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Abstract

This paper addresses two classes of different, yet
interrelated optimization problems. The first class
of problems involves a robot that must locate a
hidden target in an environment that consists of
a set of concurrent rays. The second class per-
tains to the design of interruptible algorithms by
means of a schedule of contract algorithms. We
study several variants of these families of problems,
such as searching and scheduling with probabilis-
tic considerations, redundancy and fault-tolerance
issues, randomized strategies, and trade-offs be-
tween performance and preemptions. For many of
these problems we present the first known results
that apply to multi-ray and multi-problem domains.
Our objective is to demonstrate that several well-
motivated settings can be addressed using the same
underlying approach.

1 Introduction
In this paper we expand the study of connections between
two seemingly different, yet interrelated classes of schedul-
ing problems. The first class of problems involves a mobile
searcher that must explore an unknown environment so as to
locate a hidden target. Objectives of this nature are often en-
countered in the domain of robotic search and exploration.
The second class of problem pertains to the design of a com-
putational multi-problem solver, which may be interrupted at
any point in time, and may be queried for its currently best
solution to any of the given problems. This setting provides
a very practical modeling of situations that often arise in the
realm of AI applications, such as the design of any-time and
real-time intelligent systems [Zilberstein, 1996].

Searching for a hidden object in an unbounded domain is a
fundamental computational problem, with a rich history that
dates back to early work [Bellman, 1963] [Beck, 1964] in the
context of searching on the infinite line (informally known as
the cow-path problem). In our work we focus on a generaliza-
tion of linear search, known as the star search or ray search
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problem. Here, we are given a set of m semi-infinite, concur-
rent rays which intersect at a common origin O, as well as a
mobile searcher which is initially placed at the origin. There
is also a target that is hidden at some distance d from O, at
a ray unknown to the searcher. The objective is to design a
search strategy that minimizes the competitive ratio, namely
the worst-case ratio of the distance traversed by the robot (up
to target detection) over the distance d.

Problems related to ray searching have attracted significant
interest from the AI/OR communities. Optimal competitive
ratios were obtained in [Gal, 1974] and [Baeza-Yates et al.,
1993]. The setting in which certain probabilistic information
concerning the target placement is known was studied in [Jail-
let and Stafford, 1993], [Kao and Littman, 1997]. The effect
of randomization on the expected performance was addressed
in [Schuierer, 2003], [Kao et al., 1996]. In the case where an
upper bound on the distance from the target is known [López-
Ortiz and Schuierer, 2001] provides a near-optimal asymp-
totic analysis, whereas in the case where the searcher incurs a
fixed turn cost [Demaine et al., 2006] provides an optimal
search strategy. Other work includes the setting of multi-
ple parallel searchers [López-Ortiz and Schuierer, 2004], the
related problem of designing hybrid algorithms [Kao et al.,
1998], and more recently, the study of new performance mea-
sures [Kirkpatrick, 2009], [McGregor et al., 2009]. We refer
the interested reader to Chapters 8 and 9 in [Alpern and Gal,
2003] for further results.

The second class of problems is related to bounded-
resource reasoning in the context of anytime algorithms [Rus-
sell and Zilberstein, 1991]. Such algorithms provide a use-
ful trade-off between computation time and the quality of
the output, when there is uncertainty with respect to the al-
lowed execution time. More specifically, our goal is to be able
to simulate an interruptible algorithm by means of repeated
executions of a contract algorithm. These are both classes
of anytime algorithms which, however, differ significantly in
terms of their handling of interruptions. On the one hand, an
interruptible algorithm will always produce some meaningful
result (in accordance to its performance profile) whenever an
interruption occurs during its execution. On the other hand,
a contract algorithm must be provided, as part of the input,
with its pre-specified computation time (i.e., contract time).
If completed by the contract time, the algorithm will always
output the solution consistent with its performance profile,
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otherwise it may fail to produce any useful result.
As observed in [Bernstein et al., 2002], contract algorithms

tend to be simpler to implement and maintain, however they
lack in flexibility compared to interruptible algorithms. This
observation raises the challenge of simulating an interruptible
algorithm using repeated executions of contract algorithms.
The precise framework is as follows: given n instances of op-
timization problems, and a contract algorithm for each prob-
lem, provide a strategy for scheduling repeated executions of
a contract algorithm, in either a single, or multiple processors.
Upon an interruption, say at time t, the solution to any of the
n problems may be requested. The system returns the solu-
tion that corresponds to the longest completed execution of a
contract algorithm for the problem in question. The standard
performance measure of this scheduling strategy is the ac-
celeration ratio [Russell and Zilberstein, 1991], which infor-
mally can be described as a resource-augmentation measure:
namely, it implies that an increase of the processor speed by
a factor equal to the acceleration ratio of the schedule yields
a system which is as efficient as one in which the interruption
time is known in advance.

Previous research has established the optimality of
scheduling strategies based on iterative deepening methods
in the settings of single problem/single processor [Russell
and Zilberstein, 1991] [Zilberstein et al., 2003], single prob-
lem/multiple processors [Zilberstein et al., 2003] and mul-
tiple problems/single processor [Bernstein et al., 2002]. The
most general setting of multiple problems and processors was
investigated in [Bernstein et al., 2003], which was also the
first to demonstrate connections between ray searching and
contract scheduling problems. More specifically [Bernstein
et al., 2003] shows that a reduction between specific classes
of search and scheduling strategies known as cyclic strategies
(see Section 2). Optimal schedules, without restrictions, were
established in [López-Ortiz et al., 2014]. Issues related to soft
deadlines were addressed in [Angelopoulos et al., 2008], and
measures alternative to the acceleration ratio have been intro-
duced in [Angelopoulos and López-Ortiz, 2009].
Contribution of this paper In this work we expand the study
of connections between the search and scheduling problems
that was initiated in [Bernstein et al., 2003]. Namely, we ad-
dress several settings that provide well-motivated extensions
and generalizations of these two classes of problems. More
precisely, we study the following problems:
Uncertain target detection / Monte Carlo contract algo-
rithms: We investigate the setting in which the searcher
detects the target with probability p during each visit, and
the setting in which each contract algorithm is a randomized
Monte Carlo algorithm with probability of success equal to p.
Redundancy and fault tolerance: We seek search strategies
under the constraint that at least r visits over the target are
required in order to locate it. On a similar vain, we seek
scheduling strategies under the assumption that at least r ex-
ecutions of a contract algorithm are required so as to benefit
from its output. This is related to search and scheduling with
uncertainty, when the probability of success is unknown.
Randomized scheduling strategies: We show how access
to random bits can improve the expected performance of a
scheduling strategy.

