

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 19, 2024

A parallelized matheuristic for the International Timetabling Competition 2019

Mikkelsen, Rasmus; Holm, Dennis S.

Published in:
Journal of Scheduling

Link to article, DOI:
10.1007/s10951-022-00728-8

Publication date:
2022

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Mikkelsen, R., & Holm, D. S. (2022). A parallelized matheuristic for the International Timetabling Competition
2019. Journal of Scheduling, 25, 429–452. https://doi.org/10.1007/s10951-022-00728-8

https://doi.org/10.1007/s10951-022-00728-8
https://orbit.dtu.dk/en/publications/0e05d8f7-1ec3-40a9-a2a3-7b9f68cb646c
https://doi.org/10.1007/s10951-022-00728-8

Journal of Scheduling manuscript No. JOSH-D-20-00227
https://doi.org/10.1007/s10951-022-00728-8

A Parallelized Matheuristic for the International
Timetabling Competition 2019

Rasmus Ø. Mikkelsen · Dennis S. Holm

Accepted: February 15 2022

Abstract The International Timetabling Competition

2019 (ITC 2019) presents a novel and generalized uni-

versity timetabling problem composed of traditional

class time and room assignment and student section-

ing. In this paper, we present a parallelized matheuris-

tic tailored to the ITC 2019 problem. The matheuristic

is composed of multiple methods using the graph-based

Mixed Integer Programming (MIP) model defined for

the ITC 2019 problem by Holm et al. (2022). We detail

all methods included in the parallelized matheuristic

and the collaboration between them.

The parallelized matheuristic includes two meth-

ods for producing initial solutions and uses a fix-

and-optimize matheuristic to improve solutions. Ad-

ditionally, the method uses the full MIP to calculate

lower bounds. We describe how the methods collaborate

The authors have contributed equally to this work. The au-
thors would like to thank Bernd Dammann and Sebastian
Borchert for providing valuable support for working with
high-performance computing. Dennis S. Holm’s Ph.D. project
is part of the Data Science for University Management project
(dsumsoftware.com) funded by MaCom A/S and Innova-
tion Fund Denmark (IFD). Rasmus Ø. Mikkelsen’s industrial
Ph.D. project is funded by IFD. IFD has supported the work
solely financially and has not participated in any research-
related activities.

Rasmus Ø. Mikkelsen
E-mail: rasmi@dtu.dk, rasmusomikkelsen@gmail.com

Dennis S. Holm
E-mail: dsho@dtu.dk

Rasmus Ø. Mikkelsen · Dennis S. Holm
Technical University of Denmark
DTU Management
Akademivej
Building 358
2800 Kgs. Lyngby

through solution sharing, and a diversification scheme

invoked when the search stagnates. Furthermore, we ex-

plain how we decompose the problem for instances with

a large number of students. We evaluate components of

the parallelized matheuristic using the 30 benchmark

instances of the ITC 2019. The complete parallelized

matheuristic performs well, even solving some instances

to proven optimality. The presented method is the win-

ning algorithm of the competition, further demonstrat-

ing its quality.

Keywords Mixed Integer Programming · Parallelized
Matheuristic · Fix-and-optimize · University Time-

tabling · International Timetabling Competition 2019 ·
ITC 2019

1 Introduction

University timetabling is a complex scheduling prob-

lem that all universities must regularly solve in prac-

tice. The classical university course timetabling prob-

lem consists of developing a semester timetable such

that all course events (lectures, exercises, etc.) are as-

signed a room and time. The goal is to make a feasible

high-quality timetable. A timetable is feasible if it satis-

fies all hard constraints, and its quality is measured by

the violations of soft constraints. Timetables of higher

quality have fewer undesirable features and lead to bet-

ter utilization of resources and more preferable sched-

ules for teachers and students.

The International Timetabling Competition 2019

(ITC 2019) presents a university course timetabling

problem general enough that it can encompass many

practical university timetabling problems, as evident by

the competition using real-world data from ten different

universities in eight countries on five continents. The

https://orcid.org/0000-0002-3416-7349
https://orcid.org/0000-0001-8361-0311

2 Rasmus Ø. Mikkelsen, Dennis S. Holm

problem definition is also novel as it combines student

sectioning and classical course time and room assign-

ment (Müller et al., 2018a). Thus, solutions approaches

that work well on this problem definition should be us-

able in many practical cases.

This paper describes a parallelized matheuristic for

the university timetabling problem presented in the

ITC 2019. Our solution approach combines multiple

methods based on Mixed Integer Programming (MIP).

Most notably, we use simultaneous searches using a fix-

and-optimize matheuristic combined with solving the

full MIP model using a black-box solver. We use the

matheuristics to find high-quality solutions and pri-

marily use the full MIP model to provide lower bound

information. The parallelized matheuristic shares solu-

tions between search methods to accelerate the com-

bined search and implements a diversification scheme

to escape local optima. Additionally, the parallelized

matheuristic includes a special setup for data instances

with a large number of students.

The proposed solution approach presents a general

framework that can be applied to any MIP model. One

simply needs to define neighborhoods for the fix-and-

optimize matheuristics and methods for constructing

initial solutions. However, since many MIP models need

to be solved, the framework’s performance is directly

tied to the strength of the MIP formulation. Here we use

the MIP model presented by Holm et al. (2022), which

uses data reductions and different graph structures to

provide a strong MIP formulation.

The paper is organized as follows. In Section 2, we

discuss related work. Section 3 presents the ITC 2019

problem. In Section 4, we give a short introduction to

the MIP model. Section 5 thoroughly details the fix-

and-optimize matheuristic. In Section 6, we describe

the complete parallelized matheuristic. Section 7 eval-

uates the method through computational results and

Section 8 concludes.

2 Related work

The university course timetabling problem is a long-

studied, practical timetabling problem. The course

timetabling requirements can vary significantly for dif-

ferent universities, resulting in many problem vari-

ants (Tripathy, 1992; Schaerf, 1999). The International

Timetabling Competitions 2007 (ITC2007) introduced

two university course timetabling benchmark problems:

post-enrollment-based (track 2) and curriculum-based

(track 3) (McCollum et al., 2010; Lewis et al., 2007;

Di Gaspero et al., 2007). Common benchmark prob-

lems are essential for driving the research field for-

ward and especially the curriculum-based problem of

the ITC2007 has received much attention. Researchers

have applied many different solution techniques to the

problem, but metaheuristic approaches have been espe-

cially popular (Kristiansen and Stidsen, 2013; Bettinelli

et al., 2015).

