
Scheduling meets n-fold Integer Programming?

Dušan Knop and Martin Koutecký

Department of Applied Mathematics (KAM),
Charles University in Prague, Czech Republic.

{knop, koutecky}@kam.mff.cuni.cz

Abstract. Scheduling problems are fundamental in combinatorial optimization. Much work has been
done on approximation algorithms for NP-hard cases, but relatively little is known about exact solutions
when some part of the input is a fixed parameter. In 2014, Mnich and Wiese initiated a systematic
study in this direction.

In this paper we continue this study and show that several additional cases of fundamental scheduling
problems are fixed parameter tractable for some natural parameters. Our main tool is n-fold integer
programming, a recent variable dimension technique which we believe to be highly relevant for the
parameterized complexity community. This paper serves to showcase and highlight this technique.

Specifically, we show the following four scheduling problems to be fixed-parameter tractable, where
pmax is the maximum processing time of a job and wmax is the maximum weight of a job:

– Makespan minimization on uniformly related machines (Q||Cmax) parameterized by pmax,

– Makespan minimization on unrelated machines (R||Cmax) parameterized by pmax and the number
of kinds of machines (defined later),

– Sum of weighted completion times minimization on unrelated machines (R||
∑
wjCj) parameterized

by pmax + wmax and the number of kinds of machines,

– The same problem, R||
∑
wjCj , parameterized by the number of distinct job times and the number

of machines.

1 Introduction

Scheduling problems are one of the fundamental classes of problems in combinatorial optimization since 1960s
[1,24,30] and many variants of scheduling turn out to be NP-hard. In response to this one can either look for
an approximate solution, or restrict the input in a certain way. Approximation algorithms for scheduling have
been an established area of research for a long time now [24]. On the other hand, parameterizing the input
in order to obtain exact results has not been studied much before. We say that a problem P with input of
size n is fixed-parameter tractable (FPT) with respect to parameter k if there exists a computable function f
which does not depend on n and an algorithm solving P with running time f(k) poly(n); we call an algorithm
with this running time FPT algorithm. Regarding scheduling, Mnich and Wiese [27] have recently initiated
a systematic study of the relationship of various scheduling problems and their parameterizations, proving
both positive and negative results. In this paper we continue in this direction, examining three additional
fundamental scheduling problems and their parameterizations, and devising FPT algorithms for them.

However, our goal is not merely to prove new positive results. In their work, Mnich and Wiese rely on
mathematical programming techniques in fixed dimension, which have been introduced in 1983 by Lenstra [25]
and significantly extended in 2000 by Khachiyan and Porkolab [22]. These techniques are by now well
established in the FPT community, even though the power of the latter extension of Khachiyan and Porkolab
has not been fully utilized yet, as we will discuss further on. Independently of this, a new theory of variable
dimension optimization has been developed in the past 15 years; see Onn’s book [28]. A breakthrough
result is an FPT algorithm for the so-called n-fold integer programming (n-fold IP) by Hemmecke, Onn
and Romanchuk [16]. In contrast to the fixed dimension techniques, n-fold IP is not yet established as an
indispensable part of an FPT researchers toolbox. In this paper we would like to help change that.

? This research was partially supported by the project 14-10003S of GA ČR and project 1784214 GA UK.

ar
X

iv
:1

60
3.

02
61

1v
2

 [
cs

.D
S]

 1
4

Fe
b

20
17

Let us now introduce n-fold IP. Given nt-dimensional integer vectors b,u, l,w, n-fold integer program-
ming (n-fold IP) is the following problem in variable dimension nt:

min
{

wx : A(n)x = b , l ≤ x ≤ u , x ∈ Znt
}
, (1)

where

A(n) :=


A1 A1 · · · A1

A2 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · A2


is an (r + ns) × nt matrix with A1 an r × t matrix and A2 an s × t matrix. Let a be the biggest absolute
value of a number in A(n). The vector x is naturally partitioned into n bricks of size t, that is, we index it
as x = (x11, x

1
2, . . . , x

1
t , . . . , x

n
1 , . . . , x

n
t). As such, n-fold IP is best suited for multi-index problems whose IP

formulation has variables indexed by [n] × [l1] × · · · × [lk] for some integers n, l1, . . . , lk such that l1, . . . , lk
are fixed parameters and only n is variable.

Hemmecke, Onn and Romanchuk [16] prove that there is an FPT algorithm solving problem (1) with
parameters r, s, t and a. We will state and extend their result together with further observations in Section 2.1

1.1 Our contribution

We consider three non-preemptive scheduling models of increasing generality: parallel identical, uniformly
related and unrelated machines (in the standard notation [24] denoted by P,Q and R, respectively), and the
two most common objective functions: minimizing makespan and sum of weighted completion times (denoted
Cmax and

∑
wjCj , respectively).

For identical machines, the problem consists of a set of n jobs J = {J1, . . . , Jn} and m machines M =
{M1, . . . ,Mm}, and each job Jj has a processing time pj ∈ N. For uniformly related machines, we additionally
have for each machine Mi its speed si ∈ N, such that processing job Jj on machine Mi takes time pj/si. For
unrelated machines, we have for each job Jj an m-dimensional vector p = (p1j , . . . , p

m
j), pij ∈ N∪{∞} for all i,

such that processing job Jj on machine Mi takes time pij (in case pij =∞, Jj cannot be executed on Mi). We
also consider a restricted variant of the unrelated machines model where there are K kinds of machines and
the vector of processing times for a job Jj is given with respect to kinds of machines: p = (p1j , . . . , p

K
j), such

that processing Jj on machine Mi of kind k takes time pkj . Additionally, for the sum of weighted completion
times objective, we are given for each job Jj its weight wj ∈ N.