Trade-offs between performance and the number of searches
and contracts: We quantify the trade-offs between the per-
formance ratios and the number of turns by the searcher or
the number of algorithm executions in the schedule.

For all problems, with the exception of randomized strate-
gies, we give the first results (to our knowledge) that apply
to both the multi-ray searching and multi-problem schedul-
ing domains. Concerning randomization, we show how to
apply and extend, in a non-trivial manner, ideas that stem
from known randomized ray-searching algorithms. In addi-
tion, we address an open question in [Bernstein et al., 2003],
who asked “whether the contract scheduling and robot search
problems have similarities beyond those that result from us-
ing cyclic strategies”. In particular, in Section 4 we present
non-cyclic strategies that improve upon the best cyclic ones.

2 Preliminaries
Ray searching. We assume a single robot and m rays, num-
bered 0 . . .m−1. For a target placement T at distance d from
the origin, we define the competitive ratio of a strategy as

α = sup
T

cost for locating T
d

(1)

A strategy is round-robin or cyclic if it described by an in-
finite sequence {xi}∞i=0 as follows: in the i-th iteration, the
searcher explores ray (i mod m) by starting at the origin O,
reaching the point at distance xi from O, and then return-
ing to O. A cyclic strategy is called monotone, if the se-
quence {xi}∞i=0 is non-decreasing. A special class of mono-
tone strategies is the class of exponential strategies, namely
strategies in which xi = bi, for some given b > 1, which we
call the base of the strategy. Exponential strategies are of-
ten optimal among monotone strategies (see [Alpern and Gal,
2003]), and in many cases they are also globally optimal. In-
deed, for m-ray searching, the exponential strategy with base
b = m

m−1 attains the optimal competitive ratio [Gal, 1972]

α∗(m) = 1 + 2
bm − 1

b− 1
, b =

m

m− 1
. (2)

Note that α∗(m) = O(m), and α∗(m) → 1 + 2em as m →
∞.
Contract scheduling: We assume a single processor and n
problems, numbered 0 . . . n − 1. For interruption time t, let
`i,t denote the length (duration) of the longest execution of a
contract algorithm for problem i that has completed by time
t. Then the acceleration ratio of the schedule [Russell and
Zilberstein, 1991] is defined as

β = sup
t,i∈[0,...,n−1]

t

`i,t
. (3)

Similar to ray searching, a round-robin or cyclic strategy is
described by an infinite sequence {xi}∞i=0 such that in iter-
ation i, the strategy schedules an execution of a contract for
problem (i mod n), and of length equal to xi. The definitions
of monotone and exponential strategies are as in the context
of ray searching, and we note that, once again, exponential
strategies often lead to optimal or near-optimal solutions (see,



e.g., [Zilberstein et al., 2003] [López-Ortiz et al., 2014], [An-
gelopoulos et al., 2008]). In particular, for n problems, the
exponential strategy with base b = n+1

n attains the optimal
acceleration ratio [Zilberstein et al., 2003]

β∗(n) =
bn+1

b− 1
, b =

n+ 1

n
. (4)

Note that β∗(n) = O(n), and that β∗(n) → e(n + 1), for
n→∞.

Occasionally, we will make a further distinction
between worst-case and asymptotic performance.
Namely, the asymptotic competitive ratio is defined as

limT :d→∞
cost for locating T

d , whereas the asymptotic
acceleration ratio is defined as limt→∞ supi∈[0,...,n−1]

t
li,t

(assuming that the measures converge to a limit).

3 Search with probabilistic detection and
scheduling of randomized contracts

In this section we study the effect of uncertainty in search and
scheduling. In particular, we consider the setting in which the
detection of a target is stochastic, in that the target is revealed
with probability p every time the searcher passes over it. Sim-
ilarly, we address the problem of scheduling randomized con-
tract algorithms; namely, each execution of the (Monte Carlo)
randomized algorithm succeeds with probability p. This vari-
ant has been studied in [Alpern and Gal, 2003] only in the
context of linear search (i.e., when m = 2), and the ex-
act competitiveness of the problem is not known even in this
much simpler case. No results are known for general m.

In this setting, the search cost is defined as the expected
time of the first successful target detection. Moreover, for
every problem i and interruption t, we define E[`i,t] as the
expected longest contract completed for problem i by time t.
The competitive and the acceleration ratios are then defined
naturally as extensions of (1) and (3).

We begin with a lower bound on our measures.
Lemma 1. Every search strategy with probabilistic detection
has competitive ratio at least m2p , and every scheduling strat-
egy of randomized contract algorithms has acceleration ratio
at least np .

Proof. Consider first the search variant. Let S denote the set
of all points at distance at most d from the origin. Given a
search strategy and a point x ∈ S, let tkx denote the time in
which the searcher reaches x for the k-th time. We will first
show that for every k ≥ 1, there exists x ∈ S such that the
search cost at the time of the k-th visit of x is at least kmd/2.
To this end, we will need the assumption that the searcher
cannot perform infinitely small oscillations around a point.
More precisely, we will assume that, for arbitrarily small but
fixed ε > 0, if the searcher visits a point that belongs in an
interval of length ε on some ray, then it must leave the interval
before re-visiting this point in the future. This assumption is
required for technical reasons, but also applies naturally to
robotic search. Consider the partition of all points in S in
intervals of length ε; for each such interval I denote by cI
the point in the middle of interval. For given cI the searcher

needs to enter I , visit cI and eventually leave the interval I
k times, which incurs a cost of at least εk2 . Therefore, the
overall cost for visiting each center k times is at least kmd/2,
which further implies that there exists a point in S with the
desired property (namely, the center whose k-th visit occurs
last).

Given the above bound, we obtain that targets in S are
detected at expected cost at least

∑∞
k=1 p(1 − p)k−1tkx ≥∑∞

k=1 p(1 − p)k−1kmd/2 = md/(2p). The result follows
directly from (1).

