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Abstract Researchers have studied the nurse roster-
ing problem (NRP) for multiple decades. Initially, the
formulations were rather primitive including only a few
necessary restrictions, but down the road, the formula-
tions have become more complex. Nonetheless, a frac-
tion of the research reaches implementation in prac-
tice, and many wards still schedule nurses manually. In
this article, we introduce a flexible nurse rostering sys-
tem that employs mathematical optimization to auto-
matically schedule nurses to shifts. We have developed
this system in collaboration with practitioners to fully
match their needs. The system consists of a compre-
hensive mixed integer programming (MIP) model along
with a flexible framework. In addition to common con-
straints from the literature, the mathematical formula-
tion includes three new constraints that further encour-
age healthy work schedules for each nurse. Addition-
ally, we have reformulated some common constraints
from the literature and allow for a complex shift struc-
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ture that matches the needs of real hospital wards. This
flexibility results in increased adaptability for different
wards with different needs and is crucial to address
the complex nurse rostering problem that practition-
ers face. We have successfully implemented this sys-
tem in two wards at two Danish hospitals. We present
the MIP model along with computational results for 12
real-world rostering instances. Furthermore, we discuss
the practical impact of this system and provide general
feedback from the practitioners using it. Overall, the
results illustrate the capabilities of the system to tackle
diverse nurse rostering instances and produce outstand-
ing results.

Keywords Nurse rostering · Automatic scheduling ·
Mixed Integer Programming · Preference scheduling ·
OR applications in healthcare

1 Introduction

The nurse rostering problem (NRP) is the problem of
assigning nurses to shifts to create a roster satisfying
some predetermined requirements. In academic research,
the roster often consists of three work shifts a day (i.e.,
early, late and night shifts) and the requirements are
generally divided into two categories, coverage require-
ments, and nurse specific requirements. This problem
has been studied for decades (Burke et al., 2004; Van
Den Bergh et al., 2013), resulting in a wide variety of
formulations and solution algorithms for different in-
stances.

Even though researchers have made many advances
in modeling and solving variants of the NRP, we can
still see a gap from academia to implementation in
practice. An exploratory study by Kellogg and Walczak
(2007) showed that only 30% of nurse rostering systems
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from academic research were used in practice, and most
only by a single ward or a single hospital. Moreover,
Van Den Bergh et al. (2013) reported that out of 64 ar-
ticles considering the NRP, less than 20% were applied
in practice, despite 90% using real-world data. Further-
more, Petrovic (2019) recently concluded that most of
the available software for personnel scheduling had not
benefited from academic advances. She encouraged re-
searches to engage more with practitioners to explore
all the complex problems that arise in the real-world.

In this article, we introduce a flexible nurse roster-
ing system that meets the requirements set by real-
world hospitals. This system was developed in collab-
oration with experienced practitioners and has been
implemented in two wards at two hospitals in Region
Zealand, Denmark. We formulate the problem as a mixed
integer programming (MIP) model and solve it using
an exact solver. As the solver reaches a low optimality
gap within a short time, we see no need to develop any
heuristics for solving it. Furthermore, a MIP model is
easy to maintain and extend to accommodate multiple
wards or general changes in the requirements.

In addition to this model, we also present a flexi-
ble framework. As an example, the framework allows
for a complex shift structure along with handling sev-
eral special cases that are often omitted from academic
research. Having the flexibility to meet the needs of
different wards is crucial in practice, as special-tailored
systems are not only costly but also difficult to main-
tain, thus being unlikely to succeed in the long run.

When solving the NRP we need to consider multiple
stakeholders with different interests, one of the largest
stakeholders being the nurses themselves. Gärtner et al.
(2018) emphasized the importance of producing good
rosters by addressing multiple aspects including health,
safety, social well-being, and work-life balance. As poor
rosters can have a significant impact on the personnel’s
quality of life, working with human resources becomes
much more complex than scheduling other types of re-
sources.

While cyclical scheduling (i.e., where the same ros-
ter is repeated over multiple rostering horizons) was
common in early NRP studies (Baker, 1974; Burns and
Koop, 1987), it lacks the flexibility to fully meet the
nurses’ needs. Nowadays the rosters are generally tai-
lored to each rostering horizon, giving the nurses an
opportunity to influence their rosters. Two common
methods are self-scheduling and preference scheduling.
In self-scheduling the nurses cooperate to generate a
roster by signing up to shifts and jointly solving con-
flicts. In preference scheduling the nurses may request
shifts and days-off but the personnel manager is respon-
sible for solving conflicts and building a final schedule

around said requests (Bard and Purnomo, 2005). When
generating unique rosters for each horizon, past assign-
ments need to be considered to ensure feasibility across
the border of adjacent rostering horizons (Glass and
Knight, 2010; Smet et al., 2017).

Although formulations of the NRP may differ, the
constraints that they include are often similar, e.g., en-
suring sufficient rest between shifts, limiting consecu-
tive work days and meeting a pre-defined staffing re-
quirement. Most often, the constraints are categorized
as hard or soft constraints and the objective is to min-
imize the violation of soft constraints. Although far
from ubiquitous, the coverage constraints are often hard
while nurse-specific constraints are soft. De Causmaecker
and Vanden Berghe (2011) introduced an α|β|γ-notation
for classifying nurse rostering problems, providing re-
searchers with a basis to compare and contrast various
NRP studies.

The hardness of the nurse rostering problem can
vary significantly depending on which constraints are
included and Smet et al. (2016) showed that some vari-
ants of personnel rostering problems were polynomi-
ally solvable. Despite that, one of their results was that
adding specific constraints on consecutive days to a
polynomially solvable problem, made the resulting prob-
lem NP-hard. Unfortunately, these types of constraints
frequently occur in practical problems and we can as-
sume that formulations matching the real-world com-
plexity will be NP-hard.

As the problem we address originates in Danish hos-
pitals, we have included some legally binding constraints
that do not appear in previous academic formulations.
Even though the base is the Working Time Directive
of the European Union (EU), some aspects have been
adjusted in the Danish legislation. For example, weekly
rest is subject to tighter constraints, making them more
complex than elsewhere in the EU. We have parameter-
ized these constraints in the MIP formulation, making
them easily adjustable to fit other regulations.

A far majority of hospitals in Denmark still apply
manual rostering based on rules of thumb. Prior to this
project, the only exception was in Sydvestjysk hospi-
tal where they use mathematical optimization to auto-
matically generate rosters for some wards (Christiansen
et al., 2014). Manual roster generation is tremendously
time-consuming and Jensen et al. (2008) presented a
conservative estimate stating that the generation of ros-
ters for nurses in Danish hospitals required 224 full-
time equivalent health care employees annually. Fur-
thermore, the resulting rosters are often of low quality
and the National Audit Office of Denmark has criti-
cized the poor utilization of personnel resources in Dan-
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ish hospitals, for example pointing out a lack of trans-
parency (Rigsrevisionen, 2015).

The major contribution of this paper is a nurse ros-
tering system that is not only comprehensive but also
flexible. The system allows for defining a broad range
of shifts, tailored to the needs of each individual ward.
Moreover, we embrace the uniqueness of different nurses
by adapting different types of constraints to each indi-
vidual. Additionally, we present a compact MIP model
that can be tackled with a commercial solver within
a reasonable running time. The MIP formulation in-
cludes three constraints that have never been addressed
in the literature and we present more flexible alterna-
tives for common constraints, including coverage con-
straints, scheduling days off and ensuring sufficient rest
between work assignments. Finally, we have successfully
implemented this work in practice.

The structure of the paper is as follows: Section 2
reviews the relevant literature, focusing on formula-
tions of the NRP. Section 3 describes the problem and
Section 4 introduces the MIP formulation. Section 5
presents the results, both computational and practical,
and Section 6 concludes the paper.

2 Literature review

Although the NRP has been studied for decades, Burke
et al. (2004) revealed that many of the problem for-
mulations were simplified and insufficient to meet the
requirements of the real world.

In 2010, Haspeslagh et al. (2014) introduced the
First International Nurse Rostering Competition (INRC-
I). The competition stimulated researchers and engaged
them to work with several constraints encountered in
practice. Furthermore, it provided a basis for compar-
ing solution methods. While the problem formulation
was more extensive than many before, Haspeslagh et al.
(2014) acknowledged that it did not capture all aspects
of real-world problems.

Valouxis et al. (2012), the winners of INRC-I, de-
signed a two-phase approach to address the problem.
They partitioned each instance into smaller sub-problems
and solved them sequentially with an open-source inte-
ger programming solver. The first phase assigned nurses
to workdays and the second phase specified the shifts
worked on each day. They supplemented with heuristics
that searched for improving solutions across a combi-
nation of partial schedules.

Burke and Curtois (2014) employed a branch and
price algorithm to the INRC-I instances and a wide
range of other benchmark instances. They presented a
general rostering model where numerous common con-
straints were captured using regular expressions (i.e.,

pattern or string matching). They formulated the mas-
ter problem as a set covering problem and the pricing
problems as resource constrained shortest path prob-
lems. They used dynamic programming along with some
heuristic rules to solve the pricing problems. They com-
pared their results to those found with an ejection chain
based approach.

Curtois and Qu (2014) employed these methods in-
troduced by Burke and Curtois (2014) to a set of new
benchmark instances. While these instances included
some common constraints from the literature, the num-
ber of different types had been reduced to make the
instances easier to use and test. They presented 24 in-
stances that varied in size and complexity. Furthermore,
Curtois and Qu (2014) presented a compact MIP for-
mulation of the problem and solved it using Gurobi.

In 2015, Ceschia et al. (2019) introduced the Sec-
ond International Nurse Rostering Competition (INRC-
II). They proposed a multi-stage formulation, requiring
data to be carried between stages (i.e., weeks) to ensure
an overall feasible roster. In that manner, the competi-
tion addressed a drawback in previous research, which
had often considered the NRP as an isolated rostering
horizon.

Römer and Mellouli (2016), the winners of INRC-
II, employed a network flow-based MIP formulation to
address the problem. For each nurse, they designed a
directed acyclic network layer with arcs for shifts and
days off. They extended the network with states that
captured the information needed to evaluate most of the
soft constraints. This approach resulted in a large but
strong formulation, which they solved with an open-
source solver. To reduce its size, Römer and Mellouli
(2016) heuristically removed certain nodes and arcs that
were unlikely to result in a good solution.

Mischek and Musliu (2017) presented a compact
MIP model for the INRC-II formulation. They also in-
troduced some extensions (i.e., additional constraints)
to reduce the negative impact of incomplete informa-
tion related to multiple stages. They solved their ex-
tended formulation with CPLEX and concluded that it
was competitive to the finalists of the INRC-II.

Several researchers have successfully implemented
nurse rostering solution methods in practice. Many of
those systems are based on meta-heuristics (Bilgin et al.,
2012; Burke et al., 2001) or hybridizing meta-heuristics
with other approaches, such as artificial intelligence (Bed-
doe et al., 2009) or constraint programming (Stølevik
et al., 2011).

Due to the hardness of the problem, exact methods
were not widely used in the early years. Nevertheless,
with improvements in computational and algorithmic
power, such methods have become promisable. In re-
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cent years, several researchers have hybridized integer
programming (IP) with heuristics (Burke et al., 2010;
Rahimian et al., 2017; Turhan and Bilgen, 2020) and
others have presented exact solution approaches based
on decomposing the problem (Maenhout and Vanhoucke,
2010; Dohn and Mason, 2013).

Santos et al. (2016) employed IP techniques to the
INRC-I formulation. They improved the lower bound by
adding strong inequalities based on the problem struc-
ture, namely clique cuts, and odd-hole cuts. Further-
more, they formulated the problem in terms of work-
ing windows and resting windows that should alternate
throughout the rostering horizon. Drawing upon this
alternating structure, they introduced additional cuts
that further strengthen the formulation. They intro-
duced a MIP heuristic to speed up the generation of
near-optimal solutions. With this approach, they proved
optimality for a vast majority of the INRC-I instances
and improved best-known solutions for other instances.

A few researchers have employed compact MIP mod-
els to address the NRP. These models are often quite
simplified, for example, formulated around a pre-defined
shift pattern (e.g., three fixed shifts a day) and even
assuming homogeneous workforce (Agyei et al., 2015;
Azaiez and Al Sharif, 2005; Zanda et al., 2018). Such
models lack the flexibility needed to fully meet the
needs of different wards along with the individual needs
of different nurses.

De Grano et al. (2009) introduced an IP model for
incorporating nurses’ direct requests with the use of
an auction. In this auction, each nurse was allocated
the same number of points to bid for shifts and days
off, providing them with control over the importance of
different requests. They focus on maximizing the score
for the winners subject to a few scheduling rules, such
as sufficient rest.

Lin et al. (2014) presented an IP model that uti-
lized preference ranks when generating nurse rosters. A
nurse could classify each shift as being good, normal, or
bad, and similarly classify possible days-off as good or
bad. The objective was to maximize the weighted pref-
erence satisfaction. A large limitation of this model was
that they assume that nurse is always assigned to the
same shift throughout the rostering horizon, i.e., forbid-
ding rotations, which substantially reduces the number
of variables and constraints. Lin et al. (2015) extended
this work by allowing a nurse to be assigned to differ-
ent shifts. Furthermore, they modified their objective
function to account for fairness when assigning prefer-
ences. They solved the extended model by employing a
meta-heuristic.

Rönnberg and Larsson (2010) introduced a MIP for-
mulation for generating rosters where the nurses should

request full schedules. In addition to scheduling rules
(such as sufficient rest), they also included a few quality
aspects and emphasized that those are just as impor-
tant as the hard rules. Their objective was to satisfy
the staffing requirements with minimal deviations from
the requested schedules. When measuring the fulfill-
ment of requests they used a normalized score allowing
them to objectively compare different nurses. Rönnberg
et al. (2013) generalized this model, allowing other ob-
jectives and removing the requirement to request full
schedules. To solve that formulation, they employed a
meta-heuristic.