A schedule is an assignment of jobs to machines and times, such that every machine is executing at most
one job at any time. For a job Jj we denote by Cj its completion time, that is, the time Jj finishes. In
makespan minimization, the goal is to minimize Cmax = maxJj∈J Cj . When minimizing the sum of weighted
completion times, the goal is to minimize

∑
Jj∈J wjCj . For example, the problem of minimizing makespan

in the identical machines model is denoted P ||Cmax.
The parameters we consider are the following:

– pmax: the maximum processing time of any job,
– wmax: the maximum weight of any job,
– m: the number of machines,
– θ: the number of distinct job processing times and weights (in case of the

∑
wjCj objective); note that

θ generalizes parameter pmax,
– K: the number of kinds of machines (defined above).

In all of the cases we consider, we use such a combination of parameters that the number Θ of distinct job
types is bounded, where jobs of a given type are indistinguishable from each other. This means that the set
of jobs J on input can be given compactly by specifying integers n1, . . . , nΘ with n = n1 + · · ·+nΘ, such that

2

nj denotes the number of jobs of type j that are to be scheduled. Modeling our terminology after Onn [29],
we call a problem huge when the numbers nj on input are given in binary. For example, the Cutting Stock
problem can be seen as the huge variant of the Bin Packing problem. All of our results work for the huge
variant.

We show that:

Theorem 1. The following scheduling problems are FPT with respect to parameter Θ as defined below and
solvable in time ΘO(Θ2)nO(1), where

1. Q||Cmax: Θ = pmax
2. R||Cmax: Θ = pKmax
3. R||

∑
wjCj: Θ = (max{pmax, wmax})K

Theorem 2. R||
∑
wjCj is FPT parameterized by Θ = mθm and solvable in time ΘO(Θ)nO(1).

Note that part (1) of Theorem 1 for the easier P ||Cmax problem was already shown by Mnich and
Wiese [27]. However, our approach is substantially different and more straightforward, as demonstrated by the
immediate extension to Q||Cmax. Also, our result only has a single-exponential dependence on the parameter,
unlike the double-exponential dependence of Mnich and Wiese. Thus, Theorem 1 serves to highlight the
usefulness of n-fold integer programming in parameterized complexity. Theorem 2 differs as it is proved
using the well known fixed dimension techniques of Khachiyan and Porkolab [22].

In order to prove part (3) of Theorem 1 we use an n-fold IP formulation and optimize a separable convex
function over it. However, the algorithm of Hemmecke et al. [16] only works for linear and certain restricted
separable convex objectives. Thus, using the ideas of Hemmecke, Köppe and Weismantel [15], we extend the
previous result to optimizing any separable convex function.

We complement our positive findings by two hardness results:

Theorem 3. P ||Cmax and P ||
∑
wjCj is W[1]-hard when parameterized by m, even when job processing

times and weights are given in unary.

1.2 Related work

We give a brief summary of known results related to scheduling and parameterized complexity. Many more
results can be found in surveys on this topic (e.g. [24]). Note that these surveys focus on NP-hardness
results and polynomial and approximation algorithms. There were several attempts to introduce scheduling
problems to the FPT community. It started with the pioneering work of Bodlaender and Fellows [8] for the
precedence constrained scheduling and continued (after nearly 10 years) with the first FPT algorithm of
Fellows and McCartin [11]. A recent result of van Bevern et al. [3] resolves a question of Mnich and Wiese by
showing that makespan minimization with precedence constraints P |prec|Cmax is W[2]-hard. Marx [10,26]
also highlighted the importance of scheduling in the parameterized setting.

Many other settings are now popular in the scheduling community. These include Open Shop, where we
are given for each job J a bunch of tasks T J1 , T

J
2 , . . . , T

J
k with associated machines MJ

1 ,M
J
2 , . . . ,M

J
k to be

completed in the natural order (that is T Ji has to finish before T Ji+1 starts to be processed) – see related
work of van Bevern and Pyatkin [6] and Kononov et al. [23]. In Two agent scheduling there are two agents
competing for one machine to schedule their respective jobs within each agents budget. Hermelin et al. [17]
showed that if one agent has only k jobs and the other agent has jobs with unit processing times then the
problem admits an FPT algorithm with parameter k. Halldórsson and Karlsson [14], followed by work of
van Bevern et al. [4,5] investigate interval scheduling (or job interval selection) in which each job has several
time slots in which it may be processed and the task is to schedule as many jobs as possible.

We now turn our attention towards more classical models of scheduling. A summary of what follows can
be found in Table 1.

3

Makespan and identical machines – P ||Cmax Most importantly, Mnich and Wiese [27] show that there is
an FPT algorithm for this problem when parameterized by pmax. A remarkable result of Jansen et al. [21]
shows that the Unary Bin Packing problem is W[1]-hard when parameterized by the number of bins. This
immediately implies the W[1]-hardness of P ||Cmax parameterized by m even when pmax is given in unary,
and with some effort also implies the hardness of P ||

∑
wjCj with parameter m when pmax and wmax are

given in unary, as we show in Section 3.

Makespan and unrelated machines – R||Cmax Asahiro et al. [2] show that the problem R||Cmax is strongly
NP-hard already for restricted assignment when there is a number pj for each job such that for each machine
pij ∈ {pj ,∞} and all pj ∈ {1, 2} and for every job there are exactly two machines where it can run. Mnich
and Wiese [27] proved that the problem is in FPT with parameters θ and m.

