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Abstract
We consider scheduling problems for unit jobs with release times, where the number or size of the gaps in the schedule is taken
into consideration, either in the objective function or as a constraint. Except for several papers onminimum-energy scheduling,
there is no work in the scheduling literature that uses performance metrics depending on the gap structure of a schedule. One
of our objectives is to initiate the study of such scheduling problems. We focus on the model with unit-length jobs. First
we examine scheduling problems with deadlines, where we consider two variants of minimum-gap scheduling: maximizing
throughput with a budget for the number of gaps and minimizing the number of gaps with a throughput requirement. We
then turn to other objective functions. For example, in some scenarios gaps in a schedule may be actually desirable, leading
to the problem of maximizing the number of gaps. A related problem involves minimizing the maximum gap size. The
second part of the paper examines the model without deadlines, where we focus on the tradeoff between the number of gaps
and the total or maximum flow time. For all these problems we provide polynomial time algorithms, with running times
ranging from O(n log n) for some problems to O(n7) for other. The solutions involve a spectrum of algorithmic techniques,
including different dynamic programming formulations, speed-up techniques based on searching Monge arrays, searching
X +Y matrices, or implicit binary search. Throughout the paper, we also draw a connection between gap scheduling problems
and their continuous analogues, namely hitting set problems for intervals of real numbers. As it turns out, for some problems
the continuous variants provide insights leading to efficient algorithms for the corresponding discrete versions, while for other
problems completely new techniques are needed to solve the discrete version.

1 Introduction

We consider scheduling of unit-length jobs with release
times, where the number or size of the gaps in the schedule
is taken into consideration, either in the objective function or
as a constraint.

This research was inspired by the work on scheduling
problems whose objective is to minimize the number of
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gaps in a schedule. Such problems arise in minimum-energy
scheduling in the power-downmodel, where a schedule spec-
ifies not only execution times of jobs but also at what times
the processor can be turned off. The processor uses energy
at rate L per time unit when the power is on, and it does not
consume any energy when it is off. If the energy required to
power-up the system is less than L then energy minimization
is equivalent to minimizing the number of gaps in the sched-
ule. The problem was introduced in 2005 by Irani and Pruhs
(2005), and its complexity remainedopen for a fewyears. The
first progress was achieved by Baptiste (2006), who gave a
polynomial time algorithm for unit jobs that achieves running
time O(n7). This time complexity was subsequently reduced
to O(n4) in Baptiste et al. (2007, 2012). (In that paper a
generalization to arbitrary processing timeswith job preemp-
tion is also considered.) A greedy algorithm was analyzed
in Chrobak et al. (2013, 2017) and shown to have approx-
imation ratio 2. Other variants of this problem have been
studied, for example themulti-processor case (Demaine et al.
2007) or the case when jobs have agreeable deadlines (Angel
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et al. 2012, 2014). (See the survey in Bampis (2016) formore
information.)

To our knowledge, the above gap-minimization model is
the only scheduling model in the literature that considers
gaps in the schedule as a performance measure. As we show,
however, one can formulate a number of other natural, but
not yet studied variants of gap scheduling problems. Some of
these problems can be solved using dynamic-programming
techniques resembling those used forminimizing the number
of gaps. Other require new approaches, giving rise to new and
interesting algorithmic problems.

Throughout the paper, we focus exclusively on the model
with unit-length jobs. The first type of scheduling problems
we study involve jobs with release times and deadlines. In
this category, we address the following problems:

– In Sect. 3, we study maximizing throughput (the number
or total weight of scheduled jobs) with a budget γ for the
number of gaps. We give an O(γ n6)-time algorithm for
this problem1

– In Sect. 4 we consider the variant where we need to mini-
mize the number of gaps under a throughput requirement,
namely where either the number of jobs or their total
weight must meet a specified threshold. We show that,
by slightly modifying the algorithm from Sect. 3, this
problem can be solved in time O(g∗n6), where g∗ is the
optimal number of gaps. (Note that g∗ ≤ n − 1.)

– In the two problems above, the underlying assumption
was that it is desirable to have as few gaps as possible.
However, in certain applications gaps in a schedule may
be actually desirable. This motivates the gap scheduling
model where we wish to maximize the number of gaps
while scheduling all jobs (providing that the instance is
feasible). We study this problem in Sect. 5, and we pro-
vide an algorithm that computes an optimal schedule in
time O(n5).

– Instead of the total number of gaps, the size of gaps may
be a useful attribute of a schedule. In Sect. 6 we study
the problem where, assuming that the given instance is
feasible, we want to compute a schedule for all jobs in
which the maximum gap size is minimized. We give an
O(n2 log n)-time algorithm for this problem.

We also consider scheduling problems where jobs have no
deadlines. Now all jobs need to be scheduled. In this model
we can of course schedule all jobs in one block, without
gaps, but then some jobs may need to wait a long time for

1 Throughout the paper, in order to avoid clutter, in the context of
asymptotic notation we write γ instead of γ + 1, which is the correct
form as it also accounts for the case when γ = 0. The same convention
applies to asymptotic bounds that involve g∗. As an aside, we remark
that for γ = 0 the running time of O(n6) in Sect. 3 can be significantly
improved. We leave it as an exercise.

execution. To avoid this, we will also take into account the
flow timemeasure, where the flow of a job is the time elapsed
between its release and completion times, andwewill attempt
tominimize either themaximumflowor the total flowof jobs.
We address three problems in this category:

– Minimizing total flow time with a budget γ for the num-
ber of gaps (Sect. 7). As we show, this problem can be
solved in time O(n log n+γ n), by exploiting theMonge
property of the dynamic programming arrays. The run-
ning time is in fact O(γ n) if the jobs are given in sorted
order of release times.

– Minimizing the number of gaps with a budget for total
flow (Sect. 8). The algorithm from Sect. 7 can be adapted
to solve this problem in time O(n log n + g∗n), where
g∗ is the optimal number of gaps. If the jobs are given in
sorted order of release times, the running time is O(g∗n).

– Minimizing the number of gaps with a bound on themax-
imum flow time (Sect. 9). We show that this problem can
be solved in time O(n log n), or even O(n) if the jobs are
already sorted in order of increasing release times.

– Minimizing maximum flow time with a budget γ for the
number of gaps (Sect. 10). For this problem we give an
algorithm with running time O(n log n).

A summary of these results is given in Table 1.
Overall, for all these problems we provide polynomial-

time algorithms, with running times ranging from O(n log n)

for some problems, to O(n7) for other. Interestingly, the
solutions involve a wide spectrum of algorithmic techniques,
including different dynamic programming formulations and
speed-up techniques based on searching Monge arrays,
searching X + Y matrices, and implicit binary search.

As another theme throughout the paper, we draw a con-
nection between gap scheduling problems that we study and
their continuous analogues, which are variants of hitting set
problems for intervals of real numbers. In this continuous
model, each job is represented by an interval between its
release time and deadline, and a “schedule” assigns it to a
point in this interval. For example, the continuous version of
the minimum-gap scheduling problem is equivalent to com-
puting a hitting set of minimum cardinality. As it turns out,
for some problems the continuous variants provide insights
leading to efficient algorithms for the corresponding discrete
versions, while in other problems completely new techniques
are needed to solve the discrete version.

2 Preliminaries

The time is assumed to be discrete, divided into unit time
intervals [t, t + 1), for t = 1, 2, . . ., that we call slots. We
will number these consecutive slots 0, 1, . . ., and we will
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Table 1 A summary of results on gap scheduling problems for unit jobs. Symbol g∗ denotes the minimum number of gaps, subject to the appropriate
constraints

Scheduling problem Run time Reference

With deadlines Minimize number of gaps O(n4) Baptiste et al. (2007, 2012)

Maximize throughput with budget γ for number of gaps O(γ n6) Sect. 3

Minimize number of gaps with throughput requirement O(g∗n6) Sect. 4

Maximize number of gaps, while scheduling all jobs O(n5) Sect. 5

Minimize maximum gap, while scheduling all jobs O(n2 log n) Sect. 6

No deadlines Minimize total flow with budget γ for number of gaps O(n log n + γ n) Sect. 7

Minimize number of gaps with budget for total flow O(n log n + g∗n) Sect. 8

Minimize number of gaps with bound on maximum flow O(n log n) Sect. 9

Minimize maximum flow with budget for number of gaps O(n log n) Sect. 10

refer to [t, t + 1) simply as time slot t , or occasionally even
as time t . By J we will denote the instance, consisting of a
set of unit-length jobs numbered 1, 2, . . . , n, each job j with
a given integer release time r j . This r j denotes the first slot
where j can be executed.

A schedule S of J is defined by an assignment of jobs to
time slots such that (i) if a job j is assigned to a slot t then
t ≥ r j , and (ii) no two jobs are assigned to the same slot.
If j is assigned to slot t in a schedule S then we say that it
is scheduled or executed at t . In most scheduling problems
we assume that all jobs can be scheduled. In problems that
involve throughput we will also consider partial schedules,
where only a subset of the jobs is scheduled (for jobs outside
this subset the schedule is undefined).

For a given schedule S, time slots where jobs are sched-
uled are called busy, while all other slots are called idle. An
inclusion-wise maximal time interval of busy slots is called
a block of S. An interval between two consecutive blocks in
S is called a gap of S. Of course, the number of blocks in S
is always one more than the number of gaps.

2.1 Instances with deadlines

In some of the scheduling problems we consider the jobs in
J will also have specified deadlines. The deadline of a job j
is denoted d j , is assumed to be integer, and it is the last slot
where j can be scheduled. (Thus it may happen that d j = r j ,
in which case j can only be executed in one slot.)

For instances with deadlines, we can restrict our attention
to schedules S that satisfy the earliest-deadline-first property
(EDF): at any time t , either S is idle at t or it schedules a
pending job with the earliest deadline. (A job j is considered
pending in S at time t if r j ≤ t ≤ d j and j is not scheduled
by S before time t .) Using the standard exchange argument,
any schedule can be converted into one that satisfies the EDF
property and has the same set of busy slots.

Next, we show that without loss of generality we canmake
the following assumptions about J :

(i) r j ≤ d j for each j ,
(ii) all jobs are ordered according to deadlines, that is d1 ≤

· · · ≤ dn ,
(iii) all release times are distinct and all deadlines are dis-

tinct, and
(iv) J is feasible (that is, all jobs can be scheduled).

More precisely, we claim that J can be converted in time at
most O(n2 log n) into an instanceJ ′ that satisfies conditions
(i)-(iv) and is equivalent to J in the sense that schedules of
J and J ′ produce exactly the same patterns of busy slots, as
formalized in Lemma 1.

The validity of assumptions (i) and (ii) is trivial. Assump-
tion (iv) follows immediately from (iii), as we can simply
schedule each job at its release time. Therefore we only need
to justify (iii).

To show that assumption (iii) is valid, we modify the orig-
inal instanceJ as follows: If two release times are equal, say
when ri = r j and d j ≤ di for i �= j , then we let ri = ri + 1.
Symmetrically, if di = d j and ri ≤ r j thenwe let di = di−1.
If this change produces a job i with di < ri , then job i cannot
of course be scheduled. For problems where the feasibility
is a requirement, we can then report that the instance is not
feasible. For other problems, we can remove this job i from
the instance altogether. Repeating this process until condition
(iii) is eventually satisfied produces instance J ′.

Lemma 1 states that J ′ has the desired property. (Sched-
ules considered in this lemma are allowed to be partial.)

Lemma 1 Let J ′ be the instance obtained by modifying a
given instance J as explained above, and let X be some set
of time slots. ThenJ has a schedule S whose set of busy slots
is X if and only if J ′ has a schedule S′ whose set of busy
slots is X.
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Proof We now justify Lemma 1. It is sufficient to consider
only the case when J ′ is obtained from J by modifying
just one job, as then we can apply the lemma repeatedly. In
the proof, we think of modifying a job i as replacing it by a
different job i ′ with appropriately modified release time or
deadline.

So suppose that we have two different jobs i, j in J with
ri = r j and d j ≤ di , and that J ′ is obtained from J by
replacing i by i ′ such that ri ′ = ri+1 and di ′ = di . If di ′ < ri ′
then i ′ will be removed from J ′, but this will happen only
if ri = di = r j = d j , in which case we can as well assume
that i is never scheduled, and then Lemma 1 is trivial. So for
the rest of the proof we assume that di > ri , so that i ′ will
remain in J ′.

(⇐) This implication is trivial, because any schedule S′
of J ′ gives us a schedule S of J with the same set of busy
slots by simply replacing i ′ by i (if i ′ is used at all).

(⇒) Consider a schedule S of some subset of J in which
X is the set of busy slots. If i is not scheduled in S then we
can simply use S′ = S. If i is scheduled in S at slot other than
ri , then we can obtain S′ by replacing i by i ′. The last case
is when i is scheduled at a slot ri in S. If j is scheduled in S
as well then we obtain S′ by swapping i and j in S and then
replacing i by i ′, with i ′ scheduled where j was scheduled
in S. On the other hand, if j is not scheduled in S, then we
obtain S′ by replacing i by j which is scheduled at r j = ri .

