
MINIMIZING THE WAITING TIME FOR A ONE-WAY
SHUTTLE SERVICE

LAURENT DAUDET AND FRÉDÉRIC MEUNIER

Abstract. Consider a terminal in which users arrive continuously over a finite period of
time at a variable rate known in advance. A fleet of shuttles has to carry the users over
a fixed trip. What is the shuttle schedule that minimizes their waiting time? This is
the question addressed in the present paper. We propose efficient algorithms for several
variations of this question with proven performance guarantees. The techniques used are
of various types (convex optimization, shortest paths,...). The paper ends with numerical
experiments showing that most of our algorithms behave also well in practice.

1. Introduction

The original motivation of this paper comes from a partnership of the authors with Euro-
tunnel, the company operating the tunnel under the Channel. Eurotunnel is currently facing
an increasing congestion due to the trucks waiting in the terminal before being loaded in the
shuttles. A way to address this issue consists in scheduling the shuttles so that the trucks
do not wait too long in the terminal.

In railway transportation, a traditional point of view considers that the demand can be
smoothed by offering sufficiently enough departures over a day. Timetabling is then guided
by other considerations, such as robustness, maintainability, or rolling stock. For instance,
Swiss, Dutch and German companies usually design periodic timetables, which present many
advantages [6, 9]. The way to optimize this kind of timetables has been the topic of many
researches, initiated by Serafini and Ukovich [15] and by Voorhoeve [16] explicitly in the
railway context, see [10, 12, 13, 14] for further works. In the context of periodic timetables,
a way to adapt the schedules to a demand with strong variations consists in inserting new
departures at peak-hours and deleting departures when the demand is low.

Since the trip of the trucks in the tunnel is a small part of their whole journey, it is
a reasonable approximation to assume that they cannot choose their arrival time in the
terminal. Moreover, increasing the size of the fleet is not always doable in practice (the
shuttles are expensive and the tunnel is used by other vehicles, which limits the maximal
number of shuttle trips over a day). We face thus a different problem than the one addressed
in the aforementioned literature: the demand is assumed to be fixed and nonelastic to the
departures times, and the number of shuttles cannot be adjusted to the demand. Given a
fleet of shuttles and a demand of transportation known in advance, the problem consists in
designing a schedule for the shuttles that minimizes the waiting time of the users. There are
timetabling problems with similar features, see [1, 2, 3, 5, 4, 8] for instance, but these articles
are at a more macroscopic level than what we require to solve our problem. Moreover, in the

Key words and phrases. Convex optimization; scheduling; shortest paths; transportation; waiting time.
1

ar
X

iv
:1

70
6.

01
73

3v
1

 [
m

at
h.

O
C

]
 6

 J
un

 2
01

7

present work, the schedules have to be designed in an offline manner. In a transportation
context, and especially for Eurotunnel, computing the schedule in advance is mandatory.

We study several versions of the problem, mainly according to two features. The first
feature is whether the shuttles are allowed to come back at the terminal after having realized
the trip. The second feature is the objective function. We consider in turn the following two
quantities to be minimized: the maximum waiting time and the average waiting time. The
first objective is perhaps a fairer one regarding the users, while the second one is relevant
for the global efficiency.

It seems that the question we address in the present paper is new. Moreover, it may be
relevant for any situation where a demand, known in advance, has to be processed by batches
and for which we want to minimize the processing time. This kind of situation is often met
in chemical industry. An example whose motivation is very close to ours considers a test to
be performed on samples, which arrive continuously [11]. The test takes a certain amount
of time and can be performed on several samples simultaneously. The question is then to
determine the test schedule that minimizes the processing time.

We propose efficient algorithms for the different versions. “Efficient” here means “theo-
retically efficient”, according to their time complexity and the performance guarantee. It
also means “practically efficient” for almost all cases, as shown by numerical experiments
conducted on real-world instances. It might also be worth noting that, depending on the
version considered, the proof techniques rely on various fields of optimization (convexity,
Karush-Kuhn-Tucker conditions, binary search, domination results, shortest paths in finite
graphs,...).

2. Model

2.1. The problems. We are given a fleet of S shuttles, for which departure times have to
be determined. All shuttles have a capacity C ≥ 0 and are situated in the same loading
terminal at the beginning of the day. The users are infinitesimal and arrive continuously
in the terminal over a finite period of time, modeled as the interval [0, T], following the
cumulative nondecreasing function D : [0, T]→ R+, where D(t) is the total number of users
arrived in the terminal during the interval [0, t]. We assume throughout the paper that
D(T) > 0. The shuttles have to carry the users over a fixed trip.

When the users arrive in the terminal, they enter a queue. This queue closes when all
the users who will leave with the next shuttle have arrived in the queue and users can enter
a new queue only if the previous one is closed (this is how it works at Eurotunnel). When
a queue is closed, the users in that queue can start boarding the shuttle. The process in
illustrated on Figure 1. Loading a shuttle with a total of x users takes a time νx. Note that
setting ν to zero allows to model the case where the users do not have to wait for the last
user before boarding. Even if no users arrive strictly after time T , loading and departures
are allowed after that instant.

Two possibilities are considered regarding the shuttles. Either return is not allowed: once
the shuttles leave, they never come back to the terminal; or it is allowed: once the shuttles
leave, they come back to the terminal after a time equal to π ≥ 0. Two objective functions
to be minimized are considered: the maximum waiting time and the average waiting time.

We have thus four problems:
2

Figure 1. The process of arrival, loading, and departure in the terminal.

• Pmax
no return, which consists of not allowing return and minimizing the maximum waiting

time.
• Pave

no return, which consists of not allowing return and minimizing the average waiting
time.
• Pmax

return, which consists of allowing return and minimizing the maximum waiting time.
• Pave

return, which consists of allowing return and minimizing the average waiting time.

Practical constraints impose that overtake is not possible and thus, when return is allowed,
the departure orders of the shuttles remain the same over the whole period. It is nevertheless
possible to have simultaneous trips. This is an approximation in the case of Eurotunnel (we
neglect the security distance and the length of the shuttles). For other situations, as the
chemical application mentioned in the introduction, it may match what is met in practice.

2.2. The demand. Throughout the paper, we assume that D(·) is upper semicontinuous.
It allows to model discontinuity in the arrival process (batch of users arriving simultane-
ously). Yet, a weaker requirement could lead to mathematical difficulties, e.g., nonexistence
of optimal solutions even for very simple cases.

The pseudo-inverses of D(·), defined by

τ : y ∈ [0, D(T)] 7−→
{

inf {t ∈ [0, T] : D(t) > y} ∈ [0, T] if y < D(T)
T otherwise

and
τ̄ : y ∈ [0, D(T)] 7−→ inf {t ∈ [0, T] : D(t) ≥ y} ∈ [0, T],

play an important role in the paper. Note that they are nondecreasing functions and that
τ(y) ≥ τ̄(y) for all y ∈ [0, D(T)]. Times τ(y) and τ̄(y) are respectively interpreted as the
arrival times of the first user after the y firsts and of the last user of these y firsts. Since
D(·) is upper semicontinuous, we have the following properties, with proofs for sake of
completeness.

3

Lemma 1. We have D(τ(y)) ≥ D(τ̄(y)) ≥ y for every y ∈ [0, D(T)].

Proof. Since D(·) is nondecreasing, the first inequality is a direct consequence of the in-
equality τ(y) ≥ τ̄(y), which is obvious from the definition. To prove the second inequality,
consider (tn) a nonincreasing sequence converging toward τ̄(y) such that D(tn) ≥ y for all
n. By the upper semicontinuity of D(·), we get then D(τ̄(y)) ≥ y. �

Lemma 2. τ(·) is upper semicontinuous and τ̄(·) is lower semicontinuous.

Proof. We first prove that τ(·) is upper semicontinuous. Let α be some real number such
that {y : τ(y) < α} is nonempty and take from it an arbitrary element y0. We want to prove
that {y : τ(y) < α} is open for the induced topology on [0, D(T)]. If y0 = D(T), then this
set is [0, D(T)] and thus open. Otherwise, by the definition of τ(·), we know that there
exists t0 < α such that D(t0) > y0. For any element y in [0, D(t0)), we have τ(y) ≤ t0,
and thus [0, D(t0)) is an open set containing y0 and fully contained in {y : τ(y) < α}. The
set {y : τ(y) < α} is thus an open set of [0, D(T)] for every real number α, which precisely
means that τ(·) is upper semicontinuous.

We prove now that τ̄(·) is lower semicontinuous. Let α be some real number. Consider a
converging sequence (yn) such that τ̄(yn) ≤ α for all n. For every fixed n, there exists thus a
sequence (tn,k) indexed by k such that D(tn,k) ≥ yn and tn,k ≤ α+ 1

k
for all k. Now, consider

the sequence (tn,n). It is such that D(tn,n) ≥ yn and tn,n ≤ α + 1
n

for all n. Since [0, T]
is compact, we can extract a nonincreasing converging subsequence (tn) from the sequence
(tn,n) such that D(tn) converges towards some real number nonsmaller than limn→∞ yn with
tn ≤ α + 1

n
for all n. It implies that τ̄(limn→∞ yn) ≤ α, which means that τ̄(·) is lower

semicontinuous. �

Lemma 3. If D(·) is increasing, then τ(y) = τ̄(y) for every y ∈ [0, D(T)].