Consider now the scheduling variant. For a given interrup-
tion time t and a given problem instance i, let li1, l

i
2, . . . l

i
ni

denote the lengths of the contracts for problem i that have
completed by time t, in non-increasing order. Let the ran-
dom variable `i,t denote the expected length of the longest
contract completed for problem i by time t. Then E[`i,t] =∑ni
j=1 p(1−p)j−1lij ≤ p

∑ni
j=1 l

i
j . Since

∑n−1
i=0

∑ni
j=1 l

i
j = t,

there exists a problem i for which E[`i,t] ≤ p tn . The claim
follows from the definition of acceleration ratio (3).

Theorem 2. There exists an exponential strategy for search-
ing with probabilistic detection that has competitive ratio at
most 1 + 8mp2 .

Proof. Let {xi}∞i=0 denote the searcher’s exponential strat-
egy, where xi = bi, for some b that will be chosen later in the
proof. Let d denote the distance of the target from the origin,
then there exists index l such that xl < d ≤ xl+m. We de-
note by Pk the probability that the target is found during the
k-th visit of the searcher, when all previous k − 1 attempts
were unsuccessful, hence Pk = (1− p)k−1p. We also define
qj
·
=
∑∞
k=j Pk = (1− p)j−1.

In order to simplify the analysis, we will make the assump-
tion that the searcher can locate the target only while it is
moving away from the origin (and never while moving to-
wards the origin); it turns out that this assumption weakens
the result only by a constant multiplicative factor.

We first derive an expression for the expected total cost
C incurred by the strategy. Note that first time the searcher
passes the target, it has traveled a total distance of at most
2
∑l+m−1
j=0 xj + d; more generally, the total distance tra-

versed by the searcher at its k-th visit over the target is at
most 2

∑l+km−1
j=0 xj + d. We obtain that the expected cost is

bounded by

C =

∞∑
k=1

Pk(2

l+mk−1∑
j=0

xj + d),

from which we further derive (using the connection between
Pk and qj) that the competitive ratio of the strategy is

α ≤ C

d
≤ 1 +

2

xl

∞∑
k=1

Pk

l+mk−1∑
j=0

xj

= 1 +
2

xl

l∑
j=0

xj+m−1 +
2

xl

∞∑
j=2

qj

m−1∑
i=1

xl+(j−1)m+i.



By rearranging the terms in the summations we observe that

∞∑
j=2

qj

m−1∑
i=1

xl+(j−1)m+i =

m−1∑
i=1

∞∑
j=2

qjxl+(j−1)m+i

=

m−1∑
i=1

xl+i

∞∑
j=2

((bm(1− p))j−1. (5)

By defining λ ·
= bm(1 − p), and by combining the above

inequalities we obtain that the competitive ratio is at most
α ≤ 1 + 2 bm

b−1
∑∞
j=0 λ

j . Note that unless λ < 1 the competi-
tive ratio is not bounded. Assuming that we can choose b > 1
such that λ < 1, the competitive ratio is

α ≤ 1 + 2
bm

b− 1
· 1

1− λ
. (6)

We will show how to choose the appropriate b > 1 so as to
guarantee the desired competitive ratio. To this end, we will
first need the following technical lemma.

Lemma 3. The function f : R+ → R with f(x) = ex(1 −
p) + ex p

2

4x − 1 has a root r such that 0 < r ≤ p
2 .

Proof. The function f is continuous in the interval (0,+∞),
and for x→ 0+, f(x) > 0. Suffices to show that there exists
y ≤ p

2 such that f(y) ≤ 0; then the existence of the desired
root follows from Bolzano’s theorem. For all x < 1 we have

f(x) ≤ 1

1− x

(
1− p+

p2

4x

)
− 1, since ex ≤ 1

1− x

≤
(
x− p

2

)2
x(1− x)

. (7)

Choosing y0 = p
2 , we obtain that f(y) ≤ 0, and the lemma

follows.

Let r denote the root of the function f , defined in the state-
ment of Lemma 3. We will show that choosing base b = m

m−r
yields the desired competitive ratio. It is straightforward to
verify that b > 1 and that λ = bm(1 − p) < 1. Hence, the
competitive ratio converges to the value given by the RHS
of (6). From the choice of b, we have that b − 1 = r

m−r and

bm ≤ er. We then obtain bm

b−1 ·
1

1−λ ≤
er(m−r)

r((1−(1−p)( m
m−r )

m
)
≤

mer

r((1−(1−p)er) . Recall that from Lemma 3, r is such that

1−(1−p)er = er p
2

4 . We thus obtain that bm

b−1
1

1−λ ≤
m
4p2 , and

from (6) it follows that the competitive ratio of the strategy is
at most 1 + 8m/p2.

Theorem 4. There exists an exponential strategy for schedul-
ing randomized contract algorithms that has acceleration ra-
tio at most enp + e

p .

Proof. Let b denote the base of the exponential strategy. It
is easy to see that the acceleration ratio is maximized for in-
terruptions t that are arbitrarily close to, but do not exceed
the finish time of a contract. Let t denote such an interrup-
tion time, in particular right before termination of contract

i + n, for some i > 0; in other words, t = bi+n+1−1
b−1 . Then

every problem has completed a contract of expected length
at least pbi by time t. Therefore, the acceleration ratio of
the schedule is at most β ≤ supi>0

bn+i+1

pbi(b−1) , and choosing
b = n+1

n we obtain that β ≤ enp + e
p . A more careful

analysis of the same strategy yields a better asymptotic ac-
celeration ratio. More specifically, it is easy to see that for
interruption t defined as above and for every problem j, the
strategy has completed a contract for problem j of expected
length at least

∑k
l=0 p(1 − p)lbi−nl, where k is such that

i − kn = i mod n. It follows that the acceleration ratio
is at most bn+1

p(b−1) ·
1∑k

l=0(
1−p
bn )

l . Choosing again b = n+1
n ,

and after some simple calculations, we have that the asymp-
totic acceleration ratio (obtained for k → ∞), is at most
(e− 1 + p)np +O( 1

p ).