The hybridization of metaheuristics and exact meth-

ods results in matheuristics. Matheuristic presents a

powerful solution approach in which the goal typically

is to gain the speed of heuristics while keeping desirable

properties of exact methods, like bounding information.

In recent years, mathematical programming-based ap-

proaches have become increasingly popular and have

attained state-of-the-art results for high school time-

tabling (Fonseca et al., 2016; Tan et al., 2021). Mathe-

matical programming-based approaches for course time-

tabling have also achieved good results, see, e.g., Burke

et al. (2010); Lach and Lübbecke (2012); Burke et al.

(2012). However, much research using exact methods

has focused on improving lower bounds (Bettinelli et al.,

2015).

Lindahl et al. (2018) introduced the fix-and-

optimize matheuristic applied to the curriculum-based

course timetabling problem of the ITC2007, producing

better results than the competition-winning algorithm.

The authors also describe an approach for adapting the

neighborhood size, using the relative gap of the incum-

bent solution and the lower bound of each subproblem.

The fix-and-optimize matheuristic has also achieved

state-of-the-art results on other scheduling problems,

such as high school timetabling (Dorneles et al., 2014)

and capacitated lot-sizing (Lang and Shen, 2011; Hel-

ber and Sahling, 2010).

3 Problem definition

The ITC 2019 problem defines a novel university time-

tabling problem combining classical course time and

room assignment and student sectioning. Courses con-

sist of one or more classes that must all be assigned

one of their predefined times and available rooms (if

requested), each defined with a non-negative integer

penalty. The course classes are separated into config-

urations, which are further divided into subparts, and

this hierarchical structure is important for student sec-

tioning. Students request courses which they must at-

tend. A valid student assignment observes that each

student attends precisely one class of each subpart of a

single configuration for each requested course and that

any class does not exceed its attendance limit. Con-

figurations and subparts are designed so that students

enrolled in a course are guaranteed to attend a valid

combination of the course’s classes.

A Parallelized Matheuristic for the International Timetabling Competition 2019 3

Distribution constraints place restrictions on the as-

signment between two or more classes and can either be

hard or soft. There are 19 different types of distribution

constraints, e.g., forbid/penalize temporal overlap be-

tween classes, enforce/prefer classes to be scheduled on

the same day, etc. Most distribution constraint types

are evaluated pairwise for the affected classes, but four

are evaluated using all classes for which they are de-

fined. Soft distribution constraints have a non-negative

penalty value.

A feasible solution satisfies all hard constraints con-

cerning class, time, and room assignment, student sec-

tioning, and all hard distribution constraints. We mea-

sure the quality of a solution by the weighted sum of soft

distribution constraint penalties, class time and room

assignment penalties, and the number of student con-

flicts. A student conflict occurs when a student attends

two classes that overlap in time or are scheduled such

that it is impossible to arrive in time for the second class

due to travel distance. The university defines weights

for time assignment, room assignment, student section-

ing, and distribution constraints according to their pri-

orities and preferences.

The competition consists of 30 instances (see Ta-

ble 1) made publicly available in three separate stages:

Early, Middle, and Late. The competition’s goal is to

find the best possible solutions for each instance before

the competition deadline. The ranking of competitors is

determined using a scoring scheme where instances re-

leased later in the competition are given a higher score.

The Late instances are released 10 days before the final

deadline.

The instances vary significantly in terms of size,

characteristics, and complexity. For example, one of

the Early instances, tg-fal17, consists of only 36 courses

with 711 classes, 15 rooms, and no student sectioning.

This is contrasted by the Middle instance pu-proj-fal19,

which includes a staggering 2,839 courses with 8,813

classes, 768 rooms, and 38,437 students. However, the

complexity of an instance is not only determined by

the number of classes, rooms, students, etc. Other as-

pects such as the types and number of distribution con-

straints, course structures, and class/room/student uti-

lization have a significant effect.

The problem presented by the ITC 2019 is fascinat-

ing as it provides a unified problem definition that can

encompass the practical timetabling problem arising at

many different universities. This enables the competi-

tion to use real-world data, which the organizers col-

lected using the timetabling system UniTime (Müller

et al., 2018b). The ITC 2019 problem is based on the

model used in UniTime, with some simplifications to re-

duce modeling complexity while retaining hardness. For

a complete problem description, we refer the reader to

Müller et al. (2018a).

Instance Courses Classes Rooms Students

agh-fis-spr17 340 1,239 80 1,641
agh-ggis-spr17 272 1,852 44 2,116
bet-fal17 353 983 62 3,018
iku-fal17 1,206 2,641 214 -
mary-spr17 544 882 90 3,666
muni-fi-spr16 228 575 35 1,543
muni-fsps-spr17 226 561 44 865
muni-pdf-spr16c 1,089 2,526 70 2,938
pu-llr-spr17 687 1,001 75 27,018
tg-fal17 36 711 15 -

agh-ggos-spr17 406 1,144 84 2,254
agh-h-spr17 234 460 39 1,988
lums-spr18 313 487 73 -
muni-fi-spr17 186 516 35 1,469
muni-fsps-spr17c 116 650 29 395
muni-pdf-spr16 881 1,515 83 3,443
nbi-spr18 404 782 67 2,293
pu-d5-spr17 212 1,061 84 13,497
pu-proj-fal19 2,839 8,813 770 38,437
yach-fal17 91 417 33 821

agh-fal17 1,363 5,081 327 6,925
bet-spr18 357 1,083 63 2,921
iku-spr18 1,290 2,782 208 -
lums-fal17 328 502 97 -
mary-fal18 540 951 93 5,051
muni-fi-fal17 188 535 36 1,685
muni-fspsx-fal17 515 1,623 33 1,152
muni-pdfx-fal17 1,635 3,717 86 5,651
pu-d9-fal19 1,154 2,798 224 35,213
tg-spr18 44 676 24 -

Table 1 Some characteristics of all 30 competition instances.

4 Mixed Integer Programming model

The core part of our solution approach is the graph-

based MIP model (referred to as the full MIP model)

defined by Holm et al. (2022). The full MIP model is

very comprehensive and beyond the scope of this pa-

per. Thus, we settle for introducing the main decision

variables required for this work and provide a minimal

overview of the MIP model.

