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Abstract. In 1976, Coffman and Sethi conjectured that a natural extension of LPT list sched-

uling to the bicriteria scheduling problem of minimizing makespan over flowtime optimal sched-

ules, called LD algorithm, has a simple worst-case performance bound: 5m−2

4m−1
, where m is the

number of machines. We study structure of potential minimal counterexamples to this conjec-

ture and prove that the conjecture holds for the cases (i) n > 5m, (ii) m = 2, (iii) m = 3, and

(iv) m ≥ 4, n ≤ 3m, where n is the number of jobs. We further conclude that to verify the

conjecture, it suffices to analyze the following case: for every m ≥ 4, n ∈ {4m, 5m}.
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1. Introduction

Various performance criteria may be used to schedule n independent jobs on m parallel identi-

cal machines. In applications where work-in-process inventory is very highly valued (resulting in

potentially huge work-in-process inventory costs), or in applications where the total time spent

in the system must be minimized, a fundamental objective function of choice would be the min-

imization of total flow time (or equivalently mean flow time). A schedule that minimizes mean

flow time is termed a flowtime-optimal schedule. The mean flow time for a set of jobs on a set

of parallel identical machines can be readily minimized by using the SPT (Shortest Processing

Time) rule. The SPT rule generates a very large number (at least (m!)⌊n/m⌋) of flowtime-optimal

schedules. Another fundamental objective function of choice, as a secondary objective, would

be the minimization of makespan. Minimizing the makespan has been shown to be an NP-hard

problem. Various versions of this problem have been studied by several researchers.

Graham (1966) examines the problem of makespan minimization for a set of jobs with a

partial order (precedence constraints) on a set of parallel identical machines. Graham (1969)

as well as Coffman and Sethi (1976b) develop bounds for solutions obtained by the application

of the LPT (Longest Processing Time) rule to the makespan minimization problem with no

precedence constraints.The bin-packing problem may be regarded as the dual problem to the

makespan minimization problem. In the bin-packing problem, a set of items of—in general—

unequal sizes ℓ(Ti) must be packed into a set of m bins, each of a given capacity C. The objective

of the bin-packing problem is to minimize the number of bins m used for the packing.In the

FFD (First Fit Decreasing) algorithm (Johnson (1973) and Johnson et al. (1974), the bins are

assigned indices 1 through m. The largest remaining item is assigned to the lowest-indexed bin

into which it can fit. The FFD solution is the smallest value of m for which the algorithm is able

to pack the entire set of items into m bins. Garey and Johnson (1981) and Coffman, Garey and

Johnson (1983) have proposed various alternatives to the FFD algorithm for the bin-packing

problem. Further, Coffman, Garey, and Johnson (1978) propose an algorithm for makespan

minimization, the Multifit algorithm, that is based on the FFD algorithm for the bin-packing

problem, and obtain a bound for the performance of this algorithm. de la Vega and Lueker

(1981) propose a linear-time approximation scheme for the bin packing problem. Friesen (1984),

Yue, Kellerer and Yu(1988), Yue (1990), and Cao(1995) also propose bounds for the performance

of the Multifit algorithm. Dosa (2000 and 2001) proposes generalized versions of the LPT and

Multifit methods. Chang and Hwang (1999) extend the Multifit algorithm to a situation in

which different processors have different starting times. Hochbaum and Shmoys (1987) propose

a PTAS (Polynomial Time Approximation Scheme) for the makespan minimization problem for

parallel identical machines. Ho and Wong (1995) propose an O(2n) algorithm to find the optimal

solution for a two-machine version of this problem.

The problem of selecting the schedule with the smallest makespan among the class of all

flowtime-optimal schedules is known to be NP-hard (Bruno, Coffman and Sethi, 1974). We

term this problem the FM (Flowtime-Makespan) problem. Coffman and Yannakakis (1984)

study a more general version of the FM problem. They study the problem of permuting the

elements within the columns of an m-by-n matrix so as to minimize its maximum row sum.

Eck and Pinedo (1993) propose a new algorithm for the FM problem. Their algorithm, the
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LPT* algorithm, is a modified version of Graham’s LPT algorithm. Their algorithm requires

the construction of a new problem instance by replacing every processing time in a rank by

the difference between it and the smallest processing time in that rank. For the two-machine

case, the authors obtain a worst-case bound of 28/27 on the makespan ratio for the LPT* algo-

rithm. Gupta and Ho (2001) build on the procedure developed by Ho and Wong for makespan

minimization to develop three algorithms - an algorithm to find the optimal solution and two

heuristic procedures - for the two-machine FM problem. Lin and Liao (2004) extend the proce-

dures developed by Ho and Wong and by Gupta and Ho to construct a procedure to obtain the

optimal solution to the FM problem in O
(

(m!)n/m
)

time.

Conway, Maxwell and Miller (1967), in their seminal book, develop the notion of ranks for the

FM problem. A schedule is flowtime-optimal if jobs are assigned in decreasing order of ranks,

with the jobs in rank 1 being assigned last. If n is the number of jobs and m is the number of

machines, we may assume that m divides n. (If it does not, we add (⌈n/m⌉∗m−n) dummy jobs

with zero processing times.) If we assume that the jobs are numbered in nonincreasing order

of processing times, with job 1 having the largest processing time, the set of jobs belonging

to rank r are the following: (r − 1)m+ 1, (r − 1)m+ 2, · · · , (r − 1)m+m. Coffman and Sethi

(1976a) propose two approximation algorithms for the FM problem. In the LI algorithm, ranks

are assigned in decreasing order, starting with the rank containing the m jobs with the smallest

processing times. In the LD algorithm, ranks are assigned in increasing order, starting with

the rank containing the m jobs with the largest processing times. Jobs with the same rank are

assigned largest-first onto distinct machines as they become available after executing the previous

ranks. In the LD algorithm, the sequence thus obtained must be reversed and all jobs in the last

rank must be set to the same starting time of zero to ensure that the schedule is flowtime-optimal.

Coffman and Sethi show that the LI algorithm has a makespan ratio (ratio of the makespan to

the optimal makespan) with a worst-case bound that is equal to (5m− 4)/(4m − 3).

Coffman and Sethi (1976) conjecture that the LD algorithm

has a makespan ratio with a worst-case bound equal to

5m− 2

4m− 1
.

(1)

The next example shows that the above conjectured ratio cannot be improved for any m ≥ 2.

For m ≥ 2, let n := 3m and consider

pj :=



















0 for j ∈ {1, 2, . . . ,m− 1}

m for j = m

(j − 1) for j ∈ {m+ 1,m+ 2, . . . , 2m}

(j − 2) for j ∈ {2m+ 1, 2m+ 2, . . . , 3m}.

It is easy to verify that the ratio of the objective value of an LD schedule to the optimal objective

value is 5m−2
4m−1 .
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Our approach in obtaining a proof of Coffman and Sethi’s conjectured bound is to identify

properties of a hypothesized minimal counterexample to the conjecture. We utilize three tech-

niques: (1) We show that there always exists a minimal counterexample with integer processing

times (even if we allow irrational data). (2) Using integrality of the data and the other prop-

erties of the minimal counterexamples, we construct one or more smaller problem instances

by subtracting nonnegative integers from the number of machines, the number of jobs, or the

integer-valued processing times. We then write constraints that capture the fact that these

smaller problem instances must satisfy the conjecture. We then prove that minimal counterex-

amples must have a very small number of ranks (say, three or four or five). (3) The final stage

of the proof is to verify that none of these small instances (with a small number of ranks) can

be counterexamples. To establish this last bit, we introduce another approach which is to treat

processing times of jobs as unknown variables and show how to set up the case analysis with a

set of finitely many LP problems. By solving these finitely many LP problems, whose optimal

objective function values can be certified (and easily verified) using primal and dual optimal

solutions, we verify the conjecture for these small instances. Our approach is based on general

techniques and may be applicable to other combinatorial optimization problems.

The rest of this paper is organized as follows. Section 2 contains a description of the LI and

LD algorithms. In Section 3, the notion of minimality that is used in this paper is defined. In

Section 4, we discuss an LP-based approach that treats problem parameters as variables. We

use this approach to prove that the Coffman-Sethi conjecture holds for problem instances with

two machines and for problem instances with three machines and three ranks (this latter fact

becomes a corollary of a theorem from in Section 7 and hence has two independent proofs). In

Section 5, we state a result that implies that if the Coffman-Sethi conjecture is false, and even

if processing times are permitted to be irrational numbers, there must exist a counterexample

to the conjecture with integer processing times. In Section 6, we demonstrate the effectiveness

of our conjecture-proving procedure by applying it to a simpler version of the LD algorithm.

In Section 7, we derive several properties of a hypothesized minimal counterexample to the

Coffman-Sethi conjecture. These include an upper bound on the number of ranks. Section 8

contains concluding remarks and outlines possible extensions and directions for future research.