	


To implement the modification of the instance outlined
before Lemma 1, when we adjust the release times we can
process them in increasing order to facilitate finding equal
release times. Each job’s release time can be incremented
at most n times, and maintaining the ordering will intro-
duce a logarithmic overhead. Deadlines can be processed in
the symmetric way. Then the overall running time to mod-
ify the instance will be O(n2 log n). Thus this preprocessing
does not affect the overall running time of our algorithms for
instances with deadlines (that all have running time at least
this large).

2.2 Instances without deadlines

For instances without deadlines we only consider schedules
that schedule all jobs, andwecan then assume that the jobs are
ordered according to non-decreasing release times. We can
further restrict our attention to schedules in which the jobs
appear in order 1, 2, . . . , n, that is in order of their release
times. This is because if some schedule has two jobs that are
out of order, they can be swappedwithout increasing the total
flow time or the maximum flow time of this schedule.

For the total-flow objective function we can also assume
that all release times are different. The reason is that, although
modifying the release times may change the total flow value

(see the definition of the flow time in Sect. 7, paragraph
1), this change will be uniform for all schedules, so the
schedule’s optimality will not be affected. The appropri-
ate modification of release times can be achieved in time
O(n log n) as follows: First, sort all jobs in order of release
times, so that r1 ≤ r2 ≤ · · · ≤ rn . Process them in this order.
Providing that the new release times r ′

1 < r ′
2 < · · · < r ′

j−1
of jobs 1, 2, . . . , j − 1 are already computed, let the new
release time of job j be r ′

j = max(r ′
j−1 + 1, r j ). If the jobs

are already given in the sorted order, this process will in fact
take time O(n). Thus the running times of our algorithms are
not affected by this preprocessing. The produced instance is
equivalent to the original one, in the sense that both instances
have exactly the same set of feasible schedules (under the
assumption that the jobs are scheduled in order, as explained
in the previous paragraph).

We remark that modifying release times may affect the
maximum flow values non-uniformly (that is, differently for
different schedules), so we will not be using the assump-
tion about different release times in Sects. 9 and 10, where
maximum flow of jobs is considered.

2.3 Shifting blocks

To improve the running time, some of our algorithms use
assumptions about possible locations of the blocks in an
optimal schedule. The general idea is that each block can be
shifted, without affecting the objective function, to a location
where it will contain either a deadline or a release time. The
following lemma (that is implicit in Baptiste et al. (2007)) is
useful for this purpose. We formulate the lemma for leftward
shifts; an analogous lemma can be formulated for rightward
shifts and for deadlines instead of release times.

Lemma 2 Assume that all jobs in the instance have different
release times. Let B = [u, v] be a block in a schedule such
that the job scheduled at v has release time strictly before v.
Then B can be shifted leftward by one slot, in the sense that
the jobs in B can be scheduled in the interval [u − 1, v − 1].

Proof We construct a sequence of job indices i1, i2, . . . , iq
such that i1 is the job scheduled at v, each job ib, for b =
2, 3, . . . , q, is scheduled in B at the release time rib−1 of
the previous job in the sequence, and riq < u. This is quite
simple: As mentioned earlier, we start by letting i1 be the job
scheduled at v. Suppose that for some c ≥ 1 we have already
chosen jobs i1, i2, . . . , ic such that ic is scheduled in B and
each ib, for b = 2, 3, . . . , c, is scheduled at rib−1 . The choice
of this sequence implies that ric < ric−1 < · · · < r1 = v. If
ric < u, we let q = c and we are done. So suppose that ric ≥
u. Since all release times are different, we have ric < ric−1 .
We then take ic+1 to be the job scheduled at ric . By repeating
this process, we obtain the desired sequence.
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Given the jobs i1, i2, . . . , iq from the previous paragraph,
we can modify the schedule by scheduling iq at time u − 1,
and scheduling each ib, b = 1, 2, . . . , q − 1 at rib . This
will result in shifting B to the left by one slot, proving the
lemma. 	


2.4 Interval hitting

For some of our scheduling problems it is useful to consider
their “continuous” analogues obtained by assuming that all
release times and deadlines are spread very far apart; thus in
the limit we can think of jobs as having length 0. Each r j and
d j (if deadlines are in the instance) is a point in time, and to
“schedule” j we assign it to a point in the interval [r j , d j ].
Two jobs that would be assigned to consecutive slots in a
discrete schedule will then end up being on the same point.
This continuous problem is equivalent to computing a hitting
set for a given collection of intervals on the real line, with
some conditions involving gaps in-between its consecutive
points.

More formally, in the hitting-set problem we are given a
collection of n intervals I j = [r j , d j ], where r j , d j are real
numbers. Our objective is to compute a set H of points such
that H ∩ I j �= ∅ for all j . This set H is called a hitting set
of the intervals I1, I2, . . . , In . (This formalism corresponds
to scheduling problems with deadlines and where all jobs
need to be scheduled; it can be easily adapted in a natural
way to other variants that we study, when jobs may not have
deadlines, or when some jobs do not need to be scheduled.)

If H is a hitting set of intervals I1, I2, . . . , In , then for
each j we can pick a representative h j ∈ H ∩ I j . Let
hσ(1) ≤ hσ(2) ≤ · · · ≤ hσ(n), for some permutation σ of
{1, 2, . . . , n}, be the set of these representatives sorted from
left to right. Then the non-empty intervals between consecu-
tive representatives are called gaps of H . If hσ(b) < hσ(b+1)

then the length of the gap between hσ(b) and hσ(b+1) is
hσ(b+1) − hσ(b).

For each gap scheduling problem we can then consider
the corresponding hitting-set problem. For example, mini-
mizing the number of gaps in a schedule translates into a
minimum-cardinality hitting set for a collection of intervals.
It is well known (folklore) that this problem can be solved
with a greedy algorithm in time O(n log n): Initialize H = ∅.
Then, going from left to right, at each step locate the earliest-
ending interval I j not yet hit by the points in H and add d j

to H .
These interval-hitting problems are conceptually easier to

deal with than their discrete counterparts. As we show, some
algorithms for interval-hitting problems extend to their cor-
responding gap scheduling problems, while for other these
discrete variants require different techniques.

3 Maximizing throughput with budget for
gaps

In this section we consider a variant of gap scheduling where
we want to maximize throughput (that is, the number of
scheduled jobs), given a budget γ for the number of gaps.
We first show that the continuous version of this problem
can be solved in time O(γ n2). For the discrete case we give
an algorithm with running time O(γ n6).

3.1 Continuous case

Formally, the continuous variant of the problem is defined as
follows. We are given a collection of intervals I j = [r j , d j ],
j = 1, 2, . . . , n and a positive integer ξ ≤ n. The objective
is to compute a set H of at most ξ points that hits the max-
imum number of intervals, where a point is said to hit a set
if it belongs to this set. Without loss of generality we only
need to consider hitting sets H ⊆ {d1, d2, . . . , dn} and we
can assume that all release times and deadlines are different.
(Here, ξ corresponds to the number of blocks in the discrete
case, each block shrunken into a point, so its value is one
more than the number γ of gaps. In the continuous case it
is more natural to phrase the problem in terms of the hitting
set’s cardinality rather than the number of gaps.)

There is a simple dynamic-programming algorithm for
this problem that works as follows. Order the intervals
according to deadlines, that is d1 < d2 < · · · < dn . For
h = 1, 2, . . . , ξ and b = 1, 2, . . . , n, let Tb,h be the max-
imum number of input intervals that can be hit by a subset
H ⊆ {d1, d2, . . . , db} such that |H | ≤ h and db ∈ H . For
all b, we first initialize Tb,1 to be the number of intervals that
contain db. Similarly, for all h, we let T1,h to be the number
of intervals that contain d1. Then, for all h = 2, 3, . . . , ξ and
b = 2, 3, . . . , n, we can compute Tb,h using the recurrence:

Tb,h = max
a<b

{
Ta,h−1 + ωa,b

}
, (1)

where ωa,b is the number of intervals Ii such that da < ri ≤
db ≤ di , namely the intervals that are hit by db but not by da .
The output value is maxb Tb,ξ .

With a bit of care, all values ωa,b can be precomputed in
time O(n2): First sort all release times and deadlines. For
each fixed a, consider only intervals Ii to the right of da ,
namely those with ri > da . We will make a sweep through
release times anddeadlines, starting atda , and for eachvisited
point counting the number of intervals hit by this point. We
start with x = da and with a counter q initialized to 0. Then
iteratively increment x to the next release time or deadline,
whichever is earliest. At each step update q, by increasing
it if the new point is a release time and decreasing it if the
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Fig. 1 An example of an instance with n = 9 jobs and its schedule
with maximum throughput of 8 for the budget of 2 gaps. Each job j is
represented by a horizontal line segment starting at slot r j and ending at
slot d j . Observe that this schedule satisfies the EDF property, and that
it is not unique; in fact there are several EDF schedules with 2 gaps

current point is a deadline. If the new point is x = db, record
the value of q as ωa,b. This sweep costs time O(n).

This gives us an algorithm with running time O(ξn2),
because we have O(ξn) values Tb,h to compute, each com-
putation taking time O(n).

Note:As we found out after completing the initial version
of this manuscript, an algorithm with the same complexity
was given earlier in Jansen et al. (1997). We have decided
to retain the above solution in the paper as it provides useful
context for the discrete case considered next, accentuating
the contrast between the continuous and discrete variants.
Also, recently Damaschke (2017) gave a more efficient algo-
rithm for the special case when the interval graph induced by
intervals I1, I2, . . . , In is sparse.

3.2 Discrete case

For the discrete case, when we schedule unit jobs, a more
intricate dynamic programming approach is needed. The fun-
damental idea of our approach is similar to that in Baptiste
(2006); Baptiste et al. (2007, 2012).

A rough intuition here is that scheduling some jobs with
short spans, which are more restricted, may create a lot of
gaps. (A span of job j is d j −r j +1, the length of the interval
where it can be scheduled.) We would like to distribute jobs
with longer spans, as many as possible, to fill many of these
gaps. The remaining gaps may be then filled with jobs that
have even longer spans, and so on. Figure 1 shows an example
of an instance and a schedule that maximizes throughput for
the budget of 2 gaps.

Denote byJ the set of jobs on input, ordered by deadlines,
that is d1 < d2 < · · · < dn . (In Sect. 2we showed thatwe can
assume all deadlines to be different.) For each job k and times
u ≤ v, let Jk,u,v denote the sub-instance of J that consists
of all jobs j ∈ {1, 2, . . . , k} that satisfy u ≤ r j ≤ v. Define
Tk,u,v,g to be the maximum number of jobs from Jk,u,v that
can be scheduled in the interval [u, v] with the number of

gaps not exceeding g. Here, the initial and final gap (between
u and the first job, and between the last job and v) are also
counted, if present.

To derive a recurrence for Tk,u,v,g we reason as follows.
If Jk,u,v = ∅ then Tk,u,v,g = 0. If Jk,u,v �= ∅ and k /∈ Jk,u,v

then Tk,u,v,g = Tk−1,u,v,g . So for the rest of the derivation
assume that k ∈ Jk,u,v .

Consider an optimal schedule S for Jk,u,v , that is the
one that realizes Tk,u,v,g . If k is not scheduled by S, then
Tk,u,v,g = Tk−1,u,v,g . In the remaining cases we assume that
k is scheduled by S, say at time t , where u ≤ rk ≤ t ≤
min(v, dk).

Naturally, all jobs from Jk−1,t+1,v that are scheduled by
S are scheduled in [t + 1, v]. As explained in Sect. 2, we
can assume that S has the EDF property. Thus no job from
Jk−1,u,t−1 can be scheduled in [t + 1, v] because such a job
has an earlier deadline than k and so it cannot be pending in
S at time t . So all jobs from Jk−1,u,t−1 that are scheduled by
S are scheduled in [u, t − 1]. Further, for the same reason, if
there is a job in Jk,u,v \ {k} released at time t then it cannot
be scheduled by S. (In fact, we can assume that such job does
not exist, because otherwise we could swap it with k, as k’s
deadline is larger. But we do not use this observation in the
algorithm.)

The above paragraph gives us the optimal substructure
property needed for a dynamic-programming formulation.
Specifically, using the optimality of S and letting h be the
number of gaps in [u, t − 1] in S, we have that the portion
of S in [u, t − 1] is a schedule of Jk−1,u,t−1 with at most
h gaps and maximum throughput, and the portion of S in
[t + 1, v] is a schedule of Jk−1,t+1,v with at most g − h
gaps and maximum throughput. (See Fig. 2 for illustration.)
Therefore Tk,u,v,g = Tk−1,u,t−1,h + Tk−1,t+1,v,g−h + 1.