Sum of weighted completion times and unrelated machines – R||
∑
wjCj Surprisingly, in the unweighted

case, R||
∑
Cj turns out to be solvable in polynomial time [9,20]. Preemption (R|pmtn|

∑
Cj) makes the

problem strongly NP-hard [31]. The weighted case R||
∑
wjCj is strongly NP-hard [12, Problem SS13].

Problem n m pmax θ Complexity

P ||Cmax

unary unary unary — NP-hard [21]

unary binary param. — FPT [27], 22O(p2max log pmax)

unary param. unary — W[1]-hard [21]

Q||Cmax binary unary param. — FPT [*], 2O(p2max log pmax)

R||Cmax

binary param. — param. FPT [27]

unary unary — constant NP-hard [2]

binary constant — binary NP-hard

binary unary — param. FPT with K [*]

R||
∑
wjCj

binary unary param. — FPT with wmax,K [*]

binary param. — param. FPT [*]

Table 1: A summary of the complexity results we mention. The results contained in this paper are marked
with [*].

2 Preliminaries

For a positive integer n, we denote [n] = {1, 2, . . . n} and 〈n〉 = dlog2(n)e the length of binary encoding of
n. We write vectors in bold such as b = (b1, . . . , bn). By 〈b〉 we denote the length of encoding of b which
is
∑n
i=1〈bi〉; similarly for matrices. Let x = (x1, . . . , xn). A function f : Rn → R is separable convex if it

can be written as f(x) =
∑n
i=1 fi(xi) such that fi is univariate convex for all 1 ≤ i ≤ n. Given a function

f , a comparison oracle, queried on two vectors x,y, asserts whether or not f(x) ≤ f(y). Time complexity
measures the number of arithmetic operations and oracle queries.

2.1 N-fold Integer Programming

Recall the definition of the n-fold IP problem (1). Observe that in an n-fold IP, every equality ax = b
of A(n)x = b is of one of two kinds. Either a = (α,α, . . . ,α) corresponds to a certain row α of A1

repeated n times, meaning that aji = αi for all 1 ≤ j ≤ n; we call this equality globally uniform. Or,
a = (0, . . . ,0,α,0, . . . ,0), corresponding to kt zeros, a certain row α of A2, and (n − k − 1)t zeros, such
that there also must exist n − 1 other equalities of this form which have the same coefficients α on the
remaining n − 1 bricks and zeros elsewhere. We call this kind of constraint locally uniform. Thus, given an

4

IP in dimension nt, we can prove that it is an n-fold IP by showing that every equality is either globally
uniform or locally uniform.

Let L := 〈a,b, l,u,w〉 be the length of the input. The first key result we use is the following:

Theorem 4. ([16, Theorem 6.1]) For any fixed r, s and t, there is an algorithm that, given n, a, (r, s)× t,
matrices A1 and A2 of appropriate dimensions with all entries bounded by a in absolute value, b, l,u, and
w, solves problem (1) in time O(a3t(rs+st+r+s)n3L).

In other words, if r, s, t and a are parameters and A(n),b, l,u,w are input, the n-Fold IP problem can
be solved in FPT time.

2.2 Separable convex minimization

We also need a result regarding minimization of separable convex function. Given a separable convex function
f , we consider integer programs of the form:

min
{
f(x) : A(n)x = b , l ≤ x ≤ u , x ∈ Znt

}
. (2)

Hemmecke, Onn and Romanchuk prove that:

Theorem 5. ([16, Theorem 4.1]) For matrices A1 and A2 of appropriate dimensions, there is an algorithm
that, given n, b, l,u, separable convex function f presented by a comparison oracle, and a feasible point
x in the program (2), either asserts that x is optimal or finds an augmenting step g for x which satisfies
f(x + g) < f(x) in linear time O(n).

In particular, if we are able to find an initial solution x̂ and guarantee that the optimum x∗ is near, that
is, ||x̂− x∗||∞ ≤ N for some N ∈ N, applying Theorem 5 at most nN times will reach the optimum.

Under suitable assumptions on the function f , the continuous optimum x̂ of Problem 2 can be found
in polynomial time using the ellipsoid method or an interior point method. The key insight of Hemmecke,
Köppe and Weismantel [15] is adapting a proximity technique of Hochbaum and Shantikumar [19] for the
context of Graver bases:

Theorem 6. ([15, Theorem 3.14]) Let x̂ be an optimal solution of the continuous relaxation of (2),

min
{
f(x) : A(n)x = b , l ≤ x ≤ u , x ∈ Rnt

}
.

Then there exists an optimal solution x∗ of the integer optimization problem (2) with

||x̂− x∗||∞ ≤ n ·max{||v||∞ | v ∈ G(A)} .

Here, G(A) is the Graver basis of the bimatrix A, and the quantity max{||v||∞ | v ∈ G(A)} is bounded by
a t · ar+s ([28, Lemma 3.20]). Hence, n · ||x̂− x∗||∞ ≤ n2 · t · ar+s applications of Theorem 5 (with x = bx̂c)
reach the integer optimum:

Theorem 7. For any fixed r, s and t, there is an algorithm that, given n, a, (r, s)× t, matrices A1 and A2

of appropriate dimensions with all entries bounded by a in absolute value, b, l,u, and w, solves problem (2)
in time O(a3t(rs+st+r+s)n3L).

