration `. For convenience, we let ti,0 = +∞ for 1 ≤ i ≤ k. We start with the following
lemma:

Lemma: At the end of iteration ` of Algorithm 1, let Ti? be the first task of the sorted list, i.e., the task with longest
execution time. Then, for all i, ti?,σ(`)(i?) ≤ ti,σ(`)(i)−1.

Proof. Let Ti? be the task with longest execution time at the end of iteration `. For tasks such that σ(`)(i) = 1,
the result is obvious since ti,0 = +∞. Let us consider any task Ti such that σ(`)(i) > 1. Let `′ + 1 be the last
iteration when a new processor was assigned to task Ti: σ(`′)(i) = σ(`)(i) − 1 and `′ < `. By definition of iteration
`′ + 1, task Ti was chosen because ti,σ(`′)(i) was greater than any other task, in particular ti,σ(`′)(i) ≥ ti?,σ(`′)(i?).
Also, since we never remove processors from tasks, we have σ(`′)(i) ≤ σ(`)(i) and σ(`′)(i?) ≤ σ(`)(i?). Finally,
ti?,σ(`)(i?) ≤ ti?,σ(`′)(i?) ≤ ti,σ(`′)(i) = ti,σ(`)(i)−1.

We are now ready to prove Theorem 3.

of Theorem 3. Let σ be the 1-pack-schedule returned by Algorithm 1 of cost c(σ), and let Ti? be a task such that
c(σ) = ti?,σ(i?). Let σ′ be a 1-pack-schedule of cost c(σ′). We prove below that c(σ′) ≥ c(σ), hence σ is a 1-pack-
schedule of minimum cost:
• If σ′(i?) ≤ σ(i?), then Ti? has fewer processors in σ′ than in σ, hence its execution time is larger, and c(σ′) ≥
c(σ).

• If σ′(i?) > σ(i?), then there exists i such that σ′(i) < σ(i) (since the total number of processors is p in both
σ and σ′). We can apply the previous Lemma at the end of the last iteration, where Ti? is the task of maximum
execution time: ti?,σ(i?) ≤ ti,σ(i)−1 ≤ ti,σ′(i), and therefore c(σ′) ≥ c(σ).

Finally, the time complexity is obtained as follows: first we sort k elements, in time O(k log k). Then there are p− k
iterations, and at each iteration, we insert an element in a sorted list of k−1 elements, which takesO(log k) operations
(use a heap for the data structure of L).

Note that it is easy to compute an optimal 1-pack-schedule using a dynamic-programming algorithm: the optimal
cost is c(k, p), which we compute using the recurrence formula

c(i, q) = min
1≤q′≤q

{max(c(i− 1, q − q′), ti,q′)}
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for 2 ≤ i ≤ k and 1 ≤ q ≤ p, initialized by c(1, q) = t1,q , and c(i, 0) = +∞. The complexity of this algorithm is
O(kp2). However, we can significantly reduce the complexity of this algorithm by using Algorithm 1.

4.3 Computing the optimal solution
In this section we sketch two methods to find the optimal solution to the general k-IN-p-COSCHEDULE problem. This
can be useful to solve some small-size instances, albeit at the price of a cost exponential in the number of tasks n.

The first method is to generate all possible partitions of the tasks into packs. This amounts to computing all
partitions of n elements into subsets of cardinal at most k. For a given partition of tasks into packs, we use Algorithm 1
to find the optimal processor assignment for each pack, and we can compute the optimal cost for the partition. There
remains to take the minimum of these costs among all partitions.

