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Abstract

This work deals with a very generic class of scheduling problems with identical/uniform/unrelated

parallel machine environment. It considers well-known attributes such as release dates or

sequence-dependent setup times and accepts any objective function defined over job completion

times. Non-regular objectives are also supported. We introduce a branch-cut-and-price algorithm

for such problems that makes use of non-robust cuts, i.e., cuts which change the structure of the

pricing problem. This is the first time that such cuts are employed for machine scheduling prob-

lems. The algorithm also embeds other important techniques such as strong branching, reduced

cost fixing and dual stabilization. Computational experiments over literature benchmarks showed

that the proposed algorithm is indeed effective and could solve many instances to optimality for

the first time.

Keywords: Parallel machines, Unified algorithm, Branch-cut-and-price

1. Introduction

We consider a class of problems to schedule a set of jobs J (n = |J |) on a set of machines

of different types k ∈ K without preemption. For each machine type k ∈ K, there exists mk

machines available (m =
∑

k∈K mk). A job j is not allowed to be processed before its release

date rj , and its processing time on a machine of type k ∈ K is denoted as pkj . Also, skij denotes

the setup time required to process job j immediately after job i on a machine of type k. In this

paper, unless stated otherwise, we assume anticipatory setups, meaning that the setup operations

of a job can start before its release date. Each job j is associated to a cost function fj(Cj) defined

over its completion time Cj . The objective function is to minimize
∑

j∈J fj(Cj). This function

is very general and can model many criteria. For example, suppose each job has an earliness

Ej = max{dj − Cj , 0} and a tardiness Tj = max{Cj − dj , 0} that is computed based on its due
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date dj . A classical objective is to minimize the total weighted earliness and tardiness given by∑
j∈J(w′jEj + wjTj), where w′j and wj are penalty coefficients associated with job j.

According to the notation introduced by Graham et al (1979), the general case of the class

of problems described above can be denoted as R|rj , skij |
∑
fj(Cj). A considerable number of

NP-hard problems arise as special cases of problem R|rj , skij |
∑
fj(Cj), as they usually generalize

standard problems such as 1||
∑
wjTj and P ||

∑
wjCj , which are known to be NP-hard (Lenstra

et al, 1977). Dozens of variants can thus be derived by simply combining the existing attributes

(i.e., release dates, setup times) with the machine environment (identical, uniform, unrelated)

and one of the various objective functions (e.g.,
∑

j∈J wjTj ,
∑

j∈J(w′jEj + wjTj),
∑

j∈J wjCj).

Furthermore, remark that cost functions that include earliness penalties are not regular and may

have optimal solutions that include idle times between jobs, which is a critical aspect to be

considered when developing efficient algorithms for this type of problems. The problem with

release dates may also have optimal solutions with idle times.

There is a vast literature associated to variants of the problem R|rj , skij |
∑
fj(Cj). Kramer

and Subramanian (2017) recently presented an annotated bibliography of works related to this

problem. They enumerated at least 130 works published in the last 25 years. Almost all of

them proposed a solution approach for a particular variant or a very limited class of problems,

such as the single machine exact algorithms by van den Akker et al (2000); Sourd and Kedad-

Sidhoum (2003); Avella et al (2005); Sourd (2005); Sourd and Kedad-Sidhoum (2008); Tanaka

and Fujikuma (2008); Bigras et al (2008); Pan and Shi (2008); Tanaka and Araki (2013) and the

parallel machine exact algorithms by Chen and Powell (1999); Liaw et al (2003); Yalaoui and

Chu (2006); Shim and Kim (2007a,b); Nessah et al (2008); Tanaka and Araki (2008); Jouglet and

Savourey (2011); Schaller (2014); Bülbül and Şen (2017); Kowalczyk and Leus (2018).

Yet, there are highly successful general single machine exact approaches that were designed to

cope with a gamut of variants such as the successive sublimation dynamic programming (SSDP)

algorithm (Tanaka et al, 2009; Tanaka and Fujikuma, 2012). It was developed for problems

without sequence-dependent setup times, where the authors could solve instances of different

problems with up to 300 jobs. We could not identify, however, general purpose exact algorithms

for problems involving setup times and a non-regular objective function. As a matter of fact, the

performance of current exact algorithms tends to degrade when such attribute is incorporated.

One possible explanation is that the one-machine subproblems that are solved in such algorithms

become more challenging when setup times are considered. For example, the performance of the

best known exact method for problem 1|sij |
∑
wjTj (Tanaka and Araki, 2013) when solving 60-job

instances to optimality varied quite a lot, ranging from few seconds to 30 days of CPU time.

We were also not able to identify many exact algorithms with the ability of efficiently solving a

large number of parallel machine variants related to problem R|rj , skij |
∑
fj(Cj). The branch-cut-

and-price algorithm by Pessoa et al (2010) could solve instances with up to 4 machines and 100 jobs

for problems involving identical parallel machines and the weighted tardiness objective function.
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This algorithm was later improved by Oliveira and Pessoa (2018), where the authors managed to

solve more instances. The algorithm by Şen and Bülbül (2015) for problem R||
∑
wjCj combines

a preemption-based relaxation with Benders’ decomposition. Sequence-dependent setup times

were not taken into account in both works. Pereira Lopes and Valério de Carvalho (2007) studied

a variant similar to our general case, in particular, problem R|ak, rj , skij |
∑
wjTj , where ak is the

availability date of machine k. They put forward a branch-and-price algorithm that could solve

instances with up to 50 machines and 150 jobs. It is worth mentioning that the objective function

here is regular. Moreover, the largest instances considered by the authors contain a very small

number of jobs per machine what makes them much easier.

In this work we present a novel exact algorithm that is capable of solving problem

R|rj , skij |
∑
fj(Cj) and the large class of problems that can be derived as particular cases from

it. The proposed algorithm consists of a branch-cut-and-price approach that combines several

features such as non-robust cuts, strong branching, reduced cost fixing and dual stabilization.

We report improved bounds for benchmark instances of several problems. Moreover, we evaluate

computationally the impact of non-robust cuts, which were employed for the first time for solving

machine scheduling problems.

The remainder of the paper is organized as follows. Section 2 presents the extended mathemat-

ical formulation of the problem and the column generation approach to solve its linear relaxation.

In Section 3 we present the cutting planes we then employ to strengthen the column generation

dual bound. Section 4 describes the labeling algorithm for solving the pricing problem of the

column generation approach. A procedure to eliminate arc variables by reduced cost arguments

is presented in Section 5. Section 6 describes the proposed branch-cut-and-price approach. Sec-

tion 7 contains the results of the computational experiments, whereas conclusions are drawn in

Section 8.

2. Mathematical formulation

We start by defining some notation required to introduce the mathematical formulation. Let

T be an upper bound on the maximum completion time of a job in some optimal solution. Let

Gk = (Vk = Rk ∪ Ok, Ak = A1
k ∪ A2

k ∪ A3
k ∪ A4

k) be the acyclic graph associated with each

machine type k ∈ K, where set Rk = {(j, t, k) : j ∈ J, t = rj + pj , . . . , T} contains the vertices

associated with the jobs. We adopt the convention that idle times only occur after the job

has been processed. We assume that job j has been processed when arriving at vertex (j, t, k),

but note that j did not necessarily finish at time t because of the existence of idle times. Set

Ok = {(0, t, k) : t = 0, . . . , T} contains the vertices associated with dummy job 0. For brevity, we

denote arc ((i, t, k), (j, t+ skij + pkj , k)) as (i, j, t, k).

Set A1
k = {(i, j, t, k) = ((i, t, k), (j, t + skij + pkj , k)) : (i, t, k) ∈ Rk, (j, t + skij + pkj , k) ∈ Rk, j ∈

J \ {i}} contains the arcs connecting the vertices of Rk. Set A2
k = {(0, j, t, k) = ((0, t, k), (j, t +

sk0j+p
k
j , k)) : (j, t+sk0j+p

k
j , k) ∈ Rk, j ∈ J} contains all arcs connecting the vertices from Ok to Rk.
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Set A3
k = {(j, 0, t, k) = ((j, t, k), (0, T, k)) : (j, t, k) ∈ Rk} contains all arcs connecting the vertices

from Rk to Ok. Set A4
k = {(j, j, t, k) = ((j, t, k), (j, t + 1, k)) : (j, t, k) ∈ Rk ∪ Ok, (j, t + 1, k) ∈

Rk ∪ Ok} contains the arcs associated with idle times. Let ca = c(i, j, t, k) be the cost of an arc

a = (i, j, t, k) ∈ A1
k ∪ A2

k , which is the cost incurred if job j finishes to be processed at time

t+ skij + pkj : c(i, j, t, k) = fj(t+ skij + pkj ). Note that ca = 0, ∀a ∈ A3
k ∪A4

k.