The ITC 2019 problem is defined by a set of classes C
where each class c ∈ C must be assigned one of its

available times t ∈ Tc and rooms r ∈ Rc. If the class

does not need a room then Rc = {r̃}, where r̃ is a

dummy-room. Additionally, each student s ∈ S must

be assigned classes such that they attend their required

courses. The problem includes some basic feasibility

constraints, e.g., student sectioning constraints to ob-

serve specific course/class structures, no room double-

4 Rasmus Ø. Mikkelsen, Dennis S. Holm

booking, and we must schedule all classes. In addi-

tion, distribution constraints restrict/penalize the as-

signment between two or more classes. We define Cδ
as the set of classes that are part of distribution con-

straint δ ∈ Δ, where Δ is the set of all distribution

constraints.

Assignment of classes to times and rooms is a major

part of the problem, which naturally leads to the main

decision variable xc,t,r ∈ {0, 1} defined as

xc,t,r =

{
1 if class c is scheduled in time t in room r

0 otherwise

Additionally, we define auxiliary variable yc,t ∈ {0, 1}
as

yc,t =

{
1 if class c is scheduled in time t

0 otherwise

The yc,t variable makes defining some constraints

much more straightforward and helps reduce the num-

ber of non-zeros in the model. Additionally, we focus

on these two sets of variables in the implemented fix-

and-optimize matheuristic.

Student sectioning is the other major part of the

problem, for which we have defined es,c ∈ {0, 1} to

be 1 if student s attends class c and 0 otherwise. For

most instances, the student sectioning part is not dif-

ficult compared to the class assignment. However, for

instances like pu-proj-fal19, which has 38,437 students,

it becomes quite complex and computer memory inten-

sive.

Therefore, we define a version of the MIP model

that applies the student sectioning to a known, feasible

timetable. For a fixed timetable, we know which class

pairs overlap in time or have a large enough travel dis-

tance such that a student conflict is possible. Thereby,

we can avoid generating a lot of redundant student

sectioning variables and constraints. Additionally, we

can ignore the class assignment part of the problem,

including distribution constraints, resulting in a much

more manageable model. We refer to this model as the

student sectioning MIP model. The student section-

ing MIP model is thus similar to the full MIP model,

but where the full model has variables related to the

timetable, these are fixed and presented as parameters

to the student sectioning MIP model. Thus, the stu-

dent sectioning MIP model has only one main decision

variable, the student-class assignment variable es,c.

5 Fix-and-optimize matheuristic

The fix-and-optimize matheuristic can be considered to

be a large neighborhood search heuristic. The algorithm

takes an initial solution and iteratively improves it by

searching a large neighborhood around the current so-

lution. The neighborhood is defined and explored us-

ing mixed integer programming by fixing a subset of

variables before solving the model using a MIP solver.

Thereby the matheuristic is very applicable to prob-

lems where small instances can be solved to optimality,

but large instances cannot. Fixing variables result in a

subproblem with a smaller solution neighborhood, ef-

fectively reducing the more difficult MIP model to be

more easily solved. The fix-and-optimize matheuristic

uses this idea by iteratively fixing a subset of variables

and solving the resulting MIP model. Any improving

solution is used to warm-start the MIP model in the

next iteration.

This approach has a few benefits. Since the algo-

rithm is MIP-based and only fixes/unfixes variables, no

direct deliberation is given to the constraints or the

structure of the problem. Thereby constraints can be

added, removed, or changed, and the algorithm still

works. This is in direct contrast to many move-based

metaheuristics, in which some moves may rely greatly

on specific constraints of the problem and can easily

become obsolete as a result of a model change. The fix-

and-optimize matheuristic always works on the same

model, and therefore it is only necessary to build the

MIP model once. Variable fixing is done so that a solu-

tion found in one iteration is always feasible regarding

the variable fixing in the next iteration. Thereby, the

MIP solver is warm-started in each iteration, providing

great performance benefits. Also, since a MIP model

is solved in each iteration, we know the subproblem’s

lower bound, which can be used to guide the search on

a higher level. Lastly, an implemented fix-and-optimize

will automatically have performance increases as MIP

solvers are themselves improved.

As fix-and-optimize can only improve known solu-

tions, it must be given an initial solution. Therefore it

is dependent on other methods for generating an initial

solution. We discuss the heuristics used for generating

initial solutions in Section 6.1.

An important aspect of fix-and-optimize is the

searched neighborhood, i.e., how and which variables

we choose to fix. In Section 5.1, we discuss our imple-

mented neighborhoods and a strategy for updating the

neighborhood size dynamically throughout the search.

Algorithm 1 shows the implemented fix-and-

optimize. The input is the problem instance, an ini-

tial solution, a neighborhood specification, and an ini-

tial neighborhood size. First, in line 1, the algorithm

builds the MIP model for the given instance and sets the

warm-start values of the initial solution. In the loop, us-

ing the given neighborhood and neighborhood size, the

A Parallelized Matheuristic for the International Timetabling Competition 2019 5

algorithm chooses a subset of variables to allow to re-

main free and fix all other variables of the neighborhood

to their given values (lines 3 and 4). In line 5, the algo-

rithm solves the resulting subproblem and updates the

best solution if it finds an improving solution. Finally,

in lines 6 and 7, the algorithm updates the neighbor-

hood size based on the performance of the optimization

process and unfixes all previously fixed variables. Note

that we only update the size during the search and the

algorithm continues to use the same neighborhood.

Algorithm 1 Fix-and-optimize
Input: Instance I, Initial solution S, Neighborhood N

and initial neighborhood size P
Output: Solution S

1: M ← Build MIP for I and set warm-start for S

2: while termination condition not met do

3: V = GetVariablesToRemainFree(N,P)
4: Fix all variables of N \ V
5: S ← Solve M

6: P ← UpdateNeighborhoodSize()
7: Unfix all fixed variables
8: end while

5.1 Neighborhoods

As stated in Section 4, the implemented fix-and-

optimize focuses on the classes’ time and room as-

signments, which the developed neighborhoods reflect.