The second method is to cast the problem in terms of an integer linear program:

Theorem 4. The following integer linear program characterizes the k-IN-p-COSCHEDULE problem, where the un-
known variables are the xi,j,b’s (Boolean variables) and the yb’s (rational variables), for 1 ≤ i, b ≤ n and 1 ≤ j ≤ p:

Minimize
∑n
b=1 yb subject to

(i)
∑
j,b xi,j,b = 1, 1 ≤ i ≤ n

(ii)
∑
i,j xi,j,b ≤ k, 1 ≤ b ≤ n

(iii)
∑
i,j j × xi,j,b ≤ p, 1 ≤ b ≤ n

(iv) xi,j,b × ti,j ≤ yb, 1 ≤ i, b ≤ n, 1 ≤ j ≤ p

(3)

Proof. The xi,j,b’s are such that xi,j,b = 1 if and only if task Ti is in the pack b and it is executed on j processors; yb
is the execution time of pack b. Since there are no more than n packs (one task per pack), b ≤ n. The sum

∑n
b=1 yb

is therefore the total execution time (yb = 0 if there are no tasks in pack b). Constraint (i) states that each task is
assigned to exactly one pack b, and with one number of processors j. Constraint (ii) ensures that there are not more
than k tasks in a pack. Constraint (iii) adds up the number of processors in pack b, which should not exceed p. Finally,
constraint (iv) computes the cost of each pack.

4.4 Approximation algorithm
In this section we introduce PACK-APPROX, a 3-approximation algorithm for the p-IN-p-COSCHEDULE problem. The
design principle of PACK-APPROX is the following: we start from the assignment where each task is executed on one
processor, and use Algorithm 2 to build a first solution. Algorithm 2 is a greedy heuristic that builds a co-schedule
when each task is pre-assigned a number of processors for execution. Then we iteratively refine the solution, adding a
processor to the task with longest execution time, and re-executing Algorithm 2. Here are details on both algorithms:

Algorithm 2. The k-IN-p-COSCHEDULE problem with processor pre-assignments remains strongly NP-complete
(use a similar reduction as in the proof of Theorem 2). We propose a greedy procedure in Algorithm 2 which is similar
to the First Fit Decreasing Height algorithm for strip packing [6]. The output is a co-schedule with at most k tasks per
pack, and the complexity is O(n log(n)) (dominated by sorting).

Algorithm 3. We iterate the calls to Algorithm 2, adding a processor to the task with longest execution time,
until: (i) either the task of longest execution time is already assigned p processors, or (ii) the sum of the work of
all tasks is greater than p times the longest execution time. The algorithm returns the minimum cost found during
execution. The complexity of this algorithm is O(n2p) (in the calls to Algorithm 2 we do not need to re-sort the list
but maintain it sorted instead) in the simplest version presented here, but can be reduced to O(n log(n) + np) using
standard algorithmic techniques.

Theorem 5. PACK-APPROX is a 3-approximation algorithm for the p-IN-p-COSCHEDULE problem.

Proof. We start with some notations:
• step i denotes the ith iteration of the main loop of Algorithm PACK-APPROX;
• σ(i) is the allocation function at step i;
• tmax(i) = maxj tj,σ(i)(j) is the maximum execution time of any task at step i;
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Algorithm 2: Creating packs of size at most k, when the number σ(i) of processors per task Ti is fixed.
procedure MAKE-PACK(n, p, k, σ)
begin

Let L be the list of tasks sorted in non-increasing values of execution times ti,σ(i);
while L 6= ∅ do

Schedule the current task on the first pack with enough available processors and fewer than k tasks.
Create a new pack if no existing pack fits;
Remove the current task from L;

end
return the set of packs

end

Algorithm 3: PACK-APPROX

procedure PACK-APPROX(T1, . . . , Tn)
begin

COST = +∞ ;
for j = 1 to n do σ(j)← 1;
for i = 0 to n(p− 1)− 1 do

Let Atot(i) =
∑n
j=1 tj,σ(j)σ(j);

Let Tj? be one task that maximizes tj,σ(j);
Call MAKE-PACK (n, p, p, σ);
Let COSTi be the cost of the co-schedule;
if COSTi < COST then COST← COSTi;
if (Atot(i)

p > tj?,σ(j?) ) or (σ(j?) = p) then return COST; /* Exit loop */

else σ(j?)← σ(j?) + 1; /* Add a processor to Tj? */
end
return COST;

end

• j?(i) is the index of the task with longest execution time at step i (break ties arbitrarily);
• Atot(i) =

∑
j tj,σ(i)(j)σ

(i)(j) is the total work that has to be done at step i;
• COSTi is the result of the scheduling procedure at the end of step i;
• OPT denotes an optimal solution, with allocation function σ(OPT), execution time COSTOPT, and total work

AOPT =
∑
j

tj,σ(OPT)(j)σ
(OPT)(j).