Overall, for the case when k ∈ Jk,u,v , the argument above
gives us the following formula for Tk,u,v,g:

Tk,u,v,g = max

⎧
⎪⎨

⎪⎩

Tk−1,u,v,g

max
rk≤t≤min(dk ,v)

0≤h≤g

{
Tk−1,u,t−1,h + Tk−1,t+1,v,g−h

} + 1

⎫
⎪⎬

⎪⎭

(2)

The solutionof theoriginal instanceJ isTn,rmin−1,dn+1,γ+2,
where rmin is the minimum release time. (Recall that dn is
the maximum deadline, by the deadline ordering.) We add
2 to γ to account for the initial and final gap which are not
counted in the budget for gaps but will always be present in
the overall solution for J , as in Tn,rmin−1,dn+1,γ+2 we con-
sider schedules in the interval [u, v] = [rmin − 1, dn + 1].

To achieve polynomial time we still need to somehow
limit the ranges of u, v and t in (2) to some polynomial-size
domain. This can be achieved using Lemma 2 which implies
that we only need to consider schedules in which every block
ends at some release time.
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Fig. 2 An illustration of the
recurrence for Tk,u,v,g

Define R = {ri : 1 ≤ i ≤ n} to be the set of all release
times, and for any interval [x, y] of integers define R +
[x, y] = {r + z : r ∈ R & z ∈ [x, y]}. (For y = x we will
simplify this notation andwrite R+[x] instead of R+[x, x].)
Then, by the above paragraph, we can assume that all busy
slots are in the set R + [−n + 1, 0]. The slot t in the bot-
tom option on the right-hand side of recurrence (2) is always
busy, and in the expressions Tk−1,u,t−1,h and Tk−1,t+1,v,g−h

the new interval endpoints are equal t − 1 and t + 1, respec-
tively, and these two slots are adjacent to a busy slot, namely
t . Therefore we can restrict the ranges of u, v and t to the set
R + [−n, 1] ∪ {dn + 1}, which has cardinality O(n2). (We
need to also include dn +1, which is the argument of v in the
expression Tk,u,v,g corresponding to the whole instance J .)
This gives us a bound of O(γ n5) on the number of values
Tk,u,v,g to be computed, each requiring time O(γ n2). Thus
the overall running time is O(γ 2n7).

A faster algorithm. We now show how to improve this run-
ning time by two orders of magnitude. To this end, we
further restrict the range of the left endpoint u to the set
R, while the range of the right endpoint v will be still in
R + [−n, 1] ∪ {dn + 1}. This will involve a slight modifica-
tion of the recurrence and the instance (adding an artificial
“dummy” tight job). The second improvement is obtained by
distinguishing two cases, depending on whether or not k is
the last job in the optimal schedule. If k is not last, we can
reduce the range of t to R+[−1], and if k is last then we can
eliminate the maximization over h. The details follow.

As a first step, we claim that we can assume that in the
original instance J the first job is a tight job separated from
the rest of the instance, that is r1 = d1 ≤ min j �=1 r j −
2. Indeed, if the first job does not satisfy this property, we
can simply add such a job, without affecting the asymptotic
running time.With this assumption, the optimal value for the
whole instance J will be computed as Tn,rmin,dn+1,γ+1, with
1 added to γ to account for the extra final gap that is not
counted in the budget for gaps. So in this case the value of
the second parameter u of Tn,u,v,h is rmin ∈ R. (If job 1 was
artificially added to J , the optimal solution for J \ {1} can
be computed by using gap budget γ + 2 for J , instead of
γ +1, and subtracting 1 from the optimum throughput value,
to account for the extra job 1.)

Then we proceed by induction. Consider a sub-instance
Jk,u,v , with u ∈ R, for which we want to compute Tk,u,v,g .
We can assume that k ∈ Jk,u,v , as otherwise Tk,u,v,g =
Tk−1,u,v,g . We have two cases, depending on whether k is
last in an optimal schedule of Jk,u,v or not.

Suppose that k is not last. In this case we can assume
that there is a job scheduled right after k, at time t + 1,
for otherwise we could reschedule k by appending it at the
beginning of the next block, without increasing the number
of gaps. (Herewe use the fact that k hasmaximumdeadline in
Jk,u,v .) By theEDFproperty, no scheduled jobs inJk,u,v\{k}
are pending at time t . Thus the job scheduled at time t + 1,
say c, is scheduled at its release time rc = t+1. Therefore in
this casewe have Tk,u,v,g = Tk−1,u,t−1,h+Tk−1,t+1,v,g−h+1
for some h (as in recurrence (2)), where u, t + 1 ∈ R, and
t ∈ R + [−1].

Next, assume that k is scheduled last. In this case we can
avoid maximization over h. The optimal substructure prop-
erty holds here as well, that is the portion of S in the interval
[u, t − 1] must be an optimal schedule for the corresponding
sub-instance. Thus the recurrence has two sub-cases: If t = v

then there is no final gap and Tk,u,v,g = Tk−1,u,v−1,g+1.Oth-
erwise, there is a final gap and Tk,u,v,g = Tk−1,u,t−1,g−1 +1.
In both cases there is no maximization with respect to h,
and the interval in the sub-instance on the right-hand side
of the recursion corresponds to interval [u, t − 1], with
u ∈ R and with t − 1 being adjacent to a busy slot, so
t − 1 ∈ R + [−n, 1] ∪ {dn + 1}.
Algorithm MaxThrpt. As explained above, we assume in
the algorithm that r1 = d1 ≤ min j �=1 r j − 2. For all k =
0, 1, . . . , n and time slots u, v, where u ∈ R, v ∈ R +
[−n, 1] ∪ {dn} and u ≤ v, we process all instances Jk,u,v in
order of increasing k, and for each k in order of increasing
interval length, v − u. For each instance Jk,u,v and each
gap budget g = 0, 1, . . . , γ we compute the corresponding
value Tk,u,v,g . If some value of Tk,u,v,g appears on the right-
hand side of the recurrence with v outside its range (that is
when v /∈ R + [−n, 1] ∪ {dn + 1}), then we assume that
Tk,u,v,g = −∞.

First, if Jk,u,v = ∅, we let Tk,u,v,g = 0. This applies, in
particular, to all values T0,u,v,g . Assume now thatJk,u,v �= ∅.
If k /∈ Jk,u,v (which means that rk /∈ [u, v]) then Tk,u,v,g =
Tk−1,u,v,g . Otherwise, we compute Tk,u,v,g using the follow-
ing recurrence:

Tk,u,v,g = max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tk−1,u,v,g

max
t∈R′

0≤h≤g

{
Tk−1,u,t−1,h + Tk−1,t+1,v,g−h

} + 1

max
t∈R′′

{
Tk−1,u,t−1,g−1

} + 1

Tk−1,u,v−1,g + 1 if dk ≥ v

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)
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where the ranges of t above are

R′ = (R + [−1]) ∩ [rk,min(dk, v)]
R′′ = (R + [−n + 1, 0]) ∩ [rk,min(dk, v)]

The algorithm outputs Tn,rmin,dn+1,γ+1 as the solution to the
whole instanceJ . (This formula is explained before the state-
ment of the algorithm.)

As discussed earlier, with the above restrictions on u, v

and t , we have n choices for u and O(n2) choices for v.
With n + 1 choices for k and γ + 1 choices for g, the size of
the Tk,u,v,g table is O(γ n4). In the above recurrence, in the
second option we iterate over up to n choices for t and γ + 1
choices for h, and in the third option we iterate over up to n2

choices for t . So the overall running time is O(γ n6).
Summarizing, we obtain the following theorem:

Theorem 1 For any instanceJ and a gap budget γ ≤ n−1,
AlgorithmMaxThrpt in time O(γ n6) computes a schedule
ofJ that has maximum throughput among all schedules with
at most γ gaps.

3.3 Weighted throughput

We now claim that the above results extend to the weighted
case, where each job j is assigned some nonnegative weight
w j and the objective is to maximize the weighted through-
put (the total weight of scheduled jobs) given a budget for
the number of gaps. In the continuous case, recurrence (1)
remains valid, withωa,b representing now the total weight of
intervals Ii such that da < ri ≤ db ≤ di , namely the intervals
that are hit by db but not by da . The computation of all values
ωa,b is essentially the same, and the overall running time of
O(ξn2) will remain the same. (Recall that in the continuous
case ξ is the bound on the size of the hitting set.)

In the rest of this section we deal with the discrete case.
Algorithm MaxThrpt relies on some properties of sched-
ules, in particular on the EDF property and Lemma 1, that
are not valid if jobs have different weights. Nevertheless, we
show that slightly relaxed versions of these properties still
apply, ensuring that with minor tweaks Algorithm Max-
Thrpt will work for weighted jobs.

Let ≺ be an ordering on all jobs such that i ≺ j iff either
di < d j or di = d j and i < j . (Only the deadline ordering
matters. Tie-breaks between jobs with equal deadlines can be
broken arbitrarily.) A schedule S is said to satisfy the relaxed
earliest-deadline-first property (rEDF) if, at any time t , either
S is idle at t or it schedules a pending job j ∈ S that precedes
in the ≺-order any other job from S that is pending at time
t . In other words, if S is not idle at time t , it chooses some
pending job j to schedule and discards all pending jobs that

precede j in the ≺-ordering. Any schedule can be reordered
to satisfy the rEDF property, retaining the same set of busy
slots. Therefore fromnowonwewill consider only schedules
with this property.

The definition of sub-instances Jk,u,v remains the same.
We extend the definition of Tk,u,v,g , so that it now denotes
the maximum total weight of jobs from Jk,u,v that can be
scheduled in the interval [u, v] with the number of gaps not
exceeding g. As before, the rEDF property already gives
us an optimal substructure property, and for the case when
k ∈ Jk,u,v (which is the only non-trivial case) it yields a
recurrence analogous to (2):

Tk,u,v,g = max

⎧
⎪⎨

⎪⎩

Tk−1,u,v,g

max
rk≤t≤min(dk ,v)

0≤h≤g

{
Tk−1,u,t−1,h + Tk−1,t+1,v,g−h

} + wk

⎫
⎪⎬

⎪⎭

(4)

The correctness proof is the same as for the unweighted
case: If k is not scheduled in [u, v] then Tk,u,v,g = Tk−1,u,v,g .
So assume that k is scheduled, say at time t ∈ [u, v]. The
jobs from Jk,u,v released in [t + 1, v] obviously cannot be
scheduled in [u, t]. The jobs from Jk,u,v released in [u, t]
cannot be scheduled in [t, v] because otherwise they would
be pending at time t , and since they precede k in the earliest-
deadline ordering this would violate the rEDF property. This
reasoning, and maximization over t , gives us the expression
in the second option for the maximum in (4).

As in the unweighted case, recurrence (4) leads to an
O(γ 2n7)-time algorithm. To justify this, observe that we
only need to consider schedules where each block contains
some release time. This is because any schedule that does not
satisfy this property can be modified by shifting each block
rigidly (that is, without reordering its jobs) leftward until it
contains a release time. (This is aweaker version ofLemma2,
that does not hold as stated without the assumption about dif-
ferent release times.) With this in mind, we can restrict the
values of u, v, t to the range R+[−n, n]∪{dn + 1}, yielding
running time O(γ 2n7).

The running time can be further improved to O(γ n6) by
following the same method as for the unweighted case, that
is by restricting the range of u to set R whose size is O(n).
As before, the key observation needed to achieve this is that
in recurrence (2) we can assume that if k is not scheduled last
then t+1 is a release time of some job. (And this observation
does not need the assumption that all release times are dis-
tinct.) Then the final recurrence is essentially the same as (3),
except that instead of adding 1 to the throughput we add wk ,
the weight of job k.
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4 Minimizing the number of gaps with
throughput requirement

Suppose now that we want to minimize the number of gaps
under a throughput requirement, that is we want to find
a schedule that schedules at least a given number m ∈
{0, 1, . . . , n} of jobs while minimizing the number of gaps.
Without loss of generality we can assume that there exists a
schedule with throughput at least m; in fact, as explained in
Sect. 2, we can even assume that the whole instance is feasi-
ble. As mentioned in the introduction, the case when m = n
can be solved in time O(n4) (Baptiste et al. 2007, 2012).

We can solve this problem, both the continuous and dis-
crete version, by leveraging the algorithms from the previous
section. We explain the solution for the continuous variant;
the solution of the discrete case can be obtained in an analo-
gous manner.

Recall that Tb,h was defined to be the maximum number
of intervals that can be hit with a subset of {d1, d2, . . . , db}
that includes db and has cardinality at most h. All values
Tb,h can be computed in time O(n3) using recurrence (1).
We can use all these values to compute all values Th , for h =
1, 2, . . . , n, where Th is the maximum number of intervals
that can be hit with a set of cardinality at most h (without any
additional restrictions). By definition, we have T1 ≤ T2 ≤
· · · ≤ Tn . Then, given our requirement m on the throughput,
we compute the smallest h = ξ∗ for which Th ≥ m. This
value ξ∗ is the output of the algorithm. The total running time
will be O(n3). This can be easily improved to O(ξ∗n2), by
stopping the computation of the recurrence formulas (1) at
the smallest h for which the throughput bound is reached.