Proof. If τ̄(y) = T , then the equality is obvious. We can thus assume that τ̄(y) < T . For
every t > τ̄(y), we have D(t) > D(τ̄(y)) since D(·) is increasing, and Lemma 1 implies that
D(t) > y. By definition of τ(·), we have τ(y) ≤ τ̄(y). The reverse inequality being clear
from the definitions, we get the result. �

2.3. Mathematical model. For the four problems Pmax
no return, Pave

no return, Pmax
return, and Pave

return, a
feasible solution is characterized by two nondecreasing sequences of nonnegative real numbers
d = d1, d2, . . . and y = y1, y2, The dj’s are the successive departure times of the shuttles,
and the yj’s are their successive cumulative loads: the jth departure occurs at time dj with
a load of yj − yj−1 users, where we set y0 = 0.

Denote by gmax(d,y) the value of the maximum waiting time and by gave(d,y) the value
of the average waiting time. There are explicit expressions of these objective functions. Note
that τ(yj) can be interpreted as the first arrival time of a user leaving with the “(j + 1)th
shuttle”.

gmax(d,y) = max
j : yj>yj−1

(
dj − τ(yj−1)

)
,

gave(d,y) =
1

D(T)

∑
j

∫ yj

yj−1

(dj − τ̄(y))dy,

where the indices j range over all departures.
4

Problems Pmax
no return and Pave

no return can be written under the following form,

(Pno return)

Min g(d,y)
s.t. yj − yj−1 ≤ C j = 1, . . . , S (i)

yj−1 ≤ yj j = 1, . . . , S (ii)
dj−1 ≤ dj j = 2, . . . , S (iii)
yS = D(T) (iv)
τ̄(yj) + ν(yj − yj−1) ≤ dj j = 1, . . . , S (v)
y0 = 0,

where g(·) is either gmax(·) or gave(·). Constraint (i) ensures that the total amount of users
in any shuttle does not exceed the shuttle capacity. Constraint (ii) ensures that the indices
of the yj variables are consistent. Constraint (iii) ensures that the shuttles do not overtake.
Constraint (iv) ensures that every user eventually leaves the terminal in a shuttle. Constraint
(v) ensures that the departure time of a shuttle occurs once the last user of this shuttle has
arrived and the loading is over.

Problems Pmax
no return and Pave

no return always admit optimal solutions when they are feasible,
i.e., when CS ≥ D(T). Indeed, τ̄(yj) + ν(yj− yj−1) is upper-bounded by T + νC and adding
a constraint dj ≤ T + νC for all j does not change the optimal value; since τ̄(·) is lower
semicontinuous (Lemma 2), the set of feasible solutions of the optimization problem obtained
with this new contraint is compact; its objective function is lower semicontinuous (and even
continuous in the case of Pave

no return).
The following properties for Pmax

no return and Pave
no return will be useful in some proofs.

Claim 1. Replacing gmax(·) by maxj
(
dj − τ(yj−1)

)
does not change the optimal value of

Pmax
no return.

Proof. Let (d,y) be a feasible solution of Pmax
no return. We are going to build a feasible solution

(d′,y) (with the same y) such that

(1) gmax(d,y) ≥ gmax(d′,y) = max
j

(
d′j − τ(yj−1)

)
.

We set d′1 = τ̄(y1) + νy1 and define inductively d′j = max(d′j−1, τ̄(yj) + ν(yj − yj−1)). We
have d′j ≤ dj for all j and it implies the inequality in (1). Let us prove the equality of (1): if

maxj
(
d′j − τ(yj−1)

)
is attained for a ̄ such that y̄−1 < D(T), then there exists k ≥ ̄ such

that yk > yk−1 = y̄−1 and d′k ≥ d′̄, which means that the maximum is also attained for a k

such that yk > yk−1; and if maxj
(
d′j−τ(yj−1)

)
is attained for a ̄ such that y̄−1 = D(T), then

there exists ` ≤ ̄ − 1 such that y`−1 < y` = y̄−1 and by construction d′` = d′`+1 = · · · = d′S
(since y` = y`+1 = · · · = yS = D(T)), which means that the maximum is also attained for
an ` such that y` > y`−1. �

Claim 2. If D(·) is increasing, for any of Pmax
no return and Pave

no return, there is an optimal
solution such that dj = τ̄(yj) + ν(yj − yj−1) for all j ∈ {1, . . . , S}.

Proof. Let (d,y) be an optimal solution (we do not care which objective function is used
yet). Without loss of generality, we can assume that d1 = τ̄(y1) + νy1 and that for all
j ∈ {2, . . . , S} we have

(2) dj = max
(
dj−1, τ̄(yj) + ν(yj − yj−1)

)
5

(just redefine dj according to these equalities if necessary). When ν = 0, a straightforward
induction on j shows that we have then always dj = τ̄(yj). We can thus assume that ν > 0.

Suppose for a contradiction that there is a j such that dj > τ̄(yj) + ν(yj − yj−1). Denote
by j1 the smallest index for which this inequality holds. We necessarily have dj1 = dj1−1

(because of the equality (2)). Denote by j0 the smallest index j < j1 such that dj = dj1 .
Note that since D(·) is increasing, we have that τ̄(·) is continuous (it is upper and lower
semi-continuous with Lemma 3).

For some small ε > 0, we define (d̄, ȳ) as follows:

ȳj =

{
yj − ε for j = j0, . . . , j1 − 1
yj otherwise

and

d̄j =

{
max

(
d̄j−1, τ̄(ȳj) + ν(ȳj − ȳj−1)

)
for j = j0, . . . , j1

dj otherwise,

where d̄0 = 0. We first check that (d̄, ȳ) is a feasible solution of (Pno return).
The definition of j1 implies that dj0 > 0. Thus if j0 = 1, we have y1 > 0 and for a small

enough ε, the vector ȳ satisfies constraint (ii). Otherwise, we have τ̄(yj0−1)+ν(yj0−1−yj0−2) =
dj0−1 < dj0 = τ̄(yj0) + ν(yj0 − yj0−1). It implies that yj0−1 < yj0 (as otherwise the equality
would imply that yj0−1 < yj0−2). Thus, for a small enough ε, we have ȳ satisfies constraint
(ii). It also satisfies obviously constraint (iv).

For j ∈ {2, . . . , j1}∪{j1 +2, . . . , S}, checking d̄j−1 ≤ d̄j is straightforward. The remaining
case is j = j1 + 1. A direct induction shows that d̄j ≤ dj for j ≤ j1 − 1. Since τ̄(yj1) +
ν(yj1 − yj1−1) < τ̄(yj1−1) + ν(yj1−1 − yj1−2) (because dj1−1 = dj1), for ε small enough, we
have d̄j1−1 ≥ τ̄(ȳj1) + ν(ȳj1 − ȳj1−1). Here, we use the fact that τ̄(·) is continuous. Thus
d̄j1 = d̄j1−1. Since we have d̄j1−1 ≤ dj1−1 by the above induction, we finally obtain d̄j1 ≤
dj1 ≤ dj1+1 = d̄j1+1. Therefore, d̄ satisfies constraint (iii).

Constraint (i) is satisfied for all j, except maybe for j = j1. We have proved that d̄j1 =
d̄j1−1. Since d̄j1−1 = τ̄(ȳj)+ν(ȳj− ȳj−1) for some j′ ≤ j1−1, we have τ̄(ȳj1)+ν(ȳj1− ȳj1−1) ≤
d̄j1 = τ̄(ȳj′)+ν(ȳj′−ȳj′−1), and thus ν(ȳj1−ȳj1−1) ≤ ν(ȳj′−ȳj′−1) ≤ νC. Therefore constraint
(i) is also satisfied for j = j1.

Since the constraint (v) is clearly satisfied, (d̄, ȳ) is a feasible solution of (Pno return).
A careful examination of the arguments used when we checked constraint (ii) shows that

actually d̄j0 < dj0 . The same induction as the one used we checked constraint (iii) shows
that d̄j1−1 < dj1−1. We have proved that d̄j1−1 ≥ τ̄(ȳj1) + ν(ȳj1 − ȳj1−1). Thus d̄j1 = d̄j1−1,
and d̄j1 < dj1 . We have

j1∑
j=j0

∫ ȳj

ȳj−1

(
d̄j−τ̄(u)

)
du ≤

∫ ȳj1

ȳj0−1

(
d̄j1−τ̄(u)

)
du <

∫ yj1

yj0−1

(
dj1−τ̄(u)

)
du =

j1∑
j=j0

∫ yj

yj−1

(
dj−τ̄(u)

)
du,

which in contradiction with the optimality assumption. This settles the case of gave(·). The
other case is dealt with similarly. �

Problems Pmax
return and Pave

return can be written almost identically under the following form.
We use infinitely many variables since there is no a priori reason to have a bounded number
of departures, and there are indeed special cases for which there is no optimal solution with
a finite number of departures. However, if π > 0, we prove that any optimal solution of

6

Pmax
return requires a finite number of departures, see Proposition 3. The case of Pave

return remains
open.