Note that there are three different ways to exit algorithm PACK-APPROX:
1. If we cannot add processors to the task with longest execution time, i.e., σ(i)(j?(i)) = p;
2. If Atot(i)

p > tmax(i) after having computed the execution time for this assignment;
3. When each task has been assigned p processors (the last step of the loop “for”: we have assigned exactly np

processors, and no task can be assigned more than p processors).

Lemma 1. At the end of step i, COSTi≤3max
(
tmax(i),

Atot(i)
p

)
.

Proof. Consider the packs returned by Algorithm 2, sorted by non-increasing execution times, B1, B2, . . . , Bn (some
of the packs may be empty, with an execution time 0). Let us denote, for 1 ≤ q ≤ n,
• jq the task with the longest execution time of pack Bq (i.e., the first task scheduled on Bq);
• tq the execution time of pack Bq (in particular, tq= tjq,σ(i)(jq));
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• Aq the sum of the task works in pack Bq;
• pq the number of processors available in pack Bq when jq+1 was scheduled in pack Bq+1.
With these notations, COSTi =

∑n
q=1 tq and Atot(i) =

∑n
q=1Aq . For each pack, note that ptq ≥ Aq , since ptq is

the maximum work that can be done on p processors with an execution time of tq . Hence, COSTi ≥ Atot(i)
p .

In order to bound COSTi, let us first remark that σ(i)(jq+1) > pq: otherwise jq+1 would have been scheduled on
pack Bq . Then, we can exhibit a lower bound for Aq , namely Aq ≥ tq+1(p− pq). Indeed, the tasks scheduled before
jq+1 all have a length greater than tq+1 by definition. Furthermore, obviously Aq+1 ≥ tq+1pq (the work of the first
task scheduled in pack Bq+1). So finally we have, Aq +Aq+1 ≥ tq+1p.

Summing over all q’s, we have: 2
∑n
q=1

Aq

p ≥
∑n
q=2 tq , hence 2Atot(i)

p + t1 ≥ COSTi. Finally, note that t1 =

tmax(i), and therefore COSTi ≤ 3max
(
tmax(i),

Atot(i)
p

)
. Note that this proof is similar to the one for the Strip-

Packing problem in [6].

Lemma 2. At each step i, Atot(i + 1) ≥ Atot(i) and tmax(i + 1) ≤ tmax(i), i.e., the total work is increasing and the
maximum execution time is decreasing.

Proof. Atot(i+ 1) = Atot(i)− a+ b, where
• a = work(j?(i), σ(i)(j?(i))), and
• b = work(j?(i), σ(i+1)(j?(i))).

But b = work(j?(i), σ(i)(j?(i))+1)and a ≤ b by Equation (2). Therefore,Atot(i+1) ≥ Atot(i). Finally, tmax(i+1) ≤
tmax(i) since only one of the tasks with the longest execution time is modified, and its execution time can only decrease
thanks to Equation (1).

Lemma 3. Given an optimal solution OPT, ∀j, tj,σ(OPT)(j) ≤ COSTOPT and AOPT ≤ pCOSTOPT.

Proof. The first inequality is obvious. As for the second one, pCOSTOPT is the maximum work that can be done on
p processors within an execution time of COSTOPT, hence it must not be smaller than AOPT, which is the sum of the
work of the tasks with the optimal allocation.

Lemma 4. For any step i such that tmax(i) > COSTOPT, then ∀j, σ(i)(j) ≤ σ(OPT)(j), and Atot(i) ≤ AOPT.

