
Journal of Scheduling (2022) 25:391–404
https://doi.org/10.1007/s10951-021-00715-5

Amixed-integer programming approach for solving university course
timetabling problems

Efstratios Rappos1 · Eric Thiémard1 · Stephan Robert1 · Jean-François Hêche1

Accepted: 2 November 2021 / Published online: 15 February 2022
© The Author(s) 2022

Abstract
This article presents a mixed-integer programming model for solving the university timetabling problem which considers the
allocation of students to classes and the assignment of rooms and time periods to each class. The model was developed as
part of our participation in the International Timetabling Competition 2019 and produced a ranking of second place at the
competition. Modeling a timetabling problem as a mixed-integer program is not new. Our contribution rests on a number
of innovative features adapted to this problem which allow for a reduction in the number of variables and constraints of the
mixed-integer program to manageable levels achieving a reasonable computational performance. The proposed algorithm
consists of a first-stage method to obtain an initial feasible solution and a second-stage local search procedure to iteratively
improve the solution value, both of which involve the optimization of mixed-integer programming problems.

Keywords University course timetabling · ITC 2019 · Timetabling problems · Integer programming · Combinatorial
optimization · Matheuristics

1 Introduction

The general university course timetabling problem consid-
ers the challenge of allocating university students to classes
and assigning days and times to each class. The problem
itself is not new, and much research has been devoted for
its resolution (Schmidt and Ströhlein 1980; de Werra 1985)
even before the advent of personal computers. In its simplest
case, the problem considers only the planning of curricula
without taking into account the students (Bettinelli et al.
2015; Bonutti et al. 2012), whereas the full problem also
considers the allocation of students to individual classes
and the production of a personalized timetable for each
student. Recent surveys of the literature on timetabling prob-
lems, their mathematical modeling and solution approaches
include (MirHassani and Habibi 2013; Pillay 2014; Qu et al.
2009; Schaerf 1999), which outline a number of operations
research and optimization methods for their solution, and
(Hwang et al. 2004; Kingston 2013; Lewis et al. 2007) where
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some variants of the problemare studied. The full timetabling
problem has been the focus of recent research (Müller and
Rudová 2016;Rudová et al. 2011) and used for the automated
construction of real-life university timetables.

This article considers the university timetabling problem
that is specified in the International Timetabling Competition
(ITC) 2019 (Müller et al. 2018). The competition defined a
timetabling problem where each class has to be assigned a
time and, if needed, a room, while at the same time the stu-
dents have to be grouped into classes. A number of additional
distribution constrains are imposed when necessary, and the
optimization goal is to minimize the total penalty associated
with the solution. The competition consists of 30 real-life
university timetabling instances. The problem is challeng-
ing as a typical timetable contains hundreds or thousands of
classes which are interlinked because they must share the
same, often limited, resources such as rooms, lecturers, stu-
dents and time slots.

Our proposed solution approach consists of modeling
the problem as a mixed-integer programming (MIP) model
which is too large to solve directly. We then develop two
algorithms to firstly obtain a feasible solution and subse-
quently improve the quality of the solution. The improvement
method works by optimizing a sequence of smaller MIPs
and as such is closely related to known matheuristics (Dor-
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neles et al. 2014; Fonseca et al. 2016; Lindahl et al. 2018)
and very large-scale neighborhood search algorithms (Ahuja
et al. 2002; Burke et al. 2010; Kiefer et al. 2017; Pisinger and
Ropke 2010) for timetabling, where a subset of the problem
variables is fixed to reduce the problem size and the MIP
solver is guided to iteratively find better solutions.

2 Problem definition

We begin by describing the general characteristics of the
thirty problem instances of this competition and the require-
ments for feasibility. The complete problem definition can
also be found in the description of the competition (Müller
et al. 2018). Each timetable problem consists of rooms,
classes with their course structure, distribution constraints,
and students with their course demands. The aim is to place
classes in the available times and rooms as well as to sec-
tion students into classes based on the courses they require,
respecting various constraints and preferences.

A course consists of a hierarchical structure of classes
C , i.e., events to be scheduled. Each class c ∈ C must be
assigned a unique time assignment, chosen from a list of
possible time assignments Tc. Some classes may also require
a room to be assigned, chosen from a list of roomassignments
Rc. A class can meet several times a week during certain
weeks of the semester. In that case, all meetings of the class
start and endat the same timeandare placed in the same room.
Each time assignment consists of a start time, duration, day(s)
of week and week(s) of the semester that the class meets, for
example, ‘between9 and10 amonMondays andWednesdays
ofweeks 1, 3, 5, 7, 9.’ The solutionmust specify for each class
one time and, if applicable, one room assignment. It is not
permitted for two classes to share the same room at the same
time, nor for a room to be used when it is not available—a
list of unavailable slots is provided where applicable for each
room.

Moreover, a set of hard distribution constraints is pro-
vided, each one imposing restrictions to the time and/or room
choices that can be assigned to a subset of the classes. For
example, a distribution constraint may require some classes
to start at the same time (SameStart), take place on the same
day (SameDay), use the same room (SameRoom), not take
place at the same time (NotOverlap), not take place at the
same time and allow for sufficient travel time (SameAtten-
dees), impose an order on the starting time of the classes
(Precedence), require a minimum amount of time separation
between them (MinGap) or require the use of a maximum
number of daily time slots (MaxDayLoad). Overall, there
are 19 types of distribution constraints defined in Müller
et al. (2018), although not all types apply to every problem
instance.

A set of soft distribution constraints is also defined, each
associated with a penalty, which are identical to the hard
distribution constraints above but are allowed to be violated
in the solution.