Each neighborhood is defined by a heuristic for choosing

classes to allow rescheduling and the variables consid-

ered for fixing. Common for all class choosing heuristics,

is that classes are considered course-wise; a list of all

courses is randomized, and classes are picked by going

through this list and extracting all classes associated

with the given courses. This continues until the list in-

cludes enough classes to satisfy the size parameter (P

in Algorithm 1). This parameter defines the percent of

classes that should remain unfixed. Picking all classes

associated with a course ensures some connection in the

unfixed variables, as these classes are closely related and

greatly influence each other.

Each class choosing heuristic separates itself from

the others by how it includes extra classes when con-

sidering a given course. Three heuristics for picking

classes to remain unfixed are defined: Standard (S),

Common (C), and Adjacent (A).

The Standard heuristic goes through the random-

ized course list, extracting all course classes. No addi-

tional classes are chosen. The Common heuristic addi-

tionally includes classes that have common distribution

constraints with any course classes. Thus, for every class

of the course, we examine all distribution constraints

containing that class and extract the other classes of

those constraints. Note that we only extract the addi-

tional individual classes and do not consider the rest of

their associated courses.

The Adjacent heuristic uses a class-time conflict

graph for including additional classes to unfix. We use

the class-time conflict graph described by Holm et al.

(2022), in which we define vertices to represent yc,t vari-

ables and have an edge between two vertices if the asso-

ciated yc,t variables conflict with each other. We use in-

formation from almost all hard distribution constraints

to define the class-time conflict graph, and therefore

an edge may cover multiple different hard conflicts. In

the Adjacent heuristic, when considering a course, we

also extract all classes adjacent to any vertex related to

that course. Thus, using a conflict graph is similar to

considering common distribution constraints but only

includes hard constraints and some additional informa-

tion of classes with fixed times. Thereby, this heuristic

focuses on unfixing class assignment variables that in-

terdependently affect feasibility.

Our neighborhoods use one of the described heuris-

tics, and they either consider the class-time assignment

variables (yc,t) or the class-time-room variables (xc,t,r)

for fixing/unfixing. Using the yc,t variable allows for

room changes of all classes (even those with fixed time)

in every iteration, while this is not possible when us-

ing the xc,t,r variables. We never fix the student-class

assignment variable (es,c), and the student sectioning

part of the problem is always left free. The combination

of the class choosing heuristic and assignment variables

defines our neighborhoods, resulting in the six neigh-

borhoods shown in Table 2.

Neighborhood Heuristic Variable set

SX Standard (S) xc,t,r

SY Standard (S) yc,t
CX Common (C) xc,t,r

CY Common (C) yc,t
AX Adjacent (A) xc,t,r

AY Adjacent (A) yc,t

Table 2 The six defined neighborhoods using three heuristics
and two variable sets.

5.1.1 Updating neighborhood size

It is vital to continually control the neighborhood’s size

as this has a significant effect on the difficulty of the

subproblems. The goal is to have problems that are

neither too hard nor too easy to solve; the neighbor-

6 Rasmus Ø. Mikkelsen, Dennis S. Holm

hood should be large enough to include new (hope-

fully improving) solutions but not so large that they

are exceedingly time-consuming to find. Hence we dy-

namically update the neighborhood size throughout the

search to strike such a balance. Dynamically updating

the neighborhood size is especially important for prob-

lems such as the ITC 2019 problem since the MIP model

complexity varies greatly from instance to instance and

may benefit from vastly different neighborhood size pa-

rameters.

We focus the implementation on solving the ITC

2019 problem in the competitive setting defined for the

release of the 10 Late instances, which is 10 days before

the competition deadline. Therefore, we have tuned the

implementation towards a 10-day time frame to find

the best possible solutions for each instance. Some in-

stances lead to MIP models that are very difficult to

solve, resulting in iterations where the solver spends

much time on presolving the model and solving the root

node linear program (LP) relaxation. We are more will-

ing to spend some time solving easier subproblems than

wasting much time trying and failing to solve difficult

subproblems. Therefore, we implement a conservative

neighborhood size updating scheme, such that we are

more willing to decrease the neighborhood size than in-

crease it. Additionally, the neighborhood size is drasti-

cally reduced if the solution process has not completed

the presolve and solved the root node LP after an hour.

The solving process is given a time limit of one hour

to reach the branch and bound tree’s root node and

30 minutes to explore the branch and bound tree.

Algorithm 2a details how the neighborhood size is

updated based on the solver performance. We update

the neighborhood size by considering (a) how quickly

the solver progresses through the solving process, (b) if

any improving solutions are found, and (c) the optimal-

ity gap. We check the decision conditions in a prioritized

manner (lines 1, 4, and 6), such that when any condi-

tion is satisfied, we make the corresponding decision

immediately. We return to the conditions shortly.

The initial size is P = 25%, meaning that 25% of

the variable set is left free, and we adjust the neigh-

borhood size in steps of d (set to 5%). We settled on

an initial size of 25% through preliminary experiments.

The update algorithm has a boolean list H to save pre-

vious neighborhood update decisions. In each iteration,

we add true to the H list if the size should increase and

false otherwise. The neighborhood size is updated con-

servatively, favoring decreasing by doing so immediately

upon such a decision (Algorithm 2b). Alternatively, if

the neighborhood size should increase, we check the H

list and increase the size if three of the last five inputs

are true, i.e., if the last few iterations heavily favor in-

creasing (Algorithm 2c).

Regarding the decision conditions, in line 1 of Algo-

rithm 2a, we consider a special case where the solving

process does not reach the root node of the branch and

bound tree within an hour. In such cases, the model is

far too difficult to solve, and we drastically reduce the

neighborhood by dividing the current size by two and

rounding down to the nearest divisor of d. Additionally,

we reset the H list since the information from previous

iterations is of little value following such a substantial

change. In lines 4-5, we decide to decrease the neighbor-

hood size if it takes longer than 30 minutes to reach the

root node when solving the subproblem. In lines 6-11,

we consider the case where no solutions are found and

decide to increase the neighborhood size if the relative

optimality gap is less than 5% and decrease otherwise.

If none of the checked conditions are satisfied, i.e.,

the solver quickly reached the root node and found im-

proving solutions, we do not change the neighborhood

size and add false to H (line 13). Finally, we return the

potentially updated neighborhood size in line 15.