Moreover, let set Rjk = {(i, t, k) ∈ Rk : i = j} denote the vertices associated with job j.

Finally, for each subset S ⊆ Vk, let δ−(S) and δ+(S) be the sets representing the arcs entering

and leaving S, respectively. The proposed arc-time-indexed formulation is as follows.

(F1) min
∑
k∈K

∑
a∈Ak

caxa (1)

s.t.
∑
k∈K

∑
a∈δ−(Rj

k)\A
4
k

xa = 1, ∀j ∈ J (2)

∑
a∈A2

k

xa ≤ mk, ∀k ∈ K (3)

∑
a∈δ−({v})

xa −
∑

a∈δ+({v})

xa = 0,

∀k ∈ K,∀v ∈ Vk \ {(0, 0, k), (0, T, k)} (4)

x ≥ 0, (5)

x integer (6)

Objective function (1) minimizes the completion time dependent costs. Constraints (2) state

that each job j ∈ J must be processed exactly once. Constraints (3) impose that at most mk

machines of type k ∈ K can be used. Constraints (4) are related to the flow conservation. It is

worth mentioning that F1 can be easily adapted to cope with non-anticipatory setups, it is just

a matter of removing some arcs from the network.

We now present an example for a small R|rj , skij |
∑
w′jEj + wjTj instance with 8 jobs and 2

types of machines (K = {1, 2}), where m1 = 2 and m2 = 1. All setup times are equal to 1,

regardless of the machine type. The values of the attributes associated with each of the 8 jobs

are described in Table 1.

Figure 1 illustrates the network representation and its associated Gantt chart of an optimal

solution with cost 89 for the instance above. Variables xa associated with arcs (0, 0, 0, 1), (0, 0, 1, 1)

are set to two in this solution, while variables xa associated with the following arcs are set to

one: (0, 7, 2, 1), (7, 2, 6, 1), (2, 8, 9, 1), (8, 0, 12, 1), (0, 0, 2, 1), (0, 4, 3, 1), (4, 1, 7, 1), (1, 0, 12, 1),

(0, 0, 0, 2), (0, 0, 1, 2), (0, 5, 2, 2), (5, 6, 5, 2), (6, 6, 8, 2), (6, 3, 9, 2), (3, 0, 12, 2).

Define Pk as the set of paths, in graph Gk, starting at vertex (0, 0, k) and ending at vertex

(0, T, k). Let baP be the number of times path P traverses a ∈ Ak and let λP be a binary variable
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Table 1: Values of the attributes associated with each job

j p1j p2j rj w′j wj dj
1 4 4 4 7 16 11
2 2 3 5 6 13 7
3 3 2 9 4 11 12
4 3 4 4 10 21 8
5 3 2 3 7 20 5
6 3 2 4 8 21 8
7 3 2 3 4 10 7
8 2 3 9 5 11 9

idle 4 1

7 2 8idle

Machine type 1

Machine type 2

6 3idle 5 idle

Figure 1: Network representation and its associated Gantt charts of an optimal solution for a
small instance with cost 89.



Cadernos do LOGIS-UFF L-2018-3 6

that assumes value 1 if, and only if, P is in the solution. Formulation F1 can be rewritten in

terms of variables x and λ as follows:

min
∑
k∈K

∑
a∈Ak

caxa (7)

s.t.
∑
P∈Pk

bPa λP = xa, ∀k ∈ K,∀a ∈ Ak (8)

∑
k∈K

∑
a∈δ−(Rj

k)\A
4
k

xa = 1, ∀j ∈ J (9)

∑
a∈A2

k

xa ≤ mk, ∀k ∈ K (10)

x, λ ≥ 0, (11)

x, λ integer (12)

By writing the formulation above only in terms of λ and relaxing the integrality constraints,

we obtain the following Dantzig-Wolfe Master linear program:

(DWM) min
∑
k∈K

∑
P∈Pk

( ∑
a∈Ak

bPa ca

)
λP (13)

s.t.
∑
k∈K

∑
P∈Pk

( ∑
a∈δ−(Rj

k)\A
4
k

bPa

)
λP = 1, ∀j ∈ J (14)

∑
P∈Pk

( ∑
a∈A2

k

bPa

)
λP ≤ mk, ∀k ∈ K (15)

λ ≥ 0 (16)

DWM is solved by dynamically generating variables λ through column generation. The pricing

subproblem for a machine type k ∈ K corresponds to finding a path P ∈ Pk with the smallest

reduced cost. The reduced cost of a path can be decomposed into arc reduced costs, being the

reduced cost of an arc (i, j, t, k) defined as:

c̄(i, j, t, k) =


c(i, j, t, k)− πj , if i 6= j, i 6= 0, j 6= 0

c(i, j, t, k)− πj − νk, if i = 0, j 6= 0,

0, otherwise,

(17)

where πj is the value of the dual variable of the constraint in (14) associated with job j and νk

is the value of the dual variable of the constraint in (15) associated with machine type k. Note
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that a path P ∈ Pk corresponds to a so-called pseudo-schedule, i.e. a schedule on machine type

k in which some jobs may be processed more than once.

3. Rank-1 Chvátal-Gomory cuts

Valid inequalities can be obtained by a Chvátal-Gomory rounding of constraints in (14). Let

uj ∈ [0, 1) be a rational multiplier associated with job j ∈ J . The Chvátal-Gomory rank of the

resulting inequality

∑
k∈K

∑
P∈Pk

(∑
j∈J

uj
∑

a∈δ−(Rj
k)\A

4
k

bPa

)λP ≤
∑
j∈J

uj

 (18)

is 1. It will be referred as a rank-1 cut. Note that arcs associated with idle times are disregarded

in (18).

Starting with Jepsen et al (2008), that proposed a subfamily of inequalities known as subset

row cuts, rank-1 cuts have been extensively used in exact algorithms for VRPs over a set par-

titioning formulation. For examples, we may mention (Baldacci et al, 2011; Jepsen et al, 2013;

Contardo and Martinelli, 2014; Gauvin et al, 2014). According to the classification proposed

in Poggi de Aragão and Uchoa (2003), cuts defined over the arc variables are robust, since the

effect of their dual variables can be translated into arc reduced costs without changing the pricing

structure. On the other hand, cuts directly defined over the path variables λ, such as rank-1

cuts, are classified as non-robust because they affect the pricing structure. Indeed, an additional

resource should be added in the shortest path pricing problem for each active cut (Pecin et al,

2017b). Hence, one cannot add many rank-1 cuts to DWM because the pricing problem becomes

time-consuming to solve.

The limited-memory technique proposed by Pecin et al (2017b) serves to mitigate the negative

impact of rank-1 cuts on the difficulty of the pricing problem. Each rank-1 cut has an associated

memory which can be a set of vertices (as in Pecin et al (2017b)) or a set of arcs (as in Pecin

et al (2017a)). In this work we define the memory as a set of pairs of jobs. Thus every cut is

characterized by multipliers uj = αj/β, αj < β, j ∈ J , and a memory M ⊆ J ×J . The coefficient

of variable λP in a given limited memory rank-1 cut

∑
k∈K

∑
P∈Pk

coeff(ps(P ), α, β,M)λP ≤

∑
j∈J

uj

 (19)

depends only on the sequence of the pseudo-schedule ps(P ) = (j1, . . . , j|ps(P )|) associated with the

path P ∈ P = ∪k∈KPk and does not depend on the timing of the pseudo-schedule and thus idle

times can be disregarded. Function coeff which is used to compute coefficients of variables λ in

(19) is defined in Algorithm 1.
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Algorithm 1 Computing the coefficient of variable λP in a limited memory rank-1 cut, charac-
terized by α, β, and M

1: function coeff(ps(P ) = (j1, . . . , j|ps(P )|), α, β, M)
2: state ← 0, coeff ← 0
3: for i← 1 to |ps(P )| do
4: if i > 1 and (ji−1, ji) /∈M then
5: state ← 0
6: state ← state + αji
7: if state ≥ β then
8: state ← state − β, coeff ← coeff + 1
9: return coeff

The smaller is the cut’s memory, the smaller are the coefficients of some variables λ in the cut.