(Preturn)

Min g(d,y)
s.t. yj − yj−1 ≤ C j = 1, . . . ,+∞ (i)

yj−1 ≤ yj j = 1, . . . ,+∞ (ii)
dj−1 ≤ dj j = 2, . . . , S (iii)
lim

j→+∞
yj = D(T) (iv)

τ̄(yj) + ν(yj − yj−1) ≤ dj j = 1, . . . ,+∞ (v)
dj + π + ν(yj+S − yj+S−1) ≤ dj+S j = 1, . . . ,+∞ (vi)
y0 = 0,

where g(·) is either gmax(·) or gave(·). Constraints (i), (ii), (iii), (iv), and (v) have the same
meaning as for the previous problems. Constraint (vi) ensures that the time between two
consecutive departures of a same shuttle is not smaller than the time required for a full trip
plus the time needed to load the users.

In the model (Preturn), the shuttles are not identified. Note however that their schedules
can be easily be recovered: the departure times of a shuttle s is of the form

ds, ds+S, ds+2S, . . .

and the time at which the loading starts for a shuttle with departure time dj can be chosen
to be dj − ν(yj − yj−1) (the loading starts as late as possible).

While it can be shown that problem Pmax
return always admits an optimal solution when it is

feasible (see Proposition 3), we were not able to settle the case of problem Pave
return.

2.4. Computational model. We assume that the following operations take constant time:

• Evaluation of D(t) for any t ∈ [0, T].
• Integration of D(·) between two values.
• Evaluation of τ(y) and τ̄(y) for any y ∈ R+.
• Evaluation of sup{y : τ̄(y) + νy ≤ α} for any α ∈ R+.

Note that if D(·) is piecewise affine with a natural description, as it is usually the case
in practice, these assumptions are easily matched. Moreover, we set as constants of the
computational model the capacity C, the length of the period T , the cumulative demand
D(·), the loading rate ν, and the return time π. The complexity functions will be expressed
in terms of S and the accuracy of the computed solution.

3. Main results

In the present section, we present our main findings. Many results state the existence of
algorithms with a guarantee that the returned solution has a value close to the optimal value
OPT of the considered problem. Except for two easy results – Corollary 1 and Proposition 3
– all proofs are postponed to other sections.

We organize the results presented in that section in three subsections. The first subsection
– Section 3.1 – deals with the special case where D(·) is a constant function, i.e., when all
users are in the loading terminal from the beginning of the period, and with returns allowed.
It seems to us that these results are also interesting in themselves, because they form a
natural situation for which there is a very efficient algorithm. The second subsection –
Section 3.2 – deals with the general case where the shuttles are not allowed to come back,

7

i.e., with the case covered by the problems Pmax
no return and Pave

no return. The case where the
shuttles are allowed to come back, i.e., when we deal with the problems Pmax

return and Pave
return,

is discussed in Section 3.3.

3.1. All users in the terminal from the beginning. In this subsection, we present
results regarding the four problems when D(t) = D(T) for all t ∈ [0, T] (all users are from
the beginning in the terminal). For the problems for which return is not allowed (Pmax

no return

and Pave
no return), an obvious optimal solution is given by y∗j = jD(T)/S and d∗j = νD(T)/S

for j ∈ {1, . . . , S} and the optimal value is νD(T)/S for both problems, provided that
D(T) ≤ CS (otherwise, there is no feasible solution at all): the shuttles take all the same
amount of users, start immediately the loading process, and have the same departure time.

The rest of the section is devoted to the results regarding the problems Pmax
return and Pave

return.
For the first one, there are closed-from expressions for the optimal value and an optimal
solution.

Proposition 1. When D(t) = D(T) for all t ∈ [0, T], the optimal value of Pmax
return is

νD(T)

S
+

(⌈
D(T)

CS

⌉
− 1

)
π.

In the proof, we actually provide a closed-form expression for an optimal solution. For
Pave

return however, there does not seem to be a closed-form expression for an optimal solution,
and not even for the optimal value. There is nevertheless an efficient algorithm.

Proposition 2. Suppose π > 0. When D(t) = D(T) for all t ∈ [0, T], the optimal value of
Pave

return can be computed in constant time and an optimal solution can be computed in O(S).

If π = 0, the optimal value is νD(T)
2S

, and it is not too difficult to see that there is no
optimal solution. In a transportation context, π = 0 looks unrealistic. However, the chemical
application mentioned in the introduction could be a situation where this equality could be
met: as soon as the test is over for a batch, we can start the test for a new one.

3.2. When return is not allowed. We have the existence of an efficient approximation
algorithm for Pmax

no return. The algorithm is actually an easy binary search (Section 5.1.1).

Theorem 1. Let ρ > 0. A feasible solution (d,y) of Pmax
no return – if the problem is feasible –

satisfying gmax(d,y) ≤ OPT + ρ can be computed in O
(
S log 1

ρ

)
.

With an additional assumption on D(·), this theorem provides actually an approximation
scheme.

Corollary 1. If D(·) is increasing, the algorithm of Theorem 1 computes in O(S log S
ε
) a

(1 + ε)-approximation for Pmax
no return.

A schedule for the shuttles requires to specify S real numbers. Taking an output sensitive
point of view, this corollary states thus the existence of a polynomial approximation scheme
in this particular case.

Proof of Corollary 1. Suppose D(·) increasing. Let (d,y) be a feasible solution. According
to Lemma 3, we have then τ(yj−1) = τ̄(yj−1) for every j and the maximum waiting time for
shuttle j is at least τ(yj) + ν(yj − yj−1) − τ(yj−1). Note that if yj = yj−1, this quantity is

8

zero. Hence, the sum of the maximum waiting times over all nonempty shuttles is at least
T + νD(T) and the optimal value OPT of Pmax

no return is at least (T + νD(T))/S. Setting ρ to
ε(T + νD(T))/S leads to the result. �

For Pave
no return, there exists an efficient approximation algorithm too. The algorithm is also

described later (Section 5.2.1). We already outline that this algorithm is not a binary search
as in the former case, but consists in building a quite simple weighted “approximative” graph,
in which a shortest path is computed.

Theorem 2. Suppose that D(·) admits right derivatives everywhere (denoted D′+(t)) and
that inft∈[0,T) D

′
+(t) is positive. Then, for any positive integer M , a feasible solution (d,y)

of Pave
no return – if the problem is feasible – satisfying

gave(d,y) ≤ OPT +O

(
S2

M

)
can be computed in O (SM3).

As for Corollary 1 above, this theorem could be interpreted as a polynomial approximation
scheme by using the fact that D(·) is increasing.

3.3. When return is allowed. The following proposition implies that when π is larger
than 0, any optimal solution of Pmax

return requires a finite number of nonempty departures.

Proposition 3. If π > 0, there exists an optimal solution of Pmax
return and the number of

nonempty departures in any optimal solution is at most(
2

⌈
T

π

⌉
+ 1

)
S +

(
ν

π
+

1

C

)
D(T).

Proof. A feasible solution with an infinite number of nonempty departures has an infinite
objective value and it thus strictly dominated by any solution by a finite number of depar-
tures. Thus, the set of feasible solutions can be reduced to the solutions where the number
of nonempty departures is finite. Since τ̄(·) is lower semicontinuous (Lemma 2), the set of
feasible solutions is compact and the objective function is lower semicontinuous which leads
then to existence of an optimal solution.

The schedule consisting in making the shuttles wait until time T , loading them at full
capacity (except maybe for the last departure), and making them leave as soon as the
loading is completed provides a feasible solution of Pmax

return with a value T + νD(T)/S +
(dD(T)/(CS)e − 1)π.

Consider an optimal solution of Pmax
return and denote by k the number of departures after

time T . The users in the last shuttle to leave have waited at least (k/S− 1)π. We have thus(
k

S
− 1

)
π ≤ T +

νD(T)

S
+
πD(T)

CS
,

which implies that

k ≤ TS

π
+
νD(T)

π
+
D(T)

C
+ S.

Before time T , the number of departures is at most dT/πeS. �
9

The next theorem states that there exists an algorithm computing arbitrarily good fea-
sible solutions for Pmax

return within reasonable computational times when S is small. As for
Section 3.2, this algorithm is described later in the paper (Section 6). It is based on the
computation of a shortest path in an “approximative” graph, as for Theorem 2. It also uses
Proposition 3 in a crucial way (actually a slight variation of it: Lemma 10).

Theorem 3. Suppose that D(·) admits right derivatives everywhere, π is positive, and
inft∈[0,T) D

′
+(t) is positive. Then, for any positive integer M , a feasible solution (d,y) of

Pmax
return satisfying

gmax
return(d,y) ≤ OPT +O

(
S2

M

)
can be computed in O

(
β3SM3S+2

)
, where β depends only on the constants of the computa-

tional model.

As above, the theorem actually ensures that the algorithm is an approximation scheme
since we can bound from below OPT using only the input values. If S is considered as
constant, this becomes even a polynomial approximation scheme.

We do not know whether there is a counterpart to Proposition 3 for problem Pave
return. If

such a counterpart would exist, then almost the same technique as the one used in Section 6
would lead to a theorem similar to Theorem 3 for Pave

return. The existence of such a theorem
remains thus open.

4. All users in the terminal from the beginning

Consider the case where all users are in the loading terminal from the beginning. To ease
the reading, and for the present section only, we use D to denote the quantity D(T).