2. Algorithms for Problem FM

Let pj denote the processing time of job j, where the jobs are numbered in nonincreasing

order of processing times. Thus pj ≥ pj+1. The set of jobs belonging to rank r are the following:

(r − 1)m+ 1, (r − 1)m+ 2, · · · , (r − 1)m+m.

Any schedule in which all rank (r + 1) jobs are started before all rank r jobs (where r ∈

{1, 2, · · · , (n/m)− 1}) is said to satisfy the rank restriction or rank constraint.

Any schedule in which all rank (r + 1) jobs are started before all rank r jobs (where r ∈

{1, 2, · · · , (n/m)−1}), there is no idle time between successive jobs assigned to the same machine,

and all rank n/m jobs start at time 0, is termed a flowtime-optimal schedule. Let λr and µr

denote the largest and smallest processing times respectively in rank r. Note that

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ . . . ≥ λk−1 ≥ µk−1 ≥ λk ≥ µk ≥ 0.(2)
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The profile of a schedule after rank r is defined as the sorted set of completion times on m

machines after rank r. If the jobs in r ranks (out of a total of k) have been assigned to machines,

and if the jobs in the remaining ranks have not yet been assigned to machines, the profile after

rank r is termed the current profile. We let a(r) ∈ Zm : a
(r)
1 ≥ a

(r)
2 ≥ · · · ≥ a

(r)
m denote the

current profile. Note that ai(ℓ) is the ith largest completion time after rank ℓ.

2.1. LI (Coffman and Sethi, 1976a). The LI algorithm starts with rank k, the rank con-

taining the m jobs with the smallest processing times, and works its way through ranks k, k −

1, . . . , 2, 1. The schedule generated by the algorithm is thus a flowtime-optimal schedule.

The algorithm works as follows: Schedule the ranks in the following order:

k, k − 1, . . . , 2, 1.

Let a ∈ Zm:

a1 ≥ a2 ≥ · · · ≥ am

denote the current profile. Schedule the jobs in the next rank so that the largest processing time

is matched with am, second largest with am−1, etc., and the smallest processing time is matched

with a1. The algorithm moves from rank k to rank 1, with jobs within a rank being assigned

based on the Longest Processing Time criterion. Coffman and Sethi prove that LI algorithm

has performance ratio 5m−4
4m−3 and that this ratio is tight for LI.

2.2. LD (Coffman and Sethi, 1976a). The LD algorithm starts with rank 1, the rank

containing the m jobs with the largest processing times, and works its way through ranks

1, 2, . . . , k − 1, k. The sequence of jobs on each machine is then reversed to make it a flowtime-

optimal schedule.

The algorithm works as follows: Schedule the ranks in the following order:

1, 2, . . . , k − 1, k.

Let a ∈ Zm:

a1 ≥ a2 ≥ · · · ≥ am

denote the current profile. Schedule the jobs in the next rank so that the largest processing time

is matched with am, second largest with am−1, etc., and the smallest processing time is matched

with a1. After all the jobs are scheduled, reverse the schedule and left-justify it.

Note that LD algorithm is more naturally analogous to LPT than LI is.

3. A definition of minimality

If an instance of the FM problem with m machines and k ranks has fewer than mk jobs,

increasing the number of jobs to mk by including up to m − 1 jobs with zero processing time

does not result in any change in the total flowtime or the optimal makespan or the makespan

of an LD schedule, though it may change the set of jobs allocated to each rank. From this

observation, it follows that, for the purpose of proving/disproving conjectures regarding worst-

case makespan ratios for algorithms for the problem FM, only problem instances with mk jobs

need to be considered. Thus, from now on, we assume the property

(Property.1) n = mk.
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We define the ordered set of processing times P for a scheduling problem instance with

m machines and k ranks to consist of elements equal to the processing times of these mk jobs

arranged in nonincreasing order. We let P (j) refer to the jth element of P . Thus, P (j) ≥ P (j+1)

for j ∈ {1, . . . ,mk − 1}.

For the problem of characterizing minimal counterexamples to the Coffman-Sethi conjecture,

minimality will be defined based on the following criteria: the number of machines, the number

of ranks, and the set of processing times. A minimal counterexample is defined to be a coun-

terexample with k ranks, m machines, and a set of processing times P1 for which there does not

exist another counterexample with one of the following (in a hierarchical order):

(i) number of ranks fewer than k

(ii) number of ranks equal to k and number of machines fewer than m

(iii) k ranks, m machines, and fewer jobs with nonzero processing times

(iv) k ranks, m machines, the same number of jobs with nonzero processsing times, and a worse

approximation ratio

(v) [only for integer data] k ranks, m machines, the same number of jobs with nonzero processing

times, the same approximation ratio, and a set of processing times P2 satisfying
∑n

j=1 P2(j) <
∑n

j=1 P1(j)

In the latter parts of the paper, we will restrict our attention purely to integer data. There,

we will use the minimality criterion (v). Note that due to integrality of the processing times,

we will have a normalization of the data (the smallest nonzero processing time is at least 1).

Throughout this paper, we will isolate many useful properties of a minimal counterexample.

Note that we may assume that in a minimal counterexample,

(Property.2) µr = λr+1,∀r ∈ {1, 2, . . . , k − 1} and µk = 0.

If the above property fails, then either µk > 0 (in this case, we subtract µk from the processing

time of every job in rank k, the new instance is also a counterexample to the conjecture with the

same number of machines, ranks and fewer jobs with nonzero processing times, a contradiction

to the minimality of the original instance) or there exists r ∈ {1, 2, . . . , k−1} such that µr > λr+1

(in this case, we subtract (µr − λr+1) from the processing time of every job in rank r, the new

instance is also a counterexample to the conjecture with the same number of machines, ranks,

the number of jobs with nonzero processing times, and with a worse approximation ratio, a

contradiction to the minimality of the original instance).

We will show that, if the Coffman-Sethi conjecture is false, then there must exist a counterex-

ample with integer processing times. Further, if the conjecture is false, then there must exist

a counterexample with integer processing times and a rectangular optimal schedule. Therefore,

we define four types of problem instances, counterexamples and minimal counterexamples to the

Coffman-Sethi conjecture:

• A problem instance of Type A is one that is not required to have either integer processing

times or a rectangular optimal schedule.

• A problem instance of Type I is one with integer processing times.

• A problem instance of Type R is one with a rectangular optimal schedule.
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• A problem instance of Type IR is one with integer processing times and a rectangular

optimal schedule.

A counterexample of a particular type (A, I, R, or IR) is a problem instance of that type

that violates the Coffman-Sethi conjecture. A minimal counterexample of a particular type is

a counterexample of that type for which there does not exist a smaller counterexample (based

on the notion of minimality defined in this section) of the same type. In Section 5, we will

show that if the Coffman-Sethi conjecture is false, then there exists a minimal counterexample

of Type I, as well as of Type IR.

4. An LP-based approach that treats problem parameters as variables

We present an approach which may be utilized to prove or disprove any conjecture about

a bound on the ratio of the solution generated by an approximation algorithm to the optimal

solution for a maximization problem. In this approach, the parameters of the problem are treated

as variables. The problem of maximizing the ratio is formulated as a linear program. If bounds

can be obtained on the size of the problem, only a finite number of linear programs need to be

examined. If none of the solutions to the linear programs violates the conjecture, the conjecture

is clearly valid. Indeed, the optimal objective value of each linear programming problem can be

verified by checking a pair of optimal solutions to the primal and the dual problem at hand.

In this section, this approach is used to show that the Coffman-Sethi conjecture is valid for

the m = 2 and the m = 3, k = 3 cases, where m denotes the number of machines and k denotes

the number of ranks. In subsequent sections, bounds are obtained on the number of ranks. In

principle, this LP-based approach can be used to obtain a computer-based proof of the conjecture

or a minimal counterexample for any finite number of machines.

Lemma 1. If the Coffman-Sethi conjecture is false for m = 2 then there exists a minimal

counterexample of Type A with two machines and three ranks.

Proof. Suppose that the Coffman-Sethi conjecture is false. Take a minimal counterexample to

the conjecture. Then, by (Property.2), in rank k, one of the two machines has a processing time

of λk and the other machine has a processing time of 0. Clearly, the makespan is equal to the

completion time after rank k on the machine with a processing time of λk. (If this is not the case,

the last rank could be deleted to obtain a problem instance with the same or larger makespan

ratio, contradicting the minimality of the original instance.) It follows that both completion

times on the two machines after rank (k − 1) in the LD schedule are at least (tLD − λk). This

implies t∗ ≥ tLD − λk + λk/2. In a counterexample, tLD/t
∗ > 8/7. Hence,

t∗ < 7λk/2.(3)

Clearly, µℓ ≥ λk for ℓ ∈ {1, 2, . . . , k − 1}. Thus, t∗ ≥ kλk which together with (3) yields k ≤ 3.