An essentially identical schemewill produce an algorithm
for the discrete case with running time O(g∗n6), where g∗
is the optimal number of gaps. This algorithm will apply
Algorithm MaxThrpt to find the smallest g such that some
schedule with at most g gaps achieves throughput at least m.
This gives us the following result.

Theorem 2 For any instance J and m ≤ n, the above-
described algorithm in time O(g∗n6) computes a schedule
of J that has the minimum number of gaps g∗ among all
schedules with throughput at least m.

4.1 Weighted throughput

In the weighted version, each job j has a nonnegative weight
w j . Given some threshold μ, the objective is to compute a
schedule that has the minimum number of gaps among all
schedules with total weighted throughput at least μ. Theo-
rem 2 remains true for the weighted version, by applying the
weighted variant of Algorithm MaxThrpt, outlined at the
end of the previous section.

5 Maximizing the number of gaps

In the preceding sections we studied problems where we
were interested in schedules with as few gaps as possible.
However, in some applications, gaps in the schedule may
actually be desirable. This can arise, for example, when the
input stream consists of two types of jobs, some with high
priority and other with low priority. High-priority jobs are
allowed to reserve their slots in advance, while low-priority
jobs are executed only if there are slots available.We can then
schedule high-priority jobs first, and maximizing the number
of gaps in their schedule would help to improve throughput
and latency for low-priority jobs. One such specific scenario
appears in QoS networks when coordination of access to a
Wi-Fi channel is implemented using so-called point coordi-
nation function (PCF) mechanism (http://en.wikipedia.org/
wiki/Point_coordination_function). One of the features of
PCF is that it inserts gaps (in our terminology) into the sched-
ule of high-priority traffic in order to allow low-priority traffic
to access the channel.

Thus in this section we will examine the variant of gap
scheduling where the objective is to create as many gaps
as possible in the schedule. The continuous version of this
problem is trivial: for any interval I j = [r j , d j ] with r j =
d j , we must of course choose h j = r j . Each interval I j =
[r j , d j ]with r j < d j can be assigned a unique point h j ∈ I j .
Thus in this section we will focus only on the discrete model.

Specifically, we are again given an instance J with n unit
jobs with release times and deadlines, and we assume that
the instance is feasible, that is all jobs can be scheduled. The
objective is to find a schedule for J (with all jobs sched-
uled) that maximizes the number of gaps. As before, we will
assume that all jobs have different deadlines and different
release times, and that they are ordered according to increas-
ing deadlines, d1 < d2 < · · · < dn . We can also assume
that jobs 1 and n satisfy r1 = d1 = min j>1 r j − 2 and
dn = rn = max j<n d j + 2, that is, they are tight jobs exe-
cuted at the beginning and end of the schedule, separated by
gaps from other jobs. Such jobs can be added to the instance,
increasing the number of gaps uniformly by 2 for all sched-
ules; thus the choice of the optimal schedule is not affected,
only its value increases by 2. (This is a technical assumption
that allows us to fix the range of the dynamic program below.)
Figure 3 shows an example of an instance J with n = 10
jobs and its schedule with 7 gaps.

As in Sect. 3, for any job k = 1, 2 . . . , n and two time steps
u ≤ v define Jk,u,v to be the sub-instance of J that consists
of all jobs j ∈ {1, 2, . . . , k} that satisfy u ≤ r j ≤ v. Each
sub-instanceJk,u,v is feasible, becauseJ is feasible. Define
Dk,u,v to be the maximum number of gaps in a schedule of
Jk,u,v in the interval [u, v]. InDk,u,v we include the extremal
gaps in the schedule (if any), namely the initial gap between
u and the first job and the final gap between the last job and v.

123

http://en.wikipedia.org/wiki/Point_coordination_function
http://en.wikipedia.org/wiki/Point_coordination_function


390 Journal of Scheduling (2021) 24:381–403

2

3

4

5

6

8

7

9

5 6 8743 92

Fig. 3 An example of an instance and its schedule with maximum
number of gaps, for n = 10. Each job j is represented by a horizontal
line segment starting at slot r j and ending at slot d j . The special jobs
1 and n = 10 are not shown. In this schedule we have 7 gaps, which
includes the gap between jobs 1, 3 and the gap between jobs 8, 10. To
see that this schedule is indeed optimal, note that interval [r4, d8] has
length 7 and contains the spans of five jobs, so there can be at most
two gaps that overlap this interval, and all jobs outside this interval are
scheduled as singleton blocks

With the assumptions explained earlier, the whole instance
is J = Jn,r1,dn , and thus the overall optimal solution will
be computed as Dn,r1,dn . (If jobs 1 and n were added to the
original instance, this value needs to be decreased by 2, to
account for the two extra gaps after r1 and before dn .)

Lemma 3 For any sub-instance Jk,u,v there is a schedule S
with the EDF property that has Dk,u,v gaps in the interval
[u, v] and satisfies the following two conditions:

(i) For any job j ∈ Jk,u,v , if j is scheduled at time S j then
all gaps in the interval [r j , S j ] have length at most 2
(including the gap between r j and the first job, if present).

(ii) For each block B of S that does not start at u, either all
jobs in B are scheduled at their release times or the gap
immediately to the left of B has length 1.

To clarify, in part (i) by “the gap between r j and the first
job” we mean the idle interval starting at r j and ending right
before the first job scheduled in [r j , S j ]. This is a slight abuse
of our earlier terminology.

Proof We show that we can modify any schedule S with
Dk,u,v gaps to have properties (i) and (ii), without decreasing
the number of gaps. As explained in Sect. 2, we can assume
that S has the EDF property.

First, suppose that some job j violates property (i), that is
S has a gap [x, x ′] such that r j ≤ x < x + 2 ≤ x ′ ≤ S j − 1.
We can then move j to time slot x + 1. Removing j from
time slot S j can decrease the number of gaps at most by 1 (if
j was in a block by itself). Rescheduling j at time x + 1 will
increase the number of gaps by 1. Thus overall the number
of gaps cannot decrease.

If S has a block B = [y, y′] that violates property (ii),
choose j to be the first job in B with S j > r j . Since all
release times are different, we must have r j < y. We can
then move j to slot y − 1 and, since the gap that precedes B
has length at least 2, the number of gaps will not decrease.

The two operations above convert the current schedule
S into a new schedule S′ whose set of busy slots is lexico-
graphically smaller than that of S. We can then rearrange S′
to obtain a schedule S′′ that has the EDF property and the
same block structure as S′ (see Sect. 2). This schedule S′′
is also lexicographically smaller than S, and its number of
gaps is the same or larger than the number of gaps in S. Thus
this processmust eventually end, producing anEDF schedule
with Dk,u,v gaps that satisfies conditions (i) and (ii). 	


At the very fundamental level, the idea behind our algo-
rithm is similar to that in Sect. 3. We use dynamic program-
ming to compute all values Dk,u,v . Assume that k ∈ Jk,u,v ,
for otherwise Dk,u,v = Dk−1,u,v . Suppose that, in some
optimal schedule S for Jk,u,v , k is scheduled at some time
t ∈ [u, v]. Obviously, we have t ≥ rk ∈ [u, v]. By the EDF
property, t itself cannot be a release time of any job in Jk,u,v

other than k. This property is important for the correctness of
our recurrence, as it implies thatJk,u,v can be partitioned into
three disjoint sets: Jk,u,v = Jk−1,u,t−1 ∪ {k} ∪ Jk−1,t+1,v .
Naturally, all jobs in Jk−1,t+1,v are scheduled by S in
[t + 1, v]. Further, using the EDF property again, all jobs
in Jk−1,u,t−1 cannot be scheduled after t , so they are all
scheduled in [u, t − 1]. This implies the following optimal
substructure property: the portion of S in [u, t−1] is an opti-
mal schedule of Jk−1,u,t−1, and the portion of S in [t + 1, v]
is an optimal schedule of Jk−1,t+1,v . We thus conclude that
Dk,u,v = Dk−1,u,t−1 + Dk−1,t+1,v .

Since we do not know t a priori, we can maximize the
expression on the right-hand side over all choices of t , giving
us a recurrence for Dk,u,v (in the case when k ∈ Jk,u,v):

Dk,u,v = max
rk≤t≤min(v,dk )

t /∈Rk−1,u,v

{
Dk−1,u,t−1 + Dk−1,t+1,v

}
(5)

where we use notation Rk−1,u,v for the set of release times
of the jobs in Jk−1,u,v . Note that the range of the max-
imum above is not empty, because rk ≤ min(v, dk) and
rk /∈ Rk−1,u,v , so rk is a candidate for t . We still need to
show that we can reduce the ranges of u, v and t in (5) to
some polynomial-size domain.

We claim that we only need to consider instances Jk,u,v

where u, v ∈ R+[−1, 3n+1]. (See Sect. 3 for the definition
of sets R + [x, y].) Indeed, this follows from Lemma 3(i),
which implies that in the recurrence (5) for Dk,u,v we only
need to consider slots t between rk and rk + 3n, inclusive.
Thus, in the sub-instancesJk−1,u,t−1 andJk−1,t+1,v the new
arguments v′ = t − 1 and u′ = t + 1 will satisfy v′, u′ ∈
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{rk − 1, rk, . . . , rk + 3n + 1} ⊆ R + [−1, 3n + 1]. The ini-
tial arguments are r1 and dn = rn , both in R + [−1, 3n + 1],
completing the proof of our claim. As |R + [−1, 3n + 1]| =
O(n2), this gives us O(n5) instances Jk,u,v to consider. For
each Jk,u,v , using Lemma 3(i), to compute Dk,u,v it is suffi-
cient to iterate only over t = rk, rk + 1, . . . ,min(v, dk, rk +
3n). This would give us the overall running time O(n6).

Next, we argue that this running time can be further
improved to O(n5). The general idea is to show that, in
essence, recurrence (5) needs to be applied only to O(n) val-
ues of u. To this end, we modify recurrence (5) as follows:

Dk,u,v = max
rk≤t≤min(v,dk)

t /∈Rk−1,u,v

{
Dk−1,u,t−1 + Dk−1,μ(t),v

}
(6)

where μ(t) is determined based on three cases: If
Jk−1,t+1,v = ∅, let μ(t) = v + 1. Otherwise, let μ′ =
min{r j : j ∈ Jk−1,t+1,v}. If μ′ = t + 1, let μ(t) = t + 1,
otherwise let μ(t) = μ′ −1. (Note that μ(t) depends also on
v and k, but we omit these in our notation to reduce clutter.)

We claim that (6) is a correct recurrence for Dk,u,v , pro-
viding that k ∈ Jk,u,v . Indeed, from the definition ofμ(t)we
have Jk−1,t+1,v = Jk−1,μ(t),v , and sub-instance Jk−1,μ(t),v

is scheduled inside the interval [μ(t), v]. Finally, the optimal
schedules of Jk−1,t+1,v and Jk−1,μ(t),v have the same num-
ber of gaps. (The reason for distinguishing between the cases
when μ′ = t + 1 and μ′ �= t + 1 was to take into account the
possible initial gap.)

Using (6), the recurrence will remain correct if we restrict
the range of u’s to the set R + [−1, 0], whose cardinality is
O(n). Then the total number of instances Jk,u,v to consider
is O(n4), implying the running time of O(n5). The complete
algorithm is described below.

Algorithm MaxGaps. We consider all instances Jk,u,v ,
where u and v are time slots such that u ∈ R + [−1, 0],
v ∈ R + [−1, 3n + 1], and u ≤ v + 1, and k is either a
job, that is k ∈ {1, 2, . . . , n}, or k = 0. We process these
instances in order of increasing k and increasing difference
v − u. For each instance Jk,u,v , the value of Dk,u,v is com-
puted as follows.

We first deal with the base case, when Jk,u,v = ∅. In this
case, if u = v + 1 we let Dk,u,v = 0, and if u ≤ v we let
Dk,u,v = 1.

So assume now that Jk,u,v �= ∅, which implies that u ≤ v

and k ≥ 1. Then, if k /∈ Jk,u,v we let Dk,u,v = Dk−1,u,v .
Otherwise we have k ∈ Jk,u,v , in which case we compute
Dk,u,v using the following recurrence:

Dk,u,v = max
rk≤t≤min(v,dk ,rk+3n)

t /∈Rk−1,u,v

{
Dk−1,u,t−1 + Dk−1,μ(t),v

}

After all values are computed, the algorithm outputsDn,r1,dn .
By the analysis above, we obtain the following theorem.

Theorem 3 For any instanceJ , AlgorithmMaxGaps in time
O(n5) computes a schedule of J with maximum number of
gaps.

6 Minimizingmaximum gap

In the earlier sectionswe focused on the number of gaps in the
schedule. For certain applications, the size of the gaps is also
of interest. In this sectionwewill study the problemwhere the
objective is to minimize the maximum gap in the schedule.
Such schedules tend to spread the jobs more uniformly over
the time range and produce many gaps, which may be useful
in applications discussed in Sect. 5, where a good schedule
should leave some gaps between high-priority jobs, to allow
other jobs to access the processor. This could also be useful
in temperature control of the processor (see the discussion at
the end of Sect. 11).