Each student s ∈ S is assigned a list of courses Os ⊂ O
which he must attend. Courses are linked to classes via a
complex hierarchical structure. Each course o ∈ O contains
one or many course configurations f ∈ Fo. In turn, each
course configuration defines a number of subparts Pf ⊂ C .
Under this hierarchy, each student must attend one class of
every subpart of a single configuration for each course from
his or her list of courses (Müller et al. 2018).

This implies that if a particular class is assigned to a stu-
dent, then this may forbid or may impose some choices of
other classes in the course for this student. A class may also
have a parent class defined which means that any student
who attends the class must also attend its parent class.

It is possible that a student is allocated classes that result
in a clash because he is unable to attend all of them: a clash
is defined as the assignment of two classes to a student which
overlap in time or the travel time between them is not suffi-
cient; this situation is allowed but penalized.

The optimization goal is to find a solution which satisfies
the hard constraints and minimizes the total penalty associ-
ated with the choice of time and room assignments, violated
soft distribution constraints and student clashes.

3 Themixed-integer programming
formulation

The mathematical model consists of a formulation of the
timetabling problem as a large linear mixed-integer pro-
gram. The program is, in general, too large to be solved
directly and an incremental solution method was developed
to obtain a feasible solution and progressively improve the
objective function. This approach resembles other two-stage
matheuristic algorithms of literature such as (Lindahl et al.
2018) employing a combination of a MIP model and a local
search heuristic.

3.1 Decision variables

The formulation uses four types of binary 0–1 decision
variables: x , y, z and Z , which represent, respectively, the
class time assignment, the class room assignment, the allo-
cation of students to classes and the allocation of students
to course configurations. These variables are defined in eqs.
(1), (2), (3) and (4). A feasible solution to the timetabling
problem can be unambiguously represented by these vari-
ables.

For every class c ∈ C and time assignment t ∈ Tc:
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xc,t =
{
1 if the class c takes place at time t,
0 otherwise

(1)

For every class c ∈ C and potential room assignment r ∈ Rc:

yc,r =
{
1 if the class c takes place in room r ,
0 otherwise

(2)

For every student s ∈ S and class c ∈ C :

zs,c =
{
1 if the student s is assigned to class c,
0 otherwise

(3)

For every student s ∈ S and course configuration f ∈ Fo
belonging to a course o ∈ Os that he may attend:

Zs, f =
{
1 if student s attends the configuration f ,
0 otherwise

(4)

The rest of the section presents the formulation of the lin-
ear MIP constraints and objective function using the above
variables. We first describe the fundamental constraints rep-
resenting the basic requirements among classes, rooms and
students, and later on the formulation of the hard distribution
constrains and the components of the objective function.

3.2 Fundamental constraints

The fundamental constraints correspond to the main require-
ments of what defines an acceptable solution to the time
tabling problem.Wedescribe eight types of fundamental con-
straints whose interpretation is straightforward.

C1: Every class c must have a time assignment t . For every
class c ∈ C :

∑
t∈Tc

xc,t = 1 (5)

C2: Every class c must be assigned a room r , where appli-
cable. For every class c ∈ C requiring a room:

∑
r∈Rc

yc,r = 1 (6)

C3: Every student s must attend exactly one class c from
each subpart Pf of the selected course configuration
f for each course o that he must attend. For each stu-
dent s ∈ S, for each course o ∈ Os , for each course
configuration f ∈ Fo and for each Pf ⊂ C :

∑
c∈Pf

zs,c = Zs, f (7)

C4: If a class c has a parent class c′ defined, whenever the
class c is assigned to a student s then the parent class c′
must also be assigned to that student. For every student
s ∈ S and class c ∈ C with a parent class c′ ∈ C :

zs,c ≤ zs,c′ (8)

C5: Every student must be assigned a course configuration
f ∈ Fo, for every course o that he attends. For every
student s ∈ S and course o ∈ Os :

∑
f ∈Fo

Zs, f = 1 (9)

C6: The capacity Mc of each class in terms of the number
of students must be satisfied. For every class c ∈ C :

∑
s∈S

zs,c ≤ Mc (10)

C7: A room cannot be used when it is unavailable. For every
class c ∈ C and for every t ∈ Tc and r ∈ Rc, if the time
assignment t overlaps with a period of unavailability
of the assigned room r , then both these assignments
cannot be made:

xc,t + yc,r ≤ 1 (11)

C8: Two classes cannot happen at the same time in the same
room. For every pair of classes c1, c2 ∈ C and every
potential common room assignment r ∈ Rc1 ∩ Rc2 , and
every time assignment t1 ∈ Tc1 and t2 ∈ Tc2 where t1
and t2 overlap, not all four assignments can be made
simultaneously:

xc1,t1 + xc2,t2 + yc1,r + yc2,r ≤ 3. (12)

3.3 Distribution constraints

In addition to the fundamental constraints, further linear con-
straints are added to theMIP to represent the hard distribution
constraints. Since these constraints involve only the classes
and not the students, they only contain the x and y variables.

The inclusion of the hard distribution constraints DH in
the model is done in a similar way toC8 as follows: for every
pair of classes c1, c2 ∈ Cd of a hard distribution constraint
d ∈ DH, we calculate if a particular combination of time and
room assignments results in a violated constraint. If that is
the case, a constraint C9 is added as shown below.

C9: For every pair of classes of a hard distribution con-
straint, forbid combinations of time and room assign-
ments that result in a violated constraint. For every
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c1, c2 ∈ Cd belonging to a hard distribution constraint
d ∈ DH and every offending combination of t1 ∈ Tc1 ,
t2 ∈ Tc2 , r1 ∈ Rc1 and r2 ∈ Rc2 :

xc1,t1 + yc1,r1 + xc2,t2 + yc2,r2 ≤ 3. (13)

For example, consider a SameDays constraint on the classes
{c1, c2} requiring the two classes to take place on the same
day. For every pair of time assignments t1 ∈ Tc1 and t2 ∈
Tc2 representing different days, one constraint (13) is added,
regardless of the choice of rooms (for any yc1,r1 , yc2,r2 ).