We treat first the case of problem Pmax
return.

Proof of Proposition 1. For Pmax
return, when S = 1, an optimal solution is obtained by loading

at full capacity the shuttle for each departure (except maybe for the last departure for which
the shuttle load is D − CbD/Cc) and by making the shuttle leave immediately after each
loading process. The optimal value is then νD + (dD/Ce − 1)π. When S > 1, consider
the problem Q defined as the problem Pmax

return without the constraint that the shuttles do
not overtake (constraint (iii) in (Preturn)). The optimal value of Q provides a lower bound
of the optimal value of Pmax

return. Since there is no constraint linking the different shuttles,
problem Q can be solved separately for each shuttle s with a demand Ds to carry, such that∑

sDs = D. The optimal solutions of Q are thus obtained from the optimal solutions of

Min max
s∈{1,...,S}

(
νDs +

(⌈
Ds

C

⌉
− 1

)
π

)
s.c.

S∑
s=1

Ds = D

Ds ≥ 0 s = 1, . . . , S.

The solution given by Ds = D/S for all s is clearly optimal (and it is actually the unique
optimal solution when ν > 0). Hence, there is an optimal solution for Q in which all shuttles
have the same departure times and, for each travel, carry the same amount of users. Its value

10

is νD/S + (dD/(CS)e − 1)π. Since the shuttles do not overtake in this optimal solution of
Q, it is actually a feasible solution for the problem Pmax

return, and thus an optimal solution for
this latter problem (its value being equal to a lower bound). �

The rest of this section is devoted to the proof of Proposition 2, which ensures the existence
of an efficient algorithm solving problem Pave

return when D(t) = D for all t ∈ [0, T]. We start
by considering the special case of problem Pave

return when S = 1. In such a case, it is always
beneficial to define dj = (j − 1)π + νyj. Assuming that the yj’s are given, it provides a
feasible solution since τ̄(y) = 0 for all y ∈ [0, D]. The objective function of Pave

return becomes
thus

1

D

+∞∑
j=1

(
(j − 1)π + ν

j∑
i=1

xi

)
xj =

1

D

(
+∞∑
j=1

(j − 1)πxj +
1

2
ν

+∞∑
j=1

x2
j

)
+
νD

2
,

where xj = yj − yj−1. Solving Pave
return when S = 1 reduces thus to solving

P (D)

Min
+∞∑
j=1

(j − 1)πxj +
1

2
ν

+∞∑
j=1

x2
j

s.t.
+∞∑
j=1

xj = D

0 ≤ xj ≤ C j = 1, . . . ,+∞,
which is a convex program (with infinitely many variables). We will show that there is always
an optimal solution of P (D) with a finite support. Then, we will solve P0(D), defined as
the program P (D) with the additional constraint |{j : xj 6= 0}| < +∞, with the help of the
Karush-Kuhn-Tucker conditions (that do not apply otherwise).

Lemma 4. Suppose that π > 0. Then P0(D) has an optimal solution and it is necessarily
of the form

x∗0 = 0

x∗j =


C if j ≤ a,

D − aC
θ(a)− a

+
π

ν

(
a+ θ(a) + 1

2
− j
)

if a+ 1 ≤ j ≤ θ(a),

0 otherwise,

with a ∈ Z+ such that a ≤ D
C

and where

θ(a) = a+


−1 +

√
1 + 8νC

π
(D − aC)

2

 .
Proof. Consider the following program

P n
0 (D)

Min
n∑
j=1

(j − 1)πxj +
1

2
ν

n∑
j=1

x2
j

s.t.
n∑
j=1

xj = D

0 ≤ xj ≤ C j = 1, . . . , n.
11

Note that P n
0 (D) is actually P0(D) with the additional constraint that sup{j : xj 6= 0} ≤ n.

For n < D/C, P n
0 (D) has no feasible solutions, and for n ≥ D/C, the set of feasi-

ble solutions is nonempty. In this case, by compactness and continuity of the objective
function, P n

0 (D) has an optimal solution x∗. We necessarily have x∗j ≥ x∗j+1 for every
j ∈ {1, . . . , n− 1}, otherwise, exchanging the two values would strictly decrease the objec-
tive function. Let a be the largest index j such that x∗j = C, with the convention that a = 0
if there are no such index j, and let b+ 1 be the smallest index j such that x∗j = 0, with the
convention that b = n if there is no such index j.

The constraints being all affine, the Karush-Kuhn-Tucker conditions apply. There is thus
a real number λ ∈ R and two collections µ,ω ∈ Rn

+ such that for every j ∈ {1, . . . , n} we
have

(3) νx∗j + (j − 1)π + λ+ µj − ωj = 0 and ωjx
∗
j = µj(x

∗
j − C) = 0.

Summing this equality from j = a+1 to j = b and noting that µj = ωj = 0 and
∑b

j=a+1 x
∗
j =

D− aC by definition of a and b provide an expression of λ in terms of a and b. Replacing λ
by this expression in the same equality leads to

x∗j =


C if j ≤ a,

D − aC
b− a

+
π

ν

(
a+ b+ 1

2
− j
)

if a+ 1 ≤ j ≤ b,

0 otherwise.

Using this equality for j = b gives the following equation.

(b− a)(b− a− 1) <
2ν

π
(D − aC).

Equation (3) specialized for j = b+ 1 gives

(b− a)(b− a+ 1) ≥ 2ν

π
(D − aC).

These two inequalities together – treated as conditions on a second order polynomial in b−a
– imply the necessary condition

−1

2
+

√
1 + 8ν

π
(D − aC)

2
≤ b− a < 1

2
+

√
1 + 8ν

π
(D − aC)

2

which imposes a unique integer value for b−a and b takes a unique value θ(a) for each value
of a. We have proved that any optimal solution of P n

0 (D) is of this form. Now, note that by
definition of a, we necessarily have a ≤ bD/Cc. It means that there are only finitely many
optimal solutions of the P n

0 (D)’s when n goes to infinity. Since the set of feasible solutions
of the P n

0 (D)’s is nondecreasing when n goes to infinity, it means actually that there exists
an n0 such that any optimal solution of P n

0 (D) for n ≥ n0 is an optimal solution of P n0
0 (D).

Moreover, any feasible solution of P0(D) is a feasible solution of P n
0 (D) for some n ≥ n0,

and thus is dominated by the optimal solutions of P n0
0 (D). These latter are thus the optimal

solutions of P0(D). �

Let v(D) and v0(D) be the optimal values of respectively P (D) and P0(D). Note that
v(D) ≤ v0(D).

12

Lemma 5. If π > 0, we have
v0(D − ε) ≤ v(D)

for every ε ∈ (0, D].

Proof. Let ε ∈ (0, D]. Consider a feasible solution x of P (D). Let Nε ∈ Z+ be such that∑+∞
j=Nε+1 xj < ε. Define inductively

x′j =

{
min(xj, D − ε−

∑j−1
i=1 x

′
i) for j ≤ Nε

0 for j ≥ Nε + 1.

This x′ is a feasible solution of P0(D − ε). Since x′j ≤ xj for all j, the value given by x′ to
the objective value of P0(D − ε) is nonlarger that the value obtained by x for P (D). The
inequality follows. �

Proof of Proposition 2. Let us deal with the case S = 1. Using the fact that P0(D) is a convex
program, we easily get that v0(·) is a convex function. It is thus continuous on (0,+∞),
and since v0(0) = 0, we have that v0(·) is continuous everywhere on [0,+∞). Making ε tend
toward 0 in Lemma 5 and the inequality v(D) ≤ v0(D) imply that v0(D) = v(D). Since any
feasible solution of P0(D) is a feasible solution of P (D) with the same value for the objective
function, every optimal solution of P0(D) is an optimal solution of P (D). An algorithm
computing an optimal solution of P (D) can then be derived from Lemma 4: we just have to
try all the finitely many possible values for a. The proof for any value of S will be obtained
by showing that an optimal solution in this case consists just in replicating optimal solutions
for the one-shuttle case.

When S > 1, consider the problem Q defined as the problem Pave
return without the constraint

that the shuttles do not overtake (constraint (iii) in (Preturn)). The optimal value of Q
provides a lower bound of the optimal value of Pave

return. Since there is no constraint linking
the different shuttles, problem Q can be solved separately for each shuttle s with a demand
Ds to carry, such that

∑
sDs = D. The optimal solutions of Q are thus obtained from the

optimal solutions of

Min
S∑
s=1

(
v(Ds) +

ν

2
D2
s

)
s.c.

S∑
s=1

Ds = D

Ds ≥ 0 ∀s = 1, . . . , S.