4 Fault tolerance/redundancy in search and
scheduling

In Section 3 we studied the searching and scheduling prob-
lems in a stochastic setting. But what if the success proba-
bility is not known in advance? In the absence of such in-
formation, one could opt for imposing a lower bound r on
the number of times the searcher has to visit the target and,
likewise, a lower bound r on the number of times a contract
algorithm must be executed before its response can be trusted.
Alternatively, this setting addresses the issues of fault toler-
ance and redundancy in the search and scheduling domains.
The search variant has been studied in [Alpern and Gal, 2003]
only in the context of linear search (m = 2); as in the case of
probabilistic detection, even when m = 2 the exact optimal
competitive strategies are not known.

The following lemma follows using an approach similar to
the proof of Lemma 1.
Lemma 5. Every search strategy onm rays with redundancy
guarantee r ∈ N+ has competitive ratio at least rm2 .

We first evaluate the best exponential strategy.
Theorem 6. The best exponential strategy has competi-

tive ratio at most 2(
⌈
r
2

⌉
m − 1)

(
d r2 em
d r2 em−1

)d r2 em
+ 1 ≤

2e(d r2e(m− 1)) + 1.

Proof. Let {xi}∞i=0 denote the exponential strategy, with
xi = bi for some b to be fixed later. Suppose that the tar-
get is at distance d from the origin, and let l ∈ N be such
that xl < d ≤ xl+m. We need to consider cases con-
cerning the parity of r. If r is odd, i.e., r = 2k + 1 for
k ∈ N, then the cost of the strategy is upper bounded by
2
∑l
i=0 xi + 2

∑(k+1)m−1
i=1 xl+i + d = 2

∑(k+1)m−1
i=0 xi + d,

whereas if r is even, ie. r = 2k, the cost is bounded by
2
∑l
i=1 xi+2

∑km−1
i=1 xl+i+(xkm−d) = 2

∑km
i=0 xi−d. It

follows that the competitive ratio of the exponential strategy

is at most 1+2 b
(r+1)m

2 −1
b−1 , if r is odd, and at most 2 b

rm
2 −1
b−1 −1

if r is even. We observe that in both cases, the competitive ra-
tio is essentially identical to the competitive ratio of an expo-
nential strategy with base b, when searching for a single target



in d r2em rays without fault-tolerance considerations (with the
exception of the negligible additive unit terms). This moti-
vates the choice of b =

d r2 em
d r2 em−1

as the optimal base of the
exponential strategy, which yields a competitive ratio equal

to 2(d r2em−1)
(
d r2 em
d r2 em−1

)d r2 em
+1 ≤ 2e(d r2em−1)+1, if

r is odd, and 2(d r2em−1)
(
d r2 em
d r2 em−1

)d r2 em−1 ≤ 2e(d r2em−
1)− 1, if r is even.

Interestingly, we can show that there exist non-monotone
strategies, which, for r > 2, improve upon the (best) expo-
nential strategy of Theorem 6. For simplicity, let us assume
that r is even, although the same approach applies when r is
odd, and leads to identical results up to an additive constant.
In particular, we will consider the following strategy: In iter-
ation i, the searcher visits ray i mod m first up to the point
at distance xi−m, then performs r traversals of the interval
[xi−m, xi] (thus visiting r times each point of the said inter-
val), then completes the iteration by returning to the origin
(here we define xj = 0 for all j < 0). We call this strategy
NM-SEARCH (non-monotone search).
Theorem 7. Strategy NM-SEARCH has competitive ratio at

most r(m− 1)
(

m
m−1

)m
+ 2− r.

Proof. Suppose that the target lies at a distance d from the
origin, and let l ∈ N denote an index such that xl < d ≤
xl+m. Then the cost of locating the target is at most
l+m∑
j=0

(r(xj − xj−m) + 2xj−m) = r ·
m+l∑
j=0

xj + (2− r)
l∑

j=0

xj .

Setting xi = bi (which we will fix shortly), and given that
d > xl, we obtain that the competitive ratio is at most

α ≤ rbb
m+1

b− 1
+ (2− r) bl − 1

bl(b− 1)
≤ rbm+1

b− 1
+ (2− r), (8)

where the last inequality follows from the fact that bl > 1. We
now observe that (8) is minimized for b = m

m−1 . Substituting
in (8) yields

α ≤ r(m− 1)

(
m

m− 1

)m
+ 2− r.

It is very easy to show, by comparing the results of Theo-
rems 6 and 7, that the non-monotone strategy is superior to
the best exponential strategy for r > 2.

Consider now contract scheduling with redundancy param-
eter r, in the sense that the interruptible system may output
only the solutions of contracts that have been executed at least
r times by time t. In this setting, the best schedule is de-
rived from a pseudo-exponential strategy, which is defined in
phases as follows: in phase i ≥ 0, r contracts for problem i
mod n, and of length bi are executed, for given base b > i.
It turns out that this strategy attains the optimal acceleration
ratio. The proof of the following theorem uses techniques
from [López-Ortiz et al., 2014].

Theorem 8. The pseudo-exponential scheduling strategy
with base b = n+1

n has acceleration ratio at most

rn
(
n+1
n

)n+1
. Furthermore, this acceleration ratio is opti-

mal.

Proof. The pseudo-exponential strategy with base b can be
analyzed using the standard approach (e.g. as in [Zilberstein
et al., 2003]), and its acceleration ratio is equal to r b

n+1

b−1 ,
which is minimized for b = n+1

n . On the other hand, the
lower bound follows based on ideas very similar to [López-
Ortiz et al., 2014], which gives a tight lower bound on the
acceleration ratio of every schedule. In particular, the cru-
cial observation is that there exists an optimal schedule with
the property that whenever a new contract is about to be
scheduled, the problem with the smallest completed contract
length (where completion now is defined to multiplicity r)
will be chosen. The remaining technical details follow pre-
cisely along the lines of the proof of Theorem 1 in [López-
Ortiz et al., 2014].

A different setting stipulates that the schedule returns, upon
interruption t and for queried problem p, the r-th small-
est contract for problem p that has completed its execution
by time t. In this setting, we can still apply the pseudo-
exponential strategy (which is clearly non-monotone). We
can show, as in ray searching, that this strategy is better than
the best exponential strategy, albeit slightly so.

Theorem 9. The best exponential strategy for the n-problem
contract scheduling problem with redundancy parameter r
has acceleration ratio at most (rn+ 1)

(
1 + 1

rn

)rn ≤ ern+
e. Furthermore, there exists a non-monotone strategy which
improves upon the best exponential strategy for all n, r.