Hence, limited-memory cuts are possibly weaker than the original “full-memory” rank-1 cuts (18).

However, when using limited-memory cuts, very substantial gain in the pricing problem solution

time is usually achieved. Moreover, during cut separation, it is possible to adjust the memories to

the current fractional solutions. In fact, when rank-1 cut separation converges, limited-memory

cuts obtain exactly the same bounds that would be obtained with the original cuts (Pecin et al,

2017b).

Assume that a separation procedure finds a violated rank-1 cut (18), characterized by vector

α and scalar β. The cut that will be actually added is the limited memory variant (19) of the cut,

with a memory set obtained as described in Algorithm 2. Let λ∗ be the fractional solution and let

P(λ∗) = {P ∈ P : λ∗P > 0} be the set of paths corresponding to strictly positive variables in λ∗.

The idea is to obtain a small memory set such that the coefficients of all variables λP , P ∈ P(λ∗),

are the same in (18) and in (19). In this way, the cut violation will remain the same. Function

computeMemory first finds a minimal memory Mmin with that property. Then, some other pairs

of jobs are added to the final memory (lines 13 and 14). Those pairs of jobs are likely to be useful

for keeping the cut strong in future iterations. The overall goal is to speedup the convergence of

the separation.

Consider now as an example a 7-job instance for problem P ||
∑
wjTj with the following data:

K = {1}, m1 = 2, (p11, w1, d1) = (48, 8, 114), (p12, w2, d2) = (20, 8, 73), (p13, w3, d3) = (43, 13, 51),

(p14, w4, d4) = (25, 15, 51), (p15, w5, d5) = (35, 16, 106), (p16, w6, d6) = (30, 15, 104), (p17, w7, d7) =

(70, 9, 86). After column generation over DWM, the following LP can be obtained:

min 64λ1 + 256λ2 + 693λ3 + 313λ4 + 32λ5

0λ1 + 1λ2 + 0λ3 + 1λ4 + 0λ5 = 1

1λ1 + 1λ2 + 1λ3 + 0λ4 + 0λ5 = 1

0λ1 + 1λ2 + 1λ3 + 0λ4 + 1λ5 = 1

1λ1 + 0λ2 + 0λ3 + 1λ4 + 0λ5 = 1
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Algorithm 2 Computing the limited memory of the rank-1 cut, characterized by α, β, given λ∗

1: function computeMemory(α, β, λ∗)
2: Mmin ← ∅
3: for P ∈ P(λ∗) do
4: Let ps(P ) = (j1, . . . , j|ps(P )|)
5: Mpart ← ∅, state ← 0
6: for i← 1 to |ps(P )| do
7: if i > 1 and state > 0 then
8: Mpart ←Mpart ∪ {(ji−1, ji)}
9: state ← state + αji

10: if state ≥ β then
11: state ← state − β
12: Mmin ←Mmin ∪Mpart, Mpart ← ∅
13: M ←Mmin ∪ {(j′, j′′) ∈ J × J : (j′′, j′) ∈Mmin}
14: M ←M ∪ {(j′, j′′) ∈ J × J : αj′ > 0, αj′′ > 0}
15: return M

1λ1 + 1λ2 + 0λ3 + 0λ4 + 1λ5 = 1

1λ1 + 0λ2 + 1λ3 + 0λ4 + 1λ5 = 1

0λ1 + 0λ2 + 1λ3 + 1λ4 + 0λ5 = 1

1λ1 + 1λ2 + 1λ3 + 1λ4 + 1λ5 ≤ 2

λ ≥ 0

Variables λ1, λ2, λ3, λ4, and λ5 are associated with pseudo-schedules ps(1) = (4, 2, 6, 5),

ps(2) = (3, 2, 5, 1), ps(3) = (3, 2, 6, 7), ps(4) = (4, 7, 1) and ps(5) = (3, 6, 5), respectively. An

optimal solution for the problem above is λ∗4 = 2
3 and λ∗1 = λ∗2 = λ∗3 = λ∗5 = 1

3 , with cost 557. Let

us define the multipliers vector u = (12 ,
1
2 , 0,

1
2 , 0, 0, 0)>. Hence, we obtain:

[
1
2

1
2 0 1

2 0 0 0
]


0 1 0 1 0

1 1 1 0 0

0 1 1 0 1

1 0 0 1 0

1 1 0 0 1

1 0 1 0 1

0 0 1 1 0




λ1

λ2

λ3

λ4

λ5

 =
[
1
2

1
2 0 1

2 0 0 0
]


1

1

1

1

1

1

1


By summing up the equalities above, we have the following inequality:

1λ1 + 1λ2 + 0.5λ3 + 1λ4 + 0λ5 ≤ 1.5
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After rounding down both sides of the inequality above, we obtain the following rank-1 cut:

λ1 + λ2 + λ4 ≤ 1 (20)

It can be observed that the inequality above is not satisfied by λ∗. Given λ∗ and apply-

ing Algorithm 2, we can now compute the memory for the rank-1 cut (20) characterized by

α = (1, 1, 0, 1, 0, 0, 0) and β = 2. We obtain Mmin = {(4, 2), (2, 5), (5, 1), (4, 7), (7, 1)}, and final

memory M = Mmin∪{(2, 4), (5, 2), (1, 5), (7, 4), (1, 7)}∪{(1, 2), (2, 1), (1, 4), (4, 1)}. Note that the

coefficients of variables λ1, λ2, λ3, λ4, and λ5 are the same in this cut with limited memory M

and with full memory.

This does not mean that the limited-memory cut will have the best possible coefficients on

variables that may appear later, from the column generation. For example, suppose that a variable

λP such that ps(P ) = (1, 5, 4, 3, 1, 5, 2, 4) is generated. In Table 2, we give the evolution of values

state and coeff values in Algorithm 1 when calculating the coefficient with full memory and with

the above calculated limited memory M . It can be seen that the coefficient of λP in the limited

memory cut is smaller than in the full memory one. However, if λP becomes positive in the next

fractional solution, Algorithm 2 will consider that variable in the subsequent limited-memory

rank-1 cut separation. In particular, it is possible that a limited-memory rank-1 cut characterized

by the same α = (1, 1, 0, 1, 0, 0, 0) and β = 2, but with a new memory set that is large enough to

make the coefficient of λP to be equal to 2, is separated.

Table 2: Evolution of state and coeff values in Algorithm 1 for ps(P ) = (1, 5, 4, 3, 1, 5, 2, 4)

Full Memory Lim. Memory M
i ji state coeff state coeff

1 1 1 0 1 0
2 5 1 0 1 0
3 4 0 1 1 0
4 3 0 1 0 0
5 1 1 1 1 0
6 5 1 1 1 0
7 2 0 2 0 1
8 4 1 2 1 1

4. Pricing algorithm

In this section, we describe the labeling-based pricing algorithm which aims at finding, for each

k ∈ K, a path in Gk between vertices (0, 0, k) and (0, T, k) with the smallest reduced cost. Let L
be the set of active rank-1 cuts. We define µ` < 0 as the value of the dual variable associated with

cut ` ∈ L. Moreover, the denominator of the multipliers of cut ` ∈ L is denoted as β`, while the
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vector of numerators of the multipliers associated with this cut is denoted as α`. The memory of

cut ` ∈ L is denoted as M `.

In the pricing, reduced cost c̄(P ) of a path P ∈ Pk equals to the sum of reduced costs of

its arcs together with scalar product of the vector of coefficients of λP in active limited memory

rank-1 cuts and vector µ. Let coeff(P, `) be the coefficient of variable λP in cut ` ∈ L. This

coefficient is calculated as in Algorithm 1 for α`, β`, and M `. Then

c̄(P ) =
∑

(i,j,t,k)∈P

c̄(i, j, t, k)−
∑
`∈L

µ` · coeff(P, `) (21)

where c̄(i, j, t, k) is defined in (17).

In addition, let t(i, j, k) = skij + pkj be the length of the arcs that directly connect jobs i and

j processed on machine k, except when i = j and j = 0, where t(i, i, k) = 1 and t(i, 0, k) = 0,

respectively. In the reminder of this section we will omit index k for more clarity.

The labeling algorithm consists in an enumeration of all possible paths, employing dominance

rules to eliminate partial paths proved not to lead to an optimal path. Our algorithm applies a

so-called bidirectional search, that is, a path between vertices (0, 0) and (0, T ) will be obtained

from the concatenation of a partial forward path and a partial backward path. The first is a path

that begins at (0, 0) and ends at an intermediate vertex, traversing arcs of graph G in its regular

order. The latter is a path that begins at (0, T ) and ends at an intermediate vertex, traversing

the arcs from G in a reverse order. The reader is referred to Righini and Salani (2006) for more

details on bidirectional labeling.