Proof. Consider a task Tj . If σ(i)(j) = 1, then clearly σ(i)(j) ≤ σ(OPT)(i). Otherwise, σ(i)(j) > 1, and then by
definition of the algorithm, there was a step i′ < i, such that σ(i′)(j) = σ(i)(j) − 1 and σ(i′+1)(j) = σ(i)(j).
Therefore tmax(i

′) = tj,σ(i′)(j). Following Lemma 2, we have tmax(i
′) ≥ tmax(i) > COSTOPT. Then necessarily,

σ(OPT)(j) > σ(i′)(j), hence the result. Finally, Atot(i) ≤ AOPT is a simple corollary of the previous result and of
Equation (2).

Lemma 5. For any step i such that tmax(i) > COSTOPT, then Atot(i)
p < tmax(i).

Proof. Thanks to Lemma 4, we have Atot(i)
p ≤ AOPT

p . Lemma 3 gives us AOPT

p ≤ COSTOPT, hence the result.

Lemma 6. There exists i0 ≥ 0 such that tmax(i0 − 1) > COSTOPT ≥ tmax(i0) (we let tmax(−1) = +∞).

Proof. We show this result by contradiction. Suppose such i0 does not exist. Then tmax(0) > COSTOPT (otherwise
i0 = 0 would suffice). Let us call i1 the last step of the run of the algorithm. Then by induction we have the following
property, tmax(0) ≥ tmax(1) ≥ · · · ≥ tmax(i1) > COSTOPT (otherwise i0 would exist, hence contradicting our
hypothesis). Recall that there are three ways to exit the algorithm, hence three possible definitions for i1:

• σ(i1)(j?(i1)) = p, however then we would have tmax(i1) = tj?(i1),p > COSTOPT ≥ tj?(i1),σ(OPT) (according to
Lemma 3). This contradicts Equation (1), which states that tj?(i1),p ≤ tj?(i1),k for all k.

• i1 = n(p− 1)− 1, but then we have the same result, i.e., σ(i1)(j?(i1)) = p because this is true for all tasks.

• tmax(i1) <
Atot(i1)
p , but this is false according to Lemma 5.
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We have seen that PACK-APPROX could not have terminated at step i1, however since PACK-APPROX terminates (in
at most n(p− 1)− 1 steps), we have a contradiction. Hence we have shown the existence of i0.

Lemma 7. Atot(i0) ≤ AOPT.

Proof. Consider step i0. If i0 = 0, then at this step, all tasks are scheduled on exactly one processor, and ∀j, σ(i0)(j) ≤
σ(OPT)(j). Therefore, Atot(i0) ≤ AOPT. If i0 6= 0, consider step i0 − 1: tmax(i0 − 1) > COSTOPT. From Lemma 4, we
have ∀j, σ(i0−1)(j) ≤ σ(OPT)(j). Furthermore, it is easy to see that ∀j 6= j?(i0 − 1), σ(i0)(j) = σ(i0−1)(j) since no
task other than j?(i0 − 1) is modified. We also have the following properties:

• tj?(i0−1),σ(i0−1)(j?(i0−1)) = tmax(i0 − 1);

• tmax(i0 − 1) > tOPT (by definition of step i0);

• tOPT ≥ tj?(i0−1),σ(OPT)(j?(i0−1)) (Lemma 3);

• σ(i0)(j?(i0 − 1)) = σ(i0−1)(j?(i0 − 1)) + 1.

The three first properties and Equation (1) allow us to say that σ(i0−1)(j?(i0 − 1)) < σ(OPT)(j?(i0 − 1)). Thanks
to the fourth property, σ(i0)(j?(i0 − 1)) ≤ σ(OPT)(j). Finally, we have, for all j, σ(i0)(j) ≤ σ(OPT)(j), and therefore
Atot(i0) < AOPT by Equation (2).

We are now ready to prove the theorem. For i0 introduced in Lemma 6, we have:

COSTi0 ≤ 3max

(
tmax(i0),

Atot(i0)

p

)
≤ 3max

(
COSTOPT,

AOPT

p

)
≤ 3COSTOPT

The first inequality comes from Lemma 1. The second inequality is due to Lemma 6 and 7. The last inequality comes
from Lemma 3, hence the final result.