The formulation C9 works for all distribution constraints
that can be expressed as separate statements ‘for each pair of
classes’ belonging to the distribution constraint. These con-
straints are the following 15 types of distribution constraint of
Müller et al. (2018): SameStart, SameTime, DifferentTime,
SameDays, DifferentDays, SameWeeks, DifferentWeeks,
SameRoom,DifferentRoom,Overlap, NotOverlap, SameAt-
tendees, Precedence, WorkDay and MinGap.

The remaining four types of distribution constraints, how-
ever, cannot be fully represented as a set of constraints among
pairs of classes. These are the MaxDays, MaxDayLoad,
MaxBreaks and MaxBlock types of constraints, which are
referred to as ‘special distribution constraints’ in the descrip-
tion of the instances on the competition website1.

For these special distribution constraints, it is necessary
that the corresponding inequalities C9 are satisfied for every
pair of classes in the constraint, but this is not sufficient. A
simple counterexample is to consider a MaxDays constraint
requiring three classes to take place over a total of 2 days or
less: in that case, the constraint will always be satisfied for
every pair of classes but, taken as a group of three, the classes
will violate the constraint if they take place on three different
days.

In our implementation, we begin by generating the nec-
essary constraints C9 for each pair of classes in the special
distribution constraint as usual and implement a check by
means of a software lazy constraint callback to ensure fea-
sibility. Each time a feasible solution is found during the
solution of the MIP, we perform a check if the values of the
solution violate any of the special distribution constraints. In
the case that a special constraint is violated, we reject the
current solution by adding the following constraint:

C10: Every time an integer solution is found, check that all
hard special distribution constraints present are satis-
fied, if any are not, then add the following inequality
and continue the optimization.

(xc1,t1 + yc1,r1) + · · · + (xcN ,tN + ycN ,rN ) ≤ 2N − 1

(14)

1 International timetabling competition 2019. https://www.itc2019.org

where N is the number of classes contained in the specifica-
tion of the special constraint which was found to be violated.
This inequality forbids the current combination of x and
y variables of the N classes. The constraints C10 are too
numerous to include in the formulation from the start of the
optimization, and with this approach, they are only added as
needed.

3.4 Objective function

The objective function of the problem consists of four linear
terms with instance-specific weights. The first two terms are
simply the weighted sum of the time assignment x and room
assignment y variables. The last two terms relate to violated
soft distribution constraints and student clashes. In the rest of
this section, we describe the inclusion of these two elements
into themodel, and in particular the student clasheswhich are
the most complex part of the formulation. Despite the added
complexity, the inclusion of all four terms in the objective
function is crucial in order to obtain a solutionof goodquality.

The third term of the objective relates to penalties due
to violated soft distribution constraints DS. These penalties
must be added to the objective for each pair of classes for
which the soft distribution constraint d ∈ DS is violated. This
is very convenient as we can use the same approach as for
the hard distribution constraints (13) by adding an auxiliary
indicator variable AUX denoting whether the constraint is
violated (AUX = 1) or not (AUX = 0). The variable AUX
is then added directly into the objective function with the
appropriate weighting. This variable is created for every soft
distribution constraint d ∈ DS and for every pair of classes
c1, c2 ∈ Cd in the description of that constraint (AUXd,c1,c2 ).
Several inequalities (15)may refer to the sameAUXvariable,
as there are many ways that a given soft constraint can be
violated by two classes, but we only account for this once in
the objective. Similarly to the hard constraints, we generate
C11only for combinations of x and y that result in a violation.

C11: For every pair of classes c1, c2 ∈ Cd of a soft distri-
bution constraint d ∈ DS, create a new 0-1 variable
AUXd,c1,c2 . Then for every combination of t1 ∈ Tc1 ,
t2 ∈ Tc2 , r1 ∈ Rc1 and r2 ∈ Rc2 which results in a
violation of the constraint, add the inequality:

xc1,t1 + yc1,r1 + xc2,t2 + yc2,r2 − AUXd,c1,c2 ≤ 3. (15)

Inequalities (15) force the variable AUX to take the value 1
whenever the soft constraint is violated. There is no need to
require AUX = 0 when this does not happen, as the objective
function (a minimization problem) will ensure this. For the
same reason, it is not necessary to specify the AUX variables
as integer; instead, they are added to the model as continuous
0–1 variables.

123

https://www.itc2019.org


Journal of Scheduling (2022) 25:391–404 395

Just as in the case of the hard constraints, consideration
should be given to the soft special constraints (MaxDays,
MaxDayLoad, MaxBreaks, MaxBlock) which are not fully
represented by C11. They can be represented using inequal-
ities similar to (15) with a larger number of terms:

(xc1,t1 + yc1,r1) + · · · + (xcN ,tN + ycN ,rN )

−AUXd,c1,...,cN ≤ 2N − 1 (16)

where N is the number of classes in the constraint d and
AUXd,c1,...,cN is a continuous 0–1 variable, but their number
is very large.

Of course, one could completely ignore these terms from
the objective, but this would lead to poor quality solutions for
the instanceswith a large number of such constraints. Instead,
as our solutionmethod consists of a sequence of optimization
runs, we adopted a simple approach where we maintain a log
of any violated soft special distribution constraints detected
during the branch-and-bound, which are then added to the
model during the next run. The optimization begins with-
out any of these soft constraints included in the objective
function. During each optimization run, whenever a feasible
solution is produced we check for violated soft special dis-
tribution constraints. If any are found, they are added into a
file, which is read at the beginning of the next optimization
run, when the associated constraints (16) are added to the
model and the AUXd,c1,c2 variables included in the objective
function as described later. In the long term, this external file
will contain a subset of soft special distribution constraints
that merit to be added to the objective, having been found to
be violated in the past runs. In practice, we observed that the
size of this file tends to stabilize over time, suggesting that
eventually only a few of these special soft constrains are the
most useful to include in the objective function.