5

Job 1

Job 2

Job 3

3 6 10

1

4

5

Job 2

Job 1

Job 3

3 6 10

1

2

5

Fig. 1: An example of a 2D Gantt chart with three jobs of lengths 3, 3 and 4 and weights 1, 3 and 1,
respectively. To the left is one possible ordering, to the right is the ordering given by Smith’s rule, producing
an optimal schedule (minimizing the gray area).

2.3 Convex minimization in fixed dimension

To prove Theorem 2 we formulate an integer linear program in fixed dimension and minimize a convex
function over it:

Theorem 8. (Khachiyan and Porkolab [22]) Minimizing a quasiconvex function over a semialgebraic convex
set defined by k polynomials in dimension p is FPT with respect to k and p.

In order not to delve into unnecessary details, let us say that a quasiconvex function is a generalization
of a convex function, and semialgebraic convex sets are a generalization of convex sets, containing e.g. the
feasible regions of semidefinite programs (SDPs); see the book by Blekherman et al. [7]. There are less general
variants of this result which attain better running times, e.g. by Hildebrand and Köppe [18]. Since our aim
is to simply prove fixed-parameter tractability, we choose to state the most general result.

Note that we are not aware of an application of Theorem 8 which would use the fact that one can
optimize over a region more general than the integer hull of a polyhedron (i.e., a region given by non-linear
convex constraints). There is a “linearization trick” which is widely used (including by Mnich and Wiese): a
convex constraint ax ≤ f(xi) whose domain is bounded by some number N given in unary can be rewritten
as N linear constraints describing the piecewise linear approximation of ax ≤ f(xi) which is exact on the
N integers of its domain. Then, the feasible region is the integer hull of a polyhedron. To the best of our
knowledge, there is no result whose feasible region is given by a set of constraints that cannot be “linearized”
as described above. So both us and Mnich and Wiese [27] only need this result because of its generality in
terms of the objective function, not the feasible region. It is an interesting open problem to find an application
of Theorem 8 whose feasible region is given by, for example, a semidefinite program in fixed dimension.

2.4 Smith’s rule – structure of solutions when minimizing
∑
wjCj

Here we make a few basic observations about the structure of (optimal) solutions in the problem R||
∑
wjCj .

To do so, we utilize a useful way of visualizing the objective function
∑
wjCj called two-dimensional Gantt

charts (2D Gantt charts), which was introduced by Goemans and Williamson [13].
Let us first introduce the following notation. Fix a machine Mi and assume that the set of jobs scheduled

to run on Mi is given, denoted J i. Whenever the index of a machine i is clear from context, we omit it.
For any set of jobs S ⊆ J let w(S) =

∑
Jj∈S wj and p(S) =

∑
Jj∈S pj . A 2D Gantt chart starts at point

(0, w(J i)) and ends at (p(J i), 0). Each job Jj ∈ J i is represented by a rectangle of length pj and height wj
whose position is defined by a startpoint and an endpoint. The startpoint (t, w) of a job is the endpoint of
a previous job (or (0, w(J i)) for the first job) while its endpoint is (t+ pj , w −wj). The value

∑
Jj∈Ji wjCj

is then simply the area beneath the upper sides of the rectangles; see Figure 1.
For

∑
wjCj minimization on one machine with no precedence constraints (no restrictions on the order

of the jobs) there is a simple observation about the structure of an optimal schedule:

6

2 6 12 15

1

4

8

12

5

7

10

Fig. 2: An alternate way of computing the objective function
∑
Jj∈Ji wjCj . In this examples there are fol-

lowing jobs:

– 1 job with processing time 2 and weight 4,
– 2 jobs with processing time 2 and weight 2,
– 3 jobs with processing time 2 and weight 1,
– 1 job with processing time 3 and weight 1.

Lemma 1. (Smith’s rule [13]) Given a set of jobs J i, a schedule minimizing
∑
Jj∈Ji wjCj is given by

ordering the jobs by non-increasing ρi(j) = wj/p
i
j.

Since the ratios ρi(j) correspond to slopes of the rectangles in a 2D Gantt chart, Smith’s rule implies that
the chart of an optimal schedule will have slopes which form a piecewise linear convex function. Goemans
and Williams then go on to observe that for such a chart there is an alternate way of computing its area
based on splitting it into triangles; see Figure 2. That leads us to this lemma:

Lemma 2. Given jobs J i = {J1, . . . , Jl} scheduled to run on machine Mi such that ρ(j) ≥ ρ(j + 1) for all
1 ≤ i ≤ l − 1, the optimal schedule has value

l∑
j=1

(
1

2
p({J1, . . . , Jj})2(ρ(j)− ρ(j + 1)) +

1

2
wjpj).

Proof. Given the set J i, the optimal schedule on the machine Mi is determined according to Smith’s rule.
It is possible to divide the area as can be seen on Figure 2. Note that the gray area is determined by the set
of jobs J i and in fact can be computed just from the knowledge of J i as 1

2wjpj for each job Jj ∈ J i. This
results in the linear term in the statement.

It remains to compute the area under the bold line (orange area in color printing) of Figure 2 – i.e. the
area under the piecewise linear function (again determined by the observed structure of the solution). We
divide the area into triangles and compute the total area as a sum of those.

For a job Jj we compute the contribution of the job as the associated area. The total area can be expressed
as a difference of area of two impedance triangles – see Figure 3 for illustration. The length of the common
ordinate parallel to processing time axis is p({J1, . . . , Jj}), so it remains to establish the height b of the two
triangles. We express it with the help of a tangent rule as b = a tanϕ (and b′ = a tanϕ)

7

6 12

3

6

9

ϕ

ϕ

ϕ′
b

b′

a

Fig. 3: It is possible to compute the area of the lighter gray (green in color printing) rectangle as a difference
between the area of an auxiliary triangle (1

2a · b
′ in the figure) and the dark gray (red in color printing)

triangle. Note that it is possible to compute b, b′ from the value of a and the tangent of ϕ,ϕ′.