Algorithm 2a UpdateNeighborhoodSize()

Given: Neighborhood size P and boolean list H

1: if Not reached root node in one hour then

2: P ← P/2 rounded down to nearest divisor of d without
remainder

3: Reset H

4: else if Time to root node > 30 minutes then
5: Decrease(P , H)
6: else if Found no improving solutions then

7: if Gap < 0.05 then
8: Increase(P , H)
9: else
10: Decrease(P , H)
11: end if

12: else

13: Add false to H
14: end if

15: return P

Algorithm 2b Decrease(P , H)

1: Add false to H
2: P ← P − d

Algorithm 2c Increase(P , H)

1: Add true to H
2: if at least 3 of last 5 inputs in H are true then

3: P ← P + d
4: end if

A Parallelized Matheuristic for the International Timetabling Competition 2019 7

6 Parallelized matheuristic

In this section, we describe the parallelized matheuris-

tic, in which we run multiple search methods in parallel.

First, we provide a brief overview to demonstrate the

basics of the algorithm. In the subsequent subsections,

we thoroughly describe individual aspects of the com-

plete algorithm.

Figure 1 shows the general flow of the parallelized

matheuristic. Rounded boxes and rectangles represent

methods/algorithms and types of solutions, respectively.

Given a new instance, we first reduce it as described by

Holm et al. (2022) to remove redundancies and tighten

the instance data. Afterward, we start all methods in

parallel:

– The 2SCA and the 3SCA methods (described in Sec-

tion 6.1) produce initial solutions.

– A MIP solver starts solving the full MIP model.

– A number of fix-and-optimize processes prepare for

an initial solution by building the MIP model.

As discussed in Section 5, the fix-and-optimize pro-

cesses require an initial solution to begin the search.

Thus, once a fix-and-optimize method is initialized, it

looks for and uses the current best-known solution as

its initial solution. Early in the search, the current best-

known solution is typically an initial solution produced

by the initial solution heuristics, but the full MIP solver

could also produce it.

While the search is moving forward, i.e., the best-

known solution is regularly updated, the fix-and-
optimize processes collectively remain in a state of in-

tensification. In this state, the fix-and-optimize pro-

cesses and the full MIP solver collaborate through so-

lution sharing, as detailed in Section 6.2. If the search

stagnates, the parallelized algorithm enters the diver-

sification state described in Section 6.3. Here, the fix-

and-optimize searches abandon solution sharing, and

each process separately starts a new search using indi-

vidual initial solutions. When the best-known solution

is improved (by any method), the fix-and-optimize pro-

cesses reset to this solution and resume solution sharing

(intensification).

For instances with many students, the algorithm in-

cludes changes and additions shown as the Large Stu-

dent Sectioning part of Figure 1. In essence, the par-

allelized algorithm decouples producing timetables and

solving student sectioning when generating initial solu-

tions. Section 6.4 discusses the Large Student Section-

ing setup.

6.1 Initial solutions

We use two MIP-based constructive heuristics to gener-

ate initial solutions: the Two-Stage Constructive Algo-

rithm (2SCA) and the Three-Stage Constructive Algo-

rithm (3SCA). In these methods, we utilize that there

always exists a feasible student sectioning since the

problem defines student conflicts as soft violations. For

valid data, the hard constraints associated with student

sectioning, i.e., class limits and valid student-course-

class assignments, can always be satisfied. Thereby,

given any feasible timetable, students can always be

added afterward without losing feasibility, although it

may cause a significant number of student conflicts.

Algorithm 3 Two-Stage Constructive Algorithm
Input: Instance I

Output: Solution S

1: M ← Build MIP for I with only unassigned classes ob-
jective and no student sectioning

2: SM ← Solve M to optimality
3: Ms ← Build student sectioning MIP for I from SM

4: S ← Solve Ms with time limit of five minutes and relative
gap of 0.01, or until a solution is found

Algorithm 4 Three-Stage Constructive Algorithm
Input: Instance I
Output: Solution S

1: M ← Build MIP for I with no soft distribution con-
straints, no student sectioning, and only time and room
assignment penalties as objectives

2: do
3: Amend M to allow for unassigned rooms
4: S1 ← Solve M
5: Fix time-assignment of M from S1 using yc,t
6: Amend M to not allow for unassigned rooms
7: S2 ← Solve M
8: if M is infeasible then

9: Unfix and cut off current time-assignment in M

10: end if
11: while M is infeasible
12: Ms ← Build student sectioning MIP for I from S2

13: S ← Solve Ms with time limit of five minutes and relative
gap of 0.01, or until a solution is found

The 2SCA (shown in Algorithm 3) constructs a fea-

sible solution in two stages by first generating a feasible

timetable (lines 1-2) and then adding student section-

ing (lines 3-4). The 2SCA uses a modified MIP model to

generate a feasible timetable. The modified MIP model

ignores students and soft constraints, allows unsched-

uled classes, and the objective function only includes

the number of unscheduled classes. Thus a solution with

an objective value of 0 is a feasible timetable for the full

8 Rasmus Ø. Mikkelsen, Dennis S. Holm

Initial
Solutions

2SCA
3SCA Best Solution

MIP

Large Student Sectioning

Initial No Students
Solutions

No Student
Solutions

Fix-and-optimize
No Students

Add students
using ASST

Diversification

Fix-and-optimize

Fix-and-optimize

Fix-and-optimize

Intensification

Fix-and-optimize

Fig. 1 Flowchart illustrating the parallelized matheuristic, showing the solution flow, method collaboration and the changes
imposed by the “Large Student Sectioning” and “Diversification” modes.

MIP model. When the algorithm finds such a solution,

it uses the student sectioning MIP model to create a

student sectioning for the given timetable. The result

is a feasible timetable with student sectioning.

The 3SCA (shown in Algorithm 4) constructs a fea-

sible solution in three stages. The first two stages use a

modified MIP model that ignores soft distribution con-

straints, students, and only has class time and room as-

signment penalties in the objective function. The first

stage assigns classes to times by using a version of the

MIP model that allows for not assigning classes to a

room (lines 3-4). Stage two fixes the class-time assign-

ment of stage one and forbids classes with unassigned

rooms (lines 5-7). Solving the MIP model of stage two

results either in a feasible timetable or in an infeasible

model. In the case of an infeasible model, we cut off

the class-time assignment before going back to stage

one (lines 8-10). When the algorithm finds a feasible

timetable, it proceeds to stage three, where it uses the

student sectioning MIP model to add student section-

ing to the found timetable (lines 12-13).