A label L corresponds to a partial path PL. Forward path starts from vertex (0, 0) and

backward path starts from vertex (0, T ). Each label L is characterized by vector (c̄L, tL, jL, SL),

where

• c̄L is the reduced cost of path PL.

• (jL, tL) is the last vertex in PL.

• SL is a vector of states associated to cuts in L.

If PL is a forward path, then it corresponds to a partial pseudo-schedule ending at time tL

where the last job is jL (due to idle times, jL may have completed before tL). If PL is a backward

path, then it corresponds to a partial pseudo-schedule starting at time tL, with the additional

commitment that jL should be the last job to be completed before or at time tL. Value SL` for a

forward path PL is calculated in the same way as value state in Algorithm 1 for λPL , α`, β`, and

M `. For a backward path its calculation is done in the reverse order as it will be shown below.

A forward label L′ dominates forward label L′′ if for any partial path P , such that (PL
′′
, P )

is a complete path, (PL
′
, P ) is also a complete path, and c̄((PL

′
, P )) < c̄((PL

′′
, P )). Therefore,

one can disregard dominated label L′′ as it will not lead to an optimum solution. A backward
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label L′ dominates backward label L′′ if for any partial path P , such that (P, PL
′′
) is a complete

path, (P, PL
′
) is also a complete path, and c̄((P, PL

′
)) < c̄((P, PL

′′
)). It can be verified that the

following conditions are sufficient, in both forward and backward cases, for the dominance of label

L′′ by label L′:

• jL′ = jL
′′
,

• tL′ = tL
′′
,

• c̄L′ < c̄L
′′

+
∑

`∈L: SL′
` >SL′′

`

µ`.

Before describing the labeling algorithm we need to present auxiliary procedures

ExtendForward and ExtendBackward which extend a forward or backward label L to a ver-

tex corresponding to job j. Note that this vertex can be uniquely defined given jL, tL, and j.

The procedures are formally defined in Algorithm 3. Note that the vector of states SL does not

change when extending label L along an idle time arc.

Algorithm 3 Label Extension Algorithm

1: Procedure ExtendForward(L, j)
2: jL

′ ← j
3: c̄L

′ ← c̄L + c̄(jL, j, tL)
4: tL

′ ← tL + t(jL, j)
5: SL

′ ← SL

6: for ` ∈ L do
7: if j 6= jL and (jL, j) /∈M` then
8: SL

′
` ← 0

9: if j 6= jL then
10: SL

′
` ← SL

′
` + α`j

11: if SL
′

` ≥ β` then
12: SL

′
` ← SL

′
` − β`

13: c̄L
′ ← c̄L

′ − µ`
14: return L′

1: Procedure ExtendBackward(L, j)
2: jL

′ ← j
3: c̄L

′ ← c̄L + c̄(j, jL, tL − t(j, jL))
4: tL

′ ← tL − t(jL, j)
5: SL

′ ← SL

6: for ` ∈ L do
7: if j 6= jL then
8: SL

′
` ← SL

′
` + α`

jL

9: if SL
′

` ≥ β` then
10: SL

′
` ← SL

′
` − β`

11: c̄L
′ ← c̄L

′ − µ`
12: if j 6= jL and (j, jL) /∈M` then
13: SL

′
` ← 0

14: return L′

In the forward labeling algorithm, we store in forward bucket F (j, t) all labels L such that

jL = j and tL = t. First, initial label L = (0, 0, 0,0) representing empty path PL = ∅ is inserted

in bucket F (0, 0). Next, forward buckets F (j, t) are visited in a non-decreasing order of time t,

from 0 to t∗− 1, where t∗ is a threshold value that determines up to which time the forward label

extensions are performed. Every time a bucket F (j, t) is considered, the procedure extends each

label in it along all possible arcs (j, j′, t) ∈ A. The new label originated from such extension is

inserted to bucket F (j, t + t(j, j′)) only if it is not dominated by any of the labels in the latter

bucket. Existing labels in F (j, t + t(j, j′)) that are dominated by the new label are removed.

The backward labeling algorithm is similar to its forward counterpart and works with backward

buckets B(j, t), the extension of labels is performed in a backward direction. However, there
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is an asymmetry between those complementary algorithms: there are no backward buckets for

times smaller than t∗. Those buckets will not be needed in the concatenation procedure that will

be later described. In both forward and backward labeling, in order to speedup the dominance

checks, the labels in a given bucket are stored in a non-decreasing order of reduced cost. The

forward and backward labeling algorithms are formally described in Algorithm 4.

Algorithm 4 Mono-directional labeling algorithm

1: Procedure ForwardLabeling(t∗, A, P best)
2: F (j, t)← ∅; j ∈ J ∪ {0}, t ∈ {0, 1, . . . , T}
3: F (0, 0)← {L = (0, 0, 0,0)}
4: for t = 0 to t∗ − 1 do
5: for each j ∈ J ∪ {0} do
6: for each (j, j′, t) ∈ A do
7: for each L ∈ F (i, t) do
8: L′ ← ExtendForward(L, j′)
9: if tL

′
> T then

10: continue
11: if L′ is not dominated by L′′ ∈

F (jL
′
, tL
′
) then

12: insert L′ to bucket F (jL
′
, tL
′
) and

remove from it all labels L′′ dom-
inated by L′

13: if jL
′

= 0 and c̄L
′
< c̄(P best) then

14: P best ← PL
′

15: return (F, P best)

1: Procedure BackwardLabeling(t∗, A, P best)

2: B(j, t)← ∅; j ∈ J ∪ {0}, t ∈ {t∗, . . . , T}
3: B(0, T )← {L = (0, 0, T,0)}
4: for t = T downto t∗ + 1 do
5: for each j ∈ J ∪ {0} do
6: for each (j′, j, t− t(j′, j)) ∈ A do
7: for each L ∈ B(i, t) do
8: L′ ← ExtendBackward(L, j′)
9: if tL

′
< t∗ then

10: continue
11: if L′ is not dominated by L′′ ∈

B(jL
′
, tL
′
) then

12: insert L′ to bucket B(jL
′
, tL
′
) and

remove from it all labels L′′ dom-
inated by L′

13: if jL
′

= 0 and c̄L
′
< c̄(P best) then

14: P best ← PL
′

15: return (B,P best)

The principle of a bidirectional labeling algorithm is to obtain complete paths by concatenating

forward and backward labels. Concatenation is performed between labels in buckets F (j, t) and

B(j, t), for each t, t∗ ≤ t ≤ T , and each j ∈ J . When concatenating labels L and L′ we need to

take into account states SL and SL
′

and adjust the reduced cost of the obtained complete path if

necessary. In fact the reduced cost of the concatenated path is obtained as the sum of the reduced

costs of forward and backward partial paths PL and PL
′

and the concatenation cost. The latter

is non-negative and can be strictly positive because the coefficient of the concatenated path in a

rank-1 cut ` ∈ L can be one unit larger than the sum of the coefficients of forward and backward

paths in `. This happens when the sum of states SL` and SL
′

` is greater than or equal to β`. The

concatenation procedure is formally given in Algorithm 5.

The full bi-directional labeling procedure is described in Algorithm 6. In it we first run the

forward and backward mono-directional labeling up to time threshold t∗. Then the concatenation

is performed.
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Algorithm 5 Concatenation Algorithm

1: Procedure Concatenation(t∗, F,B, P best)
2: for t = t∗ to T do
3: for each j ∈ J do
4: for each L ∈ F (j, t) do
5: for each L′ ∈ B(j, t) do
6: P ← (PL, revert(PL

′
))

7: c̄(P )← c̄L + c̄L
′

8: for each ` ∈ L do
9: if SL` + SL

′
` ≥ β` then

10: c̄(P )← c̄(P )− µ`
11: if c̄(P ) < c̄(P best) then
12: P best ← P
13: return P best

Algorithm 6 Bi-directional Labeling Algorithm

1: Procedure Labeling(t∗)
2: P best ← ∅
3: (F, P best)← ForwardLabeling(t∗, P best)
4: (B,P best)← BackwardLabeling(t∗, P best)
5: P best ← Concatenation(t∗, F,B, P best)
6: return P best

5. Arc fixing by reduced costs

Once DWM, possibly with additional limited memory rank-1 cuts (19), is solved by column

generation, we apply an arc elimination scheme by reduced cost similarly to what was implemented

in Pessoa et al (2010). Here we generalize it in order to take into account active rank-1 cuts. For

each machine type k ∈ K, one seeks to eliminate (or fix) arcs from Gk that can not be part

of a path P ∈ Pk which belongs to a solution that improves the incumbent solution. In order

to fix an arc (i, j, t, k) ∈ Ak, one should show that, given the optimum dual solution (π, ν, µ) of

the formulation, the smallest reduced cost c̄min(i, j, t, k) of a path that traverses arc (i, j, t, k) is

smaller than the primal-dual gap UB−LB. Here LB is the value of the dual bound given by the

optimum solution value of the formulation, and UB is the value of the incumbent solution. Note

that once both forward and backward mono-directional labeling algorithms have been executed

for the full time horizon, value c̄min(i, j, t, k) for any arc (i, j, t, k) ∈ Ak can be obtained using the

pairwise comparison of labels in buckets Fk(i, t) and Bk(j, t + t(i, j)). The formal procedure for

arc fixing by reduced costs is given in Algorithm 7.