Note that for k = 1 and k = 2, the LD schedule is optimal. Therefore, the claim follows. �

The following approach treats the data of problem FM (job processing times) as variables. For

a given value of the optimal makespan, the problem of determining the values of the processing

times that result in the LD makespan being maximized is set up as a set of linear programs.

Each possible relationship between the processing times (subject to the rank restriction) results
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in a different linear program. The solution to each linear program is checked to determine if

it violates the Coffman-Sethi conjecture. Note that a major advantage of LP formulations is

that the optimal objective values can be verified independent of the original computations, by

a much simpler computational step (to check feasibility of primal and dual solutions and then a

comparison of their objective values).

Proposition 1. The Coffman-Sethi conjecture holds for m = 2.

Proof. By Lemma 1, we only need to consider the k = 3 case. For a contradiction, suppose the

conjecture is false. Then, there exists a minimal counterexample to the conjecture. Moreover,

using (Property.2), we may assume that a minimal counterexample has the processing times:

λ1, λ2, λ2, λ3, λ3, 0. Then, it suffices to consider only two LD schedules:

• LD schedule 1: Jobs with processing times λ1, λ3, 0 on machine 1, jobs with processing

times λ2, λ2, λ3 on machine 2.

• LD schedule 2: Jobs with processing times λ1, λ3, λ3 on machine 1, jobs with processing

times λ2, λ2, 0 on machine 2.

For a makespan ratio > 1, the second and third ranks must not be the same in the LD schedule

and the optimal schedule. There is only one possible optimal schedule: Jobs with processing

times λ1, λ2, 0 on machine 1, jobs with processing times λ2, λ3, λ3 on machine 2. In each of the

following cases, we set the optimal makespan equal to 1. The makespan ratio is then equal to

the LD makespan. We seek to maximize the LD makespan in each case. There are four possible

values for the LD makespan, resulting in the following four cases.

Case 1: tLD = λ1 + λ3.

This will be true only if λ1 ≥ 2λ2. So, λ1 ≥ 2λ3, and we deduce tS∗ = λ1 + λ2. This is clearly

not possible.

Case 2: tLD = 2λ2 + λ3.

This will be true only if λ1 ≤ 2λ2 and λ1 + λ3 ≥ 2λ2.

Case 2A: λ1 ≤ 2λ3.

So, tS∗ = λ2 + 2λ3. Consider the LP problem

max {2λ2 + λ3 : λ1 ≤ 2λ3, λ2 + 2λ3 = 1, 2λ2 ≤ λ1 + λ3} .

This LP can be simplified as follows:

max {2λ2 + λ3 : 2λ2 ≤ 3λ3, λ2 + 2λ3 = 1} .

A solution is λ2 = 3/7, λ3 = 2/7, with objective function value 8/7.

Case 2B: λ1 ≥ 2λ3.

Thus, tS∗ = λ1 + λ2. Consider the LP problem

max {2λ2 + λ3 : λ1 + λ2 = 1, λ1 ≥ 2λ3, λ1 ≤ 2λ2, 2λ2 ≤ λ1 + λ3} .

This LP can be simplified as follows:

max {2λ2 + λ3 : λ2 ≥ 1/3, λ2 + 2λ3 ≤ 1, 3λ2 ≤ 1 + λ3} .

A solution is λ2 = 3/7, λ3 = 2/7, with the objective function value 8/7.
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Case 3: tLD = λ1 + 2λ3.

This will be true only if λ1 + λ3 ≤ 2λ2 and λ1 + 2λ3 ≥ 2λ2.

Case 3A: λ1 ≤ 2λ3.

In this case, we have tS∗ = λ2 + 2λ3. Consider the LP problem:

max {λ1 + 2λ3 : λ1 + λ3 ≤ 2λ2, λ1 + 2λ3 ≥ 2λ2, λ2 + 2λ3 = 1, 2λ1 ≤ 2λ3} .

The constraints of the above LP problem can be replaced by the following equivalent set of

constraints:

λ1 + 5λ3 ≤ 2, λ1 + 6λ3 ≥ 2, 2λ1 ≤ 2λ3.

A solution is λ1 = 4/7, λ2 = 3/7, λ3 = 2/7, with objective function value 8/7.

Case 3B: λ1 ≥ 2λ3.

Thus, tS∗ = λ1 + λ2. Consider the LP problem

max {λ1 + 2λ3 : λ1 + λ2 = 1, λ1 ≥ 2λ3, λ1 + λ3 ≤ 2λ2, λ1 + 2λ3 ≥ 2λ2} .

This LP problem can be simplified as follows:

max {λ1 + 2λ3 : λ1 ≥ 2λ3, 3λ1 + λ3 ≤ 2, 3λ1 + 2λ3 ≥ 2} .

A solution is λ1 = 4/7, λ2 = 3/7, λ3 = 2/7, with the objective function value 8/7.

Case 4: tLD = 2λ2.

This will be true only if 2λ2 ≥ λ1 + 2λ3.

Case 4A: λ1 ≤ 2λ3.

Hence, tS∗ = λ2 + 2λ3. Consider the LP problem

max {2λ2 : λ1 ≤ 2λ3, λ2 + 2λ3 = 1, 2λ2 ≥ λ1 + 2λ3} .

The constraints of the above LP problem can be replaced by the following equivalent set of

constraints:

λ1 + λ2 ≤ 1, −2λ1 + 5λ2 ≥ 1.

A solution is λ1 = 1/2, λ2 = 1/2, λ3 = 1/4, with the objective function value 1.

Case 4B: λ1 ≥ 2λ3.

Then, tS∗ = λ1 + λ2. Consider the LP problem

max {2λ2 : λ1 + λ2 = 1, λ1 ≥ 2λ3, λ1 + 2λ3 ≤ 2λ2} .

This LP problem can be simplified as follows:

max {2λ2 : λ2 ≥ λ3, 2λ3 + λ2 ≤ 1, −2λ3 + 3λ2 ≥ 1} .

A solution is λ1 = 1/2, λ2 = 1/2, λ3 = 1/4, with the objective function value 1.

We conclude that, in all cases, the ratio of the makespan of every LD schedule is at most

8/7 times the optimum makespan. This is a contradiction to the existence of a counterexample.

Thus, the Coffman-Sethi conjecture holds for m = 2, and k = 3. Therefore, by Lemma 1, the

Coffman-Sethi conjecture holds for m = 2. �

It follows from Graham’s original analysis of LPT list scheduling that n ≤ 2m case is clear.

Proposition 2. The Coffman-Sethi conjecture holds for every m and n such that n ≤ 2m (i.e.,

k ≤ 2).
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Using the same technique as in the proof of Proposition 1 we can prove the conjecture for

m = 3 and k = 3.

Proposition 3. The Coffman-Sethi conjecture holds for the m = 3, k = 3 case.

A proof of the above proposition is provided in the appendix.

5. Sufficient conditions for the existence of a minimal counterexample of Type

I

Most scheduling problems are considered in the context of the Turing machine model of com-

putation and, as a result, the data are assumed to be drawn from the rationals. In our problem

FM, this would mean that pj ∈ Q,∀j ∈ {1, 2, . . . , n}. Below, we prove that a counterexample to

a conjectured makespan ratio with irrational processing times could exist only if there existed a

counterexample with rational processing times.

Let p ∈ Rn
+ denote the set of processing times for an instance E of the problem FM. Let

p = (p1, p2, . . . , pn). Let t
∗
p denote the optimal value for instance E.

An instance of the FM problem is defined by an integer m denoting the number of machines

and a set of processing times (p1, p2, . . . , pn). Therefore, the domain of FM is a subset of

Z+ × Rn
+. Let FM(m,n) denote the FM problem with a fixed value of m and a fixed value of

n. An instance of FM(m,n) is defined by (m,n; p1, p2, . . . , pn). It follows that the domain of

FM(m,n) is a subset of Z2
+ × Rn

+. We denote the domain by G and we describe below more

general results. For the details and the proofs of the following two results, see Ravi (2010).

Proposition 4. For every algorithm ALG for problem FM(m,n) that produces a feasible solution

SALG whose makespan tALG : G → R+ is a continuous function at every point in G and for a

conjecture which states that the makespan is no greater than f(m).t∗, where f : Z+ → R+, the

following must hold: If there exists a counterexample of Type A to a conjectured tALG/t
∗ ratio,

then there exists a counterexample of Type I.

Corollary 1. For the FM problem and the LD algorithm, the following must hold: If there exists

a counterexample E to a conjectured tLD/t
∗ ratio, then there exists a counterexample EI with

integer processing times.

From this corollary, it follows that, if the Coffman-Sethi conjecture is false, then there exists

a counterexample to the conjecture of Type I. If there exist one or more counterexamples of

Type I, there must exist a minimal counterexample of Type I.