The fourth and last term of the objective relates to the
penalties associated with student clashes. We distinguish
between two types of student clash:

– A student cannot attend two classes because they overlap;
– A student cannot attend two classes because there is not
sufficient time to travel between them.

Thefirst type is simpler becausewedonot need to consider
the room assignments: if two classes overlap, a clash exists
regardless of the room assignment. For the second type, we
need to consider the rooms allocated to the classes, as it is
possible that a clash exists for some room assignments but
not for others.

For the first type, for each student s and for each pair of
classes c1, c2 hemay attend and for each combination of their
time assignments xc1,t1 and xc2,t2 which overlap, an auxiliary
variable aux can be added denotingwhether a clash is present
for this student or not. The corresponding constraint is similar
to (15):

xc1,t1 + xc2,t2 + zs,c1 + zs,c2 − auxc1,t1,c2,t2,s ≤ 3, (17)

where 0 ≤ aux ≤ 1 is a continuous variable. Let T ′
c2 ⊆ Tc2

be the set of values of {t2} for which the inequalities (17) are
generated. Since the class c2 can only have one time assign-
ment (constraint C1) and therefore only one of the variables
xc2,t2 can take the value 1, we can aggregate the inequali-
ties (17) corresponding to different values of t2 ∈ T ′

c2 into a
single inequality (18):

xc1,t1 +
∑
t2∈T ′

c2

xc2,t2 + zs,c1 + zs,c2 − auxc1,t1,c2,s ≤ 3, (18)

where c1, c2 ∈ C , t1 ∈ Tc1 , s ∈ S. Equivalently, the
aggregation can be done by the class c1 instead of c2 (in
the implementation we used the variant that produced the
smallest number of constraints—see also the discussion on
constraint aggregation later on).

The number of constraints (18) is still too numerous to
handle efficiently in the model because each student and
each possible pair of classes are considered individually. We
can further reduce the number of constraints significantly
by grouping equations (18) among students who follow the
same courses. To do this, we need to introduce the auxiliary
variables ws,c1,c2 which denote whether a student s attends
both classes c1 and c2 or not:

ws,c1,c2 =
{
1, if zs,c1 = 1 and zs,c2 = 1,
0, otherwise

(19)

with the necessary constraints 0 ≤ w ≤ 1 and ws,c1,c2 ≥
zs,c1 + zs,c2 − 1. Note that as a further simplification we
only create thew variables when necessary, because in many
cases they can be substituted by one of the corresponding z
variables or even their value may be fixed. This will happen
when a student is obliged to attend a particular class (zs,c1 =
1) therefore ws,c1,c2 = zs,c2 , or alternatively if he can never
attend a class (zs,c1 = 0) in which case ws,c1,c2 = 0. Using
the variablesw, the inequalities (18) can be grouped for all N
studentswhomay attend the two classes c1 and c2 to produce:
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Nxc1,t1 + N
∑
t2∈T ′

c2

xc2,t2+

+(ws1,c1,c2 + · · · + wsN ,c1,c2) − AUXc1,t1,c2 ≤ 2N (20)

where AUXc1,t1,c2 is a new continuous variable between 0
and N , equal to the sum of the original variables auxc1,t1,c2,s ,
denoting the number of students who cannot attend both
classes c1 and c2 simultaneously.

For the second type of student clash, where two classes
do not overlap but the time between them is not sufficient
to allow the travel between the assigned rooms, we begin
by considering the following special case. For each pair of
classes, consider all the possible rooms that can be assigned
to them, and calculate the minimum travel distance M ≥ 0
among any possible rooms of the two classes. The values
of M are specific to each problem instance and can be pre-
calculated for efficiency.

If the time assignment xc1,t1 and xc2,t2 of two classes do
not overlap but still have a gap between them of less than M
periods, we can still use the inequalities (20) of the previous
case, because a clash will exist regardless of the room allo-
cation. In other words, if two classes do not overlap, but their
gap in time is smaller than the time that is necessary under
the best room assignment, then we do not need to consider
the room assignments and this case is dealt in the same way
as the previous one.

For the remaining cases of the second typeof student clash,
we must include the terms relating to the room allocation y:

xc1,t1 +
∑
t2∈T ′

c2

xc2,t2 + zs,c1 + zs,c2 + yc1,r1 + yc2,r2−

−auxc1,t1,r1,c2,r2,s ≤ 5. (21)

As before, we can group together all N students si ∈ S who
may attend classes c1 and c2 (20) to obtain:

Nxc1,t1 + N
∑
t2∈T ′

c2

xc2,t2 + Nyc1,r1 + Nyc2,r2+

+(ws1,c1,c2 + · · · + wsN ,c1,c2) − AUXc1,t1,r1,c2,r2 ≤ 4N .

(22)

The inequality (22) is generated for any c1, c2 ∈ C , t1 ∈ Tc1 ,
r1 ∈ Rc1 , r2 ∈ Rc2 . The variable AUX is a new continuous
variable between 0 and N denoting the number of students
who cannot attend both classes c1 and c2 because their time
and room assignments results in insufficient travel time.

The inequalities (20) and (22) fully describe for the stu-
dent clashes and the corresponding variables AUX can be

directly added into the objective function with the appro-
priate weights. In the implementation, we always generated
(20) and for small problems we were able to generate all of
the constraints (22). For larger instances, we used a method
similar to the one used for the soft constraints: at the end of
each optimization run, we check for those student clashes
that were omitted from the objective and record the corre-
sponding constraints (22) in a log file, to be used during the
next optimization run.