When solving the first MIP model in the 2SCA, we

allow the MIP solver to run until a solution is found

with an objective value of 0 (solved to optimality).

When solving the models in stages one and two of the

3SCA, we give the MIP solver a time limit of five min-

utes and a relative optimality gap of 0.05. However,

since we need a solution to proceed to the next stage,

we force the search to continue if the solver does not

produce a solution within the time limit. Specifically,

we use callbacks to override the solver time limit and

only allow the search to terminate if it has found a so-

lution. In cases where we extend the search, we end the

search immediately upon the first solution found. Both

the 2SCA and the 3SCA add students to the found

timetables by solving the student sectioning MIP with

a time limit of five minutes and a relative optimality

gap of 0.01. Similarly, as described above, we force the

search to continue until it finds a feasible solution.

Comparatively, the 2SCA randomly chooses a feasi-

ble timetable, and the 3SCA considers quality by using

a greedy approach for assigning times and then rooms.

A Parallelized Matheuristic for the International Timetabling Competition 2019 9

Thus, the 3SCA might prove to be slower, but it should

have a higher probability of providing higher quality

initial solutions than the 2SCA.

We enable the 2SCA and the 3SCA to produce addi-

tional initial solutions by allowing them to run multiple

times. In such cases, they add a cut after finding a feasi-

ble timetable, forbidding the previous solution, forcing

the algorithm to find a new feasible timetable. We show

the cut used in the 2SCA below. Sn is the set of xc,t,r

variables set to 1 in stage one in the n’th iteration of

the 2SCA. The cut for the 3SCA uses yc,t instead of

xc,t,r. ∑
Sn

xc,t,r ≤ |Sn| − 1

Furthermore, the 2SCA and the 3SCA can skip the

last stage and only generate timetables without assign-

ing students. As mentioned, the produced timetables

are feasible in the full MIP model, and student section-

ing cannot make the complete solution infeasible (can

only add penalties through student conflicts). This fact

is an important feature that we use in Section 6.4.

6.2 Solution sharing

For the fix-and-optimize matheuristic, we use several

neighborhoods that may have varied performances on

different instances. We have no clear way to determine

a priori which neighborhood is better suited for a given

instance and therefore opt to use them all, with a sin-

gle fix-and-optimize process using each neighborhood.

Naturally, it would be beneficial to share good solutions

between each search, to ensure that none falls signifi-

cantly behind. This also enables us to use each neigh-

borhood to continually improve the best-found solution

with their different focuses and strengths.

In such a scheme, it is crucial to strike a balance be-

tween allowing each fix-and-optimize process to search

its own neighborhood and simultaneously not waste

time where no improvements are possible. Therefore,

each fix-and-optimize search checks if there is a better-

known solution every five iterations. If such a solution

exists, the fix-and-optimize uses it going forward. Each

fix-and-optimize iteration uses a maximum of 1.5 hours,

and therefore the process performs such a check at most

every 7.5 hours.

The parallelized algorithm also solves the full MIP

model in parallel to the fix-and-optimize searches. As

the MIP model is likely only competitive with fix-and-

optimize on smaller instances, we run the MIP solver

tuned to focus on improving the lower bound, as this

information is very valuable for evaluating the state of

the search. The MIP solver continually watches for and

sets any new best-known solution (using callbacks), as

this can be useful for managing the size of the branch

and bound tree and speeds up the search. However, the

MIP solver requires some time for reading and setting

new solutions, which does take time away from improv-

ing the bound.

6.3 Diversification

Even with solution sharing, there is a risk of the fix-

and-optimize searches getting stuck in a local optimum.

Therefore we include a diversification scheme to at-

tempt to escape from such a local optimum and con-

tinue the search. However, in cases where the collabo-

rative search stagnates, and the method begins the di-

versification search, we find it unlikely that we can find

considerably better solutions. Thus, we include this di-

versification scheme in an attempt to find the best solu-

tions possible but do not expect it to have a significant

impact on the average performance of our method.

The implemented parallelized matheuristic focuses

on the final 10 days of the competition, where the goal

is to find the best possible solutions on the Late in-

stances. With this in mind, we have chosen that the fix-

and-optimize processes enter diversification mode after

12 hours with no improving solution. When diversify-

ing, the fix-and-optimize processes “scramble”. They

each reset to a random new initial solution (generated

by the 2SCA or the 3SCA) and use that as a starting

point for a new search. They stop solution sharing, and

each fix-and-optimize process uses all three heuristics

for choosing classes to unfix, chosen at random in each

iteration. The fix-and-optimize processes use all heuris-

tics to counter the effects of turning solution sharing

off by not limiting a search using a heuristic that may

not be well suited for a given instance. We make no

change to the variable set used for fixing, so we only

allow the class choosing heuristic part of the neighbor-

hood to change.

Each fix-and-optimize process needs to determine

when to abandon the current diversification search and

reset to a new initial solution. Once more, it is es-

sential to strike a balance between giving the search

a chance and not wasting too much time where suc-

cess is unlikely. Algorithm 5a details the heuristic used

for determining when to abandon the current diversi-

fication search and try again from another initial so-

lution. If no new initial solution is available when the

algorithm determines to restart, the search simply con-

tinues and resets to a new solution when one becomes

available, unless we have found an improving solution

in the meantime. This is the role of input parameter F ,

10 Rasmus Ø. Mikkelsen, Dennis S. Holm

which is used in line 3 and updated in line 7. Lines 3-5

check if it was previously decided to abandon the search

(F = true), and the current solution is non-improving.

Lines 6-9 are relevant when the new solution improves,

and F is updated to allow the search to continue nor-

mally and returns not to abandon the search. The di-

versifying search is always allowed to continue for at

least five iterations, which is ensured by lines 10-12. Fi-

nally, we impose a limit on the number of consecutive

iterations where the search does not find improving so-

lutions. This limit is dependent on the gap between the

best solution of the current diversifying search and the

best-known solution. Algorithm 5b shows the used lim-

its (ranging from 2 to 5), which are defined to allow

for more leniency as the search gets closer to the best-

known solution value. Whenever the search resets to a

new initial solution, the algorithm resets all parameters

to their default values and clears the diversification-

solution value list (B).