While researchers have employed MIP formulations
and exact solvers to address the NRP, those formula-
tions are often limited in scope. When extending these
formulations to further meet the requirements of the
real world, researchers have generally switched to heuris-
tics or hybridized methods.

3 Problem description

In this section, we describe the nurse rostering formu-
lation that we address. We have developed this formu-
lation in dialogue with experienced managers that to-
day use it to automatically generate rosters. The overall
goal with this work has been to develop a rostering sys-
tem that matches the complex needs of practitioners
and to ensure its success, the system has been continu-
ously improved using detailed feedback from the practi-
tioners. The system consists of two components: First,
a mathematical model (see Section 4), which includes
all constraints required by the practitioners, and sec-
ond, a framework around the model, ensuring its flex-
ibility and applicability in practice. This structure is
illustrated with Figure 1. The different terms presented
in the figure will be discussed throughout the article.

The model consists of numerous hard and soft con-
straints. While the hard constraints enforce the most
critical restrictions, the soft constraints further pro-
mote the quality of the roster and the objective func-
tion penalizes their violation. Although the NRP is
multi-objective by nature, we formulate it with a sin-
gle weighted-sum objective function, which is consistent
with the majority of previous NRP formulations (Mi-
haylov et al., 2016). The division of constraints into
hard and soft has been conducted in close collabora-
tion with the practitioners. Furthermore, when tuning
the weights associated with different soft constraint we
focus on producing rosters matching the practitioners’
demands and preferences.

Many of the constraints we include relate to com-
mon constraints from previous nurse rostering research,
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Fig. 1 The structure of the rostering system.

for example regarding backward rotations and consec-
utive work assignments. Nontheless, we formulate some
of these constraints in a more general manner, to en-
sure the overall flexibility of the system. In addition
to common constraints, we introduce some new con-
straints (see Section 3.2.9), which were included based
on feedback from practitioners. Overall, the problem we
address is NP-hard.

This formulation provides several extensions to pre-
vious nurse rostering formulations. These extensions all
aim to increase the flexibility, resulting in a general-
ized formulation that should be applicable to real-world
problems with different characteristics. The most im-
portant extensions are as follows:

– The incorporation of different types of days off and
their definition as shift types.

– The definition of shift sets that group related shifts.
– An alternative formulation of constraints restricting

the work on a single day or the rotation of work on
two adjacent days.

– A flexible formulation of coverage constraints that
allows for matching different shifts that provide par-
tial coverage.

– The possibility of assigning nurses to shifts that do
not correspond to any coverage requirements, with-
out these assignments being pre-defined.

This problem categorizes as ASBCI|RV NO|PLX
according to the α|β|γ-notation introduced by De Caus-
maecker and Vanden Berghe (2011). For the β-category
(i.e., coverage constraints), the formulation does not
fully belong to the T subcategory, which relates to cov-
erage constraints over time intervals as opposed to shifts.
Nonetheless, the flexibility of the formulation allows for
satisfying a single coverage constraint by matching dif-

ferent shifts (see Section 3.2.6), and thus we argue that
this formulation is on the verge of the T -subcategory.

In the following sections, we will present the ros-
tering system in detail, and link it to previous research
as relevant. Section 3.1 describes the framework around
the model, while Section 3.2-3.3 describe the constraints
and objective, respectively. As hospitals in Denmark do
not only employ nurses, but also other caring profes-
sions that contribute towards the staffing requirements,
we will use the general term employees throughout this
paper. Working with different caring professions results
in a broader set of skills, which need to be managed with
the coverage constraints.

3.1 General framework

The framework around the model is flexible, where all
aspects are user-definable and thus applicable to vari-
ous wards with different structures and different needs.
By incorporating data from the previous rostering hori-
zon, we ensure feasibility across rostering horizons with-
out explicitly modeling the border. Furthermore, the
managers can easily modify the input to account for
the needs of each ward, e.g., by lowering the staffing
requirements around holidays or updating individual
skills, even in the midst of a rostering horizon.

The main goal of this framework is to manage the
underlying complexity of the problem. It keeps unnec-
essary details outside the optimization model, without
conducting simplifications that impact the applicabil-
ity of the system. We present a general optimization
model that can be customized to fit the needs of each
ward (or each employee) by modifying parameters in
the framework.
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In the Sections 3.1.1-3.1.2, we will discuss two as-
pects of the framework in more detail, namely the defi-
nition of shifts along with how we promote the individu-
ality of each employee. The flexibility of these aspects is
essential for implementing automatic roster generation
in practice.

3.1.1 Shifts

In previous research, the term shift has generally re-
ferred to work shifts, often fixed as day, evening and
night. INRC-I and INRC-II defined a shift type as "a
time frame for which a nurse with a certain skill is re-
quired" (Ceschia et al., 2019; Haspeslagh et al., 2014),
i.e., defining shifts around the staffing requirements.
While other researchers have included assignments be-
sides pure staffing requirements, they have done so ex-
plicitly (Rönnberg and Larsson, 2010).

In this paper, we extend the definition of shifts, stat-
ing that a shift type is a time frame corresponding to
any event that we can assign to an employee. This ex-
tension implicitly includes work shifts that do not corre-
spond to any coverage constraints (e.g., administrative
or educational shifts). Furthermore, it includes days off
as shift types.

Although the inclusion of all work-shifts comes nat-
ural, the inclusion of days off as shift types can be de-
batable. Nonetheless, we argue that viewing days off as
shift types can be highly beneficial in a practical set-
ting. Even though academic research may view all days
off as the same, in practice, these days can be of differ-
ent types where the circumstances for scheduling them
also differ. Examples include days for annual leave and
parental leave, along with legally binding days off for
resting (which we refer to as a protected days off in this
paper).

Moreover, some types of days off contribute towards
the overall number of hours we should assign to an em-
ployee. As an example, by assigning an employee to two
weeks of annual leave we consequently reduce the num-
ber of working hours we should assign to him or her
during the rostering horizon.

With this extended definition, we introduce a con-
straint stating that we should assign at least one shift
type each day. We acknowledge that this constraint con-
tradicts a common constraint from previous research,
namely allowing at most one shift type a day, and we
will provide a thorough comparison in Section 3.2.1. To
ensure the feasibility of this new constraint, we define
a dummy shift type Free for a day off that does not
match any specific category.

In addition to shift types, we also define shift sets as
follows: A shift set is a set of shift types where each shift

type in the set has an associated parameter denoting
the relationship between the shift type and the shift set.
Figure 2 presents an example with multiple shift types
and how they relate to different shift sets.

In this figure, shift types D1, D2 and D3 all be-
long to the Day shift set, and assigning an employee to
any of these shift types contributes towards a coverage
requirement corresponding to that shift set. The same
holds for shift types E1 and E2 for the Evening shift
set, and shift types N1 and N2 for the Night shift set.

We also include a shift set DayAll, which has Day
as a subset. The reason we include this extension is
that we may assign some employees to work during this
timeframe without them contributing towards any cov-
erage constraints (for example the administrative shift
ADM ). Even though they do not contribute to any cov-
erage we still need to satisfy multiple employee-specific
constraints, e.g. ensuring sufficient rest between shifts.
In theory, we could also have similar extensions for the
Evening and Night shift sets, but in practice we gener-
ally assign this type of work during the day, thus min-
imizing additional salary expenditures.

In addition to work, we also include the shift set
for Off, which includes two shift types: Free and PF
(i.e., the shift type for a protected day off). These shift
types span the entire day, from midnight to midnight,
ensuring that no other shift type can be assigned simul-
taneously. In Section 3.2.2, we discuss the difference be-
tween these shift types and present different constraints
relating to days off.

At last, we include the DE shift type, spanning the
entire Day shift set along with the first half of the
Evening shift set, and the EN shift type, spanning the
entire Night shift set along with the second half of the
Evening shift set. Thus, the parameter linking DE and
EN to the Evening shift set is 0.5, while all other com-
binations of shift types and shift sets presented on the
figure have the parameter as 1. In Section 3.2.6, we will
discuss the increased flexibility brought by allowing this
type of partial coverage.

We acknowledge that the notion of grouping shifts
together is not completely new to the literature, as Bil-
gin et al. (2012) worked with "a set of compatible shift
types". Each set corresponded to a coverage require-
ment (e.g., a set of night shifts) and overlap between
these sets was not allowed. In addition to the coverage
constraints, some nurse-specific constraints were also
expressed in terms of shift sets. The extension we in-
troduce, by allowing a shift type to partly cover a shift
set, has never been presented before.

Despite the number of shift types shown in Fig-
ure 2 being large when compared to most previous re-
search, the number of shift types used in practice is
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Fig. 2 Example of how different shift types are linked to shift sets. The figure presents day, evening and night shifts of different
duration, along with shift types corresponding to days off. Furthermore, shift types DE and EN partly cover the Evening shift
set, providing for increased flexibility in practice.

even greater. When providing examples throughout the
paper, we will refer back to these shift types. In the
rostering system, shift types and shift sets are often in-
terchangeable, and we will generally use the term shift
in those cases.

3.1.2 Individuality

Each employee has an individual contract that con-
strains his or her work. As an example, one employee
might have a constraint allowing at most three night
shifts in a row, while this maximum could be one for
another employee. Furthermore, the corresponding con-
straint may be inactive for some other employees, allow-
ing them to have many night shifts in a row as long as
it is feasible w.r.t. other constraints.

We do not classify employees as full-time or part-
time employees, but instead, consider the contractual
hours of each employee, as part-time employees can
have contracts ranging from 16 to 35 hours a week,
while full-time employees have contracts for 37 hours a
week.

Previous research generally defines some categories
for skills, e.g., regular nurse or head nurse. In addition
to including general categories, the system also permits

individual skill definitions embedded in each shift type.
This flexibility allows for including some specific consid-
erations that managers may take into account to ensure
that the employees can maintain a healthy work-life
balance. As an example, an employee might have diffi-
culties working the earliest day shift (D3 on Figure 2)
due to a long commute from home, while another em-
ployee may need to pick up children after school, thus
not being suited for the long day shift (D2 on Figure 2).

The system includes a request environment where
the employees can make requests specific to each day
of the rostering horizon. The requests can either be to-
wards a shift (including those for days off) or against
a shift (e.g., not working the night shift). Furthermore,
an employee can categorize a request as either a high or
low priority, corresponding to the effort that should be
put into accommodating it. Assigning a requested shift
is associated with a reward, and similarly assigning a
shift that has a request against it is associated with a
penalty.

We have not put any restrictions on how many re-
quests the employees can make, which is common in
previous research. The main reason is that we want to
provide the employees with autonomy while simultane-
ously trusting that they will keep the interests of the
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entire ward in mind. As an example, if some employees
are willing to work unpopular shifts on specific days,
then they can state that as requests without it restrict-
ing their ability to request some other days off. If we
were to restrict the number of requests, we would pun-
ish employees for trying to meet the needs of the ward,
resulting in these type of requests becoming rare.

The main drawback of not restricting the requests,
is that different employees will behave differently. Some
employees may be greedy and put forward an excessive
amount of requests, while other are more modest and
only make a few requests. We take this difference into
account when allocating a reward to each request, re-
sulting in a fair distribution of fulfilled requests.

The manager can also use the request environment
to fix certain assignments beforehand, for example, due
to annual leave or administrative meetings. Entering
fixed assignments ensures that the optimization will
not contradict any prior agreements, but instead work
around them. This flexibility is of the utmost impor-
tance in practice, where employees may have other obli-
gations preventing them from working at certain times.

To ensure that an employee’s individual opinion is
superior to general rules, the specific requests can over-
ride some other constraints. As an example, we gener-
ally penalize isolated work shifts (i.e., work shifts where
both of the adjacent days are days off), but if an em-
ployee has specifically requested such a pattern we dis-
regard the penalty for that specific case. Nonetheless,
some constraints are not affected by the requests, e.g.,
we strive to assign the employees to shifts according to
their contractual hours, even if they have requested an
abundance of days off.

In addition to the specific requests, each employee
may have some general preference for shifts, along with
non-preferences, which are taken into account on days
where the employee has not made a specific request.
As with requests, we reward for meeting a preference
and penalize for going directly against non-preferences.
To promote fairness, we have normalized the reward
for requests and preferences to ensure that the over-
all reward potential is the same across the employees,
independent of the number of requests. This normal-
ization matches the one Rönnberg and Larsson (2010)
presented for requests. These rewards and penalties are
included as objective weights in the formulation.

Due to the request framework, this research can be
categorized as preference scheduling. Nonetheless, we
add a level of complexity by including general prefer-
ences, independent of the day, and this combination is
not present in any previous research.

We divide the employees into two categories: First,
the employees for whom we should create a full roster,

and second, the employees that we should only assign to
shift in some specific cases. A majority of the employ-
ees belong to the former category, whereas the latter
category includes employees that mostly work admin-
istrative shifts or belong to a subset of employees that
use the request environment to fully fix their roster, i.e.,
true self-scheduling.

3.2 Constraints

This section describes all the constraints of the prob-
lem, categorized into nine subsections. Sections 3.2.1-
3.2.5 present constraints for individual employees, while
Sections 3.2.6-3.2.8 present constraints on ward level. In
addition, Section 3.2.9 presents three employee-specific
constraints, that have not been included in any previous
research.

3.2.1 Physically infeasible or illegal combinations

In this section, we discuss pairs of assignments where
scheduling one makes the other either physically infeasi-
ble or illegal. An example of a physically infeasible pair
of assignments would be assigning an employee to both
D1 and PF on the same day, while an illegal pair would
be assigning both D1 and E1 (as it leads to insufficient
rest). We will refer to these types of assignments as con-
flicting pairs. In general, all assignments that overlap in
time are conflicting, except for assigning a night shift
followed by the Free shift type. This exception is neces-
sary to ensure that the constraint requiring a minimum
of one shift type each day is always feasible.