The fact that P (D) is a convex program implies that the map v(·) is convex. As a con-
sequence, the solution Ds = D/S for all s is an optimal solution of the previous program.
Hence, there is an optimal solution for Q in which all shuttles have the same departure times
and, for each travel, carry the same amount of users. Since the shuttles do not overtake in
this optimal solution of Q, it is actually a feasible solution for the problem Pave

return, and thus
an optimal solution for this latter problem (its value being equal to a lower bound). �

13

5. When return is not allowed

5.1. Minimizing the maximum waiting time.

5.1.1. The algorithm. If CS < D(T), there is no feasible solution. We can thus assume that
CS ≥ D(T). The algorithm is a binary search starting with the values h+ = T +νD(T) and
h− = 0 which are respectively upper and lower bounds of the optimal value. While the gap
h+ − h− is larger than ρ, we consider the tentative value h = h++h−

2
and the system

(Sh)


yj = supShj j = 1, . . . , S
yS = D(T)
y0 = 0
dj = h+ τ(yj−1) j = 1, . . . , S,

where Shj = {y ∈ R+ : y ≤ C + yj−1, τ̄(y) + ν(y − yj−1)− τ(yj−1) ≤ h, y ≤ D(T)}. Each it-
eration of the binary search consists in deciding whether (Sh) has a feasible solution or not,
and it can be done in O(S) by computing the values of the yj’s and the dj’s iteratively (here
we use in particular the computational assumptions on D). As we are going to prove, (Sh)
has a feasible solution if and only if the problem has a feasible solution with a value of the
objective function at most h. If (Sh) has a feasible solution, we update thus the value of
h+ with the current value of h, otherwise, we update h− with h. When h+ − h− ≤ ρ, the
solution of program (Sh+) is feasible for Pmax

no return and its value h+ is at most at ρ from the
optimal value.

5.1.2. Proof of Theorem 1. For any fixed h, Pmax
no return has a feasible solution with a value of

the objective function at most h if and only if the following system has a feasible solution.

(Qh)



dj − τ(yj−1) ≤ h j = 1, . . . , S (Qi)
yj − yj−1 ≤ C j = 1, . . . , S (Qii)
yj−1 ≤ yj j = 1, . . . , S (Qiii)
dj−1 ≤ dj j = 2, . . . , S (Qiv)
yS = D(T) (Qv)
τ̄(yj) + ν(yj − yj−1) ≤ dj j = 1, . . . , S (Qvi)
y0 = 0.

We claim that (Qh) has a feasible solution if and only if (Sh) has one. Once this equivalence
is established, the correctness of the binary search described above is almost immediate using
Claim 1.

Let (d,y) be a feasible solution of (Sh). We use without further mention that Shj is closed.
It satisfies the constraints (Qi), (Qii), and (Qv). We have yj−1 ≤ C + yj−1 and yj−1 ≤ D(T).
Since τ̄(y) ≤ τ(y) for all y, we also have τ̄(yj−1) + ν(yj−1 − yj−1) − τ(yj−1) ≤ h. It means
that yj−1 belongs to Shj , and thus yj−1 ≤ yj. Hence, (d,y) satisfies also constraint (Qiii).
Since τ̄(yj) +ν(yj−yj−1)− τ(yj−1) ≤ h, the solution also satisfies constraint (Qvi) and since
τ(·) is nondecreasing, it satisfies constraint (Qiv). Therefore, it is a feasible solution of (Qh)
and the existence of a feasible solution of (Sh) implies the existence of a feasible solution of
(Qh).

For the converse implication, suppose that (Qh) admits a feasible solution, and consider

the optimization problem consisting in maximizing
∑S

j=1 yj over its feasible solutions. These

feasible solutions form a compact set of RS
+ since it is obviously bounded and since the
14

semicontinuities of τ(·) and τ̄(·) imply that it is closed. There is thus an optimal solution
(d∗,y∗) to that optimization problem. Suppose for a contradiction that there is a j such that
y∗j < supShj . Denote j0 the largest such index. Let us slightly increase y∗j0 , while letting the
other y∗j untouched. Redefine d∗j to be h + τ(y∗j−1) for all j ≥ j0. The pair (d∗,y∗) remains

feasible for (Qh) (we use here the fact that supShj is nondecreasing with j), while increasing

the quantity
∑S

j=1 y
∗
j , which is a contradiction with the optimality assumption. Thus, we

have y∗j = supShj for all j and d∗j := h + τ(y∗j−1) for all j provides a feasible solution for
(Sh). �

5.2. Minimizing the average waiting time.

5.2.1. The algorithm. The following map will be useful in the description of the algorithm.

f ave : (d, y, y′) 7−→
∫ y′

y

(d− τ̄(u))du.

Define the directed graph G = (V ,A) by

V = {(0, 0)} ∪ {η, 2η, . . . ,Mη} × {η, 2η, . . . , Rη}
A =

{(
(z, r), (z′, r′)

)
∈ V2 : r + z′ = r′ and τ̄(r′)− τ̄(r) + ν(z′ − z) + 1

2
γη ≥ 0

}
,

where we use the following notations:

α = inf
t∈[0,T)

D′+(t), R =

⌊
D(T)M

C

⌋
, η =

C

M
, and γ = 2

(
1

α
+ 2ν

)
.

Set for each arc a =
(
(z, r), (z′, r′)

)
a weight w(a) = f ave

(
τ̄(r′) + ν(z′ − η), r + η, r′

)
.

If CS < D(T), there is no feasible solution. We can thus assume that CS ≥ D(T). The
algorithm consists first in computing a path p̃ minimizing

∑
a∈A(p) w(a), among all paths p

with at most S arcs starting at (0, 0) ∈ V and ending at a vertex (z, r) with r = Rη. Such
paths exist, see Lemma 6 below. The computation of p̃ can be done in O(S|A|) via dynamic
programming. Let the vertex sequence of p̃ be

(
(z0, r0), (z1, r1), . . . , (zn, rn)

)
. The algorithm

consists then in defining recursively

ỹj =


0 for j = 0
min

(
rj + η, ỹj−1 + C,D(T)

)
for j = 1, . . . , n

D(T) for j = n+ 1, . . . , S

and

d̃j =

{
τ̄(ỹj) + ν(ỹj − ỹj−1) + jγη for j = 1, . . . , n

max(d̃n, T + ν(ỹn+1 − ỹn)) for j = n+ 1, . . . , S

and outputting the pair (d̃, ỹ). The construction of the graph is sketched on Figure 2.

As it will be shown below, this (d̃, ỹ) is a feasible solution of Pave
no return providing a value

to the objective function within a O
(
S2

M

)
gap to the optimal value.

15

Figure 2. A feasible path in the algorithm proposed for solving Pave
no return.

5.2.2. Proof of Theorem 2. We provide three lemmas, which are proved in a separate section
at the very end of the paper to ease the reading. Theorem 2 results immediately from their
combination.

In the proofs of the lemmas, we assume that M is large enough so that η < D(T). Since
in Theorem 2, M appears in ‘big O’ formulas, it is a valid assumption. Anyway it is what
is sought in practice: the larger M , the larger the accuracy of the solution. An η of same
order of magnitude of D(T) would be useless.

Lemma 6. For every optimal solution (d∗,y∗), there is a path p with at most S arcs starting
at (0, 0) ∈ V and ending at a vertex (z, r) with r = Rη and such that

1

D(T)

∑
a∈A(p)

w(a) ≤ gave(d∗,y∗).

Lemma 7. The pair (d̃, ỹ) is a feasible solution of Pave
no return.

Lemma 8. The following inequality holds:

gave(d̃, ỹ) ≤ 1

D(T)

∑
a∈A(p̃)

w(a) +O

(
S2

M

)
.

5.3. When the demand function is a step function. Better complexity results can be
obtained when the demand is a step function. A step function is a function that can be
written as a finite linear combination of indicator functions of intervals. The assumption on
D(·) being a step function means that the users arrive only on a finite number of instants.
As it has already been noted, the assumption ν = 0 is equivalent to the assumption that
every user boards a shuttle as soon as he arrives in the terminal.

Proposition 4. Assume that D(·) is a step function defined with K discontinuities, supposed
to be part of the input. Suppose moreover that ν = 0. Then for each of Pmax

no return and of
Pave

no return, there is an algorithm computing an optimal solution in O(K2S).
16

It turns out that when C and the values taken by D(·) are integer, the loads of the shuttles
in the optimal solution returned by the algorithm are also integer. We cover thus the case
where the users are atoms.

The algorithm. We provide only the algorithm for Pmax
no return, the other case can be dealt

similarly. Let t1 < · · · < tK be the K discontinuities. Define the directed graph G = (V ,A)
by

V = {0} ∪ {D(tk) + Cq : k ∈ {1, . . . , K} , q ∈ {0, 1, . . . , Q}}
A = {(y, y′) ∈ V2 : 0 ≤ y′ − y ≤ C},

where Q = bD(T)/Cc. Note that the vertex set is a finite subset of R+. Set for each arc
a = (y, y′) a weight w(a) = τ̄(y′)− τ(y). We consider the two vertices 0 and D(T) (obtained
with k = K and q = 0).

If CS < D(T), there is no feasible solution. We can thus assume that CS ≥ D(T). The
algorithm consists first in computing a 0-D(T) path p̃ with S arcs minimizing maxa∈A(p̃) w(a).
Within the proof of Proposition 4 below, we show that from any feasible solution we can
build a 0-D(T) path with S arcs in G. Thus, when the problem is feasible, such paths exist in
G. The computation of p̃ can be done in O(S|A|) via dynamic programming. Let the vertex

sequence of p̃ be (ỹ0, ỹ1, . . . , ỹS). The end of the algorithm consists in defining d̃j = τ̄(ỹj) for

all j ∈ {1, . . . , S} and outputting the pair (d̃, ỹ).