6. Best possible bound for the makespan ratio of LD0 schedules

Coffman and Sethi (1976) defined a simpler version (called LI0) of their algorithm and an-

alyzed its performance. Let us define the corresponding analogue of LI0 as follows. An LD0

schedule is defined to be a flowtime-optimal schedule in which the second rank is assigned

largest-first. An LD0 schedule is constructed using the following four-step process:

(i) Jobs in the first rank are assigned arbitrarily to machines.

(ii) Jobs in the second rank are assigned largest-first. Thus the jobs are assigned in nonin-

creasing order of processing times to the earliest available machine.
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(iii) Jobs in each remaining rank are assigned arbitrarily to machines.

(iv) The jobs assigned to each machine are reversed to make the schedule flowtime-optimal.

A worst-case LD0 schedule for a given set of tasks is an LD0 schedule with the largest length

among all LD0 schedules for that set of tasks. A problem instance with a worst-case tLD0
/t∗

ratio is one with the largest tLD0
/t∗ ratio among all flowtime-optimal schedules. Let us define

the LD0worst
schedule to be an LD0 schedule with the largest makespan ratio among all LD0

schedules for a given problem instance. Clearly, an LD0worst
schedule is constructed by assigning

the second rank largest-first and, if machine i′ has the largest completion time after rank 2,

assigning a job with processing time λr to machine i′ for r ∈ {3, . . . , k}. Let tLD0worst
denote

the makespan of the LD0worst
schedule.

Corollary 2. For the FM problem and the LD0 algorithm, the following must hold: If there

exists a counterexample E to a conjectured tLD0
/t∗ ratio, then there exists a counterexample EI

with integer processing times.

Proof. The proof of this corollary is essentially identical to the proof of the previous corollary. �

The following lemmas are useful because they make it possible to subsequently restrict our

attention to rectangular schedules for an examination of the worst-case makespan ratio for LD0

schedules.

Proposition 5. Increasing the processing times of one or more tasks in the first rank of a

LD0worst
schedule, while leaving the remaining processing times unchanged, will result in a

LD0worst
schedule with the same or larger makespan.

Proof. Let a(2) denote the profile of the LD0worst
schedule after rank 2. a1(2) is the length

of the set of tasks upon completion of the second rank in an LD0worst
schedule. An LD0worst

schedule is obtained by assigning the tasks with the largest processing times in ranks 3 through

k, where k is the last rank, to a machine with completion time a1(2) after rank 2. So,

tLD0worst
= a1(2) +

k
∑

i=3

λj, with a1(2) = max
i∈{1,...,m}

{τi,1 + τm−i+1,2} ,

where τi,j refers to the i
th largest processing time in rank j. Leaving all τi,2 values unchanged and

increasing one or more τi,1 values can only increase the value of a1(2) and thus of tLD0worst
. �

Lemma 2. For every problem instance PA for the FM problem, there exists a problem instance

PB with a rectangular optimal schedule and a tLD0
/t∗ ratio that is at least the makespan ratio

for PA.

Proof. Consider an optimal schedule for PA. Construct a new problem instance PB as follows:

For every job in the first rank that is performed on a machine for which the completion time after

rank k in the optimal schedule is less than the makespan of the optimal schedule, increase the

processing time so that the completion time after rank k in the optimal schedule is equal to the

makespan. Clearly, the optimal schedule for the new problem instance is a rectangular schedule

with a makespan equal to the makespan of PA. Also, the new problem instance continues to be

a flowtime-optimal problem instance because the increase in processing times does not lead to
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a violation of the rank restrictions. From Proposition 5, the makespan of the LD0worst
schedule

for the new problem instance is at least the makespan of the LD0worst
schedule for the original

problem instance. Therefore, PB has a tLD0worst
/t∗ ratio that is at least the makespan ratio for

PA. �

Corollary 3. There always exists a problem instance with a worst-case tLD0
/t∗ ratio and a

rectangular optimal schedule.

Lemma 3. There exists a problem instance with a rectangular optimal schedule and a worst-case

tLD0
/t∗ ratio in which the following hold:

(i) All the tasks in the second rank have a processing time equal to λ3.

(ii) There exist one or more tasks in the first rank with a processing time equal to λ3.

Thus, µ1 = λ2 = µ2 = λ3.

Proof. By Corollary 3, there always exists a problem instance with a rectangular optimal sched-

ule and a worst-case tLD0worst
/t∗ ratio. Let S∗ denote this rectangular optimal schedule. Let

the machines be labelled based on the completion times after rank 2 in the optimal schedule S∗.

Thus, the machine with the largest completion time after rank 2 in S∗ is labelled machine 1,

the machine with the second-largest completion time after rank 2 in S∗ is labelled machine 2,

and the machine with the qth largest processing time (for q ∈ {1, 2, ...,m}) is labelled machine

q. Recall that ai(2) denotes the ith largest element of the S∗ profile after rank 2. This labelling

ensures that machine i (for i ∈ {1, 2, ...,m}) has completion time ai(2) after rank 2.

For machine i ∈ {1, 2, . . . ,m} : Set the processing time of the task in the second rank equal

to λ3 and the processing time of the task in the first rank equal to ai(2)− λ3. This change will

either increase or leave unchanged the processing time of each job in rank 1. Therefore, it will

not violate the rank restriction. Note that ai(2) remains unchanged and therefore the value of

t∗ remains unchanged.

For the LD0worst
schedule, the set of changes in the task set described above is equivalent to:

(i) Reassigning the tasks in rank 2 so that each task in rank 2 is placed after the same task in

rank 1 as it was in the S∗ schedule. (ii) For machine i ∈ {1, 2, . . . ,m} (labelled as indicated

above): Set the processing time of the task in the second rank equal to λ3 and the processing

time of the task in the first rank equal to ai(2) − λ3.

Note that the resulting schedule is an LD0worst
schedule. An LD0worst

schedule is optimal for

a two-rank system. The rearrangement of the tasks in step (i) can therefore only increase the

value of ai(2).

tLD0worst
= ai(2) +

k
∑

j=3

λj.

Therefore, the value of tLD0worst
can only increase as a result of the rearrangement in step (i).

The subsequent changes in step (ii) do not cause any further change in ai(2) and therefore do

not cause any further change in tLD0worst
.

Thus, the value of tLD0worst
can only increase as a result of steps (i) and (ii) while the value

of t∗ remains unchanged. Therefore, the ratio tLD0worst
/t∗ can only increase.
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After completing steps (i) and (ii), if am(1) > λ3, for i ∈ {1, 2, · · · ,m}, set ai(1) equal to

ai(1) − (am(1) − λ3). It follows that this will reduce tLD0worst
and t∗ by the same amount and

will therefore increase the ratio tLD0worst
/t∗. This will result in a value of µ1 equal to λ3. �

Coffman and Sethi (1976) proved that the ratio of the makespan of any schedule in which

the rank containing the largest processing times was assigned largest-first to the makespan of

the optimal schedule could not exceed (4m− 3)/(3m− 2), and this bound could be achieved for

m = 2 and for m = 3. The following theorem provides a similar bound for LD0worst
schedules.

It shows that the worst-case ratio for LD0worst
schedules cannot exceed 4/3. While Coffman

and Sethi suggest that their (4m− 3)/(3m− 2) bound is unlikely to be achieved for m > 3, this

bound can be achieved for all m. The proof below uses an approach that is different from the

approach used by Coffman and Sethi.

Theorem 1. 1 ≤ tLD0
/t∗ ≤ 4/3, and the upper bound is achieved for all m ≥ 3.

Proof. Consider a problem instance PI that satisfies the conditions established in Lemma 3.

All the tasks in the second rank of a flowtime-optimal schedule for this problem instance have

a processing time equal to λ3. Let t denote the makespan of S, the LD0worst
schedule for this

problem instance. Let t∗ denote the optimal makespan for this problem instance.

Now, construct a new problem instance PI ′ by removing the jobs in the second rank from

PI. Consider the schedules obtained by removing the jobs in the second rank from S and S∗.

Coffman and Sethi (1976) show that, for any problem instance with a flowtime-optimal schedule,

the makespan ratio is less than or equal to 3/2. It follows that (t−λ3)/(t
∗−λ3) ≤ 3/2. The last

relation is equivalent to t/t∗ ≤ 3/2 − λ3

2t∗ . Note that S∗ is rectangular. Therefore, the machine

with processing time µ1 in rank 1 has a completion time at the end of rank k that is equal to

the length of S∗. An upper bound on t∗ can be obtained by adding the largest processing time

in ranks 2 through k to µ1. Therefore,

t∗ ≤ µ1 +

k
∑

j=2

λj ≤ 3λ3 +

k
∑

j=4

λj .