Proof. Let b denote the base of the exponential strategy. Con-
sider a worst-case interruption at time t, right before the end
of the n + i-th contract, i.e. at time t = bn+i+1−1

b−1 . Then,
for every problem p, the scheduler has completed r contracts
for p at lengths at least bi−(r−1)n. After some simple calcu-
lations, we derive that the acceleration ratio of the strategy
is at most b

rn+1

b−1 , which in turn is minimized for b = rn+1
rn ,

and which proves the claimed bound on the best exponential
strategy.

The non-monotone strategy is precisely the pseudo-
exponential strategy presented in Theorem 8. This strategy
is strictly better than the best exponential strategy, since the
function f(x) = (1 + 1

x )x is increasing; however, the gap be-
tween the two strategies is small. In particular, for n → ∞,
both strategies converge to the same acceleration ratio.

The strategies described above establish connections be-
yond those that result from the use of cyclic strategies.
More precisely, we have shown that non-cyclic ray-searching
algorithms have counterparts in the domain of contract-
scheduling; furthermore, the non-cyclic strategies improve
upon the best cyclic ones. We have thus addressed an open
question from [Bernstein et al., 2003], who asked whether
there exist connections between the two problems that tran-
scend cyclic strategies.



5 Randomized scheduling of contract
algorithms

In this section we study the power of randomization for
scheduling (deterministic) contract algorithms. Our approach
is motivated by the randomized strategy of [Kao et al., 1996]
for searching on m rays. We emphasize, however, that our
analysis differs in several key points, and most notably on the
definition of appropriate random events.

We will analyze the following randomized strategy : We
choose a random permutation π : {0, . . . n−1} → {0, . . . n−
1} of the n problems, as well as a random ε uniformly dis-
tributed in [0, 1). In every iteration i ≥ 0, the algorithm exe-
cutes a contract for problem π(i) mod nwith corresponding
length b1+ε, with b > 1.
Theorem 10. The acceleration ratio of the randomized strat-
egy is βr(n, b) = n bn+1 ln b

(bn−1)(b−1) .

Proof. Let t denote the interruption time. Observe that t can
be expressed as t = bk−1

b−1 b
δ , for some unique k ∈ N and δ

such that 1 ≤ bδ < bk+1−1
bk−1 . For convenience, we will call

the contract execution of length bi+ε the i-th contract of the
strategy, and i the contract index (with i ≥ 0). Note that
the start and finish times of the i-th contract are bi−1

b−1 b
ε and

bi+1−1
b−1 bε, respectively.
First, we need to identify the index of the contract during

the execution of which the interruption time t occurs; denote
this index by l. Note that it cannot be that l ≥ k + 1, since
bk+1−1
b−1 bε ≥ bk+1−1

b−1 > t. Similarly, it cannot be that l ≤ k−2

because bk−1−1
b−1 bε ≤ bk−b

b−1 < bk−1
b−1 ≤ t. We conclude that

either l = k, or l = k − 1. In particular, the random event
(l = k − 1) occurs only when bk−1

b−1 b
ε ≥ t = bk−1

b−1 b
δ , which

implies that ε ≥ δ.
Next, we need to evaluate the expected value of the ran-

dom variable D that corresponds to the length of the longest
contract for the problem that is requested at time t, and which
has completed at time t. This will allow us to bound the ac-
celeration ratio α of the randomized strategy, as

sup
t

t

E[D]
, with t =

bk − 1

b− 1
bδ ≤ bk+1 − 1

b− 1
. (9)

We consider two cases, depending on whether δ ≥ 1.
Case 1: δ ≥ 1. In this case, ε < δ, which implies, from the
above discussion that k = l. Therefore, the strategy will re-
turn one of the contracts with indices k− 1, k− 2, . . . , k−n,
namely the contract that corresponds to the requested prob-
lem. Due to the random permutation of problems performed
by the strategy, each of these indices is equally probable to
correspond to the requested problem. We thus obtain E[D] =
E[D | (k = l)] = 1

n

∑n
i=1 E[bk−i+ε] = 1

n

∑n
i=1 b

k−i b−1
ln b =

1
n
bk(bn−1)
bn ln b , where we used the fact that ε is uniformly dis-

tributed in [0, 1). Combining with (9) we obtain βr(n, b) ≤
bk+1−1
b−1

1
E[D] ≤ n

bn+1 ln b
(bn−1)(b−1) .

Case 2: 0 ≤ δ < 1, in other words, bδ < b. Note that in
this case, the events (l = k) and (ε < δ) are equivalent; sim-

ilarly for the events (l = k − 1) and (ε ≥ δ). The following
technical lemma establishes E[D] in this case.

Lemma 11. E[D] = 1
n
bk−1(bn−1)bδ

bn ln b.

Proof. Denote by F , and F the events (l = k) and (l =
k − 1), respectively. We have

E[D] = E[D | F ] Pr(F ) + E[D | F ] Pr(F ) (10)

Moreover,

E[D | F ] =
1

n

n∑
i=1

E[bk−i+ε | F ]

=
1

n

bδ − 1

ln b

1

Pr(F )

n∑
i=1

bk−i

=
1

n

bδ − 1

ln b

bk−n

Pr(F )
bn − 1

b− 1
. (11)

Similarly, we have that

E[D | F ] =
1

n

n∑
i=1

E[bk−1−i+ε | F ]

=
1

n

b− bδ

ln b

1

Pr(F)

n∑
i=1

bk−1−i

=
1

n

bδ − 1

ln b

bk−1−n

Pr(F)
bn − 1

b− 1
. (12)

Here, we use the facts that

E[bε | F ] =

∫ b

bδ
x · 1

Pr(F) ln b
, and

E[bε | F ] =

∫ bδ

1

x · 1

Pr(F )
ln b.

Combining (10), (11) and (12) we obtain, after some calcula-
tions, that

E[D] =
1

n

bk−1(bn − 1)bδ

bn
ln b, (13)

which completes the proof.

Combining Lemma 11 and (9) we obtain again that
βr(n, b) ≤ (bk−1)bδ

b−1
1

E[D] ≤ n
bn+1 ln b

(bn−1)(b−1) .