According to the EU’s Working Time Directive, all
employees should get a minimum of 11 consecutive hours
off within every 24 hours. When working with three 8-
hour shifts, as common in previous research, this re-
quirement translates into a constraint allowing at most
one shift a day along with a constraint forbidding back-
ward rotations. However, according to the Danish leg-
islation, the minimum rest of 11 hours may be reduced
down to 8 hours. In general, this reduction is only al-
lowed if the employees request it, and the frequency is
substantially restricted to avoid misuse.

Therefore, a global hard constraint allowing at most
one shift a day is too strict, as scheduling D1 and N1
on the same day may be feasible. The same holds for
forbidding backward rotations, as scheduling E1 on one
day and D1 on the next may also be feasible. Nonethe-
less, the feasibility of these pairs depends on both the
employee and the day. For example, employee e1 may
request D1 and N1 on day d1. Then the pair is feasible
for that specific employee and day, but not for other em-
ployees on day d1, nor on other days for employee e1.
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Additionally, the manager might prefer to assign the
longer day shift D2 and only reserve D1 for reduced
rest. Thus, constraints forbidding conflicting pairs need
to be supremely flexible.

To reduce the size of the model by avoiding the enu-
meration of all conflicting pairs, we generate a set of
conflict cliques, where each clique is a set of assignments
such that all pairs in the set are conflicting. Section 4.1
further describes the generation of these cliques.

We note that a given clique may allow at most one
shift on a given day, corresponding to the general con-
straint from the literature. Similarly, a given clique may
forbid backward rotations. Nevertheless, the automatic
generation of conflict cliques ensures that these con-
straints are only enforced when applicable.

3.2.2 Ensuring days off

The formulation includes some legally binding constraints
from Denmark. Nonetheless, we emphasize that the for-
mulation of these constraints is flexible, ensuring that
they can be adjusted to legislation in different countries.

According to the EU’s Working Time Directive, em-
ployees in EU countries are entitled to a minimum rest
of 24 uninterrupted hours within every seven days. In
Denmark, the rules are more favorable to the employ-
ees, stating that they should get a certain number of
protected days off (i.e., the PF shift type) during a
rostering horizon.

Not all days off can be considered as a protected
day off, as the legislation requires a minimum num-
ber of uninterrupted hours off. For a single protected
day off, the law generally requires a minimum of 35
hours. Nonetheless, the law includes the flexibility to
reduce this to 32 hours, if specifically agreed with the
employee. For k consecutive protected days off, where
k > 1, the minimum number of hours is 24 ·k+7 ·bk/2c.
Table 1 presents some examples of the minimum hours
required for a different number of protected days off.

Table 1 Minimum number of uninterrupted hours required
for i consecutive protected days off. As consecutive protected
days off require less hours compared to multiple isolated days,
we are inclined to assign consecutive days.

i hours

1 35 or 32
2 55
3 79
4 110

For increased apprehension of protected days off,
Table 2 displays some examples where we assign either

PF or Free, depending on the shifts assigned on adja-
cent days. The first row represents an assignment where
a protected day off is infeasible, as the number of hours
off is too low. The next two rows show examples of
assigning protected days off between shifts, both a sin-
gle day and two consecutive days. Finally, the last row
shows an example where we do satisfy the minimum
number of uninterrupted hours for two protected days
off. However, as a night shift assigned on day d overlaps
with day d+ 1, we cannot assign the PF shift type on
d+1, and thus we only assign a single protected day off.
The last type of constraints are enforced using general
patterns (presented in Section 3.2.5).

Table 2 Examples of assigning days off, using the shift types
defined in Figure 2.

d d+ 1 d+ 2 d+ 3

A2 Free D1
A2 PF A2
A2 PF PF D1
N2 Free PF A2

On average, employees should get two protected days
off per week for the entire rostering horizon. We strive
to distribute these days evenly, such that we have at
most six consecutive days without assigning the PF
shift type. Nonetheless, this distribution is a soft con-
straint, because the legislation allows for exceptions.

We acknowledge that the formulation does not in-
clude constraints for the number of consecutive days off,
as common in previous research (Ceschia et al., 2019;
Haspeslagh et al., 2014). Nonetheless, we require a total
number of protected days off. Due to the number of un-
interrupted hours being relatively lower for consecutive
protected days off compared to a single one, we often
assign them on consecutively. Thus, a constraint for a
minimum number of consecutive protected days off is
implicitly supported by the legally binding minimum
for uninterrupted hours. A constraint for a maximum
number of consecutive protected days off is supported
by the requirements for even distribution along with
a fixed number of protected days off for the rostering
horizon. Furthermore, due to days off being categorized
as shift types, we may also use general constraints for
restricting consecutive assignments (presented in Sec-
tion 3.2.4) to ensure a maximum on the consecutive
days off.

In addition to protected days off, we must consider
several other types of days off, such as annual leave and
parental leave. In Denmark, the employees can generally
negotiate their annual leave beforehand, and often it
is fixed several months in advance. Thus, the model
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should not assign the annual leave, but still take it into
account when assigning other employees to shifts, e.g.,
ensuring that the overall staffing requirements are met.

As the legislation regarding parental leave in Den-
mark is both extensive and flexible, the employees’ rights
for parental leave can impact the roster. Employees can
distribute their parental leave over a long time and may
return to work while still taking partial parental leave.
As an example, an employee might be entitled to one
day of parental leave every week, and this day should
be assigned with the overall staffing requirements of the
ward in mind. Finally, it goes without saying, that the
employees’ rights for both annual leave and parental
leave differ, not only between employees but also be-
tween rostering horizons.

The complexity of the legislation clearly displays
how important it is to develop flexible systems for nurse
rostering in practice. The intricacy of the different types
of days off that we can encounter in practice is much
greater than most academic research has acknowledged.
The MIP model (see electronic appendix) embraces the
inclusion of days off as shift types, as it can enforce
various restrictions for days off by employing general
constraints for shifts. Furthermore, the formulation for
protected days off can be parameterized (i.e., modifying
the values in Table 1) to suit legislation in other coun-
tries, and thus, has advantages in a global context.

3.2.3 Restricting the overall work

As in all nurse rostering formulations, we include some
constraints to restrict the overall work. INRC-I and
INRC-II included soft constraints stating that the num-
ber of working days for each nurse should be between a
minimum and a maximum (Ceschia et al., 2019; Haspes-
lagh et al., 2014).

In this work, we include a similar soft constraint,
but instead of counting the number of days we mea-
sure the number of hours, as shift types may differ in
length. We note that some days off (e.g., annual leave)
contribute towards the number of hours, along with all
types of work shifts. We rarely assign exactly the num-
ber of hours we should, and use a two-factor penalty
where a deviation within a certain threshold is only pe-
nalized lightly. On the contrary, a deviation beyond the
threshold is penalized heavily.

An employee’s individual contract specifies contrac-
tual hours, i.e., the number of hours that we should
assign to the employee during a reference period. As
the reference period generally spans multiple rostering
horizons, the constraint is a global constraint, and we
adjust the bounds to correct for any surplus or deficit
from previous horizons. We do not account for any pos-

sible abnormalities in the upcoming horizon but assume
that we will assign the employees relative to their con-
tractual hours through the rest of the reference period.

For each employee, we divide their contractual hours
into weekly targets. Although most employees would
like to have the hours balanced evenly throughout the
rostering horizon, we may see some exceptions where
the employees wish to have the workload skewed. A
skewed distribution is common for employees that have
a weekly arrangement with their children, as they can
spend more quality time with their children by working
more in other weeks. We note that the system adjusts
any general weekly targets to ensure that they match
the specifically requested work time.

We include three hard constraints to manage the
assignments to different types of shifts. First, an up-
per bound for assigning specific shifts, which is often
employed to limit evening or night work. Second, a
fixed number of assignments to specific shifts, for ex-
ample, ensuring the correct number of protected days
off. Third, a fixed number of assignments to specific
shifts during a single week of the rostering horizon.

The first two constraints consider the rostering hori-
zon as a whole, while the third is specific to each week.
That constraint is used for assignments that should be
distributed according to a pre-defined schedule, for ex-
ample, administrative shifts or parental leave. The in-
clusion of these constraints, both regarding the specific
shifts and the bounds, depends on the individual em-
ployee.

3.2.4 Consecutive work assignments

In practice, restricting the overall work does not suf-
fice, and we also need to restrict consecutive work. For
the number of consecutive workdays, we include con-
straints for both a minimum and a maximum. Further-
more, we include tighter upper bounds for some shifts.
As an example, even though we may assign work on five
consecutive days, an employee might have a maximum
restriction for three consecutive night shifts.

Besides these constraints, INCR-II also includes a
general constraint for a minimum of consecutive assign-
ments to a given shift (Ceschia et al., 2019). We do not
include that constraint in this work, except in the spe-
cific case of complete work weekends (see Section 3.2.5).

At last, we also include a constraint restricting the
maximum number of hours that we can assign to an
employee on a set of consecutive days, e.g., during one
week. This constraint ensures that we do not solely as-
sign an employee to long stretches of long shifts with
minimal rest (e.g., one protected day off) in between.
The constraint is not common in previous work, but its
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importance is highlighted by Gärtner et al. (2018) in-
cluding it as one of their suggestions for future rostering
competitions.

3.2.5 Patterns

The formulation includes two general types of constraints
for patterns, which can be customized to different wards
as required.

The first type of constraints restricts unwanted se-
ries of assignments from the roster, and Table 3 presents
some examples. This constraint allows for immense flex-
ibility as the unwanted series can be tailored to the
ward’s needs. The constraint can either be active for
the rostering horizon as a whole or only for a subset
of days. Furthermore, the user controls whether each
unwanted series should be strictly forbidden or penal-
ized (along with the value of the penalty), and whether
a specific request for the series should deactivate the
constraint. At last, the framework does not restrict the
length of the series and theoretically, the user could add
a constraint with assignments spanning multiple roster-
ing horizons.

Table 3 Examples of unwanted series. The first two present
isolated work shifts, while the remaining for present unwanted
shift successions (e.g., due to insufficient rest).

d d+ 1 d+ 2

Free Evening Free
Free Night Free
Night Free Day
Night Free Evening
Night Evening
Night PF

The second type of constraints ensures that some
assignments are only scheduled in a combination with
other assignments. These assignments do not have to
be close in time, and theoretically, we could enforce
that an employee working on a Monday night should
also work on Tuesday evening two weeks later. However,
these type of constraints are generally enforced more
locally and are for example used to ensure complete
work weekends. When employing these constraints for
assignments on consecutive days, they are a reverse of
the constraints for unwanted series.

Constraints for complete work weekends are com-
mon in previous research, along with constraints re-
stricting the number of work weekends. We do not in-
clude the latter in this formulation, as off-weekends are
planned a long time in advance in Denmark. In one of
the wards we have worked with, they create a prelim-
inary schedule for off-weekends for an entire calendar

year. Uprooting such traditions by giving a model for
short term planning control over weekend work would
likely lead to severe dissatisfaction from the employees,
which are used to knowing their off-weekends a long
time in advance.

In addition to working both Saturday and Sunday,
the employees should generally work a fixed pattern of
shifts, for example, the same shift on both days. Fur-
thermore, an assignment on Friday may be a part of the
weekend pattern, depending on the specific shift and
Table 4 presents some examples of weekend patterns.

Table 4 Examples of weekend patterns. For day shifts, the
weekend pattern only includes Saturday and Sunday, but for
evening and night shifts we should also consider Friday as
part of the pattern.

Friday Saturday Sunday

Day Day
Evening Evening Evening
Night Night Night

The constraint we use for scheduling combinations
of assignments is extremely flexible. We can either en-
force it with a bi-implication, i.e., scheduling neither
assignment without the other, or with a single impli-
cation, i.e., perhaps scheduling one assignment without
the other but not vice versa. An example of a single
implication is when the coverage requirements differ
between weekdays and weekends. Then we would en-
force a single implication constraint, ensuring that em-
ployees working Saturday evening do also work Friday
evening, while allowing some employees working on Fri-
day evening to get the weekend off. The classic example
for bi-implication would be an employee working the
same shift on both Saturday and Sunday.

This section has described the use of this constraint
for a specific employee. In addition, we also utilize it
to schedule combinations for separate employees when
matching shifts to compose a coverage, as presented in
the next section.

3.2.6 Coverage constraints

The formulation includes several constraints related to
coverage, i.e., assigning employees to shifts to satisfy
predetermined staffing requirements. Each coverage con-
straint corresponds to a day and a shift (either shift
type or shift set). Furthermore, a coverage constraint
may be defined for specific skill categories and often
these constraints are used not only to ensure sufficient
staffing but also to manage the combination of skills
available.
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We enforce hard constraints for both a minimum
and a maximum coverage. To ensure the feasibility of
the minimum coverage, we can assign float nurses sub-
ject to a high penalty). For some shifts, the maximum
coverage may be preferred and we assign a reward for
achieving it. We note that this reward is substantially
lower than the penalty for float nurses, i.e., we will not
achieve the preferred coverage by adding float nurses.

As presented in Section 3.1.1, shifts may partly cor-
respond to the coverage, i.e., as shift types DE and
EN do for an Evening coverage constraint. By match-
ing these shift types we achieve more flexible coverage
constraints, and Figure 3 presents some different assign-
ments that contribute toward an evening coverage. As
employees assigned to either DE or EN only contribute
towards a specific time interval, we include matching
constraints (similar to those for weekend patterns) to
ensure that we assign the same number of employees to
both shift types.