By Lemma 4 and Proposition 4, it follows that, if there exists a counterexample to the 4/3

bound, there exists a counterexample in which all processing times are integers. Also note that,

if a counterexample to the 4/3 bound exists, a problem instance with a worst-case tLD0
/t∗ ratio

would be a counterexample. Let us assume that the 4/3 conjecture is false. For a problem

instance with a worst-case tLD0
/t∗ ratio and integer processing times, we have

λi ≤ λ3 − i+ 3 for i ∈ {4, 5, . . . , k}.

Thus,
∑k

j=4 λj ≤ (k − 3)λ3 −
1
2

(

k2 − 5k + 6
)

and we conclude

t∗ ≤ kλ3 −
1

2

(

k2 − 5k + 6
)

.

For k ≥ 3, and assuming integer processing times, λ3 must be greater than or equal to k − 2.

For k ∈ [3, λ3 + 2], the right-hand side is monotone increasing in k. For k = 3, the right-hand

side is equal to 3λ3. Therefore, for k ≥ 3, the right-hand side is greater than or equal to 3λ3. It
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follows that

tLD0worst
/t∗ ≤ 3/2− (1/2)(1/3) = 4/3.

However, this contradicts the assumption that there exists a counterexample to the 4/3 bound.

It follows that no such counterexample exists and the bound is valid.

For any value of m ≥ 2, the tLD0worst
/t∗ ratio equals the upper bound for the following

three-rank system:

pi = 2 for i ∈ {1, 2, . . . ,m− 1},

pi = 1 for i ∈ {m,m+ 1, . . . , 2m+ 1},

pi = 0 for i ∈ {2m+ 2, 2m + 3, . . . , 3m}.

This completes the proof of the theorem. �

7. Properties of a hypothesised minimal counterexample to the Coffman-Sethi

conjecture

The results obtained above for the simple LD0 algorithm provided insight into the approaches

that could be used to prove bounds for other algorithms for problem FM. This section will focus

on the LD algorithm proposed by Coffman and Sethi (1976a).

Lemma 4. An increase in one or more processing times of jobs in rank r for r ∈ {1, 2, . . . , k−1}

(with no change in the remaining processing times, and subject to the rank constraint) does

not result in a reduction in any element of the profile b(ℓ) of an LD schedule after rank ℓ ∈

{r, r + 1, . . . , k}.

Proof. We proceed by induction on ℓ. Let us assume that the lemma holds for ℓ′ ranks, where

ℓ′ ∈ {r, r + 1, . . . , s}. Let τi,h refer to the ith largest processing time in rank h. The induction

hypothesis states that an increase in processing times in rank r does not cause a reduction in

bm−i+1(ℓ
′) for i ∈ {1, 2, . . . ,m}. Note that the increase in processing times in rank r leaves τi,ℓ′+1

unchanged for i ∈ {1, 2, . . . ,m}. The profile b(ℓ′ + 1) after rank ℓ′ + 1 consists of the following

m elements:
[

bm−i+1(ℓ
′) + τi,ℓ′+1

]

for i ∈ {1, 2, . . . ,m}.

It follows that none of the elements of the profile b(ℓ′+1) gets reduced as a result of the increase

in processing times in rank r. Thus, the theorem holds for rank ℓ′ + 1, for ℓ′ ∈ {r, r + 1, . . . , s}.

The base case follows from the fact that the result holds trivially for ℓ′ = r. �

One important fact follows from the above lemma. An optimal flowtime-optimal schedule

that is not rectangular can be made rectangular by increasing the lengths of all tasks in the first

rank that are performed on machines that have a completion time after the last rank that is

strictly less than the makespan. This result (originally observed by Coffman and Sethi) is stated

and proved below for the sake of completeness.

Lemma 5. (Coffman and Sethi, 1976a) There always exists a problem instance with a worst-case

tLD/t
∗ ratio and with a rectangular optimal schedule.
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Proof. Consider an optimal schedule for any problem instance. For every job in the first rank

that is performed on a machine for which the completion time after rank k in the optimal sched-

ule is less than the makespan of the optimal schedule, increase the processing time so that the

completion time after rank k in the optimal schedule is equal to the makespan. Clearly, the in-

crease in processing times does not lead to a violation of the rank restriction for flowtime-optimal

schedules. Also, the increase in processing times results in a rectangular optimal schedule. By

Lemma 4, the increase in processing times does not affect the makespan of the optimal schedule,

and it may only increase the makespan of LD schedules. Therefore, it will either increase or

leave unchanged the tLD/t
∗ ratio. �

Note that, if the Coffman-Sethi conjecture is false, a problem instance with a worst-case tLD/t
∗

ratio would be a counterexample to the conjecture. This leads to the following corollaries.

Corollary 4. If the Coffman-Sethi conjecture is false, then there exists a minimal counterex-

ample to the conjecture of Type R.

Corollary 5. If the Coffman-Sethi conjecture is false, then there exists a minimal counterex-

ample to the conjecture of Type IR.

Proof. This follows from Corollary 1 and the proof of Lemma 5. �

Theorem 2. If the Coffman-Sethi conjecture is false, then every minimal counterexample to

the conjecture of Type IR or I satisfies

tLD
t∗

<
k

k − 1
.

Proof. Proof for minimal counterexamples of Type IR:

Suppose that the Coffman-Sethi conjecture is false. Among all counterexamples of Type IR,

consider a minimal counterexample P1. Now we apply the following two-step process:

Step 1: Reduce each nonzero processing time by 1 to construct a new problem instance P2.

Clearly, the assignment of jobs in each rank to machines can be kept unchanged for the new LD

schedule. The schedule that was originally an optimal rectangular schedule for P1 will not be

rectangular but will be optimal for P2 after the reduction in processing times. In the modified

schedule, there are only (k−1) jobs assigned to the one or more machines with a zero processing

time job in the last rank. This implies that the new optimal makespan is equal to [t∗ − (k − 1)].

Step 2: For every job in rank 1 of the optimal schedule for P2 that is processed on a machine

with a completion time after rank k that is less than the makespan, increase the processing

time so that the completion time after rank k becomes equal to the makespan. This produces

a problem instance P2R of Type IR. P2R will have an optimal makespan that is equal to the

optimal makespan of P2. Utilizing Lemma 4, it follows that the LD makespan of P2R cannot

be less than the LD makespan of P2.

The optimal makespan of P2R is equal to [t∗ − (k − 1)]. For the LD schedule for P2R, there are

two possibilities: (i) tLD gets reduced to a value that is greater than or equal to [tLD − (k − 1)].

This results in a new problem instance of Type IR, with a makespan ratio that is at least

tLD − (k − 1)

t∗ − (k − 1)
.
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This new ratio is larger than tLD/t
∗, thus contradicting the assumption that the original problem

instance was a minimal counterexample of Type IR. (ii) tLD gets reduced to (tLD − k). This

results in a new problem instance with a makespan ratio at least

tLD − k

t∗ − (k − 1)
.

The original problem instance P1 was a minimal counterexample of Type IR. This implies that

(tLD − k)/(t∗ − (k − 1)) is less than tLD/t
∗. Therefore, tLD/t

∗ < k/(k − 1). This completes the

proof for minimal counterexamples of Type IR.

Proof for minimal counterexamples of Type I:

Consider a minimal counterexample P1′ of Type I. Now reduce each nonzero processing time by

1 to construct a new problem instance P2′ with integer processing times. Clearly, the assignment

of jobs in each rank to machines can be kept unchanged for the new LD schedule and the new

optimal schedule. The new optimal makespan is less than or equal to t∗ − (k − 1). For the new

LD schedule, there are two possibilities:

(i) tLD gets reduced to a value that is equal to [tLD − (k − 1)]. This results in a new problem

instance with a makespan ratio that is at least [tLD − (k − 1)] / [t∗ − (k − 1)]. This new ratio is

larger than tLD/t
∗, thus contradicting the assumption that the original problem instance was a

minimal counterexample of Type I.

(ii) tLD gets reduced to tLD − k. This results in a new problem instance with a makespan ratio

that is greater than or equal to [tLD − k] / [t∗ − (k − 1)]. The original problem instance P1′

was a minimal counterexample of Type I. This implies that (tLD − k)/ [t∗ − (k − 1)] is less than

tLD/t
∗. Therefore, tLD/t

∗ < (k/(k−1)). This completes the proof for minimal counterexamples

of Type I. �

The following result follows directly from the above theorem and from Propositions 2 and 3.

Corollary 6. The Coffman-Sethi conjecture is true, if it is true for k ∈ {3, 4, 5, 6}. In particular,

• for m ≥ 4, settling the cases k ∈ {3, 4, 5} suffices;

• for m = 3, settling the cases k ∈ {4, 5, 6} suffices.