The general setting is as before. We have an instance J
consisting of n unit jobs, where job j has release time r j and
deadline d j ≥ r j . As explained in Sect. 2, we can assume
that J is feasible. The objective is to compute a schedule of
all jobs that minimizes the maximum gap size.

Interestingly, this problem is structurally different from
these in the previous sections, because now, intuitively, a
good schedule should spread the jobs more-or-less evenly in
time. For example, if we have n−2 jobs released at 0, all with
deadline D � n, plus two more tight jobs 1 and n in time
slots 0 and D, respectively, then we should schedule the non-
tight jobs j = 2, 3, . . . , n − 1 at time slots ≈ ( j − 1) D

n−1 .
In contrast, the algorithms in Sects. 3 and 4 attempted to
group the jobs into a small number of blocks. Similar to the
objective in Sect. 5, a schedule that minimizes the maximum
gap sizewill typically createmany gaps, but, as can be seen in
Fig. 4, these two objective functions will in general produce
different schedules.

In this section we give an O(n2 log n)-time algorithm for
computing schedules that minimize the maximum gap. We
first give an algorithm for the continuous model, and then
extend it to the discrete model.

6.1 The continuous case

The continuous analogue of our scheduling problem can
be formulated as follows. The input consists of n intervals
I1, I2, . . . , In . As before, I j = [r j , d j ] for each j . The objec-
tive is to compute a hitting set H for these intervals that
minimizes the maximum gap between its consecutive points.
Another way to think about this problem is as computing a
representative h j ∈ H ∩ I j for each interval I j . Except for
degenerate situations (two equal intervals of length 0), we
can assume that all representatives are different, although
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41 23

3

41 2 3

3

Fig. 4 An instancewith two schedules. Red/dark shaded slots represent
tight jobs. The range of job 3 is represented by a horizontal segment.
The schedule on the left maximizes the number of gaps. The schedule

on the right minimizes the maximum gap. Both schedules are unique
optimal solutions for their respective objective functions

we will not be using this property in our algorithm, and we
treat H as a multiset.

We order the intervals so that d1 ≤ d2 ≤ · · · ≤ dn . Fur-
ther, we only need to be concerned with sets H that contain
d1, because if H contains any points before d1 then we can
replace them all by d1 without increasing the maximum gap
in H . Also, if maxi ri ≤ d1 then there is a singleton hitting
set, H = {d1}, whose maximum gap is equal to 0. Thus we
can also assume that maxi ri > d1, so that we need at least
two points in H .

Consider first the decision version: “Given λ > 0, is there
a hitting set H for I1, I2, . . . , In in which all gaps are at
most λ?” If λ has this property, we will call it viable. We first
give a greedy algorithm for this decision version and then
later we show how to use it to obtain an efficient algorithm
for the minimization version.

Algorithm Viable(λ). We will use notation H◦ =
{h◦

1, h
◦
2, . . . , h

◦
n} for the hitting set computed by the algo-

rithm, where each h◦
j is the representative of I j , for j =

1, 2, . . . , n. These representatives will be determined from
left to right, that is in order h◦

π(1) ≤ h◦
π(2) ≤ · · · ≤ h◦

π(n),
with π denoting the appropriate permutation of the index set.

We initialize π(1) = 1, h◦
1 = d1 and U = {2, 3, . . . , n}.

Here,U represents the set containing the indices of intervals
that do not have yet representatives selected. We now move
from left to right, at each step assigning a representative to
one interval in U (the “most urgent” one), placing this rep-
resentative as far to the right as possible, and we remove this
interval from U .

Specifically, at the beginning of a step s ≥ 2, sup-
pose that we already have determined the representatives
h◦

π(1), h
◦
π(2), . . . , h

◦
π(s−1) and their corresponding intervals

Iπ(1), Iπ(2), . . . , Iπ(s−1). Assume also that the following
invariants hold:

(i) U = {1, 2, . . . , n} − {π(1), π(2), . . . , π(s − 1)}, and
(ii) h◦

π(s−1) ≤ min j∈U d j .

In this step s we proceed as follows. Let z = h◦
π(s−1) +

λ. If all i ∈ U satisfy ri > z, declare failure and return
false. Otherwise, choose π(s) to be the index j ∈ U with
r j ≤ z that minimizes d j , and remove π(s) from U . We
now have two cases. If dπ(s) ≤ z, let h◦

π(s) = dπ(s), and
otherwise (that is,when rπ(s) ≤ z < dπ(s)) leth◦

π(s) = z. (See

Fig. 5 for illustration.) In both cases, invariants (i) and (ii)
are preserved. Then increment s and continue. If the process
completes withU = ∅ (and thus also s = n), return true and
the computed solution H◦ = {h◦

1, h
◦
2, . . . , h

◦
n}.

To show correctness of Algorithm Viable(λ), Let H =
{h1, h2, . . . , hn} be some hitting set with maximum gap
at most λ, where h j is the representative of I j , for j =
1, 2, . . . , n. Sort H in non-decreasing order, say hσ(1) ≤
hσ(2) ≤ · · · ≤ hσ(n), for some permutation σ . We show that
this solution can be converted into the one computed by our
algorithm. For s = 1, as we explained earlier, we can assume
that σ(1) = 1 and h1 = d1, so hσ(1) = h◦

π(1).
Consider the first step s when Algorithm Viable(λ)

makes a choice different than the solution represented by H ,
that is either h◦

π(s) �= hσ(s) or h◦
π(s) = hσ(s) but Iπ(s) �= Iσ(s).

(If there is no such step, we are done.) By the above para-
graph, we have s ≥ 2.

Suppose first that h◦
π(s) �= hσ(s). By the choice of h◦

π(s)
in the algorithm, we have that hσ(s) < h◦

π(s). (Otherwise,
either the gap between hσ(s−1) and hσ(s) would exceed λ or
H would not hit the interval Iπ(s).) Since at this step there are
no deadlines inU between hσ(s) and h◦

π(s), we can shift hσ(s)

to the right and make it equal to h◦
π(s), without increasing the

gap size to above λ.
Next, assume that h◦

π(s) = hσ(s) and Iπ(s) �= Iσ(s). Then,
by the ordering of H and the choice of π(s) in the algorithm,
we have

max
{
rπ(s), rσ(s)

} ≤ h◦
π(s) = hσ(s) ≤ hπ(s) ≤ dπ(s) ≤ dσ(s).

So we can swap the representatives of Iπ(s) and Iσ(s) in H ,
and after this swap we will have h◦

π(s) = hσ(s) and Iπ(s) =
Iσ(s).

When we complete the above modifications of H , we
increase the number of steps of Algorithm Viable(λ) that
produce the same representatives as those in H . So repeating
this process sufficiently many times eventually converts H
into the set H◦.

We claim that Algorithm Viable(λ) can be implemented
in time O(n log n). Instead of U , the algorithm maintains
a set U ′ ⊆ U that, when a step s ≥ 2 starts, consists of
indices i for which ri ≤ h◦

π(s−1) + λ and for which Ii does
not yet have a representative. Store U ′ in a priority queue
with priority values equal to the deadlines. Then choosing
π(s) in the algorithm and removing π(s) fromU ′ takes time
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h◦
π(s)

Iπ(s)

z

λ

h◦
π(s−1)

Iπ(s)

λ

h◦
π(s−1) h◦

π(s) = z

Fig. 5 Illustration of Algorithm Viable(λ). On the left the case when dπ(s) ≤ z, on the right the case when rπ(s) ≤ z < dπ(s). Thick horizontal
lines represent the intervals in U

O(log n). When s is incremented (after adding h◦
π(s) to the

solution), the indices of new intervals are inserted into U ′
in order of release times (which can be sorted in the pre-
processing stage), with each insertion taking time O(log n).

Now, the idea behind the algorithm for computing the
optimal hitting set is to useAlgorithmViable(λ) as an oracle
in binary search on λ’s. For this to work, we need to be able
to efficiently identify a small set of candidate values for the
optimal λ. Let

Λ =
{
ri − d j

k
: k ∈ {1, 2, . . . , n − 1}, i, j ∈ {1, 2, . . . , n}, ri > d j

}
.

Observe that |Λ| = O(n3) and, by our assumption that
maxi ri > d1, also Λ �= ∅.

We claim that Λ contains the optimal gap length λ∗.
The argument is this. Consider some hitting set H∗ ={
h∗
1, h

∗
2, . . . , h

∗
n

}
whose maximum gap is λ∗, sorted in non-

decreasing order. Choose some maximal (w.r.t. inclusion)
consecutive sub-sequence h∗

a < h∗
a+1 < . . . < h∗

b with all
gaps equal to λ∗, and suppose that h∗

a is not a deadline. Then
we can move h∗

a by a little bit to the right without creating a
gap longer than λ∗. Similarly, if h∗

b is not a release time then
we can apply a similar procedure to h∗

b and shift it to the left.
Each such operation reduces the number of gaps of length λ∗.
Since λ∗ is optimal, eventually we must get stuck, meaning
that we will find a sub-sequence like the one above with the
first and last indices a and b that satisfy h∗

a = d j and h∗
b = ri ,

for some i and j . Then we will have λ∗ = ri−d j
b−a ∈ Λ.

The idea above immediately yields an O(n3 log n)-time
algorithm. This algorithm first computes the set Λ, sorts it,
and then finds the optimal λ through binary search inΛ. Note
that the running time is dominated by sorting Λ.

We now show that this running time can be improved to
O(n2 log n), by conducting a more careful search in Λ that
avoids constructing Λ explicitly. The basic idea is to use
a smaller set Δ that consists of all values ri − d j where
ri > d j . This set Δ implicitly represents Λ, in the sense
that it consists of all numerator values of the fractions in Λ.

Fig. 6 An illustration of the idea behind Algorithm MinMaxGap.
Viable fractions in Λ are represented by the shaded region

More precisely, each value in Λ can be expressed as x/k,
for some x ∈ Δ and 1 ≤ k ≤ n − 1. One can visualize Λ

by representing such values x/k as points in 2D, with the
two coordinates representing the values of x and k, and point
(x, k) representing x/k (see Fig. 6). Roughly, the algorithm
then finds two consecutive values v,w inΔ such thatw/(n−
1) is viable but v/(n−1) is not. It then finds an index κ such
that v/κ is viable but v/(κ + 1) is not. Then the optimal
value of λ must be between v/κ and v/(κ + 1). We then
show that there are only O(n2) such values inΛ, so by doing
a binary search among these values we can find the optimal
λ in time O(n2 log n). A detailed algorithm with complete
analysis follows.

Algorithm MinMaxGap. The algorithm is described in
Pseudocode 1. In this pseudo-code, to avoid multi-level nest-
ing, we assume that the algorithm terminates if the return
statement is reached.
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We now explain the steps in the algorithm and justify cor-
rectness and the running time. First, if maxi ri ≤ d1 then
there is a hitting set with all representatives on one point,
and we return 0 as the optimal value (Line 1).

Otherwise we have maxi ri > d1, that is any hitting set
needs at least two points and the optimal gap is strictly posi-
tive. We then compute all positive values ri − d j , store them
in a set Δ and sort them (Lines 2-3). This will take time
O(n2 log n).

If min(Δ)
n−1 is viable (which we check in Line 4), then this

is the optimal value, since no hitting set can have all gaps
smaller than min(Δ)

n−1 = min(Λ). We can thus now assume

that min(Δ)
n−1 is not viable.

Next, we compute the largest v ∈ Δ for which v
n−1 is

not viable. By the previous paragraph, such v exists. To this

end, we can do binary search in the set
{

x
n−1 : x ∈ Δ

}
, at

each step making calls toViable() to determine whether the
current split value is viable or not. With O(log n) calls to
Viable(), this binary search will take time O(n log2 n). We
also let w to be the next value in Δ after v. (If there is no
such value, let w = +∞.)

At this point we check whether v is viable. If it is not, it
means that for all x ∈ Δ with x ≤ v, all fractions x/k, for
k = 1, 2, . . . , n−1, are not viable as well. Then the smallest
viable value in Λ must be w

n−1 , so we output w
n−1 in Line 7.

(Note that in this case w must exist, because if v were the
largest value in Δ then v would be viable.)

If v is viable, we compute the largest κ for which v/κ

is viable (Line 8). By the choice of v we have κ < n − 1.
We now also know that the optimal value for λ has the form
x
k ∈ Λ where x ∈ Δ, x ≤ v, and

v

κ + 1
<

x

k
≤ v

κ
. (7)

So we only need to search for λ among such values.
Next, we define a small set Λ′ that contains all candidate

values from the previous paragraph. To this end, we claim
that for any x ∈ Δ, if x ≤ v then there is at most one

integer kx ∈ {1, . . . , n − 1} for which condition (7) holds.
This follows from simple calculation, as (7) implies that

x

v
· κ ≤ k <

x

v
· κ + x

v
≤ x

v
· κ + 1.