After applying the arc fixing procedure, usually the size of graph Gk may be further reduced.

Consider an arc a = (j, j, t, k) ∈ Ak and suppose that there exists no arc (j, j′, t′, k) ∈ Ak such

that j′ ∈ J \ {j}, t′ > t. Arc a can appear in a path only after the last processed job which is j.

This arc can be safely removed from the graph as for a path passing through it there should exist
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Algorithm 7 Algorithm for arc fixing by reduced costs for graph Gk

1: Procedure RedCostFixing(LB,UB,Ak)
2: (F, ·)← ForwardLabeling(T,Ak, ∅)
3: (B, ·)← BackwardLabeling(0, Ak, ∅)
4: for (i, j, t, k) ∈ Ak do
5: c̄min ←∞
6: for L ∈ F (i, t) do
7: for L′ ∈ B(j, t+ t(i, j, k)) do
8: c̄← c̄L + c̄L

′

9: for ` ∈ L do
10: if SL` + SL

′
` ≥ β` then

11: c̄← c̄− µ`
12: c̄min ← min{c̄min, c̄}
13: if c̄min ≥ UB − LB then
14: Ak ← Ak \ {(i, j, t, k)}
15: return Ak

a path with the same reduced cost passing through arc (j, 0, t, k).

After removing some arcs from graph Gk we can also remove vertices which are not anymore

incident to any arc in Ak. Thus, the vertex-sets Rjk corresponding to the times where job j ∈ J
can complete in machine type k can be reduced. Threshold value t∗k used in the bi-directional

labeling algorithm depends on the current set Rk. Let tk,min
j and tk,max

j be the minimum and

maximum value for t such that vertex (j, t, k) exists in Rk. Then value t∗k is defined as:

t∗k =

∑
j∈J

tk,min
j +

∑
j∈J

tk,max
j

2 · |J |
.

6. Branch-cut-and-price algorithm

This section describes the proposed branch-cut-and-price (BCP) algorithm. At every node,

linear programs DWM (possibly with additional rank-1 cuts and branching constraints) are solved

by column generation. The automatic dual price smoothing stabilization technique Pessoa et al

(2018) is used to speed up its convergence. The column generation is performed in two stages. In

the first stage the pricing problem is solved heuristically: in each bucket in the labeling algorithm,

at most one label, the one with the smallest reduced cost is extended. When the heuristic can

not find a column with negative reduced cost, the second stage starts. In that stage the pricing

problem is always solved exactly, until convergence. At every iteration in the first/second stage

of column generation we generate up to 50/300 columns with negative reduced cost per pricing

subproblem.

When column generation converges, the arc fixing by reduced costs described in Section 5 is

applied to reduce the size of graphs Gk, k ∈ K, and to adjust threshold values t∗k, k ∈ K. After
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that, separation of limited memory rank-1 cuts is performed. In our tests we used only cuts which

are characterized by a vector u of multipliers in which exactly one or three components are equal to
1
2 and other components are zero. These types of cuts correspond to the subset-row cuts (Jepsen

et al, 2008) with one or three rows. These families of rank-1 cuts can be easily separated by

inspection, testing all jobs or triples of jobs. For every added cut, we compute the memory as

described in Algorithm 2. Note that if there already exists an active cut ` ∈ L characterized by

the same vector of multipliers, the memory of the new cut is only added to the memory of cut `.

In any separation round, we add at most 50 one-row cuts and at most 75 three-row cuts. Column

generation is then executed again. When it converges, any rank-1 cut that became inactive (zero

dual variable) is immediately removed from the master problem. Separation rounds are performed

while the added cuts have significant impact on reducing the primal-dual gap. For this we define

a tailing-off stopping condition: if the primal-dual gap decreased by less than 2% in the last two

separation rounds, separation stops and branching is performed.

We use two branching strategies in our algorithm. In the first one, we branch on aggregated

variables zkj =
∑

a∈δ−(Rj
k)
xa, which correspond to assignment of a job j ∈ J to be processed

on a machine of type k ∈ M . In the second one, we branch on aggregated variables zij =∑
k∈K

∑
t:a=(i,j,t,k)∈Ak

xa, which correspond to immediate precedence between jobs i ∈ J and

j ∈ J \ {i} on some machine. Note that adding branching constraints on variables zkj and zij

does not change the structure of the pricing problem, as the branching constraints just modify

the reduced costs of arcs.

We implemented a 2-phase strong branching scheme, similar to the ones proposed in Røpke

(2012) and Pecin et al (2017b). The branching candidates correspond to pairs “job-machine” for

the first strategy and pairs “job-job” for the second strategy. In the first phase, up to 50 candidates

are evaluated. This number can be smaller if the estimated size of the branching subtree rooted

at the current node is small. Half of the candidates come from the branching history (except

on the root node, when no branching history exists), selected by their pseudo-costs (Achterberg,

2007). Among the remaining candidates, half corresponds to the assignment variables zkj and

half to precedence variables zij . These candidates are chosen according to the fractional value of

the variable (closest to 0.5 first). In the first phase, for each branch of each candidate (variable

fixed to 0 and variable fixed to 1), we add the corresponding branching constraint and resolve the

restricted master problem without generating additional columns. Three candidates are selected

for the second phase. They are chosen according to the product of the lower bound increase in the

both branches, the maximum value for this product first (product rule (Achterberg, 2007)). In the

second phase, the candidates are evaluated more precisely, because heuristic column generation

is performed. The best candidate from the second phase, again according to the product rule is

chosen for branching.
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7. Computational experiments

All experiments were conducted on an Intel Xeon E5-2680 v3 2.5 GHz and 128 GB of RAM

with a single thread and a time limit of 12 hours per instance.

We used the R||
∑
w′jEj + wjTj instances of Şen and Bülbül (2015) (up to 120 jobs), the

R|rj , skij |
∑
w′jEj + wjTj instances of Kramer (2015) (up to 80 jobs), the R|ak, rj , skij |

∑
wjTj

instances of Pereira Lopes and Valério de Carvalho (2007) (up to 100 jobs), and the P ||
∑
wjCj

instances of Kowalczyk and Leus (2018) (up to 100 jobs). It should be noted that the instances of

Kramer (2015) were derived from the instances of Şen and Bülbül (2015) by adding two types of

sequence-dependent setup times: small (S) and large (L). Moreover, all instances with unrelated

machines satisfy mk = 1 for all k ∈ K. The value of T for the R||
∑
w′jEj + wjTj instances is

computed as in (Şen and Bülbül, 2015) and as in (Kowalczyk and Leus, 2018) for the P ||
∑
wjCj

instances. For the remaining instances, we use the following equations:.

T =



⌈∑
j∈J

(
max
k∈K

(
pkj
)

+ max
i∈J∪{0}
i 6=j
k∈K

(
skij
))
/m
⌉

+ max
j∈J

(
dj
)

+ max
j∈J
k∈K

(
pkj
)

+ max
i,j∈J∪{0}
i 6=j,j 6=0
k∈K

(
skij
)
,

for problem R|rj , skij |
∑
w′jEj + wjTj

⌈∑
j∈J

(
max
k∈K

(
pkj
)

+ max
(
sk0j + ak,max

i∈J
i 6=j

(
skij
)))

/m
⌉

+ max
j∈J
k∈K

(
pkj
)

+ max
j∈J

(
max

(
sk0j + ak,max

i∈J
i 6=j

(
skij
)))

+ max
j∈J

(
rj
)
,

for problem R|ak, rj , skij |
∑
wjTj

(22)

Tables 3–8 report the results obtained by the proposed BCP, with and without Rank-1 cuts.