In their categorization, De Causmaecker and Van-
den Berghe (2011) included a category for coverage con-
straints defined over time intervals (e.g., a given hour
of the day). Only a few researchers have defined cov-
erage constraints in this manner (Burke et al., 2006).
The increased flexibility from allowing to match shifts
when composing the coverage is closely related to this
category. Nonetheless, the time intervals in this case
generally correspond to a shift set, and thus we do not
claim that the formulation matches this category.

3.2.7 Balancing the work

We include two balancing constraints in the formula-
tion, that contribute towards distributing the workload
evenly between the employees and promote a feeling of
fairness.

The first balancing constraint is related to the cov-
erage constraints, as it aims at balancing any staffing
beyond the minimum required evenly over the horizon.
For example, we can generally exceed the minimum
number for the Day shift set so instead of having ten
excess employees working one day and zero the next,
we balance this excess over the horizon.

The second balancing constraint relates to a fair dis-
tribution of unpopular shifts between the employees.
For example, night work is not popular and many em-
ployees have agreements stating an absolute maximum
of night shifts that they should work. Even though a
roster would respect the maximum, it would not be per-
ceived as fair if one employee works exactly the max-
imum number of night shifts while another works no
night shifts, especially if these employees have a similar
bound. Thus, we should spread these shifts evenly be-

tween the employees, but at the same time relative to
their maximum.

3.2.8 Chaperoning

Chaperoning constraints connect the rosters of two or
more employees. Although these constraints are com-
mon in practice, De Causmaecker and Vanden Berghe
(2011)’s notation revealed that most previous research
excludes them.

In this formulation, we include two types of chaper-
oning constraints, which are highly valuable in educa-
tional wards. We assume that a subset of the employees,
referred to as trainees, are partaking in an educational
program. Each trainee has a corresponding chaperone
and we should regularly schedule a chaperoning shift for
the two. During this shift, neither the trainee nor the
chaperone are caring for patients, but instead, they are
assessing the progress of the education along with plan-
ning the next steps. Additionally, we have constraints
that promote that the trainees are assigned to patient
care during the same time as their chaperones or other
senior nurses, to further strengthen their education.

3.2.9 New constraints

The formulation includes three types of constraints that
have never been included in previous research, clearly
exhibiting the importance of collaborating closely with
practitioners to match their needs. Two of these con-
straints promote healthy work schedules by allowing
less frequent changes in sleeping patterns, while the
third promotes days off around weekend work.

The first constraint restricts the number of different
types of shifts we assign to an employee on consecu-
tive days. For example, assigning an employee to day,
evening and night shifts in the same week requires rapid
changes in sleeping patterns. These types of irregulari-
ties have been reported to have a substantial impact on
employees’ health, not only short-term but also long-
term. Thus, we penalize when assigning shifts from all
these three shift sets too close together.

Table 5 presents an example where two employees
are assigned to shifts from all three shift sets during one
week. By employing simple swaps, we provide two alter-
native rosters that cover the same shifts. These alter-
natives assign at most two of the aforementioned shift
sets to each employee.

The second constraint restricts the number of work
sequences on consecutive days that include a given shift,
where a work sequence refers to a series of consecutive
workdays for an employee. These constraints are used
to ensure that the employees work a compact series of
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Fig. 3 Different combination of shift types corresponding to Evening coverage. By allowing for partial coverage, we obtain
increased flexibility to satisfy the staffing requirements.

Table 5 Examples of distributing different shifts between employees.

Description Employee Monday Tuesday Wednesday Thursday Friday Saturday Sunday

3 different shifts e1 Evening Off Off Day Night Night Night
e2 Day Night Off Off Evening Evening Evening

2 different shifts e1 Day Off Off Day Night Night Night
e2 Evening Night Off Off Evening Evening Evening

2 different shifts e1 Evening Night Off Off Night Night Night
e2 Day Off Off Day Evening Evening Evening

night shifts followed by a longer break from such shifts,
rather than having isolated night shifts scattered.

Table 6 presents two examples of different distribu-
tions of night shifts on a weekly roster. The first exam-
ple includes only two night shifts, which are either iso-
lated on Monday and Thursday or placed consecutively
on Wednesday and Thursday. The second example in-
cludes four night shifts and a single day shift, where
the night shifts are either split into two sequences or
performed consecutively.

When the night shifts are split into two sequences,
the employees lack the opportunity to regulate their
sleep in between their night shifts. Therefore, combin-
ing the night shifts into a single sequence contributes to-
wards the health of the employees, which positively af-
fects both short-term performance and long-term well-
being.

The last constraint states that employees working
some periods of the rostering horizon should get the
surrounding days off, which is used to grant employ-
ees days off before and after weekend work. To clarify
these constraints using an example, we assume that the
employees should get a single day off both before and
after the weekend. If we analyze the weekend patterns
presented in Table 4 (Section 3.2.5) we see that the
day off after the weekend is Monday, independent of
the pattern. However, the day off before the weekend
is either Thursday (for evening and night patterns) or
Friday (for day patterns).

3.3 Objective function

The overall objective of the problem is to maximize the
satisfaction with the roster, such that an experienced
manager can look at and be pleased with the outcome.
The objective function is a complex linear combination
of penalties and rewards that minimizes the violation
of soft constraints while maximizing the fulfillment of
requests and preferences.

Each soft constraint has an associated weight, rep-
resenting its relative importance. As an example, the
weight associated with employing float nurses is signif-
icantly higher than the weight for deviating from an
employee’s weekly target. As the rostering data may
differ substantially between horizons (for example due
to specific requests), we do not use static weights. In-
stead, we manually tune them for each instance, to en-
sure that the resulting roster matches the requirements
of the practitioners. These requirements relate to the
combination of overall violations, along with a fair dis-
tribution between the employees.

4 Mathematial model

This section introduces the MIP formulation used to
model the problem described in the previous section.
Table 7 presents the notation used for sets and Table 8
the notation used for parameters.

We introduce the assignment variables xe,d,s ∈ {0, 1},
to denote whether we assign employee e ∈ Eall to shift
type s ∈ Se,d on day d ∈ D. These are the main de-
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Table 6 Examples of distributing night shifts.

Description Monday Tuesday Wednesday Thursday Friday Saturday Sunday

2 night shifts Night Off Off Night Off Off Off
Off Off Night Night Off Off Off

4 night shifts Night Off Off Day Night Night Night
Day Off Off Night Night Night Night

Table 7 Sets used in the MIP model

Set Description

E Employees for whom we should create a full roster.
Eall All employees in the ward, including those that the model generally does not schedule (unless explictly

requested).
D Days of the rostering horizon.
Dpre Days from the previous horizon.
Dall All days Dall = D ∪Dpre that we consider,
W Weeks of the rostering horizon.
Dw Days Dw ⊆ D of week w ∈ W.
S Shift types.
Swork Work shift types Swork ⊂ S.
Se,d Shift types Se,d ⊆ S that are feasible for employee e ∈ Eall on day d ∈ D, or the shift types that were

assigned if d ∈ Dpre.
A Feasible assignments for the rostering horizon A = Eall ×D × Se,d.
Aall Feasible assignments including those that were assigned during previous horizon Aall = Eall ×Dall × Se,d.
Γ Conflict cliques.
Aγ Subset of assignments Aγ ⊂ A belonging to conflict clique γ ∈ Γ .
Γe,d Work conflict cliques for employee e ∈ E on day d ∈ Dall
Γdesce,d A descending ordering of the cliques γ ∈ Γe,d with respect to the number of conflicting assignments |Aγ |.
Z Shift sets.
Y Patterns that we should forbid or penalize. Each pattern y ∈ Y represents a series of shift sets 〈σ1, . . . σly 〉

with σi ∈ Z, ∀i ∈ {1, . . . , ly}.
C Coverage constraints.
Ξj Positions with competences for coverage j ∈ C.
Zspread Subset of shift sets Zspread ⊆ Z, for which we should spread the assignments evenly among the employees.
Echap Chaperones Echap ⊂ Eall.
Etrainc Trainees Etrainc ⊂ Eall with chaperone c ∈ Echap.
EG Pairs of employees EG ⊂ E × Eall that we should assign work together.
Ztogether Subset of shift sets Ztogether ⊆ Z where employees assigned to the same set are considered working together.
Zdiff Subset of shift sets Zdiff ⊆ Z which we consider when restricting the assignments to different shift sets on

consecutive days.
Zseqe Subset of shift sets Zseqe ⊆ Z where we restrict the number of sequences on consecutive days containing

certain shifts.
Qe Periods where we prefer to assign surrounding days off if employee e ∈ E is working in the period.
Oe,q Assignments Oe,q ⊂ Swork ×Dall that overlap with period q ∈ Qe for employee e ∈ E.

cision variables of the problem. Additionally, we define
numerous variables as listed in Table 9. Although many
of these variables represent binary (or integer) occur-
rences, we can relax them to be continuous.

To ensure feasibility in continuation of the previous
roster, we use an extension of the assignment variables
in some constraints. We let xpree,d,s ∈ {0, 1} denote the
(fixed) solution from the previous horizon, i.e., whether
employee e ∈ Eall was assigned to shift type s ∈ S
on day d ∈ Dpre. We let x̃e,d,s be the extension of
xe,d,s to Eall × Dall × Se,d by setting x̃e,d,s = xpree,d,s

for e ∈ Eall, d ∈ Dpre and s ∈ S. We note that this

extension does not increase the number of variables or
the complexity of the problem.

The remainder of this section presents the math-
ematical formulation as follows: Section 4.1 introduce
cliques, which we employ to strengthen the formula-
tion. Section 4.2 presents the constraints (following the
same structure as Section 3.2) and Section 4.3 provides
the objective. At last, Section 4.4 includes a discus-
sion, drawing out specific aspects of this formulation
and comparing them to the literature.
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Table 8 Parameters used in the MIP model

Parameter Description

xpree,d,s A binary parameter denoting whether employee e ∈ Eall had shift type s ∈ S on day d ∈ Dpre in the
previous roster.

ρfull The minimum time for full rest between assignments (required to identify conflicting assignments).
ρred The minimum time for reduced rest between assignments (required to identify conflicting assignments).
T starts,d The starting time of shift type s ∈ S on day d ∈ Dall.
T ends,d The ending time of shift type s ∈ S on day d ∈ Dall.
Tprev A reference point in time from previous rostering horizon.
T fut A reference point in time from upcoming rostering horizon.
ρpfi The minimum number of hours off for i ∈ N consecutive protected days off.
vpref The maximum number of consecutive days without assigning any protected days off.
T targete The number of hours we should assign to employee e ∈ E during the rostering horizon.
Thoure,d,s The number of hours that assigning shift type s ∈ S on day d ∈ D counts towards the target for employee

e ∈ E.
N+ The maximum positive deviation from the target hours before penalizing heavier in two-factor penalty.
N− The maximum negative deviation from the target hours before penalizing heavier in two-factor penalty.
Tweeke,w The number of hours we should assign to employee e ∈ E during week w ∈ W.
αs,σ The relation between shift set σ ∈ Z and shift type s ∈ S ∩ σ.
Mtotal,ub
e,σ The maximum number of assignments employee e ∈ E should get from shift set σ ∈ Z during the rostering

horizon.
Mtotal,fix
e,σ The fixed number of assignments employee e ∈ E should get from shift set σ ∈ Z during the rostering

horizon.
Mweek,fix
e,σ,w The fixed number of assignments to shift set σ ∈ Z employee e ∈ E should get in week w ∈ W.

mseq The minimum length of a work sequence in days.
Mrow
e,d,σ The maximum number of days in a row from day d ∈ Dall we should assign employee e ∈ E to shift set

σ ∈ Z.
βrowe,d,σ A binary parameter denoting whether the maximum assignments in a row from day d ∈ D for employee

e ∈ E to shift set σ ∈ Z should be a hard (βrowe,d,σ = 1) or a soft (βrowe,d,σ = 0) constraint.
Hconsece,d,σ The maximum number of hours we can assign employee e ∈ E to shift set σ ∈ Z on Dconsece,d,σ consecutive

days from day d ∈ D.
Dconsece,d,σ The number of consecutive days when restricting the number of hours assigned to employee e ∈ E from

shift set σ ∈ Z from day d ∈ D.
ly The length of pattern y ∈ Y in days.
βpaty A binary parameter denoting whether pattern y ∈ Y should be a hard (βpaty = 1) or a soft (βpaty = 0)

constraint.
Πe,d,y A binary parameter denoting whether pattern y ∈ Y should be active for employee e ∈ E from day d ∈ D.
Lemp,bothe,d1,d2,σ1,σ2

A binary parameter denoting whether we can only assign employee e ∈ E to shift set σ1 ∈ Z on day
d1 ∈ D in combination with assigning him to σ2 ∈ Z on day d2 ∈ D, and vice versa.

Lemp,onee,d1,d2,σ1,σ2
A binary parameter denoting whether we can only assign employee e ∈ E to shift set σ1 ∈ Z on day
d1 ∈ D in combination with assigning him to σ2 ∈ Z on day d2 ∈ D, but not necessarily the other way
around.

cminj,d The minimum number of employees required for coverage j ∈ C on day d ∈ D.
cmaxj,d The maximum number of employees allowed for coverage j ∈ C on day d ∈ D.
βfloatj A binary parameter denoting whether a float nurse is allowed for coverage j ∈ C.
ξe The position of employee e ∈ Eall.
Lward,bothd1,d2,σ1,σ2

A binary parameter denoting whether we can only assign any employee to shift set σ1 ∈ Z on day d1 ∈ D
in combination with assigning any employee to σ2 ∈ Z on day d2 ∈ D, and vice versa.