5.1 Evaluation of the randomized strategy
In order to evaluate the best randomized exponential strategy,
we must find the b that minimizes the function βr(n, b). It is
easy to see, using standard calculus, that βr(n, b) has a unique
minimum, for given n. However, unlike the deterministic
case, there is no closed form for β∗r (n) = minb>1 βr(n, b).
Thus, we must resort to numerical methods.

Figure 1 illustrates the performance of the randomized
strategy β∗r (n) versus the deterministic optimal strategy, de-
noted by β∗(n). We observe that β∗r (n) ≤ 0.6β∗(n), for
n = 1, . . . 80. In fact, we can show analytically that for



n → ∞, β∗r (n) converges to a value that does not ex-
ceed e

e−1 (n + 1) (recall that β∗(n) converges to e(n + 1)).
More precisely, choosing b = n+1

n we obtain β∗r (n) ≤
(n+ 1) (1+1/n)n ln(1+1/n)

((1+1/n)n−1)(1+1/n) , which converges to (n+ 1) e
e−1 ,

a value extremely close to the computational results.

 0

 20

 40

 60

 80

 100

 120

 140

 0  10  20  30  40  50  60  70  80

randomized
deterministic

Figure 1: Plots of the randomized (β∗r (n)) and the determin-
istic (β∗(n)) acceleration ratios, as functions of n.

6 Trade-offs between performance and
executions of searches/algorithms

Most previous work on ray searching assumes that the
searcher can switch directions at no cost. In practice, turn-
ing is a costly operation in robotics, and thus should not
be ignored. In a similar vein, we usually assume that there
is no setup cost upon execution of a contract algorithm,
however some initialization cost may be incurred in prac-
tice. One could address this requirement by incorporating
the turn/setup cost in the performance evaluation (see [De-
maine et al., 2006] for ray searching with turn cost). In this
section we follow a different approach by studying the trade-
off between performance and the number of searches and/or
executions of algorithms.

We will make a distinction between two possible settings.
In the first setting, we use the standard definitions of search
and scheduling as given in Section 1. Specifically, we address
the question: Given a target at distance t (resp. an interruption
t) what is the minimum number of turns (resp. executions of
contracts) so as to guarantee a certain competitive ratio (resp.
acceleration ratio)? We call this the standard model.

The second setting is motivated by applications in which
searching previously explored territory comes at no cost. One
such example is the expanding search paradigm [Alpern and
Lidbetter, 2013]. Another example is parallel linear searching
on arrays modeled as ray searching [Kirkpatrick, 2009], in
which the searcher can “jump” to the last-explored position.

While the latter setting does not have a true counterpart
in the realm of contract scheduling, it still gives rise to a

scheduling problem. Suppose we have n problems, each with
its own statement of an interruptible algorithm (as opposed
to a contract algorithm). In addition, we allow the use of pre-
emptions, in that we can preempt, and later resume the execu-
tion of an algorithm. In this context, we face the scheduling
problem of interleaving the executions of interruptible algo-
rithms. Note that we can still use the acceleration ratio, given
by (3)) as the performance measure, with the notable differ-
ence that here `i,t denotes the total (aggregate) time of algo-
rithm executions for problem i, by time t. We call the above
model the preemptive model.

6.1 Trade offs in the preemptive model
We consider first the problem of scheduling interleaved exe-
cutions of interruptible algorithms. Clearly, the optimal ac-
celeration ratio is n: simply assign each time unit uniformly
across all problems, in a round-robin fashion. However, this
optimal strategy results in a linear number of preemptions,
as function of time. We thus consider the following geomet-
ric round-robin strategy, which is a combination of uniform
and exponential strategies. The strategy works in phases;
namely, in phase i (i ≥ 0), it executes algorithms for prob-
lems 0 . . . n−1 with each algorithm allotted a time span equal
to bi, for fixed b > 1 (we will call each algorithm execution
for problem i a job for problem i).

Lemma 12. The geometric strategy has (worst-case) accel-
eration ratio n(b+ 1), asymptotic acceleration ratio nb, and
for any t, the number of preemptions incurred up to t is at
most n logb

(
t(b−1)
n + 1

)
+ n.

Proof. The worst-case acceleration ratio of the geometric
strategy is attained at interruptions right before the end of
a phase, say phase i, in other words, for interruption time
t = n b

i+1−1
b−1 . At this time, every problem has been completed

to an aggregate job length equal to ` =
∑i−1
j=0 b

j = bi−1
b−1 . It

is very easy to verify that tl ≤ n(b+ 1), and that tl → nb, as
t→∞ (i.e., for i→∞).

We now focus on bounding the number of preemptions.
Suppose that the interruption t occurs in the i-th phase,
then we can express t as t = n

∑i−1
j=0 b

j + xnbi, where

x ∈ [0, 1), therefore we obtain that t
n ≥

bi−1
b−1 , and hence

i ≤ logb

(
t(b−1)
n + 1

)
. On the other hand, the number of in-

terruptions by time t is It ≤ in+dxne ≤ n(i+1). The result
follows.

We will now show that the geometric strategy attains es-
sentially the optimal trade-offs.

Theorem 13. For any strategy with (worst-case) accelera-
tion ratio n(1 + b) − ε for any b > 1, and constant ε > 0,
there exists t such that the number of preemptions up to time
t is at least n logb

(
t(b−1)
n + 1

)
− n. Moreover, any strategy

with asymptotic acceleration ratio nb(1−ε), for any constant

ε > 0, incurs n logb

(
t(b−1)
n + 1

)
−o
(
n logb

(
t(b−1)
n + 1

))
preemptions by time t > t0, for some t0.



Proof. For the first part of the theorem, suppose, that a strat-
egy S has (worst-case) acceleration ratio β = n(b + 1) − ε,
and incurs fewer than n logb

(
t(b−1)
n + 1

)
− n preemptions

for any t. We will first show that there exists a strategy S′
with the following properties: i) at its first phase, S executes
n jobs, all of the same unit length, for each of of the n prob-
lems; ii) the number of preemptions of S′ at time t does not
exceed the number of preemptions of S by more than n; and
iii) S′ has no worse acceleration ratio than S. To see this,
we will use the canonical assumption that interruptions oc-
cur only after at least a job per problem has been executed
(see [Bernstein et al., 2003]). Let l1, l2, . . . , ln denote the ag-
gregate lengths of jobs in this first phase, in non-decreasing
order; here li > 1, for all i (since we may assume, from nor-
malization, that the smallest job length is equal to 1). Con-
sider then a strategy S′ which first schedules n unit jobs, one
per problem, followed by n more jobs (again one per prob-
lem) of lengths l1−1, . . . ln−1. From that point onwards, S′
is precisely S. In other words, S′ is derived by substituting
the initial phase of S by two sub-phases, as defined above. It
is easy to see that S′ has no worse acceleration ratio than S.
Moreover, since S′ introduces at most n new job executions,
in comparison to S. Therefore, S′ is such that at time t at
most n logb

(
t(b−1)
n + 1

)
preemptions are incurred.