In these tables, Root Gap (%) indicates the average percentage gap between the root relaxations

and the best known upper bounds, Root Cuts corresponds to the average number of cuts added

at the root node, Root Time denotes the average CPU time in seconds required to solve the root

node, Gap is the average gap in per cent between the lower bounds and the best known upper

bounds, Sol. indicates the number of instances that were solved to optimality, Nd. represents

the average number of nodes of the BCP tree, and Time is the average CPU time in seconds

required by the BCP algorithm.

Regarding the initial primal bound adopted by our BCP algorithm, we made use of the best

upper bounds (UBs) reported in the literature for the instances of Şen and Bülbül (2015) and

Pessoa et al (2010) and we executed the algorithm by Kramer and Subramanian (2017) to compute
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UBs for the instances of Pereira Lopes and Valério de Carvalho (2007), Kowalczyk and Leus (2018)

and Kramer (2015).

Table 3: Aggregate results obtained for the R||
∑
w′jEj + wjTj instances by Şen and Bülbül (2015)

Root Root Root
(n,m,#Ins)

Gap Cuts Time
Gap Sol. Nd. Time

(40, 2, 60) 0.04 330.5 22.4 0.00 60 3.2 208.1

(60, 2, 60) 0.04 532.9 84.3 0.00 60 3.1 239.2

(60, 3, 60) 0.04 564.1 36.5 0.00 60 3.0 94.8

(80, 2, 60) 0.02 827.5 275.2 < 0.01 59 4.6 1022.4

(80, 4, 60) 0.12 511.4 64.9 0.00 60 3.1 163.0

(90, 3, 60) 0.05 882.8 192.0 0.00 60 3.8 493.1

(100, 5, 60) 0.20 654.0 134.6 0.00 60 8.9 816.4

(120, 3, 60) 0.16 877.8 619.3 < 0.01 59 11.2 3411.6

(120, 4, 60) 0.26 692.8 371.8 0.01 59 9.6 2392.1

Avg. 0.10 652.6 200.1 < 0.01 59.7 5.6 982.3

(a) With Rank-1 Cuts

Root Root
(n,m,#Ins)

Gap Time
Gap Sol. Nd. Time

(40, 2, 60) 0.29 13.0 < 0.01 59 52.8 319.1

(60, 2, 60) 0.24 30.6 0.02 55 175.8 3278.0

(60, 3, 60) 0.27 10.4 0.00 60 56.7 298.0

(80, 2, 60) 0.22 72.3 0.01 56 189.6 5809.5

(80, 4, 60) 0.32 23.9 < 0.01 58 111.3 1488.6

(90, 3, 60) 0.27 52.2 0.01 55 176.1 4962.2

(100, 5, 60) 0.40 49.9 0.01 56 177.0 4514.2

(120, 3, 60) 0.33 165.8 0.12 41 156.5 15409.1

(120, 4, 60) 0.43 137.7 0.10 46 137.3 10471.9

Avg. 0.31 61.7 0.03 54.0 136.2 5098.1

(b) Without Rank-1 Cuts

Table 4: Aggregate results obtained for the R|rj , skij |
∑
w′jEj + wjTj instances of Kramer (2015)

(n,m, set., Root Root Root

# Ins) Gap Cuts Time
Gap Sol. Nd. Time

(40, 2,S, 60) 0.00 845.8 193.4 0.00 60 1.0 193.5

(40, 2,L, 60) 0.19 1734.8 580.8 0.00 60 1.7 834.0

(60, 2,S, 60) 0.07 1991.7 1102.5 0.00 60 1.4 1403.6

(60, 2,L, 60) 0.80 1715.7 1847.1 0.01 59 9.8 5966.4

(60, 3,S, 60) 0.41 1898.7 688.1 0.00 60 5.2 1338.3

(60, 3,L, 60) 2.12 1051.9 1066.6 0.13 53 34.0 11750.0

(80, 2,S, 60) 0.13 2446.5 3376.2 0.00 60 3.6 4806.3

(80, 2,L, 60) 1.69 1029.5 4922.3 0.55 33 32.3 25819.5

(80, 4,S, 60) 1.27 926.2 1576.3 0.15 49 40.7 12212.0

(80, 4,L, 60) 3.73 584.9 2972.2 1.75 14 59.1 30909.6

Avg. 1.04 1422.6 1832.6 0.26 50.8 18.9 9523.3

(a) With Rank-1 Cuts

(n,m, set., Root Root

# Ins) Gap Time
Gap Sol. Nd. Time

(40, 2,S, 60) 1.59 163.3 0.00 60 31.5 281.8

(40, 2,L, 60) 3.27 260.3 0.00 60 71.5 690.5

(60, 2, S, 60) 1.66 622.1 < 0.01 59 151.6 2913.7

(60, 2,L, 60) 3.31 1133.3 0.10 53 414.9 11064.3

(60, 3, S, 60) 1.73 473.8 0.00 60 131.7 1461.0

(60, 3,L, 60) 3.86 816.6 0.14 54 513.3 11902.5

(80, 2, S, 60) 1.52 2049.2 0.08 47 333.4 17000.5

(80, 2,L, 60) 3.55 3760.7 1.53 6 174.7 34073.9

(80, 4, S, 60) 2.27 1280.5 0.22 48 475.8 13826.2

(80, 4,L, 60) 5.05 2352.8 2.32 10 213.3 32588.2

Avg. 2.78 1291.3 0.44 45.7 251.2 12580.3

(b) Without Rank-1 Cuts

From the results obtained in Tables 3 and 4, it can be observed that adding Rank-1 cuts clearly

improve the performance of the BCP algorithm for the instances with the earliness-tardiness

objective on unrelated machines. In particular, 486 and 457 instances of the benchmarks of Şen

and Bülbül (2015) and Kramer (2015), respectively, were solved by the version without rank-1

cuts, whereas 537 and 508 instances of such benchmarks were solved, respectively, when rank-1

cuts were considered. The gains in the root relaxation quality due to rank-1 cuts are clear: the

root gaps are about 3 times smaller on average, and the number of nodes is smaller by an order of

magnitude. From these tables one can see that the rank-1 cuts are more useful for instances with

smaller number of machines. Although, the root time increases significantly for these instances,

the root gap decrease is more substantial.

The BCP performance tends to decrease when setup times are considered as the value of T is

likely to increase considerably. While only 3 instances (up to 120 jobs) of those proposed by Şen
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and Bülbül (2015) remain open, 122 of the instances of Kramer (2015) (up to 80 jobs) were not

solved to optimality. The difference in performance is also visible when larger setup values are

considered. More specifically, while only 11 instances with small setup times were not solved by

BCP, 101 of those instances with relatively large setup values could not be solved.

Note that the instances with the earliness-tardiness objective we consider have never been

approached by an exact algorithm in the literature. The algorithm in Şen and Bülbül (2015)

is a primal-dual approach which may prove optimality for some instances, but does not have a

mechanism to close the primal-dual gap in general. Table 5 compares the results obtained by our

BCP algorithm with the average gaps and number of optimal solutions found by the algorithm

developed in Şen and Bülbül (2015). It is worth mentioning that such average gaps were computed

in terms of the lower bounds achieved by each method and the best upper bounds, considering

those obtained by our BCP. In other words, we are comparing the quality of the lower bounds

determined by each method. It can be seen from the paper that our approach is much better in

terms of number of optimal solutions obtained and the primal-dual gap. Many instances were

solved to optimality for the first time. However the running time of our algorithm is larger,

especially for the largest instances. Nevertheless, from Table 3 it can be seen that if we limit our

algorithm to the root, much smaller gaps than by Şen and Bülbül (2015) can be obtained in a

comparable time.