Thus the only candidate for kx is kx = � x
v

· κ�.
The above argument gives us that the only candidates for

the optimal gap size we need to consider are all values x/kx ,
for x ∈ Δ and x ≤ v, plus the value w

n−1 that we identified
before as another candidate. In Lines 9-10 we let Λ′ be the
set of these candidates and we sort them in non-decreasing
order. Finally, we find the smallest viable value in Λ′. As
|Λ′| = O(n2), this can be done in time O(n2 log n) with
binary search that calls Viable() for each split value.

Note: As pointed out by a reviewer, there is an alterna-
tive O(n2 log n) algorithm for minimizing the maximum gap
in the continuous case, based on selection in sorted matri-
ces (that is, matrices with sorted rows and columns). In our
case, we can think of Λ as a sorted matrix with entries
x/k, where x ∈ Δ and k ∈ {1, 2, . . . , n − 1}. For any
p ∈ {

1, 2, . . . , n3
}
, the algorithms from Frederickson and

Johnson (1984, 1990); Mirzaian and Arjomandi (1985), can
find the pth smallest element in Λ in time O(n2). (These
algorithms work even if the matrix is not precomputed, as
long as its entries can be computedwhen needed in time O(1)
for each entry.) This selection algorithm can then be used to
implement binary search inΛ, usingViable() at each step to
guide the search. We have decided to retain AlgorithmMin-
MaxGap in the paper, as it is more direct and considerably
simpler to implement. We should add that the idea behind
Algorithm MinMaxGap can be naturally adapted to other
applications that involve searching in sets of the form X/q,
where X is a sorted set of numbers and q is an integer with
some pre-specified range.

6.2 The discrete case

We now show that Algorithm MinMaxGap from the previ-
ous section can be adapted to the discrete case, namely to
scheduling unit jobs.

Let J be an instance of unit job scheduling with release
times and deadlines. As explained in Sect. 2, we can now
assume without loss of generality (and in contrast to the con-
tinuous case) that all deadlines are different and sorted in
increasing order, d1 < d2 < · · · < dn .

We treat J as a collection of intervals I j = [r j , d j ],
j = 1, 2, . . . , n, and run Algorithm MinMaxGap. This
will produce a set of (real-valued) representatives H =
{h1, h2, . . . , hn} for the intervals in J . (Recall that h j

denotes the representative of interval I j , so the elements in
H may not be in increasing order.) Let λ be the maximum
gap between these representatives. Since λ is an optimal gap
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for the continuous variant, λ̄ = �λ� − 1 is a lower bound on
the optimal gap length for the discrete variant. (We need to
subtract 1 to account for unit length of jobs.) It is thus enough
to construct a schedule with all gaps of length at most λ̄.

Recall that Algorithm Viable (λ) either assigns jobs to
their deadlines or it spaces consecutive jobs at intervals of λ

between some deadline and some release time. As explained
before, without loss of generality we can assume that job
1 is scheduled at d1, and Algorithm Viable (λ) will in
fact produce h1 = d1. If all other hi ’s are also deadlines,
we are done. Otherwise, the rough idea is to tentatively
assign each job j to h j (which may not be integral), and
then, going from left to right, gradually shift each job to
the first available slot after h j . This does not quite work,
because ifmany representatives aremapped into a short inter-
val then this shifting process may accumulate many pending
jobs whose representatives are not ordered according to their
deadlines. As a result, some of these jobs may be pushed
past their deadlines. Our algorithm avoids this problem by
reordering these jobs at each step according to their dead-
lines.

The following example is quite instructive. Let n be large,
and imagine an instance consisting of tight jobs 1 and 2
with r1 = d1 = 1 and r2 = d2 = 2, and with each other
job j = 3, 4, . . . , n having r j = 0 and d j = j . Then
the optimal solution produced by Algorithm MinMaxGap
will have all hi equally spaced in the time interval [1, 2],
and the optimal gap will be λ = 1/(n − 1). To achieve
λ̄ = 0, the algorithm for the discrete case will need to
schedule all jobs in one block, which indeed is possible
here, and it will be achieved by the above outlined process.
Note that all jobs 3, 4, . . . , n will be scheduled after job 2,
even though their representatives are before the represen-
tative of 2. This example can be refined to produce more
complicated situations that require job reordering, by hav-
ing several tight jobs within a small interval, with other
jobs whose spans cover completely or partially this inter-
val.

Procedure Adjust(λ). We describe how to convert H into
a schedule S of J . Start by initializing S1 = d1 and P = ∅.
(Set P represents pending jobs that are “delayed”, namely
those whose representatives’ values in H are before or at the
current slot.) Then consider slots t = d1 +1, d1 +2, . . ., one
by one. For each such t , first add to P all jobs j with �h j� = t .
If P �= ∅, choose j to be the job in P with minimum d j , let
S j = t , and remove j from P . Then increment t to t + 1 and
continue.

We claim that S = (S1, S2, . . . , Sn) is a feasible schedule.
By the way we add jobs to P , if j ∈ P when we consider
slot t then r j ≤ h j ≤ t . Since also h j ≤ d j , each job will
be added to P not later than when processing slot t = d j .
We claim that when the algorithm is about to consider a slot

t then all jobs in P have deadlines at least t . This follows by
simple induction: Assume the claim holds for time t . At time
t we will add to P all jobs j for which �h j� = t . After this,
if P = ∅, then the inductive claim will hold (trivially) when
step t + 1 starts. If P �= ∅, then we will schedule at time t
the job from P with earliest deadline and remove it from P ,
in which case at the beginning of step t + 1 all jobs in P will
have deadline at least t + 1. (Here we use the assumption
about all deadlines being different.) This claim implies, in
particular, that no job will miss its deadline. In other words,
S j ∈ [r j , d j ] for all j ∈ J .

Next, we show that the maximum gap size in S is equal
to λ̄. Obviously (see above), it cannot be smaller. To show
that it is not larger, consider a tentative assignment Q =
{Q1, Q2, . . . , Qn} of jobs to slots defined by Q j = �h j�,
for all j ∈ J . (This is not a feasible schedule because it
may assign different jobs to the same slot.) We first show
that the maximum gap in this assignment is at most λ̄. Con-
sider two jobs j and j ′ that are consecutive in Q; that is,
Q j < Q j ′ and there is no job i with Q j < Qi < Q j ′ .
We can assume that h j = max

{
h� : Q� = Q j

}
and h j ′ =

min
{
h� : Q� = Q j ′

}
. Then j and j ′ are also consecutive in

H and the length of the gap between them is h j ′ − h j ≤ λ.
We then have

Q j ′ = �h j ′ � ≤ �h j + λ� ≤ �h j� + �λ� = Q j + 1 + λ̄.

Thus all gaps in Q are at most λ̄. But all slots of Q are
also used by S because, in Procedure Adjust (λ), when we
consider slot t ∈ Q set P is not empty. This implies that
the gaps in S are bounded from above by λ̄. We can thus
conclude that S is optimal.

The way we described Procedure Adjust (λ), its running
time would not be bounded by a function of n. This is easy
to fix by skipping all the slots t for which the current set
P is empty. Specifically, we do this: Suppose that when we
process a slot t we have P �= ∅. If |P| ≥ 2 then P remains
non-empty after scheduling a job in slot t , so in this case we
increment t by 1. Otherwise, we increment it to the first value
�h j� after t . This way we will only examine n slots. With
routine data structures, this approach will give us running
time O(n log n).

The discussion above focused only on computing the opti-
mal gap size.Given this value and usingAlgorithmViable(),
one can also compute an actual optimal schedule. Summa-
rizing, we obtain the following theorem.

Theorem 4 For any instance J , Algorithm MinMaxGap
(adapted for the discrete case, as explained above) in time
O(n2 log n) computes a schedule of J whose maximum gap
value is minimized.
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7 Minimizing total flow time with a budget
for gaps

Unlike in earlier sections, we now consider jobs without
deadlines and focus on the tradeoff between the number of
gaps and the delay of jobs. Formally, an instanceJ is givenby
a collection ofn unit length jobs. For each job j = 1, 2, . . . , n
we are given its release time r j . If, in some schedule S, job
j is executed at time S j then Fj = S j − r j is called the flow
time of j in S. We are also given a budget value γ for the
number of gaps. The objective is to compute a schedule S
for J that minimizes the total flow time F�(S) = ∑

j Fj

among all schedules with at most γ gaps. Figure 7 shows an
example of an instance and a schedule with two gaps.

7.1 Continuous case

The continuous variant of this problem is equivalent to
the k-medians problem on a directed line: Given points
r1, r2, . . . , rn , find a set H of k points that minimizes the
sum

n∑

i=1

min
h∈H
h≥ri

(h − ri ),

where the i th term of the sum represents the distance between
ri and the first point in H after ri . (Here, the value of k
corresponds to γ − 1, the number of blocks in the discrete
schedule.) This is a well-studied problem and it can be solved
in time O(kn) if the points are given in a sorted order (Woeg-
inger 2000). Prior to the work in Woeginger (2000), the
undirected case on the linewas addressed inHassin andTamir
(1991); Auletta et al. (1998), and extension to trees have also
been studied – see Chrobak et al. (2001), for example, and
references therein.

7.2 Discrete case

The discrete case differs from its continuous analogue
because the jobs executed in the same block do not occupy
a single point. Nevertheless, we show that the techniques
for computing k-medians can be adapted to minimum-flow
scheduling with gaps, resulting in an algorithm with running
time O(n log n + γ n).

Without loss of generality,we assume that all release times
are different and ordered in increasing order, that is r1 < r2 <

· · · < rn . Any instance can be modified to have this property
in time O(n log n). As explained in Sect. 2, this modification
changes the flow of all schedules uniformly, so the optimality
is not affected. Sorting the release times is the only part of
the algorithm that requires time O(n log n); the remaining
part will run in time O(γ n).

We first give a simple dynamic programming formulation
with running time O(γ n2), and then show how to improve it
to O(γ n). Any schedule with at most γ gaps consists of at
most γ + 1 blocks. To reduce the running time, we need to
show that these blocks can only be located at a small num-
ber of possible places. For this, we will need the following
lemma, that follows directly from Lemma 2 and an exchange
argument.

Lemma 4 There is an optimal schedule with the following
properties: (i) all jobs are scheduled in order of their release
times, and (ii) the last job of each block is scheduled at its
release time.

Based on this lemma, each block consists of consecutive
jobs, say i, i + 1, . . . , j , with the last job j scheduled at
time r j . Each job l ∈ {i, i + 1, . . . , j} is scheduled at time
r j − j + l. So the contribution of this block to the total flow
is

Wi, j =
j∑

l=i

Fl =
j−1∑

l=i

(
r j − j + l − rl

)

= ( j − i)r j −
(
j − i + 1

2

)
− ρ j−1 + ρi−1,

where ρb = ∑b
a=1 ra , for each job b.

A simple O(γ n2)-time algorithm. For each j = 0, 1, . . . , n,
define J j to be the sub-instance of J consisting of jobs
1, 2, . . . , j . Let F j,g denote the minimum total flow of a
schedule for J j with at most g gaps, where g ≤ γ . We
initialize F0,g = 0 for all g = 0, 1, . . . , γ and F j,0 = W1, j

for j = 1, 2, . . . , n. Then, for j = 1, 2, . . . , n and g =
1, 2, . . . , γ , we compute

F j,g = min
1≤i≤ j

{
Fi−1,g−1 + Wi, j

}
.

The algorithm returns Fn,γ as the optimal value for the whole
instance J .

To justify correctness, we need to explain why the above
recurrence holds. Consider a schedule that realizes F j,g .
From Lemma 4, since we are minimizing the total flow, we
can assume that job j is scheduled at r j . Let i be the first job
of the last block. As we calculated earlier, the contribution
of this block to the total flow is Wi, j . The schedule for the
remaining jobs, 1, 2, . . . , i − 1, has at most g − 1 gaps and
must have optimal total flow time, so (inductively) its total
flow time is equal Fi−1,g−1.

We now consider the running time. All values Wi, j can
be precomputed in time O(n2). We have γ + 1 choices for
g and n + 1 choices for j , so there are O(γ n) values F j,g

to compute. Computing each value takes time O(n), for the
total running time O(γ n2).
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1

r1 r2 r3 r4 r5 r6 r7 r8 r9

2 3 654 7 8 9

Fig. 7 An instance and its schedule with two gaps and total flow value F1 + · · · + F9 = 5 + 1 + 0 + 3 + 0 + 3 + 2 + 1 + 0 = 15

An O(γ n) -time algorithm. To improve the running time
to O(γ n), we show that the values Wi, j satisfy the Monge
property2 (see, for example Woeginger 2000; Burkard et al.
1996; Bein et al. 2009).

Lemma 5 For all 1 ≤ i ≤ i ′ ≤ j ≤ j ′ ≤ n, we have

Wi, j + Wi ′, j ′ ≤ Wi, j ′ + Wi ′, j .