Let t be arbitrarily close to, but smaller than nl(b +
1). Then from the assumption, S′ must incur fewer than
n logb

(
n(b2−1)

n + 1
)

preemptions by time t. This would im-
ply that there is a problem for which S′ does not schedule a
job within the interval [n, (b + 1)n], from which it follows
that the acceleration ratio of S′ is at least n(b + 1), since at
time t there is a problem that has been executed to aggregate
length equal to 1, which is a contradiction.

For the second part of the theorem, fix a strategy S of
asymptotic acceleration ratio β = nb(1 − ε). Consider a
partition of the timeline in phases, such that the i-th phase
(i ≥ 0) spans the interval [n

∑i−1
j=0 b

j , n
∑i
j=0 b

j), and thus
has length nbi. We will show that there exists i0 > 0 such that
for all i ≥ i0, S must incur at least n preemptions in its i-th
phase. Since the geometric strategy with base b incurs exactly
n preemptions in this interval, for all i, this will imply that we
can partition the timeline t ≥ i0 in intervals with the property
that in each interval, S incurs at least as many preemptions as
the geometric strategy, which suffices to prove the result.

Suppose, by way of contradiction, that S incurred at most
n − 1 preemptions within T = [n

∑i−1
j=0 b

j , n
∑i
j=0 b

j ].
Therefore, there exists at least one problem p with no execu-
tion in T . Consider an interruption at time t = n

∑i
j=0 b

j−δ,
for arbitrarily small δ > 0. Thus, the aggregate job length for
p by time t in S is `p,t ≤ n

∑i−1
j=0 b

j = n b
i−1
b−1 . Since S

has asymptotic acceleration ratio β, there must exist i0 and
ε′ with 0 < ε′ < ε such that for all i ≥ i0, n b

i+1−1
b−1 − δ ≤

nb(1 − ε′) b
i−1
b−1 , which it turn implies that ε′ b

i−b
b−1 ≤ δ for all

i > i0. This is a contradiction, since ε′ depends only on i0,
and δ can be arbitrarily small.

Next, we consider ray-searching and the trade-offs between
the competitive ratio and the number of turns. Recall that
in the model we study, the searcher incurs cost only upon
visiting newly explored territory. In particular, we define the
geometric search strategy as a round-robin search of the rays;
more precisely, in the i-th phase of the strategy each ray is
searched up to distance bi from the origin.

Theorem 14. The geometric search strategy has (worst-case)
competitive ratio (b+ 1)m, asymptotic competitive ratio bm,
and is such that if the searcher had incurred cost d, the over-
all number of turns is at most m logb

(
d(b−1)
m + 1

)
+ m.

Moreover, for any search strategy with (worst-case) accel-
eration ratio m(1 + b) − ε for any b > 1, and constant
ε > 0, there exists a target placement such that the searcher
incurs cost d, and the number of number of turns is at least
m logb

(
d(b−1)
m + 1

)
−m. Last, any strategy with asymptotic

competitive ratio mb(1 − ε), for any constant ε > 0, makes

m logb

(
d(b−1)
m + 1

)
− o

(
m logb

(
d(b−1)
m + 1

))
turns for

search cost d > d0, for some d0.

Proof. The proof follows by arguments very similar to the
proofs of Lemma 12 and Theorem 13. Concerning the per-
formance of geometric search, let 0, . . . ,m − 1 denote the
rays visited (in round-robin order) during each phase. We
note that the worst-case placement of the target is attained
at points right after the turn point of the searcher in the end
of phase i, and in particular after the searcher has incurred
cost d = m bi+1−1

b−1 , whereas the distance of the target from

the origin is equal to
∑i−1
j=0 b

j = bi−1
b−1 . The bounds on the

competitive ratio and the number of turns follow then by the
arguments in Lemma 12.

The trade-offs between the competitive ratio and the num-
ber of turns follow from ideas very similar to Theorem 13.
More precisely, suppose that a strategy S has (worst-case)
competitive ratio α = m(b + 1) − ε, and incurs fewer than
m logb

(
d(b−1)
m + 1

)
− m turns, where d is the search cost.

We can show that there exists a strategy S′ of competitive
ratio at most α, with at most m logb

(
d(b−1)
m + 1

)
turns for

some d, and is such that in its initial phase, each ray is
searched up to distance 1 from the origin. We then use strat-
egy S′ to derive a contradiction (this construction is as in the
proof of Theorem 13).

Last, we can show the claimed trade-off between com-
petitive ratio and the number of turns. Fix a strategy S of
asymptotic competitive ratio α = mb(1 − ε). Consider a
partition of the timeline in phases, such that the i-th phase
(i ≥ 0) spans the interval [m

∑i−1
j=0 b

j ,m
∑i
j=0 b

j), and thus
has length mbi. Since the searcher has unit speed, we ob-
tain the same partition concerning the cost incurred by the
searcher. We will show that there exists i0 > 0 such that for
all i ≥ i0, S must make at least m turns in its i-th phase.
Since the geometric strategy with base b makes exactly m
turns in this interval, for all i, this will imply that we can par-
tition the cost incurred by the searcher d ≥ d0 in intervals



with the property that in each interval, S incurs at least as
many turns as the geometric strategy, which suffices to prove
the result.

Suppose, by way of contradiction, that S made at most
m − 1 turns within D = [m

∑i−1
j=0 b

j ,m
∑i
j=0 b

j ]. There-
fore, there exists at least one ray r which was not searched in
D. This implies that at time t = m

∑i
j=0 b

j − δ, for arbitrar-
ily small δ > 0, there is a ray that has not been searched to
depth more than m

∑i−1
j=0 b

j = m bi−1
b−1 . The remainder of the

proof follows precisely as the proof of Theorem 13, by con-
sidering a target on ray r placed at distance m bi−1

b−1 + ε from
the origin.