It is straightforward to express the total area contribution of the job Jj as

Jj =
1

2
p
(
{J1, . . . , Jj}

)
· (b′ − b)

=
1

2
p
(
{J1, . . . , Jj}

)
· p
(
{J1, . . . , Jj}

)(
ρ(j)− ρ(j + 1)

)
=

1

2
p
(
{J1, . . . , Jj}

)2
(ρ(j)− ρ(j + 1)).

(3)

Summing over all jobs in J i finishes the proof.
ut

In our setup the set J i will be given by integers xi1, . . . , x
i
Θ representing how many jobs of each type are

scheduled to run on machine Mi. Observe that for each type 1 ≤ j ≤ Θ, jobs of type j have identical slope
ρ(j) and thus correspond to a single triangle in the chart. We have the following corollary:

Corollary 1. Given integers xi1, . . . , x
i
Θ representing numbers of jobs of each type scheduled to run on ma-

chine Mi and a permutation πi : [Θ] → [Θ] such that ρi(πi(j)) ≥ ρi(πi(j + 1)) for all 1 ≤ j ≤ Θ − 1, the

optimal schedule has value
∑Θ
i=1(1

2 (zij)
2 + 1

2x
i
jp
i
jwj), where zij =

∑j
l=1 p

i
lx
i
l.

3 W[1]-hardness of unary P ||Cmax and P ||
∑
wjCj

The Bin Packing problem asks whether k bins of size B suffice to contain a set of n items represented
by integers o1, . . . , on. It is straightforward from the 2-Partition problem that this is NP-complete when
o1, . . . , on are large numbers given in binary. Remarkably, Jansen et al. [21] prove that even when the
numbers are given in unary (i.e., assume maxi oi ≤ n), there is likely no f(k)nO(1) algorithm as the problem
is W[1]-hard parameterized by k. This hardness obviously translates to makespan minimization: deciding
whether there is a schedule of jobs o1, . . . , on on k machines with Cmax = B is equivalent to deciding the
aforementioned Unary Bin Packing problem.

To the best of our knowledge, the analogous question regarding the complexity of P ||
∑
wjCj parame-

terized by the number of machines m was not yet considered. We prove that it is W[1]-hard by once again
reducing Unary Bin Packing to it.

Jansen et al. note that their hardness result stands even for tight instances of Unary Bin Packing,
that is, instances where

∑
i oi = kB. Given a tight instance of Unary Bin Packing, construct an instance

of P ||
∑
wjCj consisting of k machines and n jobs with pj = wj = oj for j = 1, . . . , n. Let J` and Ĉ` for

` = 1, . . . , k denote the set of jobs scheduled on machine ` and the completion time of machine `, respectively.

8

Because the ratio
wj

pj
is identical for all jobs, the ordering of jobs on a each machine is irrelevant. Thus, the

contribution of a machine ` to the objective function is

1

2
Ĉ2
` +

∑
j∈J`

p2j
2

.

Summing over all machines, we get

(∑
j∈J`

p2j
2

)
+
(k∑
`=1

1

2
Ĉ2
`

)
.

We argue that a schedule with cost kB2

2 + kB exists if and only if the original Unary Bin Packing

instance is a “yes” instance. Observe that there is only one schedule of this cost, namely one where Ĉ` = B for

all ` = 1, . . . , k. Let ∆` = Ĉ` −B for all ` = 1, . . . , k. Disregarding the term
∑
j∈J`

p2j
2 which is independent

of the schedule, the contribution becomes

k∑
`=1

1

2
(B +∆`)

2 =

k∑
`=1

1

2
(B2 + 2∆`B +∆2

`) .

Since
∑
`∆` = 0,

∑
` 2∆`B = 0. Thus

∑
`∆

2
` = 0 exactly when ∆` = 0 for all `, that is, when Ĉ` = B

for all `. That concludes the proof of Theorem 3.

4 FPT results

4.1 Warmup: P ||Cmax and Q||Cmax parameterized by pmax

In this section we show that P ||Cmax and its generalization Q||Cmax is FPT parameterized by pmax.
Denote Θ := pmax. We say that a job of length j is of type j. On input we have n jobs of at most Θ types,

given as numbers n1, . . . nΘ encoding the number of jobs of given type (in binary). For every machine i we
have variables xi1, . . . , x

i
Θ; in the solution the interpretation of xij is “how many jobs of type j are scheduled

on machine i”. Let us fix a time T ∈ N; the IP we will formulate will be feasible if there is a schedule with
Cmax ≤ T .

To assure that each job is scheduled on some machine, we state these globally uniform constraints:

m∑
i=1

xij = nj ∀1 ≤ j ≤ Θ. (4)

To assure that, for every machine Mi, 1 ≤ i ≤ m, the lengths of jobs scheduled on Mi sum up to at most
T , we state a locally uniform constraint:

Θ∑
j=1

jxij ≤ T (5)

(Note here that using inequalities instead of equations does not cause problems: we can simply introduce

a slack variable for every inequality:
∑Θ
j=1 jx

i
j + xis = T, xis ≥ 0; it is also possible to add a suitable number

of unit-processing time jobs and work with equalities directly; similarly in the following.)
Clearly if this program is feasible, then there exists a schedule with Cmax ≤ T . Finding minimum T can

be then done in polynomially many steps by binary search. Thus we want to show that checking feasibility
is FPT by applying Theorem 4.