As it will be shown below, this (d̃, ỹ) is an optimal solution of Pmax
no return.

Proof of Proposition 4. According to Claim 1, we replace the objective function of Pmax
no return

by maxj∈{1,...,S}(dj − τ(yj−1)). It can easily be checked that (d̃, ỹ) is feasible for Pmax
no return.

It provides a value maxj∈{1,...,S}(τ̄(ỹj)− τ(ỹj−1)) for Pmax
no return (with the alternative objective

function), and this value coincides with maxa∈A(p̃) w(a). The path p̃ describes therefore a
solution of Pmax

no return with a value equal to maxa∈A(p̃) w(a).
Conversely, let (d,y) be any feasible solution of Pmax

no return. Let ȳ be the sequence defined
by ȳj = min{y ∈ V : y ≥ yj}. On the one hand, we have ȳj−1 ≤ ȳj because yj−1 ≤ yj. On
the other hand, we have ȳj−1 + C ≥ yj−1 + C ≥ yj. If ȳj−1 + C ∈ V , we have ȳj−1 + C ≥ ȳj
by definition of ȳj. If ȳj−1 + C /∈ V , then ȳj−1 + C > D(T) ≥ ȳj since D(T) ∈ V . Thus,
(ȳj−1, ȳj) ∈ A for all j ∈ {1, . . . , S}. We have ȳ0 = 0 and ȳS = D(T) and the sequence ȳ is
a 0-D(T) path p with S arcs.

Second, we prove that τ̄(ȳj) − τ(ȳj−1) ≤ dj − τ(yj−1) as follows. There exists a unique
k such that D(tk) < yj ≤ D(tk+1). By definition of D(·), we have D(t) = D(tk) for all
t ∈ [tk, tk+1), and thus τ̄(yj) = tk+1. Since D(tk+1) ∈ V , we have ȳj ≤ D(tk+1) by definition
of ȳj, and hence τ̄(ȳj) ≤ tk+1 (directly by definition of τ̄(·)). Therefore, τ̄(ȳj) − τ(ȳj−1) ≤
τ̄(yj)− τ(yj−1) ≤ dj − τ(yj−1) (where we use the fact that τ(·) is nondecreasing).

Finally, we have maxa∈A(p) w(a) ≤ maxj∈{1,...,S}
(
dj − τ(yj−1)

)
. As the path p̃ is optimal,

maxa∈A(p̃) w(a) is a lower bound on the value taken by the (alternative) objective function
on (d,y). �

17

6. When return is allowed

The algorithm. The following map will be useful:

fmax : (`, y, y′) 7−→
{

max(`, τ̄(y′)) + ν(y′ − y)− τ(y) if y′ ≥ y
0 if y′ = y.

We introduce the following two sets

Q = {0, η, . . . , (bT+/ηc+ 1)η}S

R =
{
r ∈ {0, η, . . . , Rη}S : 0 ≤ rk − rk−1 ≤Mη for k = 2, . . . , S

}
,

where

η =
C

M
, R =

⌊
D(T)M

C

⌋
, and T+ = T +

νD(T)

S
+

(⌈
D(T)

CS

⌉
− 1

)
π.

Define the directed graph G = (V ,A) by

V = {(z, q, r) ∈ {0, η, . . . ,Mη} × Q×R : rk ≤ D(qk) for k = 1, . . . , S}
A =

{(
(z, q, r), (z′, q′, r′)

)
∈ V2 satisfying (?)

}
,

where

(?) rS + z′ = r′1 and q′k − qk − ν(rk − rk−1)− π + (1 + ν)η ≥ 0 for k = 1, . . . , S.

We adopt the convention D(t) = D(T) when t ≥ T and we define r0 = r1 − z. Set for each
arc a =

(
(z, q, r), (z′, q′, r′)

)
a weight w(a) = maxk∈{1,...,S} f

max(q′k − η, r′k−1 + η, r′k) where
r′0 = r′1 − z′.

The algorithm consists first in computing a path p̃ minimizing maxa∈A(p) w(a) among all
paths p starting at (0,0,0) ∈ V (the ‘all zero’ vector) and ending at a vertex (z, q, r) with
rS = Rη. Such paths exist, see Lemma 9 below. It can be done in O(|V||A|) via dynamic
programming. Let the vertex sequence of p̃ be

(
(0,0,0), (z0, q

0, r0), . . . , (zn, q
n, rn)

)
. The

vector ri models the cumulative loads of the S shuttles when they perform their ith depar-
ture. The vector qi models the times at which the loading of the S shuttles starts when they
perform their ith departure. These quantities are computed only approximatively (with an
accuracy η).

The algorithm consists then in defining recursively for all j = iS+k with i = 0, . . . , n and
k = 1, . . . , S

ỹj =

{
min

(
rik + η, yj−1 + C,D(T)

)
if rik > rik−1

ỹj−1 otherwise

d̃j = max(qik, τ̄(ỹj)) + jγ̃η + ν(ỹj − ỹj−1)

where ỹ0 = 0, ri0 = ri−1
S , r0

0 = 0, and γ̃ = (1 + 2ν + 1/α). For j = (n+ 1)S + 1, . . . , N

ỹj = D(T)

d̃j = max
(
d̃j−S + π, T

)
+ ν(ỹj − ỹj−1).

and outputting the pair (d̃, ỹ).

As it will be stated below, this (d̃, ỹ) is a feasible solution of Pmax
return providing a value to

the objective function gmax(·) within a O
(
S2

M

)
gap to the optimal value.

18

Proof of Theorem 3. We provide four lemmas. The proof of Lemma 10 is almost the one
of Proposition 3 and the proofs of the three others follow the same scheme as the ones of
Lemmas 6, 7, and 8. They are thus omitted. Theorem 3 results immediately from their
combination.

Lemma 9. For every optimal solution (d∗,y∗), there is a path p starting at (0,0,0) ∈ V
and ending at a vertex (z, q, r) with rS = Rη and such that

max
a∈A(p)

w(a) ≤ gmax(d∗,y∗).

Lemma 10. There is an optimal solution of Pmax
return for which T+ is an upper bound on the

loading time of the last departure.

Lemma 11. The pair (d̃, ỹ) is a feasible solution of Pmax
return.

Lemma 12. The following inequality holds:

gmax(d̃, ỹ) ≤ max
a∈A(p̃)

w(a) +O

(
S2

M

)

7. Experimental results

In this section, we test the performance of the algorithms described in previous sections
for problems Pmax

no return, Pave
no return, and Pmax

return. As explained in Section 3, we do not have such
an algorithm for problem Pave

return.

7.1. Data. Our experiments are based on real data provided by our partner Eurotunnel.
They are related to the transportation of freight trucks between France and Great Britain.
Some parameters are fixed as constants of the problems and do not vary from an instance to
another. For the constants C, T, ν, π of our problem, we take the real values used in practice
by the company:

C = 32, T = 1440 min (one day), ν = 0.625 min, π = 34 min .

(The value taken for π is actually the duration of a trip going from France to Great-Britain,
and not of the round trip, which lasts approximatively twice this quantity.)

Two functions D(·) are used. The first one (“1P”) is a piecewise affine map obtained
by averaging the real demand over several days. It turns out that this function has a peak
period in the morning. The second function (“2P”), also piecewise affine, is obtained from
the first by artificially adding a second peak period in the evening. In both cases, D(·) is
increasing and D(T) = 2016. For problems Pmax

no return and Pave
no return, we consider S ∈ [100, 250]

since the number of shuttle trips in every direction is within this range for a typical day.
The numerical experiments are performed on a Macbook Pro of 2014 with four 2.2 Ghz

processors and 16 Gb of ram.

7.2. Results. The problems Pmax
no return, Pave

no return, and Pmax
return are solved with algorithms de-

scribed in this article. The results are summarized in the following tables.
Table 1 gives the numerical results for problem Pmax

no return. The next column is the number
of shuttles S in the fleet. The third column provides the parameter ε of the algorithm, which
is an a priori upper bound on the optimality gap (Corollary 1). The two next columns give

19

respectively the lower bound and the upper bound (value of the feasible solution returned
by the algorithm), both expressed in minutes. The next column is the optimality gap. The
last column provides the CPU time spent solving the problem.

D S ε LB UB gap CPU
(%) (s)

1P 100 10−4 27.2 27.2 0.0 0
1P 150 10−4 18.1 18.1 0.0 0
1P 200 10−4 13.6 13.6 0.0 0
1P 250 10−4 11.0 11.0 0.0 0
2P 100 10−4 27.0 27.0 0.0 0
2P 150 10−4 18.0 18.0 0.0 0
2P 200 10−4 13.5 13.5 0.0 0
2P 250 10−4 10.8 10.8 0.0 0

Table 1. Numerical results for problem Pmax
no return

Table 2 gives the numerical results for problem Pave
no return. The columns are the same as

for Table 1 except the third one which provides here the parameter M of the algorithm. We
know from Theorem 2 that the gap between the upper bound and the lower bound converges
asymptotically to 0 when M goes to infinity. We tried M = 32 and M = 128.