6.2 Trade offs in the standard model
The ideas of Section 6.1 can also be applied in the standard
model. In this setting, however, exponential strategies are a
more suitable candidate.
Theorem 15. For contract scheduling, the exponential strat-
egy with base b has acceleration ratio bn+1

b−1 , and schedules at
most logb(t(b − 1) + 1) + 1 contracts by t. Moreover, any
strategy with acceleration ratio at most b

n+1

b−1 − ε for b > 1,
and any ε > 0 must schedule at least logb(t(b − 1) + 1) −
o(logb(t(b− 1) + 1)) contracts by t, for all t ≥ t0.

Proof. It is known that any exponential strategy with base b
has acceleration ratio bn+1

b−1 . If an interruption t occurs during

the i-th execution of a contract, then t ≥
∑i−1
j=0 b

j = bi−1
b−1 .

Thus, i ≤ logb(t(b−1)+1), and since the number of contracts
by time t is at most i+ 1, we obtain the desired upper bound.

For the lower bound, we will show a result even stronger
than claimed in the statement of the theorem. More precisely,
we will show that any schedule S with acceleration ratio β =
bn+1

b−1 must schedule at least n + 1 contracts in the timespan
T = [

∑i−n−1
j=0 bj ,

∑i
j=0 b

j ], for all i (we will thus allow even
ε = 0). Since the exponential strategy with base b schedules
exactly n+1 contracts in this interval, this will imply that we
can partition the timeline in intervals with the property that
in each interval, S schedules at least as many contracts as the
exponential strategy, which suffices to prove the result.

Suppose, by way of contradiction, that S scheduled at
most n contracts in the timespan T = [

∑i−n−1
j=0 bj ,

∑i
j=0 b

j ].
Therefore, at most one contract for each problem has been ex-
ecuted in this interval. Consider an interruption at time t =∑i
j=0 b

j − δ, for arbitrarily small δ > 0. From the assump-
tion, there is at least one problem p for which S did not com-
plete any contract in the time span [

∑i−n−1
j=0 bj ,

∑i
j=0 b

j−δ].
Thus, the largest contract for p that has completed by time t in
S can have length at most l =

∑i−n−1
j=0 bj = bi−n−1

b−1 . Since
S has acceleration ratio β, it must be that t ≤ βl, which gives

bi+1 − 1

b− 1
− δ ≤ bn+1

b− 1

bi−n − 1

b− 1
,

which it turn implies that δ ≥ bn+1

(b−1)2 −
1
b−1 . This is a contra-

diction, since δ can be chosen to be arbitrarily small, and in

particular, smaller than bn+1

(b−1)2 −
1
b−1 .

For ray searching in the standard model, we can obtain sim-
ilar results. Recall that in this model, the searcher incurs cost
at all times it moves, regardless of whether it explores new
territory. We can prove the following theorem along the lines
of the proof of Theorem 15.

Theorem 16. For ray searching in the standard model, the
exponential strategy with base b has competitive ratio 1 +
2 b

m−1
b−1 , and for any distance d traversed by the searcher it

makes at most logb(d(b − 1) + 1) + 1 turns. Moreover, any
strategy with competitive ratio at most 1+2 b

m−1
b−1 , for any b >

1 incurs at least logb(d(b−1)+1)+1−o(logb(d(b−1)+1)
turns.

Proof. It is known that the exponential strategy with base b
has competitive ratio 1 + 2 b

m−1
b−1 . For given distance d tra-

versed by the searcher, the number of turns is computed us-
ing precisely the same argument as the number of contract
executions of the exponential strategy in the proof of Theo-
rem 15. Likewise, for the lower bound, we will show that any
strategy S with competitive ratio α = 1 + 2 bm

b−1 must make
at least m turns in the timespan [

∑i−m
j=0 b

j ,
∑i
j=0 b

j ] (recall
that since the searcher has unit speed, time coincides with
the distance traversed by the searcher). Since the exponential
strategy with base b searches exactly m rays in this interval,
this will imply that we can partition the timeline (and thus
the distances traversed by the searcher) in intervals with the
property that in each interval, S searches at least as many rays
as the exponential strategy, which suffices to prove the result.

Suppose, by way of contradiction, that S made fewer than
m turns in the timespan T = [

∑i−m
j=0 b

j ,
∑i
j=0 b

j ]. There-
fore, there exists a ray that has not been searched in T , say
ray r. Let ρ denote the depth at which r has been searched up
to time

∑i−m
j=0 b

j , and consider a target placement in r at dis-
tance ρ+ δ, for arbitrarily small δ. For this target placement,
the competitive ratio is minimized when ρ is maximized;
moreover, since r was not searched in T , we obtain that ρ is
at most 1

2

∑i−m
j=0 b

j = bi−m+1−1
2(b−1) . Here, the factor 1/2 is due

to the search traversing each ray in both directions (away and
towards the origin). Note also that the target is discovered, at
the earliest, at time

∑i
j=0 b

i+ρ+ δ = bi+1−1
b−1 +ρ+ δ. Since

the strategy has competitive ratio α = 1 + 2 bm

b−1 , it must be
that

bi+1 − 1

b− 1
+ ρ+ δ ≤ (1 + 2

bm

b− 1
)(ρ+ δ),

from which, after some simplifications, we obtain that
2 bm

b−1δ ≥
bm

(b−1)2 −
1
b−1 , which is a contradiction, since δ

can be arbitrarily small.

7 Conclusion
In this paper we demonstrated that many variants of search-
ing for a target on concurrent rays and scheduling contract



algorithms on a single processor are amenable to a com-
mon approach. There are some intriguing questions that re-
main open. Can we obtain a Θ(m/p)-competitive algorithm
for searching with probabilistic detection? We believe that
cyclic strategies are not better than Θ(m/p2)-competitive.
What are the optimal (non-monotone) algorithms for search-
ing/scheduling with redundancy? Note that the precise com-
petitive ratio of these problems is open even whenm = 2. As
a broader research direction, it would be very interesting to
address searching and scheduling in heterogeneous environ-
ments. For example, one may consider the setting in which
each ray is characterized by its own probability of successful
target detection.
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