To apply Theorem 4, we need to bound the values r, s, t and a. Clearly the brick size is t = Θ, the number
of globally uniform constraints is r = Θ and the number of locally uniform constraints per brick is s = 1.
Finally, the largest coefficient is a = Θ.

9

Q||Cmax Now we are given speeds si for every machine, such that executing a job with processing time j
takes time j/si. The globally uniform constraints (4) are the same, but the locally uniform constraints (5)
now become:

Θ∑
j=1

jxij ≤ siT. (6)

Observe that only the right hand side differs for every machine. This finishes the proof of part (1) of
Theorem 1.

4.2 R||Cmax parameterized by pmax and K

Now we turn to the unrelated machines model. Observe that with parameters pmax and the number of kinds
of machines K, there are at most Θ = (pmax + 1)K possible vectors pi of processing times with respect to
kinds of machines, which we call types, and each job is of a certain type. The input is then again given (in
binary) by Θ integers n1, . . . , nΘ specifying the number of jobs of each type.

As before, we will describe an n-fold IP solving the problem. We have nΘ variables xij with the same
interpretation as above. The globally uniform constraints are the same as before, (4).

In the previous examples the locally uniform constraints were used to specify that the jobs assigned
to each machine finish by time T. However, now we need to specify a different constraint for each kind of
machine, which might seem hard to do “uniformly”. Fortunately, because the number of kinds of machines is
bounded, we can actually specify all constraints simultaneously and make all but “the right one” irrelevant
by differing right hand side.

Formally, let B be some number bigger than npmax, then for machine Mi which is of kind k we have
locally uniform constraints

Θ∑
j=1

pk
′

j x
k′

j ≤ B ∀1 ≤ k′ 6= k ≤ K,

Θ∑
j=1

pkjx
k
j ≤ T.

In the above constraints whenever pkj =∞ we replace it by zero and forbid the job to be run on this kind of
machine by specifying appropriate upper bounds:

xij ≤ nj ∀1 ≤ k ≤ K, pkj ∈ [pmax] (7)

xij ≤ 0 ∀1 ≤ k ≤ K, pkj =∞, (8)

xij ≥ 0 ∀i, j. (9)

Observe that the constraints above are indeed locally uniform – they are identical for every machine up to
the right hand side. Thus we have defined an n-fold IP, which is feasible if there is a schedule with Cmax ≤ T .
It remains to observe that all of r, s, t and a are bounded by our choice of parameters pmax and K: clearly
t = Θ, r = Θ, s = K and a = pmax. Using Theorem 4 concludes the proof of part (2) of Theorem 1.

4.3 R||
∑
wjCj parameterized by pmax + wmax and K

Here we turn our attention to the
∑
wjCj objective.

Recall what follows from Corollary 1: we have shown that, given integers xi1, . . . , x
i
Θ representing numbers

of jobs of each type to be scheduled on machine Mi, the contribution of Mi to the objective function is
f i(xi, zi) =

∑Θ
j=1(1

2 (zij)
2(ρi(j) − ρi(j + 1)) + 1

2x
i
jp
i
jwj) where zij =

∑j
l=1 p

i
lx
i
l and πi : [Θ] → [Θ] is a

permutation such that ρi(πi(j)) ≥ ρi(πi(j + 1)) for all j ∈ [Θ − 1]. Observe that f i is separable convex
and thus also f =

∑
i f

i. Our goal now is to once again formulate an n-fold IP, however this time we need

10

to introduce new variables zij,k, for j ∈ [Θ], k ∈ [K] and i ∈ [m]. For a machine Mi of kind k, we want

zij = zij,k, so that we can use the formulation of f which we just stated. Notice that we are introducing many

“unnecessary” variables zij,k for kinds k′ 6= k. This is in order to have a uniform set of local constraints.
The globally uniform constraints (4) stay the same. The locally uniform constraints serve to project the

brick xi to the variables zij,k, with permutations πk as defined above:

j∑
l=1

xilp
i
πk(l)

= zij,k ∀j ∈ [Θ],∀k ∈ [K],∀i ∈ [m].

It is in the objective function where we distinguish which zij,k are relevant for which machine. In the

following, let zij = zij,k if machine Mi is of kind k:

f(x, z) =

m∑
i=1

Θ∑
j=1

(
1

2
(zij)

2(ρi(j)− ρi(j + 1)) +
1

2
xijp

i
jwj).

Lower and upper bounds (7)-(9) stay as before. Applying Theorem 7 concludes the proof of part (3) of
Theorem 1.

4.4 R||
∑
wjCj parameterized by m and θ

Finally, we examine the same scenario as before, but this time we restrict the number of machines m to be a
parameter, but, in turn, relax the restriction from pmax, wmax to θ. We use the same ILP formulation which
Mnich and Wiese used to show that R||Cmax is FPT with respect to m and θ. However, the careful analysis
in Corollary 1 was needed to show that the objective function is convex in order to apply Theorem 8.

Let Θ ≤ θm be the number of distinct types of jobs. We have variables xij , j ∈ [Θ], i ∈ [m] and
permutations πi with the same meaning as above. Notice that the following can be seen as a subset of the
previous n-fold IP:

minimize

f(x, z) =

m∑
i=1

Θ∑
j=1

(
1

2
(zij)

2(ρi(j)−ρi(j + 1)) +
1

2
xijp

i
jwj

)
subject to
m∑
i=1

xij = nj ∀j ∈ [Θ]

j∑
l=1

xilp
i
πi(l)

= zij ∀j ∈ [Θ],∀i ∈ [m]

In order to apply Theorem 8, we observe that both the number of variables 2Θm and the number of
constraints Θ+Θm are fixed parameters, and that the objective function f is convex as shown in the previous
subsection. This concludes the proof of Theorem 2.