It is worth noting that constraints (22) are not student-
specific and correctly account for any number of students
having the same clash. This means that adding a constraint
during the next optimization run will not result in simply
exchanging the affected student with another.

The full objective function containing all four cost ele-
ments to minimize, namely time allocation, room allocation,
distribution constraints, student clashes, is therefore as fol-
lows:

obj = WT

∑
c∈C

∑
t∈Tc

pc,t xc,t + WR

∑
c∈C

∑
r∈Rc

pc,r yc,t +

+WD

∑
d∈DS

pd

⎛
⎝ ∑

c1,c2∈Cd

AUXd,c1,c2 +
∑
file

AUXd,c1,...,cN

⎞
⎠

+WS

⎛
⎝ ∑

c1,c2∈C

∑
t1∈Tc1

AUXc1,t1,c2 +
∑
file

AUXc1,t1,r1,c2,r2

⎞
⎠

(23)

where WT, WR, WD and WS are the weights correspond-
ing to the time penalty, room penalty, distribution penalty
and student clashes, the constants p represent the weights
attributed to each possible choice of time, room and violated
soft constraint and the last summation denotes a sum over all
the variables AUXc1,t1,r1,c2,r2 of the specific type of student
clashes which were read from an external log file.

3.5 Variable and constraint simplification strategies

The presented model accurately represents the timetabling
problem in the sense that any feasible solution of the MIP
corresponds to an acceptable solution for the timetabling
problem, and, conversely, no solution to the real timetabling
problem is infeasible for the MIP.

Nonetheless, it is possible to reduce the size of the MIP
formulation by implementing a number of strategies for vari-
able elimination and reduction of the number of constraints.
This approach is more efficient that relying to the commer-
cial MIP solver to detect and eliminate them. The strategies
used in our computational implementation are described in
the next sections.
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3.5.1 Elimination of variables whose value is fixed

The first step is to consider decision variables whose values
can be deduced; they are fixed to 0 or 1 accordingly and elim-
inated from the formulation. We use the following strategies:

– Variables x , y, z and Z where only one choice is possible;
the corresponding variable is set to 1. These are in the
constraints C1, C2, C3, C5 with only one term in the
left-hand side.

– Variables that can be set to zero because anothermutually
exclusive variable is fixed to 1. This means that if

∑
xi =

1 and xk = 1 is fixed to one, then all the other variables
can be set to zero (C1, C2, C3, C5).

– If a class has both variables x and y fixed, and another
class has its variable y fixed to the same room, we can
then set to zero all variables x of the second class which
overlap with the known time of the first class. In other
words, if two classes must take place in the same room,
and one class has its time fixed, we exclude all times from
the other class that overlap with the first as no two classes
can share the same room at the same time (C8).

– Some variables z do not need to be generated, as they can
be replaced by the corresponding variable Z . This is the
case where a course subpart contains only one possible
class (constraint C3 with only one term in the left-hand
side).

– The auxiliary variables w used to model student clashes
need to be created only in certain situations as explained
in (19). In the other cases, these variables will be either
fixed or substituted by one of the corresponding z vari-
ables (which, in turn, may be replaced by a Z variable as
described in the previous point).

3.5.2 Elimination of constraints that are always satisfied

Once the number of variables has been reduced, we proceed
to identify sets of constraints are always satisfied and can be
removed from the formulation.We concentrate on constraints
of the form

∑
ai xi ≤ c with ai > 0. These constraints are

always satisfied and therefore redundant if
∑

ai ≤ c. We
did not consider elimination of equality constraints because
they are relatively few, although the commercial solvers used
were able to detect and eliminate them as needed.

3.5.3 Reducing the number of constraints by aggregation

We can reduce the number of constraints in the formulation
by taking advantage of the fact that exactly one time and/or
room assignment is possible and group similar constraints
together. This reduction was briefly described in the aggrega-
tion of constraints (17) to yield (18) in the objective function,
but can also be applied to numerous constraints. For example,

if we consider constraint C7 where combinations of x and y
are excluded to forbid the use of a room when it is unavail-
able, we can aggregate a set of K constraints (1 ≤ i ≤ K )
of the form:

xc1,t1 + yc1,ri ≤ 1

with a single equivalent constraint:

xc1,t1 +
∑

1≤i≤K

yc1,ri ≤ 1. (24)

Alternatively, one can aggregate the same constraints over
the x variables instead (1 ≤ i ≤ L), to produce:

∑
1≤i≤L

xc1,ti + yc1,r1 ≤ 1. (25)

As these two choices are equivalent, we select the one that
yields the smallest number of aggregated constraints. In the
above example, if K ≥ L we select the aggregation (24) to
‘exclude several rooms for a given time,’ otherwise we opt
for (25) to ‘exclude several times for a given room.’ Aggre-
gating these constraints has no impact on the feasibility of
the problem.

4 Computational implementation

The mixed-integer programming model to solve the univer-
sity timetabling problem was programmed in Java using the
commercial software CPLEX2 and Gurobi3 as solvers.

The algorithm consists of two stages: the first stage is to
obtain a feasible solution (a valid timetable with all the hard
constraints satisfied), and the second stage is to iteratively
improve the solution quality using a local search method
while maintaining feasibility. As such, the solution improve-
ment procedure can be repeated as long as desired although
eventually better solutions become more and more rare.

4.1 Obtaining an initial solution

The first stage considers the production of a feasible solution
with all the hard constraints satisfied. We begin with a small
set of constraints, typically the equalities C1, C2, C3, C5,
and use the MIP solver to optimize the model. The objective
function is not relevant for this stage and can be omitted.
Once a solution has been obtained, we iteratively ‘inject’ the
remaining constraints into the model formulation, using the
following strategy:

2 IBM CPLEX. https://www.cplex.com
3 Gurobi Optimization. https://www.gurobi.com
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– We select one or a group of constraints to be added to the
formulation.