We define a minimal counterexample of Type IR1 as follows. If the Coffman-Sethi conjecture

is false, a minimal counterexample of Type IR1 is a minimal counterexample of Type IR that

has an LD schedule with the following property: Every machine with a completion time after

rank k equal to the makespan has a job with processing time equal to λk in rank k, where k

denotes the number of ranks.

Lemma 6. If the Coffman-Sethi conjecture is false, then there exists a minimal counterexample

to the conjecture of Type IR1, and every minimal counterexample of Type IR is a minimal

counterexample of Type IR1.

Proof. Suppose the Coffman-Sethi conjecture is false. Then, by Corollary 5, a counterexample

of Type IR exists. Suppose, for a contradiction, that there exists a minimal counterexample P1

of Type IR that is not Type IR1. Now, apply the following two-step process.

Step 1: Construct a new problem instance P2 as follows. Subtract 1 time unit from the pro-

cessing time of every job in rank (k − 1). Also subtract 1 time unit from the processing time of
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every job in rank k that has a processing time of λk. Note that, for a minimal counterexample,

all processing times in rank k are not equal, therefore there exist processing times in rank k that

are less than λk. Leave these processing times unchanged. Note that the assignment of jobs in

each rank to machines in an LD schedule remains unchanged. Thus, P2 has an LD schedule

with objective value (tLD − 1), where tLD is the objective value of the LD schedule for P1. Let

t∗ denote the optimal makespan of problem instance P1. Then, the problem P2 has an optimal

makespan that is equal to (t∗ − 1).

Step 2: For every job in rank 1 of the optimal schedule for P2 that is processed on a machine

with a completion time after rank k that is less than the makespan, increase the processing time

so that the completion time after rank k becomes equal to the makespan.

This produces a problem instance P2R of Type IR. By Lemma 4, the LD makespan of P2R

cannot be less than the LD makespan of P2. So, it is at least (tLD − 1). The optimal makespan

for P2R is (t∗ − 1) by construction. Thus, P2R gives a strictly worse approximation ratio

than P1, a contradiction to the minimality of P1. Therefore, P1 (as well as any other minimal

counterexample of type IR) is a minimal counterexample of Type IR1. �

We define a problem instance, a counterexample and a minimal counterexample of Type I1 as

follows. A problem instance of Type I1 is a problem instance of Type I that has an LD schedule

with the following properties:

(i) It has only one machine i′ with a completion time after rank k equal to the makespan.

(ii) Machine i′ has a processing time equal to λk−1 in rank (k − 1) and λk in rank k.

If the Coffman-Sethi conjecture is false, a counterexample to the conjecture of Type I1 is a

counterexample of Type I that has an LD schedule with the above-mentioned properties.

Lemma 7. If the Coffman-Sethi conjecture is false, then there exists a minimal counterexample

to the conjecture of Type I1.

Proof. Suppose the Coffman-Sethi conjecture is false. Then, by Lemma 6, there exists a minimal

counterexample of Type IR1. Call this instance P1. Now, construct a new problem instance

P2 as follows. Subtract 1 time unit from the processing time of every job in rank (k − 2). Also

subtract 1 time unit from the processing time of every job in rank (k− 1) that has a processing

time of λk−1. Note that, for a minimal counterexample, all processing times in rank (k− 1) are

not equal, therefore there exist processing times in rank (k − 1) that are less than λk−1. Leave

these processing times unchanged. Note that the assignment of jobs in each rank to machines

in the LD schedule remains unchanged, except possibly in rank k. Problem instance P1 had

an optimal rectangular schedule. Reducing the processing time of every job in rank (k − 2)

by 1 leaves the rectangular property unchanged and results in a reduction of 1 in the optimal

makespan. A further reduction of 1 in one or more, but not all, jobs in rank (k−1) results in no

further reduction in the optimal makespan. Thus, problem P2 has an optimal makespan equal

to (t∗ − 1). The new LD objective value is either (tLD − 1) (if there is at least one machine

whose completion time originally equaled tLD and after the modification of the processing times,

now equals (tLD − 1) since in rank (k − 1) it had a job with processing time less than λk−1) or
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(tLD − 2) (if every machine, with completion time equal to tLD for P1, had a job in rank (k− 1)

with processing time λk−1). We will show below that the former case cannot happen.

Now, construct a problem instance P2R of Type IR by adding 1 unit to the processing time

of every job in rank 1 that is performed on a machine with completion time after rank k in

the optimal schedule that is less than the makespan. The optimal makespan of P2R is equal to

the optimal makespan of P2, (t∗ − 1). Since P1 is a minimal counterexample of Type IR, using

Lemma 4 and the above argument, we deduce that the makespan of the LD schedule for problem

instance P2R is (tLD−2). Thus, in the LD schedule for P1, every machine with completion time

equal to tLD had a job in rank (k − 1) with processing time λk−1. By Lemma 6, every machine

with completion time equal to tLD has jobs with processing times λk−1 and λk in ranks (k − 1)

and k respectively. Pick one these machines, call it i′.

Construct a new counterexample P3 as follows. In the LD schedule for P1, for every machine

i 6= i′ with a completion time after rank k equal to the makespan, delete the job in rank k. The

makespan and the set of jobs assigned to i′ in the LD schedule for P3 are the same as those in

the LD schedule for P1. The makespan of the optimal schedule for P3 is less than or equal to

the makespan of the optimal schedule for P1. However, the optimal schedule for P3 may not be

rectangular. P3 is clearly a counterexample to the conjecture of Type I1. It follows that there

exists a minimal counterexample to the conjecture of Type I1. �

We define a problem instance, a counterexample and a minimal counterexample of Type I2

as follows. A problem instance of Type I2 is a problem instance of Type I1 with the following

property in an LD schedule: The machine i′ with a completion time equal to the makespan has

a processing time equal to λr in rank r for every r ∈ {2, 3, . . . , k}.

If the Coffman-Sethi conjecture is false, a counterexample to the conjecture of Type I2 is a

counterexample of Type I1 with the above-mentioned property.

Lemma 8. If the Coffman-Sethi conjecture is false, then there exists a minimal counterexample

to the conjecture of Type I2.

Proof. Suppose that the Coffman-Sethi conjecture is false. We proceed by induction on the

number of ranks for which the claim holds. The base case is given by Lemma 7. The induction

hypothesis is that there exists a minimal counterexample P1 of Type I1 that has an LD schedule

with a machine i′ which has a processing time equal to λr in rank r for every r ∈ {h, h+1, . . . , k},

where h ≥ 3. If machine i′ has a job in rank (h−1) with processing time λh−1 then we are done;

otherwise, construct P2 from P1 by subtracting 1 time unit from the processing time of every

job in rank (h − 2), and subtracting 1 time unit from the processing time of every job in rank

(h − 1) that has a processing time of λh−1. Leave the remaining processing times unchanged.

Note that either a new LD schedule assigns the same jobs to machine i′, or another machine i′′

which had the same completion time as machine i′ after rank (h− 1) and a job with processing

time λh−1 now has a completion time one less and has the jobs originally scheduled on machine

i′ for ranks r ∈ {h, h+1, . . . , k}. In the former case, P2 has a strictly worse approximation ratio

than P1, a contradiction. Therefore, we must be in the latter case. In the latter case, go back

to instance P1. After rank (h− 1), both machines i′ and i′′ have the same completion time. For

the ranks h, h+ 1, . . . , k, swap all jobs on the machines i′ and i′′. We still have an LD schedule
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for P1 with makespan tLD; moreover, machine i′′ is the unique machine with completion time

equal to the makespan. Finally, the processing times on machine i′′ are λh−1, λh, λh+1, . . . , λk as

desired. It follows that there exists a minimal counterexample to the conjecture of Type I2. �

Lemma 9. If the Coffman-Sethi conjecture is false, in a minimal counterexample of Type I2,

the sole machine i′ with a completion time after rank k equal to the makespan in the LD schedule

has a processing time equal to µ1 in rank 1.

Proof. Suppose the Coffman-Sethi conjecture is false. Then, by the previous lemma, there exist

one or more minimal counterexamples to the conjecture of Type I2. Let P1 denote one of

these minimal counterexamples. If, in the LD schedule for P1, there exists only one machine

with a processing time equal to λr in rank r for r ∈ {2, 3, . . . , k}, the lemma clearly holds.

Assume that there exists a set of two or more machines with a processing time equal to λr in

rank r ∈ {2, 3, . . . , k}. We may assume that machine i′ has a job with processing time strictly

greater than µ1 in rank 1. Then, there exists machine i′′ which has processing time µ1 in rank

one, then by the definition of the LD algorithm, machine i′′ must have the processing times:

µ1, λ2, λ3, . . . , λk respectively. We delete all the jobs on machine i′′ and delete the machine i′′

to generate a new instance P2.