5 Conclusions

Although much is known about approximating scheduling problem, little is known from the parameterized
complexity point of view about the most basic problems. The purpose of this paper is twofold. The first is
to show new FPT algorithms for some scheduling problems. The second is to demonstrate the use of n-fold
integer programming, a recent and powerful variable dimension technique. We hope to encourage research
in both directions. To facilitate this research, we point out the following open problems:

11

– Minimizing weighted flow time P |rj |
∑
wjFj parameterized by pmax + wmax.

– P ||Cmax parameterized by θ instead of pmax.
– R|pmtn|

∑
Cj parameterized by m and pmax; this is justified by the problem being strongly NP-hard [31],

so parameterizing by pmax is not enough.
– P ||Cmax parameterized by pmax with both m and n given in binary; this might be possible using the

recently developed result for huge n-fold IPs due to Onn and Sarrabezolles [29].
– Multi-agent scheduling was studied by Hermelin et al. [17]; what results can be obtained by applying
n-fold IP?

– Turning our attention to developing the techniques we use, we ask if 4-block n-fold IP (a generalization
of n-fold IP) is FPT or W[1]-hard; only an XP algorithm is known so far [15].

– We are also interested in further applications of n-fold IP and quasiconvex minimization over convex sets
in fixed dimension.

Acknowledgements. We would like to thank René van Bevern for pointing us to much related work.

References

1. Allahverdi, A.: The third comprehensive survey on scheduling problems with setup times/costs. European Journal
of Operational Research 246(2), 345–378 (2015). DOI 10.1016/j.ejor.2015.04.004

2. Asahiro, Y., Jansson, J., Miyano, E., Ono, H., Zenmyo, K.: Approximation algorithms for the graph orientation
minimizing the maximum weighted outdegree. In: M.Y. Kao, X.Y. Li (eds.) AAIM, LNCS, vol. 4508, pp. 167–177.
Springer (2007). URL http://dx.doi.org/10.1007/978-3-540-72870-2_16

3. van Bevern, R., Bredereck, R., Bulteau, L., Komusiewicz, C., Talmon, N., Woeginger, G.J.: Precedence-
constrained scheduling problems parameterized by partial order width. CoRR abs/1605.00901 (2016). URL
http://arxiv.org/abs/1605.00901

4. van Bevern, R., Mnich, M., Niedermeier, R., Weller, M.: Interval scheduling and colorful independent sets.
J. Scheduling 18(5), 449–469 (2015). DOI 10.1007/s10951-014-0398-5. URL http://dx.doi.org/10.1007/

s10951-014-0398-5

5. van Bevern, R., Niedermeier, R., Suchý, O.: A parameterized complexity view on non-preemptively scheduling
interval-constrained jobs: few machines, small looseness, and small slack. CoRR abs/1508.01657 (2015). URL
http://arxiv.org/abs/1508.01657

6. van Bevern, R., Pyatkin, A.V.: Completing partial schedules for open shop with unit processing times and routing.
In: CSR 2016, pp. 73–87 (2016). DOI doi:10.1007/978-3-319-34171-2\ 6. URL http://dx.doi.org/10.1007/

978-3-319-34171-2_6

7. Blekherman, G., Parrilo, P.A., Thomas, R.R.: Semidefinite Optimization and Convex Algebraic Geometry. SIAM
(2012)

8. Bodlaender, H.L., Fellows, M.R.: W[2]-hardness of precedence constrained k-processor scheduling. Oper.
Res. Lett. 18(2), 93–97 (1995). DOI 10.1016/0167-6377(95)00031-9. URL http://dx.doi.org/10.1016/

0167-6377(95)00031-9

9. Bruno, J., Coffman Jr., E.G., Sethi, R.: Scheduling independent tasks to reduce mean finishing time. Commun.
ACM 17(7), 382–387 (1974). DOI 10.1145/361011.361064. URL http://doi.acm.org/10.1145/361011.361064

10. Demaine, E.D., Hajiaghayi, M., Marx, D. (eds.): Parameterized complexity and approximation algorithms, 13.12.
- 17.12.2009, Dagstuhl Seminar Proceedings, vol. 09511. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
Germany (2009). URL http://drops.dagstuhl.de/portals/09511/

11. Fellows, M.R., McCartin, C.: On the parametric complexity of schedules to minimize tardy tasks. Theor. Com-
put. Sci. 2(298), 317–324 (2003). DOI 10.1016/S0304-3975(02)00811-3. URL http://dx.doi.org/10.1016/

S0304-3975(02)00811-3

12. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of np-completeness (1979)

13. Goemans, M., Williamson, D.P.: Two-dimensional Gantt charts and a scheduling algorithm of Lawler. SIAM
Journal on Disc. Mat. 13(3), 281–294 (2000). DOI http://dx.doi.org/10.1137/S0895480197330254. URL http:

//epubs.siam.org/sam-bin/dbq/article/33025

14. Halldórsson, M.M., Karlsson, R.K.: Strip graphs: Recognition and scheduling. In: WG 2006, pp. 137–146 (2006).
DOI 10.1007/11917496\ 13. URL http://dx.doi.org/10.1007/11917496_13