D S M LB UB gap CPU
(%) (s)

1P 100 32 17.3 19.2 10.0 34
1P 100 128 18.7 19.2 2.5 1930
1P 200 32 7.7 9.6 19.4 70
1P 200 128 9.1 9.6 5.0 4035
2P 100 32 17.5 19.4 9.9 38
2P 100 128 18.9 19.4 2.5 2387
2P 200 32 7.9 9.7 19.2 76
2P 200 128 9.2 9.7 5.0 4463

Table 2. Numerical results for problem Pave
no return

Table 3 gives the numerical results for problem Pmax
return. The columns are the same as for

Table 2. Since the computation time was prohibitively long as soon as S ≥ 2, we made
experiments for S = 1. To get realistic waiting times for the users, we divided the demand
functions by 3.5 leading to (“1P∗”) and (“2P∗”). Again, we know from Theorem 3 that for
large M , we will be close to the optimal solution and we tried M = 16 and M = 32.

7.3. Comments. In Table 1, the results for problem Pmax
no return are extremely convincing,

the optimal solutions were found almost immediately. In Table 2, the algorithm for problem
Pave

no return was able to find provable good solutions within reasonable computation times. We
may note that increasing M after some threshold does not seem to improve the quality of the
return solution. This was confirmed by other experiments not shown here. It may indicate

20

D S M LB UB gap CPU
(%) (s)

1P∗ 1 16 168.6 214.2 21.3 104
1P∗ 1 32 184.5 210.8 12.5 1654
2P∗ 1 16 101.0 131.0 22.9 106
2P∗ 1 32 106.9 126.3 15.4 1848

Table 3. Numerical results for problem Pmax
return

that the algorithm could be used efficiently in practice. In Table 3, the same holds for Pmax
return

once we have accepted to work with one shuttle. Finding an efficient algorithm with at least
two shuttles seems to remain a challenging task.

8. Proofs of Lemmas of Section 5.2

Claim 3. We have rj ≤ ỹj ≤ rj + η for j = 0, . . . , n.

Proof. We have ỹj ≤ rj + η by definition. Using rj − rj−1 ≤ Mη in a feasible path, a direct
induction shows that ỹj ≥ rj for j = 0, . . . , n. �

Claim 4. Suppose that α > 0. Then for all y ∈ [0, D(T)] and δ ∈ [0, D(T) − y], we have
τ̄(y + δ) ≤ τ̄(y) + δ/α and τ(y + δ) ≤ τ(y) + δ/α.

Proof. Diewert [7] extended the Mean Value Theorem to semicontinuous functions. Accord-
ing to his result, for any 0 ≤ a ≤ b ≤ T , there exists c ∈ [a, b) such that

lim sup
t→0+

D(c+ t)−D(c)

t
≤ D(b)−D(a)

b− a
.

Since

α = inf
t∈[0,T)

D′+(t) ≤ D′+(c) = lim sup
t→0+

D(c+ t)−D(c)

t
,

we have D(a) + α(b− a) ≤ D(b) for any 0 ≤ a ≤ b ≤ T . With a = τ̄(y) and b = τ̄(y) + δ/α,
we get y + δ ≤ D(τ̄(y)) + δ ≤ D(τ̄(y) + δ/α) (the first inequality is given by Lemma 1). By
definition of τ̄ , we have τ̄(y + δ) ≤ τ̄(y) + δ/α. The second inequality is proved along the
same lines. �

Proof of Lemma 6. Let (d∗,y∗) be an optimal solution of Pave
no return such that d∗j = τ̄(y∗j) +

ν(y∗j−y∗j−1) for all j ∈ {1, . . . , S} (Claim 2). Consider the sequence by∗1/ηcη, . . . , by∗S/ηcη and
remove the repetitions. Since the sequence is nondecreasing, we obtain an increasing sequence
r = r1, . . . , rn. We introduce σ : {1, . . . , n} → {1, . . . , S} with σ(j) being the smallest index
such that rj = by∗σ(j)/ηcη. We then define zj = rj − rj−1 for j ∈ {1, . . . , n}, with r0 = 0.

We prove that the sequence (zj, rj)j∈{1,...,n} provides a feasible path from the vertex (0, 0) to
(zn, rn) in G. First note that rn = Rη since y∗S = D(T) and that zj > 0. For all j ∈ {1, . . . , n},
we have zj = rj − rj−1 =

(
by∗σ(j)/ηc − by∗σ(j)−1/ηc+ by∗σ(j)−1/ηc − by∗σ(j−1)/ηc

)
η < Mη + η,

since by∗σ(j)−1/ηc = by∗σ(j−1)/ηc and y∗σ(j) − y∗σ(j)−1 ≤ C. Thus zj ≤ Mη. Moreover by

definition, rj ≤ Rη. Therefore (zj, rj) ∈ V for all j ∈ {1, . . . , n}. Let us now prove that
((zj−1, rj−1), (zj, rj)) ∈ A for all j ∈ {2, . . . , n}. By definition, zj + rj−1 = rj. Note that

21

because of the definition of rj, we have rj ≤ y∗σ(j) ≤ y∗σ(j+1)−1 < rj + η. Combining these

inequalities for all j with Claim 4 leads to

τ̄(rj)− τ̄(rj−1) + ν(zj − zj−1) ≥ τ̄(y∗σ(j))− η/α− τ̄(y∗σ(j−1))

+ν(y∗σ(j) − y∗σ(j)−1 − y∗σ(j−1) + y∗σ(j−1)−1 − 2η)

= d∗σ(j) − d∗σ(j−1) − (1/α + 2ν)η

≥ −(1/α + 2ν)η.

The sequence (zj, rj)j∈{1,...,n} is then a feasible path p from the vertex (0, 0) to (zn, rn) in
G, with at most S arcs. The only thing that remains to be checked in that the claimed
inequality holds.

We have f ave(d∗σ(j), y
∗
σ(j)−1, y

∗
σ(j)) ≥ f

(
τ̄(rj) + ν(zj − η), rj−1 + η, rj

)
for all j ∈ {1, . . . , n}

since f ave(·) is nonincreasing in the second term and nondecreasing in the first and third
terms. Thus,

1

D(T)

∑
a∈A(p)

w(a) ≤ 1

D(T)

n∑
j=1

f ave(d∗σ(j), y
∗
σ(j)−1, y

∗
σ(j)) ≤ gave(d∗,y∗).

Since this inequality holds for any optimal solution of Pave
no return, we get the conclusion. �

Proof of Lemma 7. We are going to check that (d̃, ỹ) is feasible for Pave
no return.

For j = 1, . . . , n, we have ỹj − ỹj−1 ≤ C by definition of ỹ. For j = n+ 2, . . . , S, we have
ỹj − ỹj−1 = 0. Finally, we have ỹn+1 − ỹn ≤ D(T) − rn < η ≤ C (where we use Claim 3 to
bound ỹn). Thus, ỹ satisfies constraint (i).

For j = 1, . . . , n, if rj > rj−1, we have ỹj−1 ≤ rj−1 + η ≤ rj ≤ ỹj (the last inequality being
Claim 3) and if rj = rj−1, necessarily rj = rj−1 = 0 and ỹj−1 = ỹj = η. Thus, ỹ satisfies
constraint (ii).

Consider j ∈ {2, . . . , n}. We have

d̃j − d̃j−1 = τ̄(ỹj) + ν(ỹj − ỹj−1)− τ(ỹj−1)− ν(ỹj−1 − ỹj−2) + γη

≥ τ̄(rj)− τ̄(rj−1 + η) + ν(rj − 2rj−1 + rj−2 − 2η) + γη

≥ τ̄(rj)− τ̄(rj−1)− η/α + ν(zj − zj−1 − 2η) + γη

≥ 0.

The first inequality is obtained with the help of Claim 3. For the second one, we use
Claim 4 and also that zj = rj − rj−1 and zj−1 = rj−1 − rj−2 which hold because p̃ =(
(z0, r0), (z1, r1), . . . , (zn, rn)

)
is a path in G. For the last inequality, we use τ̄(rj)− τ̄(rj−1) +

ν(zj − zj−1) + 1
2
γη ≥ 0, which holds again because p̃ is a path, and the definition of γ. For

j ≥ n+ 1, we have d̃j ≥ d̃j−1 by definition. Constraint (iii) is thus satisfied for all j.
If n < S, then ỹS = D(T) by definition. From now on, we suppose thus that n = S. We

also suppose that S ≥ 2. The case S = 1 being easy to check (and anyway, for a complexity
point of view, this case does not matter). If ỹS−1 = rS−1 +η, then ỹS−1 +C = rS−1 +η+C ≥
rS + η > D(T) (here we use that zS ≤ C and that rS = Rη) and thus ỹS = D(T). If
ỹS−1 = D(T), then ỹS = D(T) since ỹS−1 ≤ ỹS ≤ D(T). Hence, in all these cases, ỹ satisfies
constraint (iv). The only remaining case is when ỹS−1 = ỹS−2 + C. If j is an index in
{1, . . . , S − 2} such that ỹj = rj + η, then we have rj+1 + η ≤ rj + C + η = ỹj + C and
rj+1+η ≤ D(T), and thus ỹj+1 = rj+1+η. It implies that as soon as some j0 ∈ {1, . . . , S − 1}

22

is such that ỹj0 = rj0 + η, we have ỹS−1 = rS−1 + η, which is a case we have already dealt
with. Since rj + η ≤ rS ≤ D(T) for j ∈ {1, . . . , S − 1}, we are left with the case where
ỹj = ỹj−1 + C for every j ∈ {1, . . . , S − 1}. In this situation, we have ỹS−1 = (S − 1)C and
hence ỹS−1 +C = CS ≥ D(T). Since rS + η > D(T), we get that ỹS = D(T), and ỹ satisfies
constraint (iv) in every case.