Note that the LD schedule for P2 is unchanged on machine i′ and all the other machines

except i′′. Therefore, tLD is unchanged. Next, we prove that the optimal makespan for P2 is no

larger than that for P1. Consider an optimal schedule S∗ for P1. A machine has the jobs with

processing times µ1, p2, p3, . . . , pk respectively. Clearly, pr ≤ λr, for every r ∈ {2, 3, . . . , k}. If

the equality holds throughout, then we are done. Otherwise, for each r that the inequality is

strict, we find the job with processing time λr in rank r and swap it with pr. These operations

may increase the completion time on machine i1; however, they will not increase it on any other

machine. At the end, we delete the machine (with the processing times µ1, λ2, λ3, . . . , λk). What

remains is a feasible schedule for instance P2 whose makespan is at most the optimal makespan

for P1.

We repeat the above procedure, until there exists only one machine in the LD schedule with a

processing time equal to λr in rank r ∈ {2, 3, . . . , k}. From the mechanics of the LD algorithm,

it follows that no other machine has a smaller processing time in rank 1. This completes the

proof.

�

Lemma 10. If the Coffman-Sethi conjecture is false, then in the LD schedule for a minimal

counterexample of Type I2, the smallest completion time after rank k on any machine is at least

tLD − max
r∈{2,3,...,k}

{λr − µr}.

Proof. Suppose the Coffman-Sethi conjecture is false. Then, by Lemma 8, there exists a minimal

counterexample of Type I2. By Lemma 9, in a minimal counterexample of Type I2, the sole

machine i′ with a completion time after rank k equal to the makespan has a processing time equal

to µ1 in rank 1. For i ∈ {1, 2, . . . ,m}, i 6= i′, let ri denote the smallest value of r ∈ {1, 2, . . . , k},

for which the completion time after rank ri on machine i is less than the completion time after
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rank ri on machine i′. By Lemma 8, it follows that there exists a value ri ≤ k for all i 6= i′.

Lemma 9 implies that ri ≥ 2. There are two possible cases:

(a) ri = k. In this case, the completion time after rank k on machine i is greater than or equal

to tLD − λk.

(b) ri < k. In this case, from the mechanics of the LD algorithm, it is evident that the processing

time of the job on machine i in rank (ri + 1) and all of the following ranks must be equal

to λr. Therefore, the completion time after rank k on machine i is greater than or equal to

tLD − (λri − µri).

This completes the proof of the lemma. �

Lemma 11. If the Coffman-Sethi conjecture is false, then in the LD schedule for any minimal

counterexample of Type I2, there exists at least one value of i′′ that satisfies i′′ 6= i′, for which

the completion time after rank (k − 1) on machine i′′ is greater than or equal to the completion

time after rank (k− 1) on machine i′, where i′ denotes the sole machine with a completion time

after rank k equal to the makespan.

Proof. Assume that the claim of the lemma does not hold (we are seeking a contradiction).

Therefore, there exists a minimal counterexample of Type I2 for which every machine i 6= i′ has

a completion time after rank (k − 1) that is less than the completion time after rank (k − 1)

on machine i′. From the mechanics of the LD algorithm, it is evident that every machine i 6= i′

has a processing time in rank k that is greater than or equal to the processing time of the

job assigned to machine i′ in rank k. Hence every machine has a job with processing time λk

assigned to it in rank k. Therefore all jobs in rank k can be removed from the counterexample

to obtain a smaller counterexample of Type I2 with a larger tLD/t
∗ ratio. This contradicts the

assumption that the original counterexample was a minimal counterexample of Type I2. �

Lemma 12. If the Coffman-Sethi conjecture is false, then in the LD schedule for any minimal

counterexample of Type I2, there exists at least one value of i′′ that satisfies i′′ 6= i′, for which the

completion time after rank k on machine i′′ is less than the completion time after rank (k − 1)

on machine i′, where i′ denotes the sole machine with a completion time after rank k equal to

the makespan.

Proof. Assume that the claim of the lemma does not hold (we are seeking a contradiction) and

there exists a minimal counterexample of Type I2 for which every machine i 6= i′ has a completion

time after rank k that is greater than or equal to the completion time after rank (k − 1) on

machine i′. A minimal counterexample must have at least 3 ranks. We first prove the lemma

for the k ≥ 4 case and then prove the lemma for the k = 3 case. We have t∗ ≥ tLD − λk +
λk

m .

Supposing that we have a counterexample, we deduce

t∗ >

(

5m− 2

4m− 1

)

t∗ −

(

m− 1

m

)

λk

t∗ <

(

4−
1

m

)

λk.(4)



APPROXIMATELY MINIMIZING MAKESPAN AND FLOW-TIME 21

For k ≥ 4, t∗ > 4λk, we reached a contradiction. This completes the proof of the lemma for

k ≥ 4.

For k = 3, there exists at least one machine in the optimal schedule with a job with processing

time of λ3 in the third rank. Therefore,

t∗ ≥ µ1 + µ2 + λ3.

From the preceding lemmas, it follows that tLD = 2λ2+λ3. For a counterexample, we must have

tLD
t∗

>
5m− 2

4m− 1
.

Therefore,
2λ2 + λ3

λ2 + 2λ3
>

5m− 2

4m− 1
.

It follows that

λ2 >

(

2−
1

m

)

λ3.(5)

Utilizing the inequality t∗ ≥ tLD − λk +
λk

m , and the fact tLD = 2λ2 + λ3, we deduce

t∗ ≥ (2λ2 + λ3)− λ3 +
λ3

m
.(6)

From inequalities (5) and (6), it follows that

t∗ ≥

(

4−
1

m

)

λ3.(7)

From inequalities (4) and (7), we have a contradiction for k = 3. This completes the proof of

the lemma. �

Theorem 3. The Coffman-Sethi conjecture holds for k equal to 3.

Proof. Suppose the statement of the theorem is false. Consider a minimal counterexample of

Type I2 with k = 3. Consider the LD schedule for this minimal counterexample. Let i′ denote

the sole machine with a completion time after rank k equal to the makespan. In the LD schedule,

let M1 denote the set of m1 machines with a completion time after rank (k − 1) that is greater

than or equal to the completion time after rank (k−1) on machine i′. Note that set M1 includes

machine i′ and that machine i′ is the only machine in M1 with a processing time of λ3 in the

third rank. The remaining (m1 − 1) machines have no job assigned to them in the third rank.

From Lemma 11, it is evident that m1 ≥ 2. Let M2 denote the set of m2 := m−m1 machines

with a completion time after rank (k−1) that is less than the completion time after rank (k−1)

on machine i′. Every machine in M2 has a processing time of λ3 in the third rank. The total

number of machines with λ3 in the third rank is (m−m1 + 1).

From Lemma 12, it is evident thatm2 ≥ 1. Select a machine i2 in the setM2 with a completion

time after rank k that is less than the completion time after rank (k − 1) on machine i′. Let

α1 denote the processing time in rank 1 of machine i2 and let α2 denote the processing time in

rank 2 of machine i2.

For any machine i1 in the setM1: Let β1 denote the processing time in rank 1 of machine i1 and

let β2 denote the processing time in rank 2 of machine i1. Note that β1+β2 ≥ 2λ2 > α1+α2+λ3.

Two possible cases need to be considered.
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Case 1: β1 ≤ α1

In this case, β2 ≥ 2λ2 − β1 > α1 + α2 + λ3 − β1. Hence,

β2 > α2 + λ3 ≥ µ2 + λ3. Therefore, β2 > 2λ3.

Case 2: β1 > α1

From the dynamics of the LD algorithm, β2 ≤ α2. In this case,

β1 ≥ 2λ2 − β2 > α1 + α2 + λ3 − β2, whence β1 > α1 + λ3 ≥ µ1 + λ3. Therefore, β1 > λ2 + λ3.

It is evident that, in any schedule (including the optimal schedule), one of the following must

be true:

Case A: There exists a machine with a processing time of λ3 in rank 3 and a processing time

greater than 2λ3 in rank 2.

Case B: There exists a machine with a processing time of λ3 in rank 3 and a processing time

greater than (λ2 + λ3) in rank 1.

Case C: There exists a machine with a processing time greater than 2λ3 in rank 2 and a processing

time greater than (λ2 + λ3) in rank 1.

In Case A, the makespan must be greater than λ3 + 2λ3 + µ1.

In Case B, the makespan must be greater than [λ3 + µ2 + (λ2 + λ3)].

In Case C, the makespan must be greater than [2λ3 + (λ2 + λ3)].

Thus, in all three cases, the makespan must be greater than (λ2 + 3λ3). Therefore, t∗ >

λ2 + 3λ3. By Lemma 9, tLD = 2λ2 + λ3. Thus, we have

5m− 2

4m− 1
<

tLD
t∗

<
2λ2 + λ3

λ2 + 2λ3
.