5 Heuristics
In this section, we describe the heuristics that we use to solve the k-IN-p-COSCHEDULE problem.
RANDOM-PACK– In this heuristic, we generate the packs randomly: as long as there remain tasks, randomly choose
an integer j between 1 and k, and then randomly select j tasks to form a pack. Once the packs are generated, apply
Algorithm 1 to optimally schedule each of them.
RANDOM-PROC– In this heuristic, we assign the number of processors to each task randomly between 1 and p, then
use Algorithm 2 to generate the packs, followed by Algorithm 1 on each pack.
A word of caution– We point out that RANDOM-PACK and RANDOM-PROC are not pure random heuristics, in that
they already benefit from the theoretical results of Section 4. A more naive heuristic would pick both a task and
a number of processor randomly, and greedily build packs, creating a new one as soon as more than p resources
are assigned within the current pack. Here, both RANDOM-PACK and RANDOM-PROC use the optimal resource
allocation strategy (Algorithm 1) within a pack; in addition, RANDOM-PROC uses an efficient partitioning algorithm
(Algorithm 2) to create packs when resources are pre-assigned to tasks.
PACK-APPROX– This heuristic is an extension of Algorithm 3 in Section 4.4 to deal with packs of size k rather than p:
simply call MAKE-PACK (n, p, k, σ) instead of MAKE-PACK (n, p, p, σ). However, although we keep the same name
as in Section 4.4 for simplicity, we point out that it is unknown whether this heuristic is a 3-approximation algorithm
for arbitrary k.
PACK-BY-PACK (ε)– The rationale for this heuristic is to create packs that are well-balanced: the difference between
the smallest and longest execution times in each pack should be as small as possible. Initially, we assign one processor
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per task (for 1 ≤ i ≤ n, σ(i) = 1), and tasks are sorted into a list L ordered by non-increasing execution times (4σ
values). While there remain some tasks in L, let Ti? be the first task of the list, and let tmax = ti?,σ(i?). Let Vreq be
the ordered set of tasks Ti such that ti,σ(i) ≥ (1− ε)tmax: this is the sublist of tasks (including Ti? as its first element)
whose execution times are close to the longest execution time tmax, and ε ∈ [0, 1] is some parameter. Let preq be the
total number of processors requested by tasks in Vreq. If preq ≥ p, a new pack is created greedily with the first tasks of
Vred, adding them into the pack while there are no more than p processors used and no more than k tasks in the pack.
The corresponding tasks are removed from the list L. Note that Ti? is always inserted in the created pack. Also, if we
have σ(i?) = p, then a new pack with only Ti? is created. Otherwise (preq < p), an additional processor is assigned
to the (currently) critical task Ti? , hence σ(i?) := σ(i?) + 1, and the process iterates after the list L is updated with
the insertion of the new value for Ti? Finally, once all packs are created, we apply Algorithm 1 in each pack, so as to
derive the optimal schedule within each pack.

We have 0 < ε < 1. A small value of ε will lead to balanced packs, but may end up with a single task with p
processors per pack. Conversely, a large value of ε will create new packs more easily, i.e., with fewer processors per
task. The idea is therefore to call the heuristic with different values of ε, and to select the solution that leads to the best
execution time.
Summary of heuristics– We consider two variants of the random heuristics, either with one single run, or with 9
different runs, hence hoping to obtain a better solution, at the price of a slightly longer execution time. These heuristics
are denoted respectively RANDOM-PACK-1, RANDOM-PACK-9, RANDOM-PROC-1, RANDOM-PROC-9. Similarly,
for PACK-BY-PACK, we either use one single run with ε = 0.5 (PACK-BY-PACK-1), or 9 runs with ε ∈ {.1, .2, . . . , .9}
(PACK-BY-PACK-9). Of course, there is only one variant of PACK-APPROX, hence leading to seven heuristics.
Variants– We have investigated variants of PACK-BY-PACK, trying to make a better choice than the greedy choice to
create the packs, for instance using a dynamic programming algorithm to minimize processor idle times in the pack.
However, there was very little improvement at the price of a much higher running time of the heuristics. Additionally,
we tried to improve heuristics with up to 99 runs, both for the random ones and for PACK-BY-PACK, but here again,
the gain in performance was negligible compared to the increase in running time. Therefore we present only results
for these seven heuristics in the following.