– The solution obtained in the previous run is provided to
the solver as a suggested starting, feasible solution to
assist the optimization.

– If the solution obtained in the previous run satisfies, by
coincidence, any of the new constraint inequalities, we
simply add them to the MIP formulation.

– The remaining constraints, who are violated by the solu-
tion available from the previous run, are added to the
formulation with an artificial slack variable, for example
aT x − slack ≤ c.

– An objective function is added which aims to minimize
the sum of the artificial slack variables.

– As the size of the MIP may be large, a local variable and
constraint reduction strategy is used to reduce the number
of variables and columns (local search heuristic).

At the start of the procedure, the slack variables and the
objective function will be positive, whereas, at the end of
the optimization they will become negative indicating that
all the additional constraints are now satisfied and the slack
variables can be removed. This will happen of course as long
as the original problem was feasible.

In practice, it is not possible to directlyminimize theobjec-
tive in one step because of the size of the MIP, so the local
search heuristic aims to reduce the number of variables in the
formulation: in the simplest case, we randomly fix a percent-
age of the x , y, z, Z variables to the values they have in the
solution of the previous run (the exact fixing strategy varies
depending on the constraint and will be discussed later). The
fixed variables are eliminated from the model, resulting in a
smaller MIP that can be solved more quickly. The drawback
is that as some variables are fixed there may still be posi-
tive slack variables at the end of the run and so the fixing
procedure needs to be repeated.

For example, assume that a feasible solution has been
obtained consisting of only the constraints C1, C2, C3, C5
and we wish to add constraints C4 to the model. We add
the constraints C4 to the formulation using slack variables
as necessary. We then consider fixing some variables to their
current values: in this example, we can fix all variables x and
y as they are irrelevant for the constraints C4 which involve
the student allocations z.

Depending on the number of students in the instance, we
can then proceed to fix a percentage of the z variables, typi-
cally 50–80% worked well in practice, so some assignments
of students to classes will be fixed.We then optimize theMIP
and any improvement to the objective function translates to
a reduction of the number of constraints C4 that remain vio-
lated. By iterating the procedure (which can be automated
and run unattended), we eventually obtain a solution where
all constraints C4 are satisfied.

The strategy for fixing variables is important and auto-
mated fine tuning is necessary: the aim is to fix sufficient
variables to allow the MIP to be solved in a reasonable time
(we imposed a time limit of 15 min for all except the largest
instances) but, on the other hand, fixing too many variables
results in a slow convergence. The strategies used to reduce
the number of variables were the following:

– Fixing a percentage of the variables (x or y or z or Z ) at
random.

– Fixing the x and/or y variables of a percentage of classes.
– Fixing the z and/or Z variables of a percentage of stu-
dents.

– Fixing all variables except the x and/or y variables in the
definition of a distribution constraint.

When a number of iterations was reached and there were still
violated constraints, we would switch to the next strategy.
Besides these strategies, we also fix any variables that are
not relevant for the constraint: for example, when adding
constraints relating to the student allocations we can fix the
x , y variables, or conversely when adding the distribution
constraints we can fix all z and Z variables.

4.2 Solution improvement and optimization

Once a feasible solution has been obtained and all the hard
constraints are satisfied, an improvement heuristic is applied
iteratively to increase the solution quality by reducing the
solution penalty. The penalty consists of four terms which
are approximated by the objective function (23).

The improvement heuristic is quite simple: we carry out
a local search procedure by solving the MIP with a number
of its decision variables fixed to the solution values obtained
in the previous iteration. At each iteration, the feasibility is
maintained and the optimization will maintain or improve
the objective function. This procedure can be stopped at any
time and the best obtained solution can be retrieved.

Regarding the strategies used to fix variables, we use the
same methods as those described in the previous section for
obtaining an initial solution, plus the additional two strategies
below:

– Fix all variables except variables (x , z) or (y, z) relating
to a percentage of students.

– Only include a percentage of students in the objective
function term relating to student clashes.

The improvement heuristic is left to run unattended, switch-
ing to a different local search variable fixing strategy after a
number of iterations is reached and no improvement in the
objective was observed in recent runs.
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Table 1 Characteristics of the
competition instances

Distr. constr. Optim.

Instance Classes Rooms Students Hard Soft emphasis

1. agh-fis-spr17 1239 80 1641 820 400 Soft distr.

2. agh-ggis-spr17 1852 44 2116 2202 488 Soft distr.

3. bet-fal17 983 62 3018 861 390 Time

4. iku-fal17 2641 214 0 2237 665 Soft distr.

5. mary-spr17 882 90 3666 3151 796 Students

6. muni-fi-spr16 575 35 1543 645 95 Soft distr.

7. muni-fsps-spr17 561 44 865 331 69 Students

8. muni-pdf-spr16c 2526 70 2938 1456 570 Students

9. pu-llr-spr17 1001 75 27,018 416 218 Soft distr.

10. tg-fal17 711 15 0 459 42 Soft distr.

11. agh-ggos-spr17 1144 84 2254 1181 507 Soft distr.

12. agh-h-spr17 460 39 1988 288 111 Soft distr.

13. lums-spr18 487 73 0 449 69 Soft distr.

14. muni-fi-spr17 516 35 1469 639 60 Soft distr.

15. muni-fsps-spr17c 650 29 395 562 147 Students

16. muni-pdf-spr16 1515 83 3443 579 433 Students

17. nbi-spr18 782 67 2293 585 11 Soft distr.

18. pu-d5-spr17 1061 84 13,497 1262 273 Soft distr.

19. pu-proj-fal19 8813 768 38,437 6399 1398 Soft distr.

20. yach-fal17 417 28 821 529 116 Soft distr.