In a minimal counterexample of Type I2, m ≥ 3. We have

13

11
<

2λ2 + λ3

λ2 + 2λ3
.

Therefore,

λ2

λ3
>

28

9
.(8)

Also, note that, since t∗ > µ1 + λ2 + µ3, we have

13

11
<

tLD
t∗

<
2λ2 + λ3

µ1 + λ2 + µ3
.

Therefore,

λ2

λ3
<

11

4
.(9)

From inequalities (8) and (9), we obtain a contradiction. This completes the proof of the

theorem. �

Theorem 4. The Coffman-Sethi conjecture holds for m = 3.

Proof. Consider a minimal counterexample of Type I2 with m equal to 3. From Lemmas 11 and

12, it follows that, for this counterexample, the following statements hold for an LD schedule.

(i) There is one machine i′ with a completion time after rank k that is equal the makespan.

(ii)There is one machine i′′ with a completion time after rank k that is less than the makespan

and a completion time after rank (k − 1) that is greater than or equal to the completion time
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after rank (k−1) on machine i′. (iii) There is one machine i′′′ with a completion time after rank

k that is less than the completion time after rank (k − 1) on machine i′.

From the above given statements and from Lemma 10, it follows that

3t∗ ≥ tLD + (tLD − λk) +

(

tLD − max
r∈{2,3,...,k}

{λr − µr}

)

.(10)

Considering machine i′′′ , and Lemma 10, it is clear that

max
r∈{2,3,...,k}

{λr − µr} > λk.

Therefore,

max
r∈{2,3,...,k}

{λr − µr} = max
r∈{2,3,...,k−1}

{λr − µr} .

It follows that

max
r∈{2,3,...,k−1}

{λr − µr} ≤ λ2 − µk−1 = λ2 − λk.(11)

From (10) and (11), it follows that

3t∗ ≥ tLD + (tLD − λk) + [tLD − (λ2 − λk)] .(12)

Therefore,

t∗ ≥ tLD −
λ2

3
.(13)

For a counterexample to the Coffman-Sethi conjecture with m equal to 3, we must have

tLD
t∗

>
13

11
.(14)

From inequalities (13) and (14), it follows that

t∗ <
11

6
λ2.(15)

For two or more ranks, t∗ must be at least equal to µ1+λ2 or 2λ2. Therefore, inequality (15)

cannot hold and we have a contradiction. This completes the proof of the lemma. �

Theorems 3 and 4 allow us to strengthen the previous corollary.

Corollary 7. The Coffman-Sethi conjecture is true, if it is true for m ≥ 4 and for k ∈ {4, 5}.

8. Conclusion and Future Research

We studied the structure of potential minimal counterexamples to Coffman-Sethi (1976) con-

jecture and proved that the conjecture holds for the cases (i) m = 2, (ii) m = 3, and (iii) k = 3.

We also proved that to establish the correctness of the conjecture, it suffices to prove the con-

jecture for m ≥ 4 and k ∈ {4, 5}. Moreover, for each m ≥ 4, these remaining cases k ∈ {4, 5}

can be verified by employing our approach from Section 4 and the Appendix, via solving a finite

number of LP problems.

As a by-product of our approach, we introduced various techniques to analyze worst case

performance ratios. These techniques may be useful in analyzing the performance of approxi-

mation algorithms for other scheduling problems, or in general, other combinatorial optimization

problems of similar nature.
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9. Appendix

9.1. Three-Machine Case. For r ∈ {1, 2, 3}, let λr, αr and µr denote the processing times in

rank r, where λr ≥ αr ≥ µr. Clearly, µ1 = λ2 and µ2 = λ3 and µ3 = 0 and either α3 = λ3 or

α3 = µ3 = 0.

The first two ranks of the LD schedule will look like






λ1 λ3

α1 α2

λ2 λ2






.

The third rank will fit depending on the length of processing times on the first two ranks. We

will use case analysis to cover all possible LD schedules.

For all cases we will have λ1 ≥ α1 ≥ λ2 ≥ α2 ≥ λ3 > 0. This results in the following 5

constraints.
−λ1 +α1 ≤ 0 (1)

λ2 −α1 ≤ 0 (2)

−λ2 +α2 ≤ 0 (3)

λ3 −α2 ≤ 0 (4)

−λ3 ≤ 0 (5)

We begin by looking at the cases when α3 = λ3.

Consider the case λ1 + λ3 ≥ α1 + α2 ≥ 2λ2, then we have the constraints

−λ1 −λ3 +α1 α2 ≤ 0 (6)

2λ2 −α1 −α2 ≤ 0 (7)

Further, the LD schedule will look like






λ1 λ3 0

α1 α2 λ3

λ2 λ2 λ3







tLD = max(λ1 + λ3, α1 + α2 + λ3).

If tS∗ = λ1 + λ3, then tS∗ is equal to a lower bound and tLD

tS∗
= 1. So, we may assume

tS∗ = α1 + α2 + λ3.

Consider an optimal configuration for this problem. For the third job, the machine with λ1 in

the first rank must have a job in the third rank with processing time 0, otherwise that machine

will have processing time at least λ1 +2λ3 ≥ α1 + α2 + λ3 = tLD. Since the machine with λ1 in

the frst rank has a job with processing time 0 in the last rank, the machine with α1 in the first

rank has a job with processing time λ3 in the third rank. In order for tS∗ to be less than tLD,
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the machine with α1 in the first rank must have a job with processing time λ3 in the second

rank as well. Thus, the optimal configuration must be either






λ1 α2 0

α1 λ3 λ3

λ2 λ2 λ3






or







λ1 λ2 0

α1 λ3 λ3

λ2 α2 λ3






.

We consider the case where the former is the optimal configuration. Suppose tS∗ = λ1 + α2.

Then, we have λ1 + α2 ≥ α1 + 2λ3 and λ1 + α2 ≥ 2λ2 + λ3.

This leads to two more constraints

−λ1 +2λ3 +α1 −α2 ≤ 0, (8)

−λ1 +2λ2 +λ3 −α2 ≤ 0. (9)

Since the processing times of the jobs can be scaled by any positive number (here, we are no

longer requiring integer or even rational processing times in the input data), we let tS∗ = 1. We

add the constraint

λ1 + α2 ≤ 1. (10)

We now consider the linear program

max tLD = α1 + α2 + λ3

subject to: (1), (2), · · · , (10).

The solution will give the worst case ratio of tLD

tS∗
for this particular case.

Solving the LP yields objective value 9
8 when [λ1, λ2, λ3, α1, α2] =

1
8 [5, 3, 2, 4, 3].

We now suppose tS∗ = α1 + 2λ3. Constraints (8)–(10) are now replaced with

λ1 −2λ3 −α1 +α2 ≤ 0 (8)

2λ2 −λ3 −α1 ≤ 0 (9)

2λ3 +α1 ≤ 1. (10)

This new LP also yields objective value 9
8 when [λ1, λ2, λ3, α1, α2] =

1
8 [5, 3, 2, 4, 3].

We now suppose tS∗ = 2λ2 + λ3. Constraints (8)–(10) are replaced with

λ1 −2λ2 −λ3 +α2 ≤ 0 (8)

−2λ2 +λ3 +α1 ≤ 0 (9)

2λ2 +λ3 ≤ 1. (10)

Again the new LP yields objective value 9
8 when [λ1, λ2, λ3, α1, α2] =

1
8 [5, 3, 2, 4, 3].

We now consider the other possible configuration as the optimal configuration. We consider

each possibility for tS∗ by modifying the constraints (8)–(10) to accommodate each tS∗. For

example, when tS∗ = λ1 + λ2, constraints (8) - (10) are

−λ1 −λ2 +2λ3 +α1 ≤ 0 (8)

−λ1 +λ3 +α2 ≤ 0 (9)

λ1 +λ2 ≤ 1. (10)

For all three LPs for this configuration, the optimal objective value is 9
8 which is attained

when [λ1, λ2, λ3, α1, α2] =
1
8 [5, 3, 2, 4, 3].

We have exhausted this case and now move to the case where λ1 + λ3 ≥ 2λ2 ≥ α1 + α2. We

modify the constraints (6) and (7) to reflect the inequalities related to this case.
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We continue in this manner and set up and solve LP problems for every possible case for the

3-machine, 3-rank problem. In every case, the makespan ratio is less than or equal to 13/11.

This shows that the Coffman-Sethi conjecture holds for the 3-machine, 3-rank problem. Further,

an LD makespan of 13/11 is actually attained in some cases, thus showing, one more time, that

the Coffman-Sethi conjecture provides a tight bound for the 3-machine, 3-rank problem. If the

size of a hypothesised minimal counterexample to the Coffman-Sethi conjecture can be shown

the satisfy m ≤ 3 and k ≤ 3, then the above analysis would imply that the Coffman-Sethi

conjecture holds for all problem instances.
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