6 Experimental Results
In this section, we study the performance of the seven heuristics on workloads of parallel tasks. First we describe
the workloads, whose application execution times model profiles of parallel scientific codes. Then we present the
measures used to evaluate the quality of the schedules, and finally we discuss the results.
Workloads– Workload-I corresponds to 10 parallel scientific applications that involve VASP [14], ABAQUS [3],
LAMMPS [17] and Petsc [1]. The execution times of these applications were observed on a cluster with Intel Nehalem
8-core nodes connected by a QDR Infiniband network with a total of 128 cores. In other words, we have p = 16
processors, and each processor is a multicore node.
Workload-II is a synthetic test suite that was designed to represent a larger set of scientific applications. It models
tasks whose parallel execution time for a fixed problem size m on q cores is of the form t(m, q) = f × t(m, 1)+ (1−
f) t(m,1)q + κ(m, q), where f can be interpreted as the inherently serial fraction, and κ represents overheads related
to synchronization and the communication of data. We consider tasks with sequential times t(m, 1) of the form cm,
cm log2 n, cm2 and cm3, where c is a suitable constant. We consider values of f in {0, 0.04, 0.08, .16, .32}, with
overheads κ(m, q) of the form log2 q, (log2 q)

2, q log2 q, mq log2 q,
√
m/q, and m log2 q to create a workload with 65

tasks executing on up to 128 cores.
The same process was also used to develop Workload-III, our largest synthetic test suite with 260 tasks for 256 cores
(and p = 32 multicore nodes), to study the scalability of our heuristics. For all workloads, we modified speedup
profiles to satisfy Equations (1) and (2).

As discussed in related work (see Section 2) and [21], and confirmed by power measurement using Watts Up Pro
meters, we observed only minor power consumption variations of less than 5% when we limited co-scheduling to
occur across multicore nodes. Therefore, we only test configurations where no more than a single application can be
scheduled on a given multicore node comprising 8 cores. Adding a processor to an application Ti which is already
assigned σi processors actually means adding 8 new cores (a full multicore node) to the 8σi existing cores. Hence a
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pack size of k corresponds to the use of at most 8k cores for applications in each pack. For Workloads-I and II, there
are 16 nodes and 128 cores, while Workload-III has up to 32 nodes and 256 cores.
Methodology for assessing the heuristics– To evaluate the quality of the schedules generated by our heuristics, we
consider three measures: Relative cost, Packing ratio, and Relative response time. Recall that the cost of a pack is the
maximum execution time of a task in that pack and the cost of a co-schedule is the sum of the costs over all its packs.

We define the relative cost as the cost of a given co-schedule divided by the cost of a 1-pack schedule, i.e., one
with each task running at maximum speed on all p processors.
For a given k-IN-p-COSCHEDULE, consider

∑n
i=1 ti,σ(i) × σ(i), i.e., the total work performed in the co-schedule

when the i-th task is assigned σ(i) processors. We define the packing ratio as this sum divided by p times the cost of
the co-schedule; observe that the packing quality is high when this ratio is close to 1, meaning that there is almost no
idle time in the schedule.
An individual user could be concerned about an increase in response time and a corresponding degradation of individ-
ual productivity. To assess the impact on response time, we consider the performance with respect to a relative response
time measure defined as follows. We consider a 1-pack schedule with the n tasks sorted in non-decreasing order of
execution time, i.e., in a ”shortest task first” order, to yield a minimal value of the response time. If this ordering is
given by the permutation π(i), i = 1, 2, . . . , n, the response time of task i is ri =