Algorithm 5a AbandonDiversifySolution(S, S∗, B, F)

Input: New solution S, best-known solution S∗, list of
previous solution values B, boolean F stating if failed to get
new initial solution

Output: Boolean value stating whether to get a new
solution for diversification

1: B∗ ← min(B) ▷ Best solution found in this search
2: Add S to B

3: if F and S ≥ B∗ then

4: return true
5: end if

6: if S < B∗ then

7: F ← false
8: return false

9: end if

10: if length of B ≤ 5 then
11: return false

12: end if

13: L←GetConsecutiveNonImprovementLimit(B∗, S∗)
14: return If last L solutions in B have equal values

When the parallelized matheuristic finds a new best-

known solution, all fix-and-optimize processes jump

to this solution and reset all parameters. The search

continues normally with solution sharing turned on

and each fix-and-optimize process using its designated

heuristic for choosing classes to unfix.

6.4 Large Student Sectioning

Some competition instances include a very large num-

ber of students, which causes problems regarding com-

putational memory and time when using the full MIP

model. This is at least the case with pu-proj-fal19, which

has the largest number of courses, classes, and students

Algorithm 5b

GetConsecutiveNonImprovementLimit(B∗, S∗)

Input: Current best solution B∗, best known solution S∗

Output: Integer number of consecutive non-improvement
limit

1: G← gap from B∗ to S∗

2: if G ≥ 20% then

3: return 2
4: else if G ≥ 10% then
5: return 3
6: else if G ≥ 5% then

7: return 4
8: else

9: return 5
10: end if

of all competition instances. Holm et al. (2022) noted

that the full MIP model for pu-proj-fal19 requires more

than 256GBs of RAM to keep in memory. Therefore, we

include some additional methods and a special setup for

such instances, allowing for decoupling timetable devel-

opment and student sectioning.

By separating the class assignment and student sec-

tioning problems, the respective MIP models become

much more manageable. However, solving the class as-

signment problem without considering students comes

at the cost of no look-ahead, which may result in poor

solutions. It may be the case that high-quality timeta-

bles disregarding students yield many student conflicts,

which is especially unfortunate if student conflicts have

a relatively large weight. Therefore, the extension’s aim

is not to pursue the best possible solutions in general

but to improve the chances of finding feasible solutions

for large and difficult instances.

For instances with 30,000 students or more, we in-

voke a unique setup with a few changes/additions. We

denote this setup Large Student Sectioning (LSS). One

addition is the Add Student Sectioning to Timetables

(ASST) method, which takes a timetable as input and

adds students using the student sectioning MIP de-

scribed in Section 4. We generate valid timetables with-

out students using the 2SCA and the 3SCA heuristics

by each heuristic skipping their last stage. Furthermore,

we run two additional fix-and-optimize processes, which

both ignore student sectioning. One uses yc,t, and the

other uses xc,t,r for variable fixing. We include these

two searches to produce timetables of high quality (dis-

regarding student sectioning). In order to produce a lot

of feasible timetables, these two fix-and-optimize pro-

cesses are always in diversification mode, meaning that

there is no solution sharing, and they use all heuris-

tics for getting classes to unfix. Additionally, we make

these two searches more willing to abandon a diversi-

A Parallelized Matheuristic for the International Timetabling Competition 2019 11

fication search, doing so immediately when they find a

non-improving solution after the first five iterations.

The ASST method prioritizes using timetables pro-

duced by the two special fix-and-optimize processes. If

none are available, it chooses a timetable produced by

the 2SCA or the 3SCA. We solve the student section-

ing MIP model with a time limit of 10 minutes but, if

it finds no solution in that time, we force the solver to

continue until it produces a feasible solution. We run

five ASST in parallel, and they share a list of timeta-

bles that have had students added, such that they col-

lectively only consider the same timetable once. We

run multiple ASST processes because we have observed

cases where the ASST method has difficulty keeping

up with the influx of input solutions. The parallelized

matheuristic considers the solutions produced by the

ASST methods as initial solutions.

In summary, for instances with 30,000 students or

more, we run the default setup with the addition of LSS.

The result is that the constructive heuristics skip their

last stage of adding students and only produce feasible

timetables. Instead, five ASST processes add students

to the timetables in a prioritized manner. To improve

the relatively random timetables produced by the 2SCA

and the 3SCA, we include two fix-and-optimize searches

that ignore student sectioning. Hence, we run the de-

fault setup with some additional methods to increase

the likelihood of finding feasible solutions.

6.5 Competition setup

For completeness, we describe the computational setup

we used to find solutions for the Late instances during

the final ten days of the competition. As soon as the

competition organizers made the data publicly avail-

able, we reduced each instance using the preprocessing

techniques discussed by Holm et al. (2022). We then

ran the complete parallelized matheuristic simultane-

ously on each Late instance for the remaining time of

the competition, or untill the full MIP solver had proven

optimality.

We ran all algorithms in a cluster setting on 64bit

computers running Scientific Linux 7.7 equipped with

256GBs of RAM and two Intel Xeon E5-2650 v4 CPUs

clocked at 2.20 GHz. We used Gurobi 8.1.1 as the MIP

solver and had the following setup:

– One 2SCA and one 3SCA both producing at most

200 initial solutions and both using four threads

– One full MIP model solve with focus on bound using

16 threads

– Six fix-and-optimize processes, one using each com-

bination of class choosing heuristic (Standard, Com-

mon, Adjacent) and variable set (xc,t,r, yc,t), all us-

ing four threads

For instances with 30,000 or more students, we had the

following changes/additions:

– The solution limit for the 2SCA and the 3SCA in-

creased to 1,000 initial solutions (without students)

– Two fix-and-optimize processes ignoring students

both using four threads

– Five ASST processes adding students to timetables,

each using a single thread

7 Computational results

This section evaluates the parallelized matheuristic

through computational tests on all 30 instances used for

ranking in the ITC 2019. Similarly as during the com-

petition, we perform all computational tests in a cluster

setting. However, here we use computers equipped with

756GBs of RAM and two Intel Xeon Gold 6226R CPUs

clocked at 2.90GHz. Additionally, we use Gurobi 9.0 as

the MIP solver using four threads (unless stated other-

wise).