Proof It is well known (see Burkard et al. 1996; Bein et al.
2009, for example), and easy to prove, that it is sufficient
to prove the inequality in the lemma for i ′ = i + 1 and
j ′ = j + 1, that is

Wi, j + Wi+1, j+1 ≤ Wi, j+1 + Wi+1, j . (8)

To show (8), we compute Wi, j − Wi+1, j and Wi+1, j+1 −
Wi, j+1 separately:

Wi, j − Wi+1, j =
[
( j − i)r j −

(
j − i + 1

2

)
− ρ j−1 + ρi−1

]

−
[
( j − i − 1)r j −

(
j − i

2

)
− ρ j−1 + ρi

]

= r j − j + i − ri ,

and

Wi+1, j+1 − Wi, j+1

=
[
( j − i)r j+1 −

(
j − i + 1

2

)
− ρ j + ρi

]

−
[
( j + 1 − i)r j+1 −

(
j − i + 2

2

)
− ρ j + ρi−1

]

= −r j+1 + j + 1 − i + ri .

Adding these equations, we get

Wi, j +Wi+1, j+1−Wi, j+1−Wi+1, j = r j −r j+1+1 ≤ 0,

because r j < r j+1, due to our assumption that all release
times are different. This completes the proof of (8) and the
lemma. 	


2 For upper triangular matrices this property is often referred to as the
quadrangle inequality. This distinction is only cosmetic, as we can also
think of [Wi, j ] as a full square matrix by filling the lower triangle of
the matrix with +∞ values.

Algorithm MinTotFlow. With Lemma 5, the improved
algorithm follows the standard method of speeding-up
dynamic programming by leveraging the Monge property,
and is essentially the same as inWoeginger (2000).Webriefly
outline it here for the sake of readers unfamiliar with this
approach. First, we sort the jobs in order of release times.
This will cost time O(n log n). Unlike in the O(γ n2)-time
algorithmabove, nowwewillnot precompute all valuesWi, j ,
as this would cost time O(n2). Instead, in time O(n)we pre-
compute only all values ρb = ∑b

a=1 ra , for b = 1, 2, . . . , n.
With these values precomputed, we can compute each value
Wi, j in time O(1) whenever it’s needed. The algorithm then
loops on g = 1, 2, . . . , γ , and for any given g it computes
all n values F j,g , for j = 1, 2, . . . , n. To this end, consider
iteration g, when the values F j,g−1 are already computed for
all j . Define an auxiliary function Vi, j = Fi−1,g−1 + Wi, j .
We think of [Vi, j ] as an implicit matrix whose values can be
each computed in time O(1), when needed. Further, using
Lemma 5 it is easy to show that this matrix [Vi, j ] also satis-
fies the Monge property. (The extra F-terms in the Monge
property for [Vi, j ] cancel out, reducing the inequality to
Lemma 5.) By exploiting this property, in iteration g all
minima F j,g = min1≤i≤ j Vi, j , for j = 1, 2, . . . , n, can
be computed in time O(n) using the classical algorithm
from Aggarwal et al. (1987). With the whole matrix [F j,g]
computed, the algorithm returns Fn,γ . The overall running
time is O(n log n + γ n).

Theorem 5 For any instance J , Algorithm MinTotFlow
(as outlined above) in time O(n log n + γ n) computes a
schedule of J that has minimum total flow among all sched-
ules with at most γ gaps.

Comment. Algorithm MinTotFlow, as described above,
uses space O(γ n). Using the technique developed in Golin
and Zhang (2010), this space requirement can be reduced to
O(n).

8 Minimizing number of gaps with a bound
on total flow

An alternative way to formulate the tradeoff in the previous
sectionwouldbe tofinda schedule thatminimizes the number
of gaps, given a budget f for the total flow F� . This can be
reduced to the previous problem by finding the smallest g for
which there is a schedule with at most g gaps and total flow at
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most f . Our solution is the same for both the continuous and
discrete versions, so we focus only on the discrete variant.

Using the notation from the previous section, Fn,g repre-
sents the minimum total flow of a schedule with at most
g gaps. Then Fn,0 = W1,n , Fn,n−1 = 0, and Fn,g is
non-increasing as g increases from 0 to n − 1. Algo-
rithm MinTotFlow computes the values of matrix [F j,g]
column by column, that is in order of increasing g. We can
then adapt this algorithm to stop as soon as it finds g forwhich
Fn,g ≤ f . Then theminimumnumber of gaps is g∗ = g. This
gives us the following result.

Theorem 6 For any instance J and a flow budget f , the
above modification of Algorithm MinTotFlow in time
O(n log n + g∗n) computes a schedule of J that minimizes
the number of gaps among all schedules with total flow at
most f . (Here, g∗ ≤ n−1 denotes the number of gaps in the
optimal solution.)

9 Minimizing number of gaps with a bound
onmaximum flow

Now, instead of total flow time, we consider the objective
function equal to themaximumflow time, Fmax = max j (S j−
r j ), that we wish to minimize. At the same time, we would
also like to minimize the number of gaps. This leads to two
optimization problems, by placing a bound on one value and
minimizing the other. In this section we consider the problem
of minimizing the number of gaps when an upper bound on
the flow of each job is given. For this problem, we give an
O(n log n)-time algorithm.

Formally, we are given an instance J consisting of n unit
jobswith release times and a threshold value f . The objective
is to compute a schedule of J that minimizes the number of
gaps among all schedules with maximum flow time bounded
by f . If there is no schedule with maximum flow at most f ,
the algorithm should report failure. As before, without loss of
generality, we can assume that the jobs are sorted according
to their release times, that is r1 ≤ r2 ≤ · · · ≤ rn . (As we
remarked earlier in Sect. 2, we cannot now assume that all
jobs have different release times. In fact, the presence of jobs
with equal release times causes the algorithm for the discrete
case to be more involved than for the continuous case.)

9.1 Continuous case

We start by giving an O(n log n)-time algorithm for the con-
tinuous case. Herewe are given a collection of n real numbers
r1, r2, . . . , rn , and a number f , and we want to compute a set
H of minimum cardinality such that min {h ∈ H : h ≥ ri } ≤
ri + f for all i = 1, 2, . . . , n.

We show that this can be solved in time O(n), assuming
the release times are sorted, r1 ≤ r2 ≤ · · · ≤ rn . Indeed,
this is very simple, using a greedy algorithm that computes
H in a single pass through the input. Specifically, initialize
H = {r1 + f }. Then in each step choose i to be smallest
index for which ri > max(H) and add ri + f to H . A
routine inductive argument shows that the computed set H
has indeedminimum cardinality. The algorithm is essentially
a linear scan through the sorted sequence of release times,
so its running time is O(n). With sorting, the time will be
O(n log n).

9.2 Discrete case

Next, we want to show that we can achieve the same running
time for the discrete variant,wherewe schedule unit jobs. The
greedy single-pass algorithm above does not directly apply
because each point in H corresponds now to a (possibly long)
block of jobs, affecting the maximum flow value.

The basic idea of our approach is to think about the
problem as the gap minimization problem with “virtual”
deadlines, where the virtual deadline of each job j is defined
by r j + f . We now need to solve the gap minimization
problem for jobs with deadlines which, as discussed in the
introduction, can be solved in time O(n4) (Baptiste 2006;
Baptiste et al. 2007, 2012). However, we can do better than
this. The instance with deadlines we created satisfies the
“agreeable deadline” property, whichmeans that the ordering
of the deadlines is the same as the ordering of release times.
For such instances aminimum-gap schedule canbe computed
in time O(n log n) (see Angel et al. 2012, for example). This
will thus give us an O(n log n)-time algorithm for gap mini-
mization with a bound on maximum flow.

In the remainder of this section we present an alternative
O(n log n)-time algorithm for this problem, which has the
advantage that its running time is actually O(n) if the jobs
are already sorted in non-decreasing order of release times.
Besides being of its own interest, such an algorithm will be
useful in the next section.

Let J be the given instance of n unit jobs num-
bered 1, 2, . . . , n, whose release times are ordered in non-
decreasing order: r1 ≤ r2 ≤ · · · ≤ rn . In this ordering the ties
are broken arbitrarily. It is easy to see (by a simple exchange
argument) that there is an optimal schedule in which all jobs
are scheduled in order 1, 2, . . . , n, and we will only consider
such schedules from now on.

Algorithm MinGapMaxflow. The algorithm has two
stages. In the first stage we produce a tentative schedule Q
by greedily scheduling the jobs from left to right: Start with
t = r1. We have n steps, and in each step we schedule one
job. When step j starts, jobs 1, 2, . . . , j − 1 will already be
scheduled before the current slot t . We then schedule j as
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B0 B1 Bl-1

. . .   . . .   

same as final schedule S same as Q

ul-1 vl-1r1

Fig. 8 Illustration of the invariant for Algorithm MinGapMaxflow, showing the structure of schedule Ql when phase l is about to start

follows: If r j ≤ t , schedule j in slot t and let t = t + 1;
otherwise schedule j in slot r j and let t = r j + 1. After we
schedule all jobs, we check their flow values. If there is a job
in Q with flow larger than f , declare failure (meaning that
there is no schedule with maximum flow at most f ) and stop.
Otherwise, continue to the next stage.

We now explain the second stage, in which we convert Q
into the final schedule S. This is accomplished by shifting
some jobs to the right to reduce the number of gaps, without
exceeding the maximum flow restriction. The computation
consists of phases numbered 0, 1, . . . , g, where g is the final
number of gaps. In each phase we construct one block of S.
Let Q0 = Q. In general, let Ql denote the schedule at the
start of phase l. With Ql we associate a time slot vl−1 which
represents the last time slot processed in phases 0, 1, . . . , l−
1. We (artificially) initialize v−1 = r1 − 1. The intuition is
that, in Ql , the jobs from Q in the time segment [r1, vl−1]will
be rearranged into l blocks, while in the time segment [vl−1+
1,+∞] the tentative schedule Q will be still unchanged.
Formally, Ql will satisfy the following invariants (see Fig. 8):

(i) All jobs are scheduled in order of their release times.
(ii) The jobs scheduled in interval [r1, vl−1] are exactly

the jobs in J released in time segment [r1, vl−1] and
scheduled by Q in this time segment.

(iii) The jobs in [r1, vl−1] are scheduled in l blocks B0, B1,

. . . , Bl−1, listed from left to right, where Bh = [uh, vh]
for h = 0, 1, . . . , l − 1. In each block Bh , at least one
job has flow time equal f and all other jobs have flow
time at most f .

(iv) In interval [vl−1 + 1,+∞] schedule Ql is identical to
Q.

(v) Slot vl−1 + 1 is idle in Ql and is not a release time of
any job.

Let i be the first job in Ql after vl−1, scheduled at slot Ql
i .

From properties (iv) and (v), and from the way the first stage
works, we have Ql

i = ri ≥ vl−1 + 2. We start with block
Bl initialized as Bl = [ul , vl ] = [Ql

i , Q
l
i ]; that is, it consists

only of job i . With Bl we associate its maximum flow time
value F(Bl) that is initialized to Ql

i − ri = 0. Then, in
each step of this phase we will either shift Bl to the right
or add another job to it. Specifically, we do this. If there is

a job j scheduled by Ql in time slot vl + 1, we add this
job to Bl without changing its schedule, which means that
we increment vl , and we update the maximum flow value,
F(Bl)← max {F(Bl), Ql

j − r j }. Suppose now that there is
no job scheduled in slot vl +1. If F(Bl) < f then we shift Bl
by 1 to the right, that is we increment each ul , vl , and F(Bl)
by 1. Otherwise (that is, if F(Bl) = f ), we end the phase. If
the last job in Bl is not n, we go to phase l + 1. If this job is
n, we are done, and we return S = Ql . The number of gaps
is g = l − 1.

We now argue that Algorithm MinGapMaxflow is cor-
rect. To this end, we start with the observation that the
tentative schedule Q dominates each other schedule S′, in
the sense that Q j ≤ S′

j for all jobs j inJ . (As explained ear-
lier, we consider only schedules, including S′, where jobs are
scheduled in order 1, 2, . . . , n.) This follows directly from
how Q is constructed in the first stage, namely that in Q each
job j is scheduled at the first idle slot which is not before r j
and is after the slots of jobs 1, 2, . . . , j − 1. This observa-
tion implies that schedule Q minimizes the maximum flow.
Therefore if Algorithm MinGapMaxflow proceeds to the
second stage,we know that there is a schedulewithmaximum
flow at most f . Further, any such schedule can be obtained
from Q by shifting some jobs to the right, preserving the
order of jobs.

Consider now S. That the flow of all jobs in S is at most
f should also be clear, as when shifting jobs in the sec-
ond phase of Algorithm MinGapMaxflow we explicitly
ensure that this condition is preserved. Finally, we argue that
S minimizes the number of gaps among all schedules with
maximum flow at most f . To show this, it is enough to prove
that for any two consecutive blocks Bl and Bl+1 there are two
jobs, one in each block, that must be separated by a gap in any
schedule with maximum flow at most f . To this end, let p be
a job in Bl whose flow in S is exactly f , that is Sp = rp + f .
(Such p exists, by property (iii).) Let i be the first job in Bl+1.
Thus job i − 1 is the last job in Bl and it is scheduled at slot
Si−1 = vl = Sp + i − 1 − p = rp + f + i − 1 − p. By
property (v), we have ri ≥ vl + 2. Thus

ri − (
rp + f

) ≥ vl + 2 − rp − f = i − p + 1.