∑i
j=1 tπ(j),p and the mean response

time is R = 1
n

∑n
i=1 ri. For a given k-IN-p-COSCHEDULE with u packs scheduled in increasing order of the costs of

a pack, the response time of task i in pack v, 1 ≤ v ≤ u, assigned to σ(i) processors, is: r̂i =
∑v−1
`=1 cost(`) + ti,σ(i),

where cost(`) is the cost of the `-th pack for 1 ≤ ` ≤ u. The mean response time of the k-IN-p-COSCHEDULE R̂ is
calculated using these values and we use R̂

R as the relative response time.
Results for small and medium workloads– For Workload-I, we consider packs of size k = 2, 4, 6, 8, 10 with 16
processors (hence a total of 128 cores). Note that we do not try k = p = 16 since there are only 10 applications in this
workload. For Workload-II, we consider packs of size k = 2, 4, 6, 8, 10, 12, 14, 16.

Figure 2 shows the relative cost of co-schedules computed by the heuristics. For Workload-I (Figure 2(a)), the
optimal co-schedule was constructed using exhaustive search. We observe that the optimal co-schedule has costs
that are more than 35% smaller than the cost of a 1-pack schedule for Workload-I. Additionally, we observe that
PACK-APPROX and PACK-BY-PACK compute co-schedules that are very close to the optimal one for all values of
the pack size. Both RANDOM-PACK and RANDOM-PROC perform poorly when compared to PACK-BY-PACK and
PACK-APPROX, especially when a single run is performed. As expected, RANDOM-PROC does better than RANDOM-
PACK because it benefits from the use of Algorithm 2, and for this small workload, RANDOM-PROC-9 almost always
succeed to find a near-optimal co-schedule. The results are similar for the larger Workload-II as shown in Figure 2(b),
with an increased gap between random heuristics and the packing ones. Computing the optimal co-schedule was not
feasible because of the exponential growth in running times for exhaustive search. With respect to the cost of a 1-pack
schedule, we observe very significant benefits, with a reduction in costs of most than 80% for larger values of the pack
size, and in particular in the unconstrained case where k = p = 16. This corresponds to significant savings in energy
consumed by the hardware for servicing a specific workload.

Figure 3 shows the quality of packing achieved by the heuristics. The packing ratios are very close to one for
PACK-BY-PACK and PACK-APPROX, indicating that our methods are producing high quality packings. In most cases,
RANDOM-PROC and RANDOM-PACK also lead to high packing ratios.

Finally, Figure 4 shows that PACK-BY-PACK and PACK-APPROX produce lower cost schedules with commensurate
reductions in response times. For Workload-II and larger values of the pack size, response time gains are over 80%,
making k-IN-p-COSCHEDULE attractive from the user perspective.
Scalability– Figure 5 shows scalability trends for Workload-III with 260 tasks on 32 processors (hence a total of 256
cores.) Although the heuristics, including RANDOM-PACK and RANDOM-PROC, result in reducing costs relative to
those for a 1-pack schedule, PACK-APPROX and PACK-BY-PACK are clearly superior, even when the random schemes
are run 9 times. We observe that for pack sizes of 16 and 32, PACK-APPROX and PACK-BY-PACK produce high quality
co-schedules with costs and response times that are respectively 90% and 80% lower than those for a 1-pack schedule.
PACK-BY-PACK-1 obtains results that are very close to those of PACK-BY-PACK-9, hence even a single run returns a
high quality co-schedule.
Running times– We report in Table 1 the running times of the seven heuristics. All heuristics run within a few
milliseconds, even for the largest workload. Note that PACK-APPROX was faster on Workload-II than Workload-I
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Figure 2: Quality of co-schedules: Relative costs are shown in (a) for Workload-I and in (b) for Workload-II. The
horizontal line in (a) indicates the relative cost of an optimal co-schedule for Workload-I.
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Figure 3: Quality of packs: Packing ratios are shown in (a) for Workload-I and in (b) for Workload-II. The horizontal
line in (a) indicates the packing ratio of an optimal co-schedule for Workload-I.
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because its execution performed fewer iterations in this case. Random heuristics are slower than the other heuristics,
because of the cost of random number generation. PACK-BY-PACK has comparable running times with PACK-APPROX,
even when 9 values of ε are used.