Lward,oned1,d2,σ1,σ2
A binary parameter denoting whether we can only assign any employee to shift set σ1 ∈ Z on day d1 ∈ D
in combination with assigning any employee to σ2 ∈ Z on day d2 ∈ D, but not necessarily the other way
around.

lgen The standard length of a shift type in hours.
M̃total,ub
e,σ An extension of Mtotal,ub

e,σ , defined for all e ∈ E and σ ∈ Z. If Mtotal,ub
e,σ is defined, then M̃total,ub

e,σ =

Mtotal,ub
e,σ . Otherwise M̃total,ub

e,σ =
⌊
T target
e

lgen

⌉
.

ndiff The maximum number of different shift sets from Zdiff we should assign on Ddiff consecutive days.
Ddiff The number of consecutive days when restricting the number of different shift sets.
χe,σ The maximum number of work sequences including shift set σ ∈ Zseqe we should assign to employee e ∈ E

on Dseqe,σ consecutive days.
Dseqe,σ The number of consecutive days when restricting the number sequences including the same shift set.
qs The first day of period q ∈ Qe for employee e ∈ E.
qe The last day of period q ∈ Qe for employee e ∈ E.
qb The number of days employee e ∈ E should have off before working in period q ∈ Qe.
qa The number of days employee e ∈ E should have off after working in period q ∈ Qe.
ψd1,d2,s1,s2 The number of full days between shift type s1 ∈ Swork on day d1 ∈ D and shift type s2 ∈ Swork on day

d2 ∈ D, where d1 ≤ d2.
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Table 9 Variables used in the MIP model

Variable Description

xe,d,s ∈ {0, 1} Denotes whether we assign employee e ∈ Eall to shift type s ∈ Se,d on day d ∈ D, i.e. whether we
schedule assignment (e, d, s) ∈ A.

x̃e,d,s ∈ {0, 1} Extension of xe,d,s that includes the (fixed) assignments xpree,d,s from previous horizon.
pe,d,i ∈ {0, 1} Denotes whether we assign employee e ∈ E to i ∈ N consecutive protected days off starting at day

d ∈ D.
τ laste,d ≥ 0 The number of hours from the reference point Tprev to the end of the last work shift employee e ∈ E

has before day d ∈ D.
τnexte,d ≥ 0 The number of hours from the start of the first work shift employee e ∈ E has after day d ∈ D to the

reference point T fut.
ve,d ∈ [0, 1] Denotes whether employee e ∈ E has no protected day off from day d ∈ Dall to day d + vpref ∈ D,

including both days.
he,w ≥ 0 The number of hours we assign to employee e ∈ E during week w ∈ W.
t+e ∈

[
0, N+

]
The number of hours we assign to employee e ∈ E above the target hours, within a bound N+.

t++
e ≥ 0 The number of hours we assign to employee e ∈ E above the target hours, exceeding N+.
t−e ∈

[
0, N−

]
The number of hours we assign to employee e ∈ E below the target hours, within a bound N−.

t−−e ≥ 0 The number of hours we assign to employee e ∈ E below the target hours, exceeding N−.
λ+
e,w ≥ 0 The number of hours we assign to employee e ∈ E during week w ∈ W above the weekly target.
λ−e,w ≥ 0 The number of hours we assign to employee e ∈ E during week w ∈ W below the weekly target.
θstarte,d ∈ [0, 1] Denotes whether employee e ∈ E has a work sequence starting on day d ∈ Dall.
θende,d ∈ [0, 1] Denotes whether employee e ∈ E has a work sequence ending on day d ∈ Dall.
δe,d ≥ 0 The square of the violation of minimum work sequence when employee e ∈ E has a sequence below

the minimum that ends on day d ∈ D.
µe,d,σ ≥ 0 If βrowe,d,σ = 0, this denotes whether we assign employee e ∈ E to shift set σ ∈ Z on more than Mrow

e,d,σ

days in a row, starting on day d ∈ Dall. If βrowe,d,σ = 1, we fix this variable as zero.
πe,d,y ∈ {0, 1} If βpaty = 0, this denotes whether we violate pattern y ∈ Y starting on day d ∈ Dall for employee

e ∈ E. If βpaty = 1, we fix this variable as zero.
fj,d ∈ N0 If βfloatj = 1, this denotes the number of float nurses assigned to coverage j ∈ C on day d ∈ D. If

βfloatj = 0, we fix this variable as zero.
c+j ≥ 0 The highest number of employees exceeding cminj,d that we assign to coverage j ∈ C on any day d ∈ D. If

j ∈ C either has a maximum number of employees cmaxj,d defined for all days d ∈ D or has a restriction
regarding skills (i.e., Ξj 6=

⋃
e∈Eall ξe), then we fix the variable to be zero.

c−j ≥ 0 The lowest number of employees exceeding cminj,d that we assign to coverage i ∈ C on any day d ∈ D. If
j ∈ C either has a maximum number of employees cmaxj,d defined for all days d ∈ D or has a restriction
regarding skills (i.e., Ξj 6=

⋃
e∈Eall ξe), then we fix the variable to be zero.

ζmaxσ ≥ 0 The maximum assignments to shift set σ ∈ Zspread for any employee, relative to employee specific
restrictions.

ζminσ ≥ 0 The minimum assignments to shift set σ ∈ Zspread for any employee, relative to employee specific
restrictions.

ge1,e2,d,σ ∈ [0, 1] Denotes how much employees (e1, e2) ∈ EG assigned to shift set σ ∈ Ztogether on day d ∈ D are
working together.

κe,d,σ ∈ [0, 1] Denotes whether we assign employee e ∈ E to shift set σ ∈ Zdiff on any day d′ ∈ {d, . . . d+Ddiff−1}
for d ∈ Dall.

κmoree,d ≥ 0 The number of shift sets from Zdiff we assign to employee e ∈ E on any day d′ ∈ {d, . . . d+Ddiff−1}
for d ∈ Dall exceeding the maximum ndiff .

φstarte,d,σ ∈ [0, 1] Denotes whether employee e ∈ E starts a work sequence including shift set σ ∈ Zseqe on day d ∈ Dall.
φende,d,σ ∈ [0, 1] Denotes whether employee e ∈ E ends a work sequence including shift set σ ∈ Zseqe on day d ∈ Dall.
φcounte,d,σ ≥ 0 The number of work sequences exceeding χe,σ that we assign to employee e ∈ E on Dseqe,σ consecutive

days from d ∈ Dall, that include σ ∈ Zseqe .
Be,q ≥ 0 The number of days off we assign to employee e ∈ E before period q ∈ Q if the employee is assigned

work during the period.
Ae,q ≥ 0 The number of days off we assign to employee e ∈ E after period q ∈ Q if the employee is assigned

work during the period.
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4.1 Cliques

When using exact approaches to solve MIP formula-
tions, the size of the model and its tightness may have
a substantial impact on the solution times. Therefore,
we employ cliques to provide a tighter LP relaxation
of some constraints while simultaneously reducing the
number of constraints.

To formulate constraints for physically infeasible or
illegal combinations of assignments, we define a set of
conflict cliques Γ . To generate these cliques we employ
the theory of maximal cliques from graph theory. We
construct a conflict graph where each node corresponds
to an assignment, i.e., a triple (e, d, s) of an employee, a
day and a shift type. We let A denote the set of feasible
assignments for the rostering horizon and letAall be the
natural extension to previous rostering horizon.

We define a pair of conflicting assignments as two
assignments (e1, d1, s1), (e2, d2, s2) ∈ Aall where assign-
ing both of them would lead to an infeasible roster. For
each pair we add an edge to connect the corresponding
nodes. A clique γ ∈ Γ corresponds to a subset of as-
signments Aγ ⊂ Aall, such that every two assignments
in Aγ are conflicting.

We choose Γ to be a clique cover of the graph, mean-
ing that for every conflicting pair of assignments at least
one clique contains both assignments. We automatically
generate these cliques using the heuristic by Kou et al.
(1978), which produces a clique cover while trying to
minimize the number of cliques |Γ |.

In addition to Γ , we also generate sets of work con-
flict cliques Γe,d for each employee e and day d of the
rostering horizon. We employ these cliques in some con-
straints related to consecutive days.

We generate these cliques using Algorithm 1, where
we first iterate over all γ ∈ Γ to create cliques Γe,d with
all work assignments in Aγ that correspond to e ∈ E
and d ∈ D. Afterwards, we try to reduce |Γe,d| by iter-
ating through Γ desce,d , defined as a descending ordering
of the cliques γ ∈ Γe,d w.r.t. the number of conflicting
assignments |Aγ |. For d ∈ Dpre, we define one γ ∈ Γe,d
such that Aγ only includes the assignment that em-
ployee e ∈ E got on day d ∈ Dpre.

To further clarify the generation of work conflict
cliques we provide a simple example in Table 10, where
we generate work conflict cliques for day d ∈ D. We
let sD, sE and sN denote day, evening and night shifts,
respectively. Furthermore, sc (the chaperoning shift) is
categorized as a work shift, while spf and soff are not.
At last, d − 1 indicates that the shift is positioned on
the day before, and d + 1 on the day after, as a clique
γ ∈ Γ does not have to be confined to a single day.

Algorithm 1 Generation of work conflict cliques
1: Γe,d = ∅ ∀e ∈ E, d ∈ D
2: for γ ∈ Γ do
3: for e ∈ E, d ∈ D do
4: Γe,d ← Γe,d

⋃
{(e′, d′, s) ∈ Aγ | e′ = e ∧ d′ = d ∧

s ∈ Swork}
5: end for
6: end for
7: for (e1, d1, s1), (e2, d2, s2) ∈ A do
8: if ∃γ ∈ Γ : {(e1, d1, s1), (e2, d2, s2)} ⊆ Aγ then
9: ((e1, d1, s1), (e2, d2, s2)) marked as uncovered
10: end if
11: end for
12: for e ∈ E, d ∈ D do
13: for γ ∈ Γdesce,d do
14: if ∃(e1, d1, s1), (e2, d2, s2) ∈ Aγ :

((e1, d1, s1), (e2, d2, s2)) marked uncovered then
15: for (e1, d1, s1), (e2, d2, s2) ∈ Aγ do
16: ((e1, d1, s1), (e2, d2, s2)) marked as covered
17: end for
18: else
19: Γe,d ← Γe,d\{γ}
20: end if
21: end for
22: end for

Table 10 presents the first step in generating the
work conflict cliques, namely identifying the relevant
cliques (γ1-γ4) and extracting the work assignments. In
each column, the highlighted shift types make up an
item in Γe,d after line 6 (Algorithm 1).

Table 10 The first step in generating work conflict cliques.

γ1 γ2 γ3 γ4

sE (d− 1) sN (d− 1) soff sN
sD spf spf spf (d+ 1)
sc sD sD

sc sc
sE sE

sN

We sort these cliques in a descending order, namely
γ3, γ2, γ1, γ4. After initially marking all conflicting pairs
of assignments as uncovered (lines 7-11), we go through
the cliques in the descending order. In γ3 we have four
shift types, corresponding to six conflicting pairs that
we mark as covered. When moving through the remain-
ing cliques, all pairs have been marked as covered and
thus we can remove those cliques from the set of cliques.
As a result, only one clique remains in the set of work
conflict cliques, namely Γe,d = {γ3}.
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4.2 Constraints

We now present the constraints of the model. The first
constraint is to assign at least one shift a day, as given
with Equation (1).

∑
s∈Se,d

xe,d,s ≥ 1, ∀e ∈ E , d ∈ D (1)

4.2.1 Physically infeasible or illegal combinations

We prevent conflicting pairs of assignments with Equa-
tion (2), which employs conflict cliques. This constraint,
along with the automatic generation of cliques, provides
a more flexible alternative to common constraints from
previous research.

∑
(e,d,s)∈Aγ

x̃e,d,s ≤ 1, ∀γ ∈ Γ (2)

4.2.2 Ensuring days off

The following constraints ensure that we meet the rules
regarding protected days off. As we have defined days
off as shift types, all other constraints required for days
off are presented in a general matter (for example in
Section 4.2.3).

We let spf ∈ S denote the shift type for a protected
day off and note that Equation (2) ensures that if we
assign spf ∈ S, then it is the only shift assigned to that
employee on that day.

To keep track of the protected days off, we intro-
duce decision variables pe,d,i ∈ {0, 1} denoting whether
employee e ∈ E starts a sequence of i ∈ N protected
days off on day d ∈ Dall. We link these variables to the
assignment variables with Equations (3)-(5).

∑
d′∈Dall,
i∈N:

d−i<d′≤d

pe,d′,i = x̃e,d,spf ,

∀e ∈ E , d ∈ Dall : spf ∈ Se,d (3)∑
d′∈Dall,
i∈N:

d−i<d′≤d

pe,d′,i = 0,

∀e ∈ E , d ∈ Dall : spf /∈ Se,d (4)

∑
j∈N

pe,d,j +
∑

d′∈Dall,
i∈N:

d′+i=d

pe,d′,i ≤ 1, ∀e ∈ E , d ∈ Dall (5)

Equations (3)-(4) ensure that the pe,d,i variable can
only be one if we have assigned employee e ∈ E to
the protected day off shift spf ∈ S on all days from
d ∈ Dall to d+i ∈ D, including both days. Furthermore,
Equations (5) ensure that two sequences of protected
days off are never adjacent, but instead defined as one
longer sequence.

Equations (6)-(10) ensure a sufficient number of un-
interrupted hours off for protected days off by keeping
track of the end time of a previous shift and the starting
time for an upcoming shift. We note that T prev, and
T fut, denote reference points in time from previous,
and upcoming, rostering horizons. As these are used as
a baseline, their exact values are irrelevant. When com-
paring to these reference values, we round on hours to
two decimal places, denoted with b·e2 in the formula-
tion.