Table 5: Results for R||
∑
w′jEj + wjTj instances: comparison with the results obtained by Şen

and Bülbül (2015)

This paper Literature

(n,m,#Ins) Gap Sol. Nd. Time Gap Sol. Time

(40, 2, 60) 0.00 60 3.2 208.1 0.13 22 52

(60, 2, 60) 0.00 60 3.1 239.2 0.43 5 109

(60, 3, 60) 0.00 60 3.0 94.8 0.38 4 120

(80, 2, 60) < 0.01 59 4.6 1022.4 0.36 2 134

(80, 4, 60) 0.00 60 3.1 163.0 2.14 0 228

(90, 3, 60) 0.00 60 3.8 493.1 1.26 0 153

(100, 5, 60) 0.00 60 8.9 816.4 6.03 0 297

(120, 3, 60) < 0.01 59 11.2 3411.6 3.21 0 165

(120, 4, 60) 0.01 59 9.6 2392.1 5.20 0 217

Avg. < 0.01 59.7 5.6 984.2 2.13 3.7 163.9

In Table 6, we report the average improvement of the best known solutions (BKS) reported

in the literature (Kramer, 2015; Kramer and Subramanian, 2017; Şen and Bülbül, 2015) by our

algorithm. Improved solutions were found for numerous instances. Nevertheless, the relative

improvement can be considered marginal. This suggest that the quality of the heuristics in the

literature is rather high.

In Tables 7 and 8, we present results for instances by Pereira Lopes and Valério de Carvalho

(2007) and Kowalczyk and Leus (2018). We would like to emphasis that the purpose of these

results is to illustrate the impact of using non-robust cuts. The aim of the experiment was
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Table 6: Comparison of upper bounds found with those known in the literature

R||
∑
w′jEj + wjTj R|rj , skij |

∑
w′jEj + wjTj

(n,m,#Ins) Improv. (%) New (n,m,#Insts) Improv. (%) New

(40, 2, 60) 0.00 0 (40, 2, S, 60) 0.00 0

(60, 2, 60) 0.00 0 (40, 2, L, 60) 0.01 2

(60, 3, 60) < 0.01 1 (60, 2, S, 60) 0.01 2

(80, 2, 60) < 0.01 2 (60, 2, L, 60) 0.04 13

(80, 4, 60) 0.06 14 (60, 3, S, 60) 0.01 3

(90, 3, 60) 0.03 13 (60, 3, L, 60) 0.20 25

(100, 5, 60) 0.12 27 (80, 2, S, 60) 0.02 11

(120, 3, 60) 0.10 23 (80, 2, L, 60) 0.11 24

(120, 4, 60) 0.16 30 (80, 4, S, 60) 0.05 18

(80, 4, L, 60) 0.07 11

Avg. 0.05 13.8 Avg. 0.06 12.1

Table 7: Aggregate results obtained for the R|ak, rj , skij |
∑
wjTj instances by Pereira Lopes and

Valério de Carvalho (2007)

Root Root Root
(n,m,#Ins)

Gap Cuts Time
Gap Sol. Nd. Time

(20, 2, 50) 0.00 25.4 10.4 0.00 50 1.0 10.4

(30, 2, 50) 0.00 45.2 42.0 0.00 50 1.0 42.0

(30, 4, 50) 0.00 45.9 33.8 0.00 50 1.1 33.9

(40, 2, 50) 0.00 174.5 116.2 0.00 50 1.0 116.2

(40, 4, 50) 0.16 144.6 94.0 0.00 50 1.2 95.4

(40, 6, 50) 0.04 27.0 79.5 0.00 50 1.1 79.8

(40, 8, 50) 0.32 23.0 74.5 0.00 50 1.9 76.0

(50, 2, 50) 0.00 181.6 303.3 0.00 50 1.0 303.3

(50, 4, 50) 0.22 269.8 207.8 0.00 50 1.4 212.2

(50, 6, 50) 3.82 143.1 183.3 0.00 50 2.1 201.9

(50, 8, 50) 0.24 38.5 161.9 0.00 50 2.0 164.9

(60, 4, 50) 0.09 215.4 440.0 0.00 50 1.2 442.6

(60, 6, 50) 0.40 234.1 361.2 0.00 50 2.1 376.3

(60, 8, 50) 0.28 131.3 323.4 0.00 50 2.7 332.2

(70, 6, 50) 0.64 282.1 695.4 0.00 50 2.9 753.0

(70, 8, 50) 0.32 214.1 596.0 0.00 50 3.4 613.3

(70, 10, 50) 0.95 142.5 532.4 0.00 50 8.2 662.9

(80, 8, 50) 0.86 308.8 974.4 0.00 50 8.3 1454.0

(90, 10, 50) 1.43 282.6 1495.5 0.03 49 10.8 2727.4

(100, 10, 50) 1.25 313.4 2278.4 0.00 50 14.1 3816.2

(100, 20, 50) 2.28 42.8 1806.3 0.00 50 18.8 2574.2

Avg. 0.63 156.5 514.7 < 0.01 50.0 4.2 718.5

(a) With Rank-1 Cuts

Root Root
(n,m,#Ins)

Gap Time
Gap Sol. Nd. Time

(20, 2, 50) 1.30 9.9 0.00 50 2.7 10.6

(30, 2, 50) 1.82 40.2 0.00 50 2.6 43.7

(30, 4, 50) 0.65 31.6 0.00 50 3.1 33.1

(40, 2, 50) 1.18 102.6 0.00 50 7.6 122.4

(40, 4, 50) 0.99 85.9 0.00 50 5.2 92.1

(40, 6, 50) 0.84 74.1 0.00 50 2.9 76.9

(40, 8, 50) 0.74 70.3 0.00 50 4.0 73.3

(50, 2, 50) 1.36 264.7 0.00 50 12.8 338.6

(50, 4, 50) 2.30 183.8 0.00 50 14.8 216.2

(50, 6, 50) 4.70 167.0 0.00 50 6.3 181.6

(50, 8, 50) 0.59 150.9 0.00 50 4.2 155.1

(60, 4, 50) 1.06 392.8 0.00 50 11.7 429.7

(60, 6, 50) 1.15 326.0 0.00 50 9.2 353.4

(60, 8, 50) 0.79 296.5 0.00 50 8.6 313.8

(70, 6, 50) 1.41 622.9 0.00 50 14.5 694.8

(70, 8, 50) 0.97 537.1 0.00 50 11.2 572.3

(70, 10, 50) 1.46 484.0 0.00 50 18.8 567.7

(80, 8, 50) 1.55 864.7 0.00 50 28.1 1185.0

(90, 10, 50) 2.05 1337.1 0.00 50 30.4 1989.7

(100, 10, 50) 1.87 1959.4 0.00 50 55.7 3584.7

(100, 20, 50) 2.49 1540.5 0.00 50 29.0 2261.9

Avg. 1.49 454.4 0.00 50.0 13.5 633.2

(b) Without Rank-1 Cuts
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Table 8: Aggregate results obtained for the P ||
∑
wjCj instances by Kowalczyk and Leus (2018)

Root Root Root
(n,m,#Ins)

Gap Cuts Time
Gap Sol. Nd. Time

(20, 3, 120) 0.00 0.2 0.4 0.00 120 1.0 0.4

(20, 5, 120) 0.00 0.2 0.2 0.00 120 1.0 0.3

(20, 8, 120) 1.18 0.1 0.1 0.00 120 1.0 0.1

(20, 10, 120) 0.00 0.0 0.1 0.00 120 1.0 0.1

(20, 12, 120) 0.00 0.0 0.1 0.00 120 1.0 0.2

(50, 3, 120) 0.03 7.0 13.6 0.00 120 1.1 13.7

(50, 5, 120) 0.35 19.1 6.1 0.00 120 1.3 6.6

(50, 8, 120) 0.98 16.0 3.0 0.00 120 1.4 3.3

(50, 10, 120) 1.13 7.8 2.3 0.00 120 1.4 2.5

(50, 12, 120) 1.48 3.0 1.8 0.00 120 1.4 1.9

(100, 3, 120) 0.18 37.0 274.0 0.04 113 7.2 4198.1

(100, 5, 120) 0.78 58.8 102.0 0.34 105 11.2 5744.4

(100, 8, 120) 1.54 65.6 45.3 0.20 114 13.3 4663.1

(100, 10, 120) 1.93 53.5 30.2 0.12 116 13.1 3282.8

(100, 12, 120) 2.55 55.5 20.7 0.00 120 11.0 1153.3

Avg. 0.81 21.6 33.3 0.05 117.9 4.5 1271.4

(a) With Rank-1 Cuts

Root Root Gap Time
(n,m,#Ins)

Gap Time
Gap Sol. Nd. Time

(20, 3, 120) 0.54 0.4 0.00 120 1.0 0.4

(20, 5, 120) 0.22 0.2 0.00 120 1.1 0.2

(20, 8, 120) 1.65 0.1 0.00 120 1.1 0.1

(20, 10, 120) 0.00 0.1 0.00 120 1.0 0.1

(20, 12, 120) 0.51 0.1 0.00 120 1.0 0.1

(50, 3, 120) 0.07 13.6 0.00 120 1.2 13.7

(50, 5, 120) 0.45 10.0 0.00 120 1.6 10.8

(50, 8, 120) 1.67 3.3 0.00 120 1.9 3.7

(50, 10, 120) 1.38 2.3 0.00 120 1.6 2.5

(50, 12, 120) 1.83 1.8 0.00 120 1.6 1.9

(100, 3, 120) 0.21 277.3 < 0.01 119 10.8 2323.3

(100, 5, 120) 0.95 102.6 0.00 120 13.8 1402.5

(100, 8, 120) 1.78 44.1 0.00 120 16.7 705.9

(100, 10, 120) 2.07 31.1 0.00 120 14.2 353.6

(100, 12, 120) 2.67 20.6 0.00 120 14.0 137.5

Avg. 1.07 33.8 0.00 119.9 5.5 330.4

(b) Without Rank-1 Cuts

not to compare the efficiency of our algorithm with those from the literature. Note that our

implementation is more generic and thus slower. Note that the gaps are given in 10−4% in

Table 8. It can be seen from the results that impact of rank-1 cuts is lower on these instances.