The latest slot when we can schedule job p is rp + f and
the earliest slot when we can schedule job i is ri . The time
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segment [rp + f , ri ] has ri − (rp + f ) + 1 slots, which is
strictly greater (by the above inequality) than the number of
jobs i−p+1between p and i (inclusive) thatwe can schedule
in this segment, so there has to be an idle slot between the
slots of jobs p and i , as claimed.

We now claim that Algorithm MinGapMaxflow can be
implemented in time O(n), provided that the release times
are sorted. The first stage clearly runs in time O(n), so we
focus on the second stage. In our implementation, for each
block Bl wemaintain a dynamic list of jobs that are currently
scheduled in this block, in order of release times. (However,
for the jobs in Bl we do not keep track of which slot they are
scheduled in during the second stage. Updating these values
after each shift would be too time consuming.) This list is
initialized when Bl is created, at which point it only contains
one job. Instead of repeatedly shifting Bl , we compute the
smallest shift value δ such that, after shifting Bl by δ, either
F(Bl) will become equal f or there will be a job scheduled
by Ql right after Bl . Specifically, if i is the first job scheduled
after Bl , at time Ql

i , then the shift value is δ = min(Ql
i −

vl − 1, f − F(Bl)). The shift is achieved by increasing all
three values ul , vl and F(Bl) by δ. Then, if vl +1 = Ql

i (here
vl represents the already updated value), job i is appended to
the list representing Bl . After this computation is complete,
the slot S j of each job j can be computed by adding its index
within its block Bl to this block’s start time ul . With these
modifications, the running time of the second stage will be
O(n).

Summarizing this section, we obtain the following theo-
rem:

Theorem 7 For any instance J and a flow bound f , Algo-
rithm MinGapMaxflow in time O(n log n) computes a
schedule of J that minimizes the number of gaps among all
schedules with maximum flow at most f . If the release times
are already sorted, the running time of AlgorithmMinGap-
Maxflow is O(n).

10 Minimizingmaximum flowwith a budget
for gaps

We now consider an alternative variant of the tradeoff
between minimizing the maximum flow and the number of
gaps. This time, for a given collection of n unit jobs with
release times r1, r2, . . . , rn and a budget γ , we want to com-
pute a schedule that minimizes themaximumflow time value
Fmax and has at most γ gaps. (Recall that Fmax = max j Fj ,
where Fj is the flow time of job j , that is Fj = S j − r j .)
We can again assume that r1 ≤ r2 ≤ · · · ≤ rn and restrict
our attention to schedules where jobs are scheduled in order
1, 2, . . . , n. We also assume that n ≥ 2 and 0 ≤ γ ≤ n − 2,
as for γ ≥ n − 1 we have Fmax = 0.

10.1 Continuous case

In the continuous case, r1, r2, . . . , rn are points on the real
line, and we want to compute a set H of at most k points
that minimizes Fmax(H) = maxi minx∈H ,x≥ri (x − ri ). This
is a special case of the k-center problem, when the under-
lying space is the directed line, which can be solved in
time O(n log∗ n) if the points are already sorted (Chrobak
et al. 1991). (The undirected version of this problem has
been extensively studied since early 1980’s, even for the
more general case of trees (Chen et al. 2015; Megiddo and
Tamir 1983; Frederickson 1991a, b; Frederickson and Zhou
2017), culminating in an O(n)-time algorithm (Frederickson
1991b).) As we do not assume the inputs to be sorted, a sim-
pler O(n log n)-time algorithm that we outline below will be
sufficient for our purpose. The ingredients for this algorithm
are present in various forms in the above cited work on the
k-center problem, but we include it here for the sake of com-
pleteness, and as a stepping stone to our algorithm for the
discrete case.

Similar to our algorithm in Sect. 8, the high-level idea
is based on parametric search (see Frederickson 1991a, b;
Frederickson andZhou 2017, for example). It involves binary
search for the optimal value f ∗ of Fmax(H), where at each
step of the binary search we use the algorithm from the pre-
vious section as an oracle.

For binary search, however, we need a small set of candi-
date values for f ∗. If H is an optimal solution, then, without
loss of generality,we can assume that H contains only release
times, since any other point in H can be shifted left until it
reaches a release time. Thus we only need to consider the
multi-set Φ of all values of the form r j − ri . (Some of these
values could be negative, but it does not matter for our algo-
rithm.) Since |Φ| = n2 and we need to sort Φ before doing
binary search, we would obtain an O(n2 log n)-time algo-
rithm.

Fortunately, we do not need to construct Φ explicitly.
Observe that the elements of Φ can be thought of as forming
an implicit X+Y matrixwith sorted rows and columns,where
X is the vector of release times andY = −X .We can thus use
the O(n)-time selection algorithm for X +Y matrices (Fred-
erickson and Johnson 1982; Mirzaian and Arjomandi 1985)
to speed up computation.

This idea leads to the following algorithm. Denote the
elements of Φ by φ1, φ2, . . . , φn2 , listed in non-decreasing
order. We will maintain two indices p, q, with 1 ≤ p <

q ≤ n2, such that the optimal value of f ∗ is in the set{
φp+1, φp+2, . . . , φq

}
. We initialize p = 1 and q = n2.

These values of p and q satisfy the invariant, because φ1 is
negative and there is a singleton hitting setwithφn2 = rn−r1,
namely H = {rn}. At any given step, if q = p + 1, we
know that f ∗ = φq , so we are done. If q ≥ p + 2, we let
l = �(p + q)/2� and we use the algorithm from Frederick-
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son and Johnson (1982); Mirzaian and Arjomandi (1985) to
find the lth smallest element in Φ, that is φl . We now deter-
mine whether f ∗ ≤ φl by applying the O(n) algorithm from
the previous section to answer the query “is there a set H
with |H | ≤ k and Fmax(H) ≤ φl?”. If the answer is “yes”,
we let q = l, otherwise we let p = l. This will give us an
algorithm with running time O(n log n).

10.2 Discrete case

We now show that we can solve the discrete variant in time
O(n log n) as well. The solution is similar to the one for the
continuous case, with two modifications. The first modifi-
cation concerns the multi-set Φ of candidate values for the
maximum flow. We show that Φ can be still expressed as an
X + Y set, for some sets X and Y of small cardinality. The
second modification involves using Algorithm MinGap-
Maxflow to answer decision queries in the binary search,
instead of the algorithm for the continuous model.

Without loss of generality, we can restrict our attention to
schedules S that have the following structure:

(i) Jobs in S appear in order 1, 2, . . . , n from left to right.
(This assumption was already justified earlier).

(ii) Any block in S contains a job scheduled at its release
time. (Otherwise we can shift this block to the left.)

(iii) If a job i is scheduled by S in some block B, then ri
is either in B or in the gap preceding B. (Otherwise,
by the ordering of release times and (i), we can assume
that i is the first job in B. We could then move i to the
end of the previous block, and repeat this process.)

(iv) Any two jobs released at the same time are scheduled
in the same block. (This follows from (iii).)

To apply search in X + Y matrices, we would like to restrict
X and Y to have size O(n). Assumption (ii) gives us imme-
diately that there is an optimal schedule where each job
is scheduled in a slot in R + [−n + 1, n − 1], where
R = {r1, r2, . . . , rn} (see Sect. 3), but this set has quadratic
size, so it’s too large for our purpose.

To construct smaller sets X , Y , we reason as follows. Con-
sider some optimal schedule S. Choose i to be a job with
maximum flow time in S, and suppose that i is scheduled by
S in some block B. By (ii), B has a job j scheduled at time
r j . Then the flow time of i can be written as

Fi = Si − ri = (
r j + i − j

) − ri

= (
r j − j

) − (ri − i) . (9)

This equation holds no matter whether j ≤ i or j > i . Now,
take X to be the set of all values r j − j for j = 1, 2, . . . , n
and let Y = −X . We can sort X and Y in time O(n log n).

By (9), we only need to search for the optimal flow value
in Φ = X + Y . Analogously to the continuous case, we
perform binary search in Φ, using the O(n)-time algo-
rithm from Frederickson and Johnson (1982); Mirzaian and
Arjomandi (1985) for selection in X +Y matrices and Algo-
rithmMinGapMaxflow as the decision oracle at each step,
and since the release times can be pre-sorted, each invocation
of this oracle will take time O(n). Thus the running time will
be O(n log n).

The complete algorithm in pseudo-code is given below.As
mentioned earlier, we assume that n ≥ 2 and 0 ≤ γ ≤ n−2.
In this pseudo-code, MatrixSelect(X ,Y , l) is a call to an
O(n)-time algorithm in Frederickson and Johnson (1982);
Mirzaian and Arjomandi (1985) that finds the lth smallest
value in the (implicit) matrix X + Y . We assume that Min-
GapMaxflow(f) returns +∞ if f < 0. The correctness
follows from the same invariant as in the continuous case,
namely that at each step the optimal flow value f ∗ is between
the (p + 1)th and qth smallest values in Φ (inclusive).

Summarizing this section, we obtain the following theo-
rem:

Theorem 8 For any instance J and a gap budget γ , Algo-
rithm MinMaxflowGap in time O(n log n) computes a
schedule ofJ that minimizes themaximum flow value among
all schedules with at most γ gaps.

11 Final comments

We studied several scheduling problems for unit-length jobs
where the gap structure of the computed schedule is taken into
consideration. For all problems we considered, we provided
polynomial-time algorithms, with running times ranging
from O(n log n) to O(n7).

Many open problems remain. The most intriguing ques-
tion is whether the running time for minimizing the number
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of gaps for unit jobs can be improved to below O(n4). As
discussed in Sect. 1, this problem is closely related to energy
minimization in the power-down model, and faster algo-
rithms for this problemwould likely also apply to computing
minimum-energy schedules. Speeding up the algorithms in
Sects. 3, 4, 5, and 6 would also be of considerable interest.

There is a number of other variants of gap scheduling,
even for unit jobs, that we have not addressed in our paper.
Here are some examples:

– The problem of maximizing the minimum gap. This is
somewhat similar to the problem we studied in Sect. 6,
but we are not sure whether our method can be extended
to this model. (We remark here that, according to our
definition, the minimum gap size cannot be 0. For the
purpose of maximizing the minimum gap, one can also
consider an alternative model where “gaps” of size 0 are
taken into account.)

– The tradeoff between throughput and gap size. Here, one
can consider either the lower or upper bound on the gap
size.

– The tradeoff between flow time (total or maximum) and
gap size. The problems in this category are relatively easy
and are left as an exercise. For example, the problem of
minimizing the total flow timewith all gaps not exceeding
a specified threshold can be solved in time O(n log n)

with a greedy algorithm that schedules the jobs in reverse
order of release times. This can be combined with our
technique from Sect. 6 to design an efficient algorithm
for minimizing the maximum gap with a threshold on
total flow time.

– The problems ofmaximizing the number of gaps ormini-
mizing the maximum gap, studied in Sects. 5 and 6, were
motivated by applications where the schedule for high-
priority jobs needs to contain gaps where low-priority
jobs can be inserted. A more accurate model for such
applications would be to require that each block is of
length at most b, for some given parameter b. Test-
ing feasibility, with this requirement, can be achieved
in high-degree polynomial time by extending the tech-
niques from Baptiste (2006); Baptiste et al. (2007, 2012)
and Sects. 3 and 6, but it would be interesting to see
whether more efficient solutions exist.

– Extensions to multi-processor scheduling. All unit-jobs
scheduling problems we consider in this paper can be
naturally extended to the case of p identical proces-
sors. Here, gaps in execution for individual processors
are taken into account. It is known that, for p proces-
sors, minimizing the number of gaps can be achieved in
time that is polynomial in both n and p (Demaine et al.
2007). We conjecture that this result can be leveraged
to achieve a polynomial algorithm for throughput maxi-
mizationwith a budget for gaps, extendingour result from

Sect. 3. At this time we don’t have sufficient insight into
multi-processor variants of the problems in Sects. 4-10
to make any conjectures about their time complexity. We
add that for multi-processor scheduling, instead of gaps
for individual processors, one can also consider global
gaps, namely maximal time intervals when all proces-
sors are idle. To our knowledge, this variant has not been
yet studied.

A natural extension of our workwould be to study variants
of gap scheduling for jobs of arbitrary length, for models
with preemptive or non-preemptive jobs. The algorithm for
minimizing the number of gaps, for example, can be extended
to jobs of arbitrary length (Baptiste et al. 2007, 2012) if
preemptions are allowed, although its running time increases
from O(n4) to O(n5).

Another related direction of research would be to focus
on the sizes of blocks in the schedule, or even consider them
together with gap sizes. For example, schedules with low
density (maximum ratio of the number of jobs in an interval
to its length) would be helpful in controlling the processor’s
temperature during the execution (Chrobak et al. 2011), as
they include idle time slots that allow the processor to cool
down between executing consecutive blocks.
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