τ laste,d −
∑

s∈Swork:
(e,d−1,s)∈Aγ

⌊
T ends,d−1 − T prev

⌉
2
· x̃e,d−1,s ≥ 0,

∀e ∈ E , d ∈ Dall, γ ∈ Γe,d (6)

τ laste,d ≥ τ laste,d−1, ∀e ∈ E , d ∈ Dall (7)

τnexte,d −
∑

s∈Swork:
(e,d+1,s)∈Aγ

⌊
T starts,d+1 − T fut

⌉
2
· x̃e,d+1,s

≤
⌊
T fut − T prev

⌉
2
,

∀e ∈ E , d ∈ Dall, γ ∈ Γe,d (8)

τnexte,d ≤ τnexte,d+1, ∀e ∈ E , d ∈ Dall, d+ 1 ∈ Dall (9)

τ laste,d +
∑
i∈N

ρpfi · pe,d,i ≤ τ
next
e,d , ∀e ∈ E , d ∈ Dall (10)

When we assign employee e ∈ E to a work shift
s ∈ Swork on day d − 1 ∈ Dall, then Equations (6)
ensure that the counter variable τ laste,d ≥ 0 is updated
according to the end of the work shift. Similarly, Equa-
tions (8) ensure that the counter variable τnexte,d ≥ 0 is
updated according to the start of a work shift on day
d + 1 ∈ Dall. Equations (7) and (9) ensure the consis-
tency of the variables on days where we do not assign a
work shift on the previous or subsequent day. Finally,
Equations (10) ensure that the variable pe,d,i can only
become one when the difference between the counters
τnexte,d and τpreve,d is at least the required minimum hours
for i ∈ N protected days off.

The objective function penalizes when we assign
protected days of too far apart. Equation (11) connects
the penalized variable ve,d ∈ [0, 1] to the distance be-
tween protected days off.
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ve,d +
∑
d′∈D:

d≤d′<d+vpref

x̃e,d′,spf ≥ 1,

∀e ∈ E , d ∈ Dall : d+ vpref ∈ D (11)

4.2.3 Restricting the overall work

Equation (12) keeps track of the hours assigned each
week and Equations (13)-(14) compare it to the con-
tractual hours and the weekly targets, respectively. The
deviations measured in Equations (13)-(14) are penal-
ized in the objective function. We note that Equation 13
uses a two-factor penalty such that extreme deviations
are penalized extensively compared to small deviations.

∑
d∈Dw,
s∈Se,d

Thoure,d,s · xe,d,s = he,w, ∀e ∈ E , w ∈ W (12)

∑
w∈W

he,w − t+e + t−e − t++
e + t−−e = T targete ,

∀e ∈ E (13)

he,w − λ+e,w + λ−e,w = Tweeke,w , ∀e ∈ E , w ∈ W (14)

Equation (15) provides an upper bound for assign-
ing specific shifts, while Equation (16) ensures a fixed
number of assignments to a given shift during the ros-
tering horizon. Furthermore, Equation (17) ensures a
fixed number of assignment to a given shift during a
specific week of the rostering horizon.

∑
d∈D,

s∈Se,d∩σ

αs,σ · xe,d,s ≤M total,ub
e,σ ,

∀e ∈ E , σ ∈ Z :M total,ub
e,σ defined (15)∑

d∈D,
s∈Se,d∩σ

αs,σ · xe,d,s =M total,fix
e,σ ,

∀e ∈ E , σ ∈ Z :M total,fix
e,σ defined (16)∑

d∈Dw,
s∈Se,d∩σ

αs,σ · xe,d,s =Mweek,fix
e,σ,w ,

∀e ∈ E , σ ∈ Z, w ∈ W :Mweek,fix
e,σ,w defined (17)

4.2.4 Consecutive work assignments

Equations (18)-(20) measure whether a work sequence
is shorter than the preferred minimum.

∑
s∈Swork:
(e,d,s)∈Aγ

x̃e,d,s −
∑

s∈Swork
x̃e,d−1,s ≤ θstarte,d ,

∀e ∈ E , d ∈ Dall, γ ∈ Γe,d (18)∑
s∈Swork:
(e,d,s)∈Aγ

x̃e,d,s −
∑

s∈Swork
x̃e,d+1,s ≤ θende,d ,

∀e ∈ E , d ∈ Dall, γ ∈ Γe,d : d+ 1 ∈ D (19)

(mseq − d+ d′ − 1)
2 ·
(
θende,d + θstarte,d′ − 1

)
≤ δe,d,

∀e ∈ E , d ∈ D, d′ ∈ Dall : d−mseq < d′ ≤ d (20)

Equations (18) force the variables θstarte,d ∈ [0, 1] to
be one if employee e ∈ E has a work shift on day
d ∈ Dall but not on day d− 1 ∈ Dall. Similarly, Equa-
tions (19) force θende,d ∈ [0, 1] to be one if employee
e ∈ E has a work shift on day d ∈ Dall but not on
day d+1 ∈ Dall. Finally, Equations (20) consider work
sequences shorter than preferred and bind the penalty
variable δe,d ≥ 0 to be the square of the deviation, to
ensure that extremely short sequences, e.g., single work
days, are heavily penalized.

Equation (21) considers the maximum consecutive
assignment to a given shift set. These constraints can
either be enforced as hard constraints by fixing the vari-
able µe,d,σ ≥ 0 to zero, or as soft constraints by penaliz-
ing the variable in the objective. Equation (22) restricts
the number of hours we may assign to an employee dur-
ing a set of consecutive days.

∑
d′∈Dall,
s∈Se,d∩σ:

d≤d′≤d+Mrow
e,d,σ

αs,σ · x̃e,d′,s − µe,d,σ ≤Mrow
e,d,σ,

∀e ∈ E , d ∈ Dall, σ ∈ Z :Mrow
e,d,σ defined (21)

∑
d≤d′≤d+Dconsece,d,σ −1,

s∈σ∩Se,d′

Thoure,d′,s · x̃e,d′,s ≤ Hconsec
e,d,σ ,

∀e ∈ E , d ∈ Dall, σ ∈ Z :

Hconsec
e,d,σ and Dconsec

e,d,σ defined. (22)

4.2.5 Patterns

Equation (23) prevents or penalizes unwanted series
of assignments in the roster. We note that these con-



20 Elín Björk Böðvarsdóttir et al.

straints require binary variables πe,d,y ∈ {0, 1}, as op-
posed to continuous variables as most constraints. There-
fore, overusing this type of constraint may negatively
impact the complexity of the problem, making it harder
for the exact solver.

∑
i∈{1,...,ly},

si∈σi∩Se,d+i−1

x̃e,d+i−1,si ≤ ly − 1 + πe,d,y,

∀e ∈ E , d ∈ Dall, y ∈ Y :

d+ ly − 1 ∈ D, Πe,d,y = 1 (23)

Equations (24)-(25) ensure that some assignments
are only scheduled in a combination with other assign-
ments, where Equation (24) enforces bi-implication and
Equation (25) enforces a single implication.

∑
s∈Se,d1∩σ1

x̃e,d1,s =
∑

s∈Se,d2∩σ2

x̃e,d2,s,

∀e ∈ E , d1, d2 ∈ Dall, σ1, σ2 ∈ Z :

Lemp,bothe,d1,d2,σ1,σ2
= 1 (24)∑

s∈Se,d1∩σ1

x̃e,d1,s ≤
∑

s∈Se,d2∩σ2

x̃e,d2,s,

∀e ∈ E , d1, d2 ∈ Dall, σ1, σ2 ∈ Z :

Lemp,onee,d1,d2,σ1,σ2
= 1 (25)

4.2.6 Coverage constraints

We let C denote the set of coverage constraints and
without loss of generality we assume that every cover-
age j ∈ C has an associated shift set σj ∈ Z.

Equation (26) expresses a minimum staffing require-
ment and Equation (27) ensures that we do not ex-
ceed the allowed maximum staffing, where the variables
fj,d ∈ N0 represent float nurses. While the use of float
nurses may be necessary, the objective function heavily
penalizes this variable. Furthermore, Equations (28)-
(29) ensure correct matching in case of partial coverage.

∑
e∈Eall,
s∈σj :
ξe∈Ξj

αs,σj · xe,d,s + fj,d ≥ cminj,d ,

∀j ∈ C, d ∈ D : cminj,d defined (26)∑
e∈Eall,
s∈σj :
ξe∈Ξj

αs,σj · xe,d,s + fj,d ≤ cmaxj,d ,

∀j ∈ C, d ∈ D : cmaxj,d defined (27)

∑
e∈Eall,

s∈Se,d1∩σ1

x̃e,d1,s =
∑

e∈Eall,
s∈Se,d2∩σ2

x̃e,d2,s,

∀d1, d2 ∈ Dall, σ1, σ2 ∈ Z :

Lward,bothd1,d2,σ1,σ2
= 1 (28)∑

e∈Eall,
s∈Se,d1∩σ1

x̃e,d1,s ≤
∑

e∈Eall,
s∈Se,d2∩σ2

x̃e,d2,s,

∀d1, d2 ∈ Dall, σ1, σ2 ∈ Z :

Lward,oned1,d2,σ1,σ2
= 1 (29)

4.2.7 Balancing the work

To balance the workload on different shifts, Equations (30)-
(31) bind variables for highest and lowest excess staffing.
The difference is then penalized in the objective func-
tion.

∑
e∈Eall,
s∈σj

αs,σj · xe,d,s + fj,d − c+j ≤ c
min
j,d ,

∀j ∈ C, d ∈ D : Ξj =
⋃

e∈Eall
ξe

cminj,d defined, cmaxj,d not defined (30)∑
e∈Eall,
s∈σj

αs,σj · xe,d,s + fj,d − c−j ≥ c
min
j,d ,

∀j ∈ C, d ∈ D : Ξj =
⋃

e∈Eall
ξe

cminj,d defined, cmaxj,d not defined (31)

To spread the assignments of unpopular shifts evenly,
Equations (32)-(33) link the variables for the assign-
ments to those shifts, relative to the maximum assign-
ments allowed for the given employee. The objective
function then penalizes the difference between the high-
est and lowest percentage of such assignments.

∑
d∈D,
s∈σ

αs,σ · xe,d,s − M̃ total,ub
e,σ · ζmaxσ ≥ 0,

∀e ∈ E , σ ∈ Zspread (32)∑
d∈D,
s∈σ

αs,σ · xe,d,s − M̃ total,ub
e,σ · ζminσ ≤ 0,

∀e ∈ E , σ ∈ Zspread (33)
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4.2.8 Chaperoning

We let sc ∈ S denote the chaperoning shift. Equa-
tion (34) ensures that we only schedule the chaperoning
shift simultaneously to a chaperone and one trainee. We
note that Equation (16) in Section 4.2.3 ensures that we
schedule the right number of chaperoning shifts during
the rostering horizon.

∑
e∈Etrainc

xe,d,sc = xc,d,sc , ∀c ∈ Echap, d ∈ D (34)

Equations (35)-(36) evaluate how much two employ-
ees are working together on a given day. To promote
trainees working with their chaperone or other senior
nurses, we include a reward in the objective function.

ge1,e2,d,σ ≤
∑
s∈σ

αs,σ · xe1,d,s,

∀(e1, e2) ∈ EG, d ∈ D, σ ∈ Ztogether (35)

ge1,e2,d,σ ≤
∑
s∈σ

αs,σ · xe2,d,s,

∀(e1, e2) ∈ EG, d ∈ D, σ ∈ Ztogether (36)

4.2.9 New constraints

Equations (37)-(38) count the number of different shift
sets assigned to an employee on a set of consecutive
days. If this number exceeds a given value, the objective
function penalizes the difference.

x̃e,d′,s ≤ κe,d,σ,
∀e ∈ E , d ∈ Dall, d′ ∈ {d, . . . , d+Ddiff − 1},
σ ∈ Zdiff , s ∈ σ : d+Ddiff − 1 ∈ D (37)∑

σ∈Zdiff
κe,d,σ − ndiff ≤ κmoree,d

∀e ∈ E , d ∈ Dall : d+Ddiff − 1 ∈ D (38)

Equations (39)-(41) count the number of work se-
quences on consecutive days that include assignments
to a given shift set (i.e., night shifts). The objective
function penalizes when this number exceeds a given
value.

xe,d2,s + θstarte,d1 −
∑
d∈D:

d1≤d<d2

θende,d − 1 ≤ φstarte,d1,σ,

∀e ∈ E , d1 ∈ Dall, d2 ∈ Dall, σ ∈ Zseqe ,

s ∈ Se,d2 ∩ σ : d1 ≤ d2 (39)

xe,d1,s + θende,d2 −
∑
d∈D:

d1<d≤d2

θstarte,d − 1 ≤ φende,d2,σ,

∀e ∈ E , d1 ∈ Dall, d2 ∈ Dall, σ ∈ Zseqe ,

s ∈ Se,d1 ∩ σ : d1 ≤ d2 (40)

φende,d,σ +
∑

d′∈Dall:
d<d′≤d+Dseqe,σ

φstarte,d′,σ − χe,σ ≤ φcounte,d,σ ,

∀e ∈ E , d ∈ Dall, σ ∈ Zseqe : d+Dseq
e,σ ∈ D (41)

Equations (39) consider all days from the start and
to the end of a sequence, including both days, and check
whether we assign e ∈ E to shift set σ ∈ Zseqe on any
of those days. If so, then we force φstarte,d,σ ∈ [0, 1] to be
one for the start day d ∈ Dall of the sequence. Equa-
tions (40) work similarly for the end of a sequence. Fi-
nally, Equations (41) count the number of sequences
including shift set σ ∈ Zseqe that we have assigned to
employee e ∈ E on Dseq

e,σ consecutive days, and forces
the penalty variable φcounte,d,σ ≥ 0 to be positive if we
exceed the preferred number.