12

http://dx.doi.org/10.1007/978-3-540-72870-2_16
http://arxiv.org/abs/1605.00901
http://dx.doi.org/10.1007/s10951-014-0398-5
http://dx.doi.org/10.1007/s10951-014-0398-5
http://arxiv.org/abs/1508.01657
http://dx.doi.org/10.1007/978-3-319-34171-2_6
http://dx.doi.org/10.1007/978-3-319-34171-2_6
http://dx.doi.org/10.1016/0167-6377(95)00031-9
http://dx.doi.org/10.1016/0167-6377(95)00031-9
http://doi.acm.org/10.1145/361011.361064
http://drops.dagstuhl.de/portals/09511/
http://dx.doi.org/10.1016/S0304-3975(02)00811-3
http://dx.doi.org/10.1016/S0304-3975(02)00811-3
http://epubs.siam.org/sam-bin/dbq/article/33025
http://epubs.siam.org/sam-bin/dbq/article/33025
http://dx.doi.org/10.1007/11917496_13

15. Hemmecke, R., Köppe, M., Weismantel, R.: Graver basis and proximity techniques for block-structured separable
convex integer minimization problems. Math. Program 145(1-2), 1–18 (2014). URL http://dx.doi.org/10.

1007/s10107-013-0638-z

16. Hemmecke, R., Onn, S., Romanchuk, L.: n-fold integer programming in cubic time. Math. Program 137(1-2),
325–341 (2013). URL http://dx.doi.org/10.1007/s10107-011-0490-y

17. Hermelin, D., Kubitza, J., Shabtay, D., Talmon, N., Woeginger, G.J.: Scheduling two competing agents when one
agent has significantly fewer jobs. In: IPEC 2015, pp. 55–65 (2015). DOI 10.4230/LIPIcs.IPEC.2015.55. URL
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.55

18. Hildebrand, R., Köppe, M.: A new Lenstra-type algorithm for quasiconvex polynomial integer minimization with
complexity 2O(nlogn). Discrete Optimization 10(1), 69–84 (2013)

19. Hochbaum, Shanthikumar: Convex separable optimization is not much harder than linear optimization. JACM:
Journal of the ACM 37 (1990)

20. Horn, W.A.: Technical Note—Minimizing Average Flow Time with Parallel Machines. Operations Research
21(3), 846–847 (1973). DOI 10.1287/opre.21.3.846. URL http://dx.doi.org/10.1287/opre.21.3.846

21. Jansen, K., Kratsch, S., Marx, D., Schlotter, I.: Bin packing with fixed number of bins revisited. Journal of
Computer and System Sciences 79(1), 39–49 (2013). DOI 10.1016/j.jcss.2012.04.004

22. Khachiyan, L., Porkolab, L.: Integer Optimization on Convex Semialgebraic Sets. Discrete & Computational
Geometry 23(2), 207–224 (2000)

23. Kononov, A.V., Sevastyanov, S., Sviridenko, M.: A complete 4-parametric complexity classification of short
shop scheduling problems. J. Scheduling 15(4), 427–446 (2012). DOI 10.1007/s10951-011-0243-z. URL http:

//dx.doi.org/10.1007/s10951-011-0243-z

24. Lawler, E.L., Lenstra, J.K., Kan, A.H.R., Shmoys, D.B.: Sequencing and scheduling: Algorithms and complexity.
Handbooks in operations research and management science 4, 445–522 (1993)

25. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Mathematics of Operations Research
8(4), 538–548 (1983)

26. Marx, D.: Packing and scheduling algorithms for information and communication services (dagstuhl seminar
11091). Dagstuhl Reports 1(2), 67–93 (2011). DOI 10.4230/DagRep.1.2.67. URL http://dx.doi.org/10.4230/

DagRep.1.2.67

27. Mnich, M., Wiese, A.: Scheduling and fixed-parameter tractability. Mathematical Programming 154(1), 533–562
(2014). DOI doi:10.1007/s10107-014-0830-9. URL http://dx.doi.org/10.1007/s10107-014-0830-9

28. Onn, S.: Nonlinear discrete optimization. Zurich Lectures in Advanced Mathematics, European Mathematical
Society (2010)

29. Onn, S., Sarrabezolles, P.: Huge unimodular n-fold programs. SIAM Journal on Discrete Mathematics 29(4),
2277–2283 (2015). DOI http://dx.doi.org/10.1137/151004227

30. Potts, C.N., Strusevich, V.A.: Fifty years of scheduling: a survey of milestones. JORS 60(S1) (2009). DOI
10.1057/jors.2009.2. URL http://dx.doi.org/10.1057/jors.2009.2

31. Sitters, R.: Complexity of preemptive minsum scheduling on unrelated parallel machines. J. Algorithms 57(1),
37–48 (2005). URL http://dx.doi.org/10.1016/j.jalgor.2004.06.011

13

http://dx.doi.org/10.1007/s10107-013-0638-z
http://dx.doi.org/10.1007/s10107-013-0638-z
http://dx.doi.org/10.1007/s10107-011-0490-y
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.55
http://dx.doi.org/10.1287/opre.21.3.846
http://dx.doi.org/10.1007/s10951-011-0243-z
http://dx.doi.org/10.1007/s10951-011-0243-z
http://dx.doi.org/10.4230/DagRep.1.2.67
http://dx.doi.org/10.4230/DagRep.1.2.67
http://dx.doi.org/10.1007/s10107-014-0830-9
http://dx.doi.org/10.1057/jors.2009.2
http://dx.doi.org/10.1016/j.jalgor.2004.06.011

	Scheduling meets n-fold Integer Programming