Workload-I Workload-II Workload-III
PACK-APPROX 0.50 0.30 5.12

PACK-BY-PACK-1 0.03 0.12 0.53
PACK-BY-PACK-9 0.30 1.17 5.07
RANDOM-PACK-1 0.07 0.34 9.30
RANDOM-PACK-9 0.67 2.71 87.25
RANDOM-PROC-1 0.05 0.26 4.49
RANDOM-PROC-9 0.47 2.26 39.54

Table 1: Average running times in milliseconds.

Summary of experimental results– Results indicate that heuristics PACK-APPROX and PACK-BY-PACK both produce
co-schedules of comparable quality. PACK-BY-PACK-9 is slightly better than PACK-BY-PACK-1, at a price of an in-
crease in the running time from using more values of ε. However, the running time remains very small, and similar to
that of PACK-APPROX. Using more values of ε to improve PACK-BY-PACK leads to small gains in performance (e.g,
1% gain for PACK-BY-PACK-9 compared to PACK-BY-PACK-1 for k = 16 in Workload-II). However, these small gains
in performance correspond to significant gains in system throughput and energy, and far outweigh the costs of com-
puting multiple co-schedules. This makes PACK-BY-PACK-9 the heuristic of choice. Our experiments with 99 values
of ε did not improve performance, indicating that large increases in the number of ε values may not be necessary.

7 Conclusion
We have developed and analyzed co-scheduling algorithms for processing a workload of parallel tasks. Tasks are
assigned to processors and are partitioned into packs of size k with the constraint that the total number of processors
assigned over all tasks in a pack does not exceed p, the maximum number of available processors. Tasks in each pack
execute concurrently on a number of processors, and workload completes in time equal to sum of the execution times
of the packs. We have provided complexity results for minimizing the sum of the execution times of the packs. The
bad news is that this optimization problem is NP-complete. This does not come as a surprise because we have to
choose for each task both a number of processors and a pack, and this double freedom induces a huge combinatorial
solution space. The good news is that we have provided an optimal resource allocation strategy once the packs are
formed, together with an efficient load-balancing algorithm to partition tasks with pre-assigned resources into packs.
This load-balancing algorithm is proven to be a 3-approximation algorithm for the most general instance of the prob-
lem. Building upon these positive results, we have developed several heuristics that exhibit very good performance in
our test sets. These heuristics can significantly reduce the time for completion of a workload for corresponding savings
in system energy costs. Additionally, these savings come along with measurable benefits in the average response time
for task completion, thus making it attractive from the user’s viewpoint.
These co-schedules can be computed very rapidly when speed-up profile data are available. Additionally, they operate
at the scale of workloads with a few to several hundred applications to deliver significant gains in energy and time
per workload. These properties present opportunities for developing hybrid approaches that can additionally leverage
dynamic voltage and frequency scaling (DVFS) within an application. For example, Rountree et al. [19] have shown
that depending on the properties of the application, DVFS can be applied at runtime through their Adagio system, to
yield system energy savings of 5% to 20%. A potential hybrid scheme could start with the computation of a k-IN-p-
COSCHEDULE for a workload, following which DVFS could be applied at runtime per application.
Our work indicates the potential benefits of co-schedules for high performance computing installations where even
medium-scale facilities consume Megawatts of power. We plan to further test and extend this approach towards de-
ployment in university scale computing facilities where workload attributes often do not vary much over weeks to
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months and energy costs can be a limiting factor.
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Figure 4: Relative response times are shown in (a) for Workload-I and in (b) for Workload-II; values less than 1
indicate improvements in response times. The horizontal line in (a) indicates the relative response time of an optimal
co-schedule for Workload-I.
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Figure 5: Relative costs, packing ratios and relative response times of co-schedules for Workload-III on 256 cores.
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