For j = 1, . . . , n, we have d̃j ≥ τ̄(ỹj) + ν(ỹj − ỹj−1) by definition, and for j ≥ n + 1, we

have d̃j ≥ T + ν(ỹn+1− ỹn) ≥ τ̄(ỹj) + ν(ỹj − ỹj−1). Thus d̃ satisfies constraint (v) and (d̃, ỹ)
is feasible for Pave

no return. �

Proof of Lemma 8. Our goal is to bound from above the following quantity

(4) gave(d̃, ỹ) =
1

D(T)

S∑
j=1

f ave(d̃j, ỹj−1, ỹj)

We proceed by splitting the expression into two parts: the sum from j = 1 to j = n, and
the sum from j = n+ 1 to j = S.

Using Claims 3 and 4, we have τ̄(ỹj) + ν(ỹj − ỹj−1) ≤ qj + η/α + νη, where qj = τ̄(rj) +
ν(rj − rj−1). Thus we have for all j ≤ n,

(5)
n∑
j=1

f ave(d̃j, ỹj−1, ỹj) ≤
n∑
j=1

f ave(qj + η/α + νη + jγη, rj−1, rj + η),

since f ave(·) is nonincreasing in the second term and nondecreasing in the first and third
terms and where we extend the definition of τ̄(·) by letting τ̄(y) = T for all y > D(T).

For the second part, we proceed as follows. Since rn + η = (R + 1)η > D(T), Claim 3
immediately implies D(T)− ỹn ≤ η. With Claim 4, we get thus T ≤ τ̄(ỹn) + η/α, where we
used T = τ̄

(
D(T)− ỹn + ỹn

)
. This provides

d̃n+1 ≤ τ̄(ỹn) + η/α + ν(rn − rn−1) + νη + nγη = qn + (1/α + ν + nγ)η.

Using again the fact that f ave(·) is nonincreasing in the second term and nondecreasing in
the first and third terms and with the help of Claim 3, we get

(6)
S∑

j=n+1

f ave(d̃j, ỹj−1, ỹj) ≤ f ave(qn + η/α + νη + nγη, rn, rn + η),

since the terms indexed by j = n+ 2, . . . , S are all zero and since D(T) < rn + η.
We aim at comparing the upper bounds in Equations (5) and (6) with

(7)
∑
a∈A(p̃)

w(a) =
n∑
j=1

f ave(qj − νη, rj−1 + η, rj).

We first compare the jth term of the bound in (5) with the jth term of the sum in (7).

f ave(qj + η/α + νη + jγη, rj−1, rj + η)− f ave(qj − νη, rj−1 + η, rj) = I1
j + I2

j + I3
j

23

with

I1
j =

∫ rj−1+η

rj−1

(
qj + η/α + νη + jγη − τ̄(u)

)
du

I2
j =

∫ rj

rj−1+η

(
jγη + η/α + 2νη

)
du

I3
j =

∫ rj+η

rj

(
qj + η/α + νη + jγη − τ̄(u)

)
du.

Since τ̄(·) in nondecreasing, we get

I1
j ≤

(
τ̄(rj)− τ̄(rj−1) + ν(rj − rj−1)

)
η + (1/α + ν + jγ)η2

I2
j ≤ (rj − rj−1)(jγ + 1/α + 2ν)η − (jγ + 1/α + 2ν)η2

I3
j ≤ ν(rj − rj−1)η + (1/α + νη + jγ)η2.

Using jγ ≤ nγ and γ = 2(1/α + 2ν), we obtain

I1
j + I2

j + I3
j ≤

(
τ̄(rj)− τ̄(rj−1) + 2ν(rj − rj−1)

)
η + (n+ 1/2)γη2 + (rj − rj−1)(n+ 1/2)γη.

We now bound the term in Equation (6). Let I = f ave(qn + η/α+ νη + nγη, rn, rn + η). We
have

I =

∫ rn+η

rn

(qn + η/α + νη + nγη − τ̄(u))du.

≤ ν(rn − rn−1)η + (1/α + ν + nγ
)
η2.

We have thus

gave(d̃, ỹ)− 1

D(T)

∑
a∈A(p̃)

w(a) ≤ 1

D(T)

(
n∑
j=1

(I1
j + I2

j + I3
j) + I

)

≤ 1

D(T)

(
τ̄(rn) + 2νrn + rn(n+ 1)γ + νC + (n+ 1)2γη

)
η.

Using rn ≤ D(T) and τ̄(rn) ≤ T leads to

gave(d̃, ỹ) ≤ 1

D(T)

∑
a∈A(p)

w(a) +

(
T + νC

D(T)
+ γ(S + 1)

)
η +

γ(S + 1)2

D(T)
η2.

�

References

[1] Eva Barrena, David Canca, Leandro Coelho, and Gilbert Laporte. Exact formulations
and algorithm for the train timetabling problem with dynamic demand. Computers &
Operations Research, 44:66–74, 2014.

[2] Valentina Cacchiani, Alberto Caprara, and Paolo Toth. A column generation approach
to train timetabling on a corridor. 4OR: A Quarterly Journal of Operations Research,
6(2):125–142, 2008.

[3] Valentina Cacchiani, Alberto Caprara, and Paolo Toth. Non-cyclic train timetabling
and comparability graphs. Operations Research Letters, 38(3):179–184, 2010.

24

[4] Xiaoqiang Cai, C.J. Goh, and Alistair Mees. Greedy heuristics for rapid scheduling of
trains on a single track. IIE transactions, 30(5):481–493, 1998.

[5] Alberto Caprara, Matteo Fischetti, and Paolo Toth. Modeling and solving the train
timetabling problem. Operations research, 50(5):851–861, 2002.

[6] Roberto Cordone and Francesco Redaelli. Optimizing the demand captured by a rail-
way system with a regular timetable. Transportation Research Part B: Methodological,
45(2):430–446, 2011.

[7] Walter Erwin Diewert. Alternative characterizations of six kinds of quasiconcavity in
the nondifferentiable case with applications to nonsmooth programming. In S. Schaible
and W.T Ziemba, editors, Generalized concavity in optimization and economics, pages
51–93. Academic Press, New York, 1981.

[8] Laura Ingolotti, Antonio Lova, Federico Barber, Pilar Tormos, Miguel Angel Salido, and
Montserrat Abril. New heuristics to solve the CSOP railway timetabling problem. In
International Conference on Industrial, Engineering and Other Applications of Applied
Intelligent Systems, pages 400–409. Springer, 2006.

[9] Leo Kroon, Dennis Huisman, Erwin Abbink, Pieter-Jan Fioole, Matteo Fischetti, Gábor
Maróti, Alexander Schrijver, Adri Steenbeek, and Roelof Ybema. The new dutch
timetable: The OR revolution. Interfaces, 39(1):6–17, 2009.

[10] Leo Kroon and Leon Peeters. A variable trip time model for cyclic railway timetabling.
Transportation Science, 37(2):198–212, 2003.

[11] Vassilissa Lehoux-Lebacque, Nadia Brauner, Gerd Finke, and Christophe Rapine. Sched-
uling chemical experiments. In 37th International Conference on Computers and Indus-
trial Engineering,(CIE37), 2007.

[12] Christian Liebchen. Finding short integral cycle bases for cyclic timetabling. In European
Symposium on Algorithms, pages 715–726. Springer, 2003.

[13] Christian Liebchen and Rolf Möhring. A case study in periodic timetabling. Electronic
notes in theoretical computer science, 66(6):18–31, 2002.

[14] Karl Nachtigall and Stefan Voget. A genetic algorithm approach to periodic railway
synchronization. Computers & Operations Research, 23(5):453–463, 1996.

[15] Paolo Serafini and Walter Ukovich. A mathematical model for periodic scheduling
problems. SIAM Journal on Discrete Mathematics, 2(4):550–581, 1989.

[16] Marc Voorhoeve. Rail scheduling with discrete sets. Unpublished report, Eindhoven
University of Technology, The Netherlands, 1993.

E-mail address: laurent.daudet@enpc.fr

E-mail address: frederic.meunier@enpc.fr

École Nationale des Ponts et Chaussées, CERMICS, 77455 Marne-la-Vallée CEDEX,
France

25

	1. Introduction
	2. Model
	2.1. The problems
	2.2. The demand
	2.3. Mathematical model
	2.4. Computational model

	3. Main results
	3.1. All users in the terminal from the beginning
	3.2. When return is not allowed
	3.3. When return is allowed

	4. All users in the terminal from the beginning
	5. When return is not allowed
	5.1. Minimizing the maximum waiting time
	5.2. Minimizing the average waiting time
	5.3. When the demand function is a step function

	6. When return is allowed
	7. Experimental results
	7.1. Data
	7.2. Results
	7.3. Comments

	8. Proofs of Lemmas of Section ??
	References