21. agh-fal17 5081 327 6925 4836 2318 Soft distr.

22. bet-spr18 1083 63 2921 1004 414 Time

23. iku-spr18 2782 208 0 2833 655 Soft distr.

24. lums-fal17 502 73 0 521 76 Soft distr.

25. mary-fal18 951 93 5051 349 164 Students

26. muni-fi-fal17 535 36 1685 635 152 Soft distr.

27. muni-fspsx-fal17 1623 33 1152 1070 289 Students

28. muni-pdfx-fal17 3717 86 5651 2433 1068 Students

29. pu-d9-fal19 2798 224 35,213 2039 707 Students

30. tg-spr18 676 18 0 375 50 soft distr.

We conclude this section by presenting some technical
enhancements that we discovered during the computational
experimentation and proved to be useful during our partici-
pation in the competition.

– Data structure reuse and sharing For example, even
though the number of classes × possible time assign-
ments is extremely large, a large number of time assign-
ments is the same among classes. In the code, we made
sure that each time pattern is only defined once and shared
among the classes to avoid duplication.

– Data pre-calculation Some necessary information for the
MIP is instance-specific and does not change between
runs. We pre-calculated the maximum amount of such
information and stored it in an external file which is
used during each run. The pre-calculated information

included the class-to-class minimum travel time matrix
(distances), and a set of matrices indicating whether two
time assignments overlap or not, whether they take place
on the same day or their minimum gap.

– Use of lazy constraints In some cases, it is efficient to
add some constrains into the MIP as ‘lazy constraints,’
a concept supported by the commercial solvers, where
the constraint is not added in the model from the start
but instead only each time a feasible solution is found, as
necessary. This is necessary for the ‘heavy’ constraints
C8 and C9, which can otherwise expand to hundreds of
millions of rows for the larger instances.

– Switching solvers in our computational experimentation
we produced code that can be solved with either the
CPLEX or the Gurobi commercial solvers. In our expe-
rience, both solvers achieved similar performance in
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their ability to optimize MIPs. We generally solved all
instances with one solver until no further improvement
was obtained in the solution value, determined by a limit
on the number of runs or running time. We then noticed
that if, at this stage, we switched to the other solver we
sometimes obtained further (albeit small) improvements
in the solution value. We suspect this behavior is due
to the different default parameters or default strategies
used by the two solvers, helping to overcome problems
associated with one solver being stuck in a local opti-
mum. Due to the competition time deadlines, we did not
investigate the impact of changing the default strategies
of each solver, but given that the ranking in the competi-
tion was determined by the solution value the small gains
obtained by using both solvers were of course welcome.

4.3 Computational results

The computational results focused on solving the problem
instances of the ITC competition. We were able to solve 29
of the 30 instances; the instance ‘agh-fal17’ was not solved
in time for the competition deadline. The problem instances
were solved on virtual machines running Linux equipped
with 32GB RAM and 4 cores CPU Xeon E5 2.3 GHz, with
the software CPLEX 12.8 and Gurobi 8.11 installed.

Table 1 presents the key characteristics of the prob-
lem instances, each instance representing a real university
timetabling problem, and grouped in the order they appeared
on the competition (early, middle and late instances). These
are the number of classes, the number of rooms and the num-
ber of hard and soft distribution constraints.

We observe that the problem instances show a large varia-
tion in the number of classes, rooms, students and number of
distribution constraints, with some instances having no stu-
dents at all (the students are included in the problem via the
SameAttendees constraints) while others have up to 38,000
students. We also note that the complexity is only partially
related to the size of the instances. In some cases, in spite of
the small number of classes, it was challenging to obtain even
one feasible solution due to the high occupancy of rooms and
time slots: it appeared that too few feasible configurations
exist to begin with.

Table 1 also describes the emphasis of the optimization
of each problem instance, represented by the largest relative
weight among the four penalty elements. In some instances,
the aim is to reduce the student clashes, in others to provide
the best time assignments, whereas in others it is to satisfy
the most soft distribution constraints.

Table 2 presents the results of our computational exper-
imentation. The first four columns correspond to the first
stage of the algorithm, the production of a feasible solution.
We report the number of times theMIPwas optimized (runs),
the total clock time taken by all runs and the average number

of rows and columns of the MIP per run (in thousands). For
the second stage of improving the solution value, we further
separate the time taken for setting up the MIP tsetup (data
structures, reading/writing files, elimination of constraints,
etc.) and the MIP optimization time topt taken by CPLEX
or Gurobi. The twelfth column presents the ratio of integer
variables divided by the total number of variables in theMIP.
The last four columns relate to the values of the solution
value (penalty): the first one of these is the solution value of
the first feasible solution obtained (i.e., at the end of stage
1), followed by the solution value (A) corresponding to the
best solution found (i.e., at the end of the algorithm). The
last two columns present the value of the current best known
solution (B) of each instance4 at the conclusion of the com-
petition and the calculated % gap of our solution relative to
the best-known solution.

Due to the small number of instances and the disparity
among their characteristics, it is difficult to generalize our
conclusions; nonetheless, the following observations can be
made:

– Our approach worked well for small and medium prob-
lems but poorly when the number of student was large. It
is clear that the method for including the student clashes
in the formulation becomes inefficient when dealing with
tens of thousands of students, mainly due to equations
(19) which are generated per student, and therefore some
grouping of the students is necessary.

– In most cases the first stage to obtain a feasible solution
concludes quite quickly: in half the instances this was
done in under 1 hour and in two-thirds of the instances
in under 2 hours. However, there were a few instances
where we struggled to obtain a feasible solution, in one
instance requiring over 10 days of calculations. These
were the instances with the largest number of distribution
constraints combinedwith a large number of classes. This
is expected, as some distribution constraints require all
the classes they involve to be able to change their time
and room assignments and therefore would take longer
for our class fixing/variable reduction method to arrive at
fixing a good combination of classes.