Equations (42)-(44) measure the number of days off
assigned before and after assigning work during a given
period. The objective function rewards assigning the
surrounding days off for given periods.
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Be,q + qb · (x̃e,d1,s1 + xe,d2,s2) ≤ 2qb + ψd1,d2,s1,s2 ,

∀e ∈ E , q ∈ Qe, d1 ∈
[
qs − qb, qs − 1

]
,

s1 ∈ Se,d1 ∩ Swork, d2 ∈ D,
s2 ∈ Se,d2 ∩ Swork : d1 ≤ d2,
(s1, d1) /∈ Oe,q, (s2, d2) ∈ Oe,q,
0 ≤ ψd1,d2,s1,s2 < qb (42)

Ae,q + qa · (x̃e,d1,s1 + xe,d2,s2) ≤ 2qa + ψd1,d2,s1,s2 ,

∀e ∈ E , q ∈ Qe, d2 ∈ [qe + 1, qe + qa] ,

s1 ∈ Se,d1 ∩ Swork, d1 ∈ Dall,
s2 ∈ Se,d2 ∩ Swork : d1 ≤ d2,
(s1, d1) ∈ Oe,q, (s2, d2) /∈ Oe,q,
0 ≤ ψd1,d2,s1,s2 < qa (43)

(qb + qa) ·
∑

d∈Dall,
s∈Se,d∩Swork:

(s,d)∈Oe,q

x̃e,d,s ≥ Be,q +Ae,q,

∀e ∈ E , q ∈ Qe (44)

Equations (42) ensure that if we assign employee
e ∈ E to shift s2 ∈ Swork during the period q ∈ Qe and
also to shift s1 ∈ Swork less than qb days before the
period, then the variable Be,q is bounded from above
by the number of full days off between the two assign-
ments. Similarly, Equations (43) ensure that if we as-
sign employee e ∈ E to shift s1 ∈ Swork during the
period q ∈ Qe and also to shift s2 ∈ Swork less than qa

days after the period, then the variable Ae,q is bounded
from above by the number of full days off between the
two assignments. Finally, Equations (44) ensure that
the variables Be,q and Ae,q can only be positive if we
assign a work shift to employee e ∈ E during period
q ∈ Qe.

4.3 Objective function

The objective function is a linear combination of penal-
ties and rewards related to the violation or satisfaction
of soft constraints. Table 11 presents the notation for
objective weights.

We let Ωi for i ∈ {1, . . . , 9} represent different terms
in the objective function. The first objective term Ω1

relates to the satisfaction and violation of preferences.

Ω1 =
∑

(e,d,s)∈A

ωassigne,d,s · xe,d,s (45)

The second objective term Ω2 penalizes when ex-
ceeding the preferred maximum number of consecutive
days without a protected day off.

Ω2 =
∑
e∈E,
d∈Dall

ωpf · ve,d (46)

The third objective term Ω3 penalizes for deviat-
ing from targets for the assigned hours, both for the
rostering horizon as a whole and for specific weeks.

Ω3 =
∑
e∈E

(
ω+ · t+e + ω− · t−e + ω++ · t++

e + ω−− · t−−e
)

+
∑
e∈E,
w∈W

ωweek ·
(
λ+e,w + λ−e,w

)
(47)

The fourth objective term Ω4 penalizes when a se-
ries of consecutive work assignments is either shorter
than the preferred minimum or longer than the pre-
ferred maximum.

Ω4 =
∑
e∈E,
d∈D

ωseqlen · δe,d +
∑
e∈E,

d∈Dall,
σ∈Z

ωmaxrowe · µe,d,σ (48)

The fifth objective term Ω5 penalizes when assign-
ing unwanted series of assignments.

Ω5 =
∑
e∈E,

d∈Dall,
y∈Y

ωpaty · πe,d,y (49)

The sixth objective term Ω6 relates to the cover-
age constraints. It penalizes when not reaching the pre-
ferred coverage along with penalizing the use of float
nurses.

Ω6 =
∑
j∈C,
d∈D

ωnonmaxj ·

cmaxj,d −
∑

e∈Eall,
s∈Se,d∩σj

αs,σj · xe,d,s


+
∑
j∈C,
d∈D

ωfloatj · fj,d (50)

The seventh objective term Ω7 contributes towards
balancing the work. It penalizes for an uneven distribu-
tion of excess staffing along with an uneven distribution
of unpopular shifts.

Ω7 =
∑
j∈C

ωbal ·
(
c+j − c

−
j

)
+

∑
σ∈Zspread

ωspreadσ ·
(
ζmaxσ − ζminσ

)
(51)
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Table 11 Weights used in the objective function

Weight Description

ωassigne,d,s Penalty or reward for assigning employee e ∈ E to shift s ∈ S on day d ∈ D.
ωpf Penalty for exceeding the maximum distance between two contagious protected days off.
ω+ Penalty for a positive deviation from the target hours, within the bound N+.
ω++ Penalty for a positive deviation from the target hours, exceeding N+ .
ω− Penalty for a negative deviation from the target hours, within the bound N−.
ω−− Penalty for a negative deviation from the target hours, exceeding N−.
ωweek Penalty for deviation from the weekly targets.
ωseqlen Penalty for violating the minimum sequence.
ωmaxrowe Penalty for exceeding the number of maximum assignments in a row for employee e ∈ E.
ωpaty Penalty for assigning non-preferred pattern y ∈ Y.
ωfloatj Penalty for assigning a float nurse to coverage j ∈ C.
ωnonmaxj Penalty for not hitting the maximum target for coverage j ∈ C.
ωbal Penalty for not balancing the excess personnel.
ωspreadσ Penalty for not spreading assignments to shift set σ ∈ Zspread relatively equally between the employees.
ωtogethere1,e2 Reward for assigning employees (e1, e2) ∈ EG work together.
ωdiff Penalty for the number of shift sets exceeding the preferred we assign on Ddiff consecutive days.
ωseqconsec Penalty for exceeding the maximum number of sequences including a certain shifts on consecutive days.
ωb Reward for scheduling surrounding days off before a period where it is preferred.
ωa Reward for scheduling surrounding days off after a period where it is preferred.

The eight objective term Ω8 provides a reward when
trainees work together with their chaperones or other
senior nurses.

Ω8 =
∑

(e1,e2)∈EG,
d∈D,

σ∈Ztogether

ωtogethere1,e2 · ge1,e2,d,σ (52)

The last term of the objective function Ω9 relates
to the new constraints. First, it penalizes for assigning
too many different shifts on a series of consecutive days.
Second, it penalizes for too many work sequences that
include a specific shift on consecutive days. Third, it re-
wards for assigning surrounding days off for some work
periods.

Ω9 =
∑
e∈E,
d∈Dall

ωdiff · κmoree,d

+
∑
e∈E,

d∈Dall,
σ∈Zseqe

ωseqconsec · φcounte,d,σ

+
∑
e∈E,
q∈Q

(
ωb ·Be,q + ωa ·Ae,q

)
(53)

The overall objective minimizes a linear combina-
tion of these nine terms, as given with Equation (54).

min
∑

i∈{1,...,9}

Ωi (54)

4.4 Comparison to other formulations

This section has introduced a flexible MIP formulation
of the problem described in Section 3. We will now dis-
cuss specific aspects of the formulation that differ from
other formulations in the literature.

Table 12 compares this formulation to four other
nurse rostering formulations that have employed inte-
ger programming approaches. We compare these for-
mulations across a wide range of criteria, most relating
to either the framework around the model or the con-
straints included. In general, the framework we present
is more flexible than those used in previous formula-
tions. Furthermore, we include most of the constraints
present in previous formulations.

Many MIP formulations are assignment-based, i.e.,
the main decision variables are binary corresponding
to whether a nurse is assigned to a specific day and
shift. Valouxis et al. (2012) break the problem down
into smaller sub-problems that are assignment-based
and solve them sequentially. This approach is only ap-
plicable for formulations with a few hard constraints of
a specific structure, where combining feasible solutions
to all sub-problems directly results in an overall feasi-
ble solution. Due to the number and structure of hard
constraints in the formulation we present, this type of
decomposition would likely not be successful.

Burke and Curtois (2014) decompose the problem
and formulate the pricing problems as network flow
problems, more specifically resource constrained short-
est paths. They generate the paths (i.e., pricing prob-
lem solutions) dynamically and prune dominated paths
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Table 12 A comparison to other formulations that have used MIP-based approaches to formulate the NRP.

This formulation Burke and
Curtois (2014)

Mischek and
Musliu (2017)

Rönnberg and
Larsson (2010)

Valouxis et al.
(2012)

Formulation origin Real case from
Denmark

A collection of
benchmarks
and INRC-I

Multi-stage
formulation
(INRC-II with
extensions)

Real case from
Sweden

INRC-I

MIP approach Assignment based Branch and
price

Assignment
based

Assignment
based

Two-phase
algorithm

Definition of shifts
• corresponding to
coverage

X X X X X

• other work shifts X X(fixed prior)
• days off X
• grouping X

Skills X X X X X
Requests X X X X X
Distinction between types of
days off

Protected days
off, parental leave,
annual leave, pub-
lic holidays and
other days off

None None Holidays (fixed
prior) and
other days off

None

Structure of coverage
constraints

Shift set Shift type Shift type Shift type Shift type

Daily restrictions Using conflict
cliques

Max one shift
a day

Max one shift
a day

Max one shift a
day

Max one shift
a day

Restricting shift successions X(using conflict
cliques)

X X X X

Restrictions on total assign-
ments
• min/max shifts X X X
• min/max hours X X
• min/max shift type X X

Restrictions on assignments
within a specific period (e.g.,
weeks)
• min/max shifts X X
• min/max hours X X
• min/max shift type X

Consecutive restrictions
• min work days X X X X
• max work days X X X X X
• min shift type X X
• max shift type X X X
• min days off X X X
• max days off X X X X
• max work hours on a
set of days

X

• max different shift types
on a set of days

X

• max work sequences with
a shift type on a set of
days

X

• unwanted patterns X X X
Weekend restrictions
• complete weekends /
weekend patterns

X X X X X

• min/max total weekends
worked

X X X

• min/max consecutive
weekends worked

X X

• even distribution X
• surrounding days off X

Balancing
• excess coverage X
• some shift types X X

Chaperoning X
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as they go through the graph. They state that domi-
nance checking is the most time-consuming part of this
approach.

We believe that a network flow based approach would
not be successful in addressing the formulation we present,
for example, as the flexibility of the protected days off
makes it difficult to define clear domination criteria.
Furthermore, allowing more than one shift a day re-
quires additional arcs, changing the structure of the
graph. Finally, we include constraints for chaperoning
that require two nurses assigned to the same shift si-
multaneously and an assignment based formulation pro-
vides a better overview when assigning these shifts.

Regarding shifts, the standard in previous formula-
tions is a one-to-one mapping between shifts and cov-
erage requirements. This is evident by both nurse ros-
tering competitions (Haspeslagh et al., 2014; Ceschia
et al., 2019) and numerous benchmarks (Burke and
Curtois, 2014; Curtois and Qu, 2014). While Rönnberg
and Larsson (2010) also include other work shifts, their
timing is fixed and the roster is generated around them.
The formulation we have presented is capable of schedul-
ing these shifts (e.g., administrative work) when it fits
best with respect to the roster as a whole. If needed,
these shifts may be fixed with the request environment.

We also model days off as shift types and distinguish
between different types of days off, which is uncommon
in the literature. While Rönnberg and Larsson (2010)
differentiate between holidays and other days off, they
assume that the holidays are fixed and pre-approved by
the head nurse.

Due to the extended definition of shifts, we do not
explicitly model many of the constraints regarding ad-
ministrative work (e.g., meetings or courses) or days off.
Instead, we set parameters corresponding to those shifts
and express the constraints in a general manner. As an
example, Equation (16) ensures that we assign the cor-
rect number of protected days off during the rostering
horizon. Similarly, Equation (17) ensures that some em-
ployees get administrative shifts each week.

The legislation regarding protected days off in Den-
mark is quite complex. The literature includes some
simple constraints regarding days off (either explicitly
or implicitly). Those constraints consider all days off to
be the same, independent of the previous work shift.
Thus, any distinction between days off following day
shifts, evening shifts, or night shifts is presented using
working patterns that require binary variables (similar
to Equation (23)).

Equations (6)-(10) present flexible constraints to con-
trol the requirements for protected days off by tracking
adjacent work shifts. These constraints can be adjusted
to fit different requirements by simply modifying the

parameter ρpfi . Furthermore, they provide the freedom
to decide how many protected days off should be sched-
uled in a row for each occurrence. These constraints,
together with Equations (11) and (16) capture the com-
plex Danish legislation.

While most formulations define coverage constraints
based on single shift types, we define them based on
shift sets. These sets allow for partial coverage and dif-
ferent combinations of shift types when composing the
coverage.

Due to the extended definition of shifts, we replace
the popular constraints for a maximum of one shift a
day with the opposite, namely a minimum of one shift
a day. To prevent physically impossible or illegal com-
binations of shifts we automatically generate conflict
cliques, where each clique represents a set of assign-
ments where at most one may be scheduled (as given
with Equation (2)).

In this formulation, we do not explicitly indicate
which shifts are conflicting but instead introduce pa-
rameters (ρfull and ρred) describing the minimum time
off between consecutive work shifts. We use these pa-
rameters to build the conflict graph and generate the
conflict cliques. Thus, we do not generate redundant
constraints that will likely not be binding. By automat-
ically generating conflict cliques, we obtain increased
flexibility and are able to capture different restrictions,
e.g., allowing multiple shifts a day. At the same time, we
do not weaken the formulation as we would by pairwise
modeling of all conflicting shifts on a given day.

The conflict cliques also capture forbidden shift suc-
cessions, producing the tightest possible constraints.
Previous formulations have often formulated forbidden
shift successions based on forbidding certain pairs (Cur-
tois and Qu, 2014; Mischek and Musliu, 2017; Rönnberg
and Larsson, 2010).