The first reason is that the number of machines here is significantly larger on average, and it was

already noticed above that non-robust cuts are less useful this case. The second reason is that

the objective function for these instances is regular. This property seems to make them easier

and the basic branch-and-price algorithm is already good enough to solve all these instances

(except one) to optimality. The computational results in original papers confirm this observation.

Nevertheless, rank-1 cuts allows us to significantly reduce the root gap and the number of nodes

for the instances by Pereira Lopes and Valério de Carvalho (2007). However, the impact for the

instances by Kowalczyk and Leus (2018) is very limited. We conjecture that this is because these

instances have the following symmetry. If several identical machines process partial schedules

starting and finishing at the same time in a solution, any permutation of these partial schedules

among these machines produce another feasible solution with the same cost. For example, let two

identical machines process schedules ((1, 2, 3, 4, 5), (6, 7, 8, 9)), such that jobs 3 and 7 start at the

same time, whereas jobs 4 and 8 end at the same time. Then, schedules ((1, 2, 7, 8, 5), (6, 3, 4, 9))

would have the same cost. This kind of symmetry is not eliminated by the formulations we use.

In Table 9 we present the results obtained by the branch-cut-and-price algorithm at the root

node on instances by Pessoa et al (2010) for the problem P ||
∑
wjTj . Again, the aim here is to

estimate the impact of rank-1 cuts, and not to compare our algorithm with the literature. In the

table, we give results for three variants of our algorithm. The columns from 2 to 3 correspond

to the pure column generation algorithm without cut generation. The columns from 4 to 6

correspond to variant in which we generate robust cuts: extended capacity cuts from Pessoa et al
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(2010) and overload elimination cuts from Oliveira and Pessoa (2018). We used the cut generation

code provided by the authors of these papers. The columns from 7 to 9 correspond to the variant

where both robust and non-robust rank-1 cuts are separated.

Table 9: Aggregate root node results obtained for the P ||
∑
wjTj instances by Pessoa et al (2010)

No Cuts Robust cuts only Rank-1 + Robust cuts

(n,m,#Ins) Gap Time Gap #Cuts Time Gap #Cuts Time

(40, 2, 16) 2.30 1.1 0.04 423.1 39.8 < 0.01 1017.5 349.0

(40, 4, 16) 0.64 0.5 0.30 113.8 12.7 0.28 422.2 17.3

(50, 2, 18) 0.79 2.6 0.11 481.3 104.8 0.08 895.6 211.8

(50, 4, 17) 0.75 1.2 0.43 105.6 25.7 0.41 470.9 38.5

(100, 2, 20) 0.95 123.7 0.07 558.2 745.6 0.05 1212.0 1784.2

(100, 4, 19) 0.68 17.9 0.40 150.5 292.8 0.39 621.1 501.4

Avg. 1.02 24.5 0.22 305.4 203.6 0.20 773.2 483.7

Notice again that the impact of rank-1 cuts is limited here. They remove on average only

about 10% of the residual gap left after separating robust cuts. Again, we conjecture that this

may be caused by the same symmetry present here as for the problem P ||
∑
wjCj . The robust

cuts from Pessoa et al (2010) and Oliveira and Pessoa (2018) are not sensitive to this symmetry.

Whereas rank-1 cuts often separate only one symmetric solution, and should be generated again

for other symmetric solutions. Thus, the convergence of the rank-1 cuts is severely affected and

their generation is stopped by the tailing-off condition.

Note however that average gap reduction attained by rank-1 cuts is affected by the fact that

88 from 150 instances have zero gap after separation of robust cuts. From the detailed results (not

presented here), one can see that for 12 instances rank-1 cuts closed 100% of the gap remaining

after generation of robust cuts. Also, for 13 more instances more that 30% of the remaining gap

was closed.

8. Concluding remarks

This work introduced a unified exact algorithm capable of solving a broad class of parallel

machine scheduling problems considering different attributes such as release dates and sequence-

dependent setup times, and any objective function defined in terms of the completion time of the

jobs. In particular, we proposed a branch-cut-and-price algorithm with several ingredients such

as arc fixing by reduced cost, dual stabilization, strong branching and rank-1-based (non-robust)

cuts that is capable of solving problem R|rj , skij |
∑
fj(Cj) and its particular cases. Extensive

computational experiments carried out on benchmark instances of different variants showed that

our algorithm managed to find the optimal solutions of many open problems.

We also conducted an analysis to evaluate the impact of using rank-1 cuts in the algorithm.

The results obtained indicated that separation of this cuts allows one to reduce significantly the

root gap and the number of nodes in the branch-and-price algorithm. The non-robust cuts helped



Cadernos do LOGIS-UFF L-2018-3 23

us to solve many instances where the pure branch-and-price approach failed to determine the

optimal solution. These rank-1 cuts are especially beneficial for the case when 1) the number

of jobs per machine is relatively large, 2) the objective function is non-regular, 3) the sequence-

dependent setup times are present. For some easier instances however, separation of these cuts

does not pay off. So the general advice is to run first a pure branch-and-price algorithm for given

instances. In the case it is not efficient enough, one should try to generate rank-1 cuts.

The most natural research direction for us is to decrease the running time of the proposed

branch-cut-and-price algorithm, which may be slow for large instances. We see an opportunity

in dropping the time discretization approach. For that purpose the labeling algorithm should be

modified, for example using the technique of Ioachim et al (1998).

A future research should also focus on extending the proposed approach for solving more

practical problems with additional constraints, see for example Bitar et al (2016). Often additional

constrains in practice take the form of precedence relations and their variant such as time lags

and synchronisation. Dealing with this problem generalisation is very challenging. However, any

success in this direction will open a large scope of applications.
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João Pessoa, Brazil, in Portuguese

Kramer A, Subramanian A (2017) A unified heuristic and an annotated bibliography for a large

class of earliness-tardiness scheduling problems. Journal of Scheduling First Online



Cadernos do LOGIS-UFF L-2018-3 25

Lenstra J, Kan AR, Brucker P (1977) Complexity of machine scheduling problems. In: PL Ham-

mer BK EL Johnson, Nemhauser G (eds) Studies in Integer Programming, Annals of Discrete

Mathematics, vol 1, Elsevier, pp 343–362

Liaw CF, Lin YK, Cheng CY, Chen M (2003) Scheduling unrelated parallel machines to minimize

total weighted tardiness. Computers & Operations Research 30(12):1777 – 1789

Nessah R, Yalaoui F, Chu C (2008) A branch-and-bound algorithm to minimize total weighted

completion time on identical parallel machines with job release dates. Computers & Operations

Research 35(4):1176 – 1190

Oliveira D, Pessoa A (2018) An improved branch-cut-and-price algorithm for parallel machine

scheduling problems. INFORMS Journal on Computing Forthcoming

Pan Y, Shi L (2008) New hybrid optimization algorithms for machine scheduling problems. IEEE

Transactions on Automation Science and Engineering 5(2):337–348

Pecin D, Contardo C, Desaulniers G, Uchoa E (2017a) New enhancements for the exact solution of

the vehicle routing problem with time windows. INFORMS Journal on Computing 29(3):489–

502

Pecin D, Pessoa A, Poggi M, Uchoa E (2017b) Improved branch-cut-and-price for capacitated

vehicle routing. Mathematical Programming Computation 9(1):61–100
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