– The number of columns in the MIPs solved in the second
stage ranged from 5000 to 1 million and the correspond-
ing rows from 30,000 to 1.6 million, after elimination
of variables and constraints as described earlier. This
resulted in short optimization times under typically under
15min per run but allowedmore runs in a given amount of
time. This approachwas deliberate because we noted that
it is more beneficial to have a larger number of runs with
smaller MIPs compared to solving fewer, larger MIPs.
However, further investigation is necessary to calculate

4 Obtained from https://www.itc2019.org
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Fig. 1 Evolution of the solution quality over the course of the algorithm: total penalty versus number of iterations

the correct balance between the number of variables to
fix at each run and the number of runs to use for each
problem instance.

– The final gap was calculated by comparing our solu-
tions with the best solutions published at the end of the
competition. Our method performed worse for the larger
instances, and it is evident that our approach does not
scale well for very large instances and perhaps an aggre-
gation or grouping step would be beneficial to reduce the
dimensionality in these cases.

Figure 1 shows the evolution of the solution penalty for
one instance (agh-ggos-spr17) against the number of runs.
In the first stage, we observe two peaks corresponding to the
increase of the penalty as we inject first the SameAttendees
constraints and then the remaining distribution constraints.
The objective function in this stage focuses heavily in reduc-
ing the number of violated constraints and with a smaller
weight to improving the time and room assignments. The
downward trend between the peaks corresponds to runs
where not all violated constraints could be added, but we
were still able to improve the time and room allocations.

During the second stage of optimization, the feasibil-
ity is maintained and the optimization aims to improve the
objective function value. As mentioned earlier, the objec-
tive function of our model is a close approximation to the
true penalty of the solution. The difference is due to the
treatment of a subset of the student clashes (those related
to when a student does not have enough travel time between
two classes although the classes do not overlap) and those

related to soft special distribution constraints: in both these
situations, an external log file stores any missing objective
function terms identified in previous runs to partiallymitigate
this, as explained earlier in the paper.

The instance of Fig. 1 contains both student clashes and
MaxDays soft special constraints which cause the jagged
appearance of the solution penalty; the actual objective func-
tion never increased; instead, it was missing some of the
penalty terms.

Figure 2 presents the convergence patterns of a selection
of four further instances. The first chart (bet-fal17) relates
to a relatively small instance where the focus is to achieve
good time assignments to each class. A feasible solution is
obtained very quickly and most of the time is devoted to
improve the objective function. The optimization initially
aggressively optimizes the time and room assignments and
distribution constraints while ignoring the student clashes.
These are added at a later step and produce a temporary
jump in the penalty, before reaching a good quality solution
(2% gap). Note that it is meaningful to calculate the solution
penalty only once the constraints C1–C7 are satisfied and
each class is assigned a time and room and the first few runs
are missing from the penalty charts of Fig. 2.

The second chart (muni-fsps-spr17c) considers a prob-
lem with many classes and distribution constraints where the
optimization focusses on reducing the student clashes. The
optimization is able to reduce the penalty quite rapidly but
thereafter does not produce any big gains. The third instance
(pu-proj-fal19) is the largest instance with over 8800 classes
and 38,000 students, and the optimization emphasis is on the
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Fig. 2 Convergence of the solution penalty for a selection of instances

soft distribution constraints. For that instance, our algorithm
had difficulty in obtain a feasible solution and most of the
time was spent in Stage 1. The overall pattern is similar to
the one of Fig. 1, and the upward trend between runs 1200
and 1800 suggests that the optimization is continuously able
to reduce the infeasibility at each run, but the large number
of constraints that need to be added results in a large compu-
tational time. The final reduction in penalty corresponds to
Stage 2 where the solution is optimized, although the qual-
ity of the solution is very poor compared to the best known
solution for this instance.

The last chart corresponds to the second largest instance
where the focus was on reducing the student clashes. Just as
in the third example, our algorithm took a long time to obtain
a feasible solution but, in contrast to the previous case, we
observe no continuous improvement during the last part of
Stage 1 and therefore the challenge here was not due to the
large number of violated constraints but instead that a few
of them were very difficult to satisfy. A feasible solution
is obtained eventually, and the small number of runs in the
second stage resulted in a solution with a large gap compared
to the best known solution.

In summary, we believe that the presented two-stage
algorithm worked reasonably well for producing a feasi-
ble solution and iteratively improving on its quality for the
small- and medium-sized instances of the competition. Fur-
ther work is necessary to evaluate the methodology outside
the restrictions of the competition, and the production of effi-
cient variations of the algorithm which will depend on the
optimization emphasis, problem size and other characteris-
tics of each instance.

5 Conclusion and future work

This article presented an MIP model and solution methodol-
ogy adapted to the instances of the International Timetabling
Competition 2019. The proposed method consisted of a first
stage which aimed at finding a feasible solution satisfying all
the hard constraints and a second stage which used a local
search approach to improve the objective function. The core
model itself is not new; however, several adaptations and
reductions, specific for timetabling problems, of theMIP for-
mulation have produced an efficient approach for its solution
and optimization, even in the presence of a large number of
students and classes.

The future work will firstly attempt to combine the two
stages together by formulating the model as a hierarchi-
cal multi-objective MIP which will improve performance.
Moreover, a grouping algorithm will be beneficial in reduc-
ing the dimensionality for instances with a large number of
students. Furthermore, an improved local search method is
being developed to reduce the chance of getting stuck in local
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optima, especially for problems with a large number of stu-
dents, which was sometimes observed in the larger instances.

Finally, an adaptation of the methodology is in progress
for the solution of more general timetabling and scheduling
problems beyond the field of university timetabling.
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