Santos et al. (2016) noted the problem structure,
namely that it included multiple constraints with an
upper bound of one. To strengthen the IP formulation,
they employed clique cuts similar to the ones we gen-
erate by drawing upon parts of the constraint matrix.

Many formulations define most or all constraints
based on a number of shifts. While we define several
constraints in that manner, we also define many con-
straints based on hours. Generally, contracts are based
on hours, and when the shifts differ in length, using
hours in the formulation results in more accurate con-
straints.

Equations (24)-(25) for assignments scheduled in a
combination with other assignments provide a flexible
alternative to model some working patterns. By modi-
fying parameters (Lemp,bothe,d1,d2,σ1,σ2

or Lemp,onee,d1,d2,σ1,σ2
) we can

easily tailor these constraints to the need of each em-
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ployee. For example, we can relax the requirement for
scheduling complete weekends for a specific employee
and a specific weekend. Moreover, we can define dif-
ferent weekend patterns for different employees. In the
wards we collaborated with, weekends off are sched-
uled long in advance. Therefore, we do not include con-
straints regarding the allocation of weekend work (e.g.,
a maximum number of weekends or an even distribution
of weekends).

Section 4.2.9 introduced three new constraints re-
garding assignments to individual employees on con-
secutive days. In theory, we could formulate these con-
straints using Equation (23) for unwanted series. Nev-
ertheless, such a formulation would have two severe dis-
advantages.

First, to use Equation (23) we would need to enu-
merate all combinations of patterns. This enumeration
would not be trivial for any of the new constraints and
defining them using patterns would reduce the trans-
parency when communicating the model and the results
to practitioners and employees. Furthermore, such enu-
meration is not flexible if the ward would make any
changes, e.g., adding a new shift type.

Second, all of these new constraints are soft con-
straints and thus require variables to be penalized in
the objective function. If we were to formulate these
constraints as patterns, we would introduce an abun-
dance of binary variables corresponding to each specific
pattern. However, by formulating them explicitly with
Equations (37)-(44) we suffice with using continuous
variables. Therefore, using working patterns would not
only increase the complexity of the input but also the
model.

We note that formulating constraints using regular
expressions as Burke and Curtois (2014) would require
a binary variable for each and every constraint (i.e.,
either we have a match for the expression or not). While
that is not an issue in their approach, transferring the
formulation to an assignment based MIP model would
likely be unsuccessful.

5 Results

This section presents the results of implementing this
rostering system in practice in two wards. Section 5.1
starts by describing the wards and introducing the in-
stances. Then, Section 5.2 presents the computational
results from utilizing a commercial solver to solve the
MIP model (see electronic appendix). Finally, Section 5.3
discusses the impact of the rostering system in practice,
including feedback from the practitioners.

5.1 Instances

During this research, we collaborated closely with two
wards in Region Zealand. The wards have different spe-
cialties and are located in different hospitals. The main
similarity between the two wards is that they both use a
rostering horizon of four weeks. We refer to these wards
as Ward A and Ward B.

The specialty in Ward A requires a long educa-
tion, part of which is performed within the ward. Fur-
thermore, nurses with that specialty are a very scarce
resource and the manager strives to make rosters to
their liking. Therefore, we impose no limitations on how
many requests each employee can have, resulting in an
average of 10 requests per employee for a 4-week ros-
tering horizon. Furthermore, the employees’ attitude to-
wards the request environment differs, where some em-
ployees consistently input multiple requests while oth-
ers are more flexible, perhaps putting forward a single
request.

The request culture in Ward B is significantly differ-
ent, where the average number of requests per employee
range from 0.3 to 2.2 for the entire rostering horizon,
with the only exception being around Christmas. This
difference is not because of any limitations set by the
system, but rather due to the current practices in the
wards. In Ward A, the employees are used to having a
large influence on their rosters, whereas those in Ward
B are used to the manager creating the schedules.

In this paper, we report the results for 12 differ-
ent instances available from Böðvarsdóttir et al. (2019),
where instances A01-A07 come from Ward A and in-
stances B01-B05 from Ward B. Table 13 presents some
summary statistics for the different instances. The first
two columns show the number of employees, both those
that we should generate a full roster for and all employ-
ees in the ward (including those that have fixed ros-
ters or only partial rosters). The third column shows
the number of feasible assignments for the instance,
referring to all feasible combinations of employee, day
and shift type. The fourth and fifth columns compare
the number of conflicting pairs of assignments with the
number of conflict cliques.

From the table, we can see that the instances for
Ward A are larger than for Ward B. Furthermore, us-
ing conflict cliques to prohibit physically infeasible or
illegal combinations of assignments significantly reduces
the number of constraints needed to prevent conflicting
assignments (Equation (2) in Section 4.2.1). Comparing
the last two columns shows that the average reduction
is above a factor of 50.

In general, the clique constraints presented with Equa-
tion 2 make up less than 5% of the total constraints of
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Table 13 Summary statistics for the twelve instances.

Employees Feasible Conflicts
Instance E Eall assignments pairs cliques

A01 45 48 4,809 141,666 2,285
A02 45 47 4,764 120,846 2,322
A03 47 50 4,516 122,230 2,233
A04 47 49 4,976 149,726 1,970
A05 46 48 5,158 162,106 2,123
A06 46 49 4,638 136,111 2,401
A07 46 48 4,504 135,675 2,296
B01 33 46 3,846 65,392 1,841
B02 31 44 3,565 79,297 1,314
B03 30 44 3,607 63,000 1,652
B04 38 43 3,930 67,399 1,816
B05 40 42 4,077 69,946 1,790

the model. If we were to replace these constraints with
the forbidding all pairs of conflicting assignments, the
corresponding constraints would make up around 70%
of the alternative model.

5.2 Computational results

We solved the MIP model with Gurobi 8.0 using the de-
fault parameter settings and a time limit of 1 hour. We
conducted all experiments on a 64-bit Windows 7 with
12GB RAM and an Intel Core i5-4570 CPU @3.20GHz.
Table 14 presents the computational results.

Table 14 Computational results.

Instance Objective value MIP Gap (%) Time (s)

A01 -3,358,119.41 0.00 855.46
A02 -4,262,959.81 0.00 1,026.45
A03 -4,230,378.72 0.00 374.00
A04 -2,775,710.80 0.00 362.13
A05 -3,718,385.02 0.13 3,600.00
A06 -2,542,988.57 0.00 186.61
A07 -4,241,033.51 0.09 3,600.00
B01 22,879,748.33 0.00 274.73
B02 34,275,500.56 0.00 42.85
B03 21,992,210.67 0.00 151.39
B04 16,982,883.97 0.00 85.04
B05 60,713,240.41 0.01 3,600.00

We solve most instances to optimality, i.e., within
Gurobi’s default MIP gap of 10−4. For three instances,
we terminate due to time, but with a very low gap. For
more than half of the instances, we can prove optimality
in around 5 minutes. For the remaining instances, we
reach a small gap (i.e., below 1%) rather early and then
most of the effort is spent on improving the bound.

To further draw out the strength of this formulation,
we compare the solutions found to the objective values

of the LP relaxations. This comparison shows an LP-IP
gap around 2-5% for most instances. Only two instances
have a gap above 6%, i.e., A06 with a 21% gap and B04
with an 11% gap. Still, we note that both instances were
solved to optimality within less than 200 seconds.

These results show that the formulation of sensible
MIP models, with a limited number of integer variables
and a tight LP-relaxation, can lead to good results for
practical problems.

5.3 Practical impact

Practitioners are neither concerned with the objective
value of a solution nor the MIP gap, they are only in-
terested in the roster itself. Therefore, we generally run
the optimization for a short time (e.g., 5 minutes) to
generate good rosters, as opposed to spending time on
proving optimality.

As discussed in Section 3.3, we tune the objective
weights for each instance to obtain a high-quality roster.
When tuning the weights we evaluate multiple compo-
nents including specific requests, deviation from con-
tractual hours, the need for float nurses, the number of
days between protected days off, etc.

For increased transparency, we do not only report
the shift assignments but also include various perfor-
mance indicators. These indicators provide a better over-
view and give the managers a better chance of fairly
assessing the quality of the roster. Table 15 presents an
example of performance indicators for the 12 instances,
namely the number of float nurses needed along with
the percentage of fulfilled requests. Although multiple
factors come into play when assessing the quality of the
roster, these two are the most important to the practi-
tioners.

Table 15 Number of float nurses required along with the
fulfillment of requests.

Float Fulfilled requests (%)
Instance nurses High priority All requests

A01 0 98.61 89.29
A02 0 98.81 90.40
A03 0 97.96 89.92
A04 0 93.68 82.33
A05 2 97.31 89.33
A06 0 97.70 90.50
A07 0 98.27 85.83
B01 8 62.50 75.00
B02 6 66.67 74.26
B03 12 100.00 100.00
B04 12 100.00 93.53
B05 34 100.00 97.38
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We can see that the use of float nurses differs signif-
icantly between the two wards. Ward A rarely requires
float nurses to satisfy their staffing requirements, with
the only exceptions being when many of the permanent
staff are on holiday, e.g., New Year’s Day. However, all
instances for Ward B require float nurses to be able to
meet the staffing requirements in the weekends. Fur-
thermore, instance B05 requires additional float nurses
to meet the staffing requirements for nights on some
weekdays.

The fulfillment of requests also differs between the
wards, mostly due to the different number of requests.
Overall, we manage to satisfy a majority of the re-
quests for all instances. We acknowledge that instances
B01 and B02 stand out, with rather low percentages.
Nonetheless, these percentages are close to the best pos-
sible for both instances, as requests conflicting with
hard constraints make it impossible to fulfill more.

Due to lack of data, we are unable to directly com-
pare these results to manually generated rosters. Before
implementing the rostering system, only the shifts actu-
ally worked were stored in a salary system. Disruptions
(e.g., sick leave) may cause changes in the original ros-
ter and those changes were not documented. Further-
more, the nurses’ requests were gathered on a physical
sheet (or sometimes only verbal communication) and
were not specifically stored after the generation of a
roster. Therefore, qualitative feedback from the users
is the only way to evaluate the quality of the rosters
generated and the practical impact of this system.

The practitioners are very pleased with the rostering
system and declare that it is beneficial, both for the em-
ployees and the patients. In general, the managers find
the process of generating rosters much easier, while the
results are of higher quality. As an example, the MIP
model produces rosters that better utilize the person-
nel’s contractual hours while simultaneously meeting
their individual needs.

Overall, the employees are happy with the roster-
ing system, and managers have applauded the increased
fairness that it has brought. Furthermore, the employ-
ees have an overview of the requests and fixed assign-
ments for the entire ward, which has resulted in in-
creased transparency and improved morale. At last, the
managers can trust that all rosters produced with the
model satisfy the complex legislative rules, significantly
reducing the time they need to spend on validation.

6 Conclusion

In this paper, we have presented a flexible nurse roster-
ing system and a comprehensive MIP formulation that

we have implemented in two wards in Danish hospitals.
In addition to introducing new constraints, we also pro-
vide flexible alternatives for common constraints from
the literature. The system has been developed in collab-
oration with experienced managers to match the com-
plex needs of real hospitals. The system’s adaptability
is a major advantage, as it can be special-tailored to fit
the needs of a specific ward, along with the needs of in-
dividual employees. This research has already brought
significant improvement to the scheduling procedures
in Danish hospitals.

Due to the close collaboration with practitioners, we
have obtained some insights that we believe will be ben-
eficial for other researchers. Although most research on
nurse rostering focuses on mathematical aspects, e.g.,
solution algorithms, the greatest challenges we faced
when implementing this system were not mathemati-
cal. When entering a ward that uses manual rostering,
a large part of the process is unveiling different elements
that the managers take into account when creating ros-
ters. Obviously, the overall legislation along with in-
dividual contracts set clear guidelines. Nonetheless, the
managers consider multiple softer aspects, such as pref-
erences for shifts or unwanted patterns of assignments,
and bringing all these aspects to the surface is an iter-
ative process.

We can attest that an open dialogue with practi-
tioners throughout the development is crucial to cap-
ture their needs. In our experience, practitioners may
leave out some of the critical aspects early on, for ex-
ample, aspects that they intuitively but unknowingly
consider when manually generating rosters. On the con-
trary, some of the constraints that they set early on
turned out to be of a low priority when assessing the
quality of the roster, as is reflected in the objective
weights. Thus, ensuring that we address the right prob-
lem for implementation may be an underrated chal-
lenge.

Solving optimization problems involving human re-
sources is an intricate task and has to be treated with
respect. To develop solutions that can be adopted in
practice, we need to fully grasp the needs of practi-
tioners. As an example, we would not have recognized
the immense flexibility required without working closely
with practitioners and addressing the exact problem
they face. Hospital rostering is conducted in a dynamic
environment, and we need to build solutions that can
assist managers in creating good rosters across a wide
range of different scenarios.

During this research, we have identified several op-
portunities that may further contribute to getting nurse
rostering research implemented in practice. A recurring
challenge throughout this project has been the sensitiv-
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ity of the objective function with respect to the input
data and the objective weights. As the data differs sig-
nificantly between rostering horizons, we need to tune
the weights for each instance to arrive at good rosters.
This process is currently manual, and even though the
overall resources needed to create each roster has been
significantly reduced, the need for this type of man-
ual interventions reduces the advantages of using auto-
mated methods.

Furthermore, objective weights are an abstract con-
cept where the impact of a particular weight (or com-
bination of weights) may not be straightforward. As
practitioners often have a limited mathematical back-
ground, complex models and solution methods are often
inaccessible to them. Therefore, they may be hesitant
to adopt such methods and question the resulting ros-
ters, especially if they are different from the rosters they
would have produced manually. In general, practition-
ers would like to understand the reason for different
violations in order to increase their trust in the system.
Thus, to bridge the gap between academia and practice,
we need to find common ground for communication, in-
dependent of mathematical abilities.
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