Although we here have more RAM available than

during the competition, we are still unable to build the

full MIP for pu-proj-fal19. We have implemented the

algorithm in the .NET Framework 4.8 and, for these

tests, run it through the Mono 6.8 runtime, which un-

fortunately consistently crashes while building the full

MIP model after using approximately 350GBs of RAM.

Therefore, in the following tests where we use the full

MIP model, we have not gathered any data for pu-proj-

fal19.

In the following we investigate different aspects of

the complete parallelized algorithm. Section 7.1 ex-

amines the initial solution heuristics. In Section 7.2

we evaluate the performance of the fix-and-optimize

matheuristic. Section 7.3 considers the effects of solu-

tion sharing and Section 7.4 examines the Large Stu-

dent Sectioning setup. Finally, in Section 7.5, we ex-

amine the effects of the implemented diversification

scheme.

7.1 Initial solutions

In the parallelized matheuristic, we use both the 2SCA

and the 3SCA to generate initial solutions. We run the

2SCA and the 3SCA five times on each instance, and

Table 3 shows the average objective cost and time to

find the first solution. As expected, the 2SCA finds solu-

tions more quickly than the 3SCA, but they are gener-

ally of lesser quality. The 3SCA is only quicker to find

12 Rasmus Ø. Mikkelsen, Dennis S. Holm

2SCA 3SCA

Instance Objective Time (s) Objective Time (s)

agh-fis-spr17 39,210 6,768 27,339 21,315
agh-ggis-spr17 183,854 85 174,288 604
bet-fal17 376,666 42,032 331,940 275,946
iku-fal17 161,312 8,208 32,078 69,807
mary-spr17 70,194 53 37,024 210
muni-fi-spr16 16,519 19 9,402 116
muni-fsps-spr17 115,797 157 142,878 39
muni-pdf-spr16c 542,507 2,209 503,734 51,682
pu-llr-spr17 92,625 83 24,859 138
tg-fal17 30,036 20 9,921 22

agh-ggos-spr17 95,185 1,305 71,515 3,075
agh-h-spr17 64,317 11,304 49,885 13,401
lums-spr18 1,892 196 394 804
muni-fi-spr17 16,792 29 10,056 168
muni-fsps-spr17c 506,576 264 751,055 1,297
muni-pdf-spr16 288,154 335 132,251 11,688
nbi-spr18 130,939 35 43,151 81
pu-d5-spr17 44,064 139 28,216 321
pu-proj-fal19 564,671 21,398 - -
yach-fal17 18,210 351 18,529 654

agh-fal17 538,236 5,807 489,711 25,024
bet-spr18 448,581 7,749 391,124 95,225
iku-spr18 188,769 21,564 - -
lums-fal17 2,969 233 1,128 1,151
mary-fal18 29,505 352 12,588 700
muni-fi-fal17 21,462 33 9,761 96
muni-fspsx-fal17 845,095 1,411 1,015,658 8,466
muni-pdfx-fal17 804,202 5,828 - -
pu-d9-fal19 327,100 837 107,983 4,420
tg-spr18 101,058 14 73,586 19

Table 3 An objective and time comparison of the first solu-
tion found by the 2SCA and the 3SCA on all 30 instances.
Bold results are the best objective/time for that instance.

the first solution for one instance (muni-fsps-spr17),

but in this case, both methods require little time, with

only 39 seconds and 157 seconds for the 3SCA and

the 2SCA, respectively. Conversely, the 2SCA is many

hours faster than the 3SCA for some instances. In-

stances iku-spr18 and muni-pdfx-fal17 represent ex-

treme cases, where the 3SCA is not able to find a sin-

gle feasible solution within five days, and the 2SCA

does so in 21,564 and 5,828 seconds, respectively. For

most other instances, the 3SCA produces a solution of

higher quality. The notable exception is the three muni-

fsps instances, where the 2SCA produced better solu-

tions. These three instances give much greater weight

to student conflicts than all other timetable penalties.

Thus, the extra time spent in the 3SCA on improving

the timetable’s quality without considering students is

counterproductive as it increases the number of student

conflicts, which is much more costly. Additionally, we

note that the time-consuming and challenging part is to

find a feasible timetable. For example, on bet-fal17, the

last stage of building and solving the student section-

ing MIP model for both heuristics requires less than a

minute.

Figure 2 shows the solution values with and with-

out students for the 2SCA and the 3SCA for instances

agh-ggis-spr17, pu-llr-spr17,muni-fsps-spr17c, and agh-

fis-spr17. We run both the 2SCA and the 3SCA us-

ing a time limit of 24 hours and a solution limit of

100 solutions. All plots show that the 2SCA is faster

at generating solutions but varies more in the objective

value, which we expected since the first stage of the

2SCA produces timetables without considering any nor-

mal timetable-related objectives. Since the 3SCA does

consider timetable quality, the solutions it produces are

of more similar quality, which we especially see in the

plots for agh-ggis-spr17 and pu-llr-spr17. These two

plots also show a great difference in solution quality

between the two algorithms, especially on pu-llr-spr17,

where the 3SCA finds much better solutions. The plot

for muni-fsps-spr17c shows the special case where the

2SCA consistently finds better solutions. For this in-

stance, the 3SCA finds timetables (excluding students)

with an objective value between 5,000 and 10,000 less

than the 2SCA. However, the cost of adding students to

these timetables outweighs these differences. The plot

for agh-fis-spr17 shows how the 3SCA is only able to

find three solutions within the 24-hour time limit, as

opposed to the 2SCA, which finds 75. However, these

few solutions are of much greater quality than any pro-

duced by the 2SCA.

Although the 2SCA and the 3SCA have varying per-

formance for different instances, the general observa-

tion is that the 2SCA is quicker to find solutions but of

lower quality than the 3SCA. These two methods aim to

quickly find an initial solution that the fix-and-optimize

search can improve. However, it is perhaps more bene-

ficial to wait longer for the better 3SCA solution than

proceeding with the first 2SCA solution. To investigate,

we run an experiment where we allow fix-and-optimize

to run for 24 hours, subtracted the time required to

produce the initial solution.

Table 4 shows the average best solution found, run-

ning five separate fix-and-optimize searches using the

initial solutions of the 2SCA and the 3SCA and the al-

tered running times. We use the SY and SX neighbor-

hoods to get fair results for the default fix-and-optimize

search setting. The 2SCA initial solution results in the

best average solution 8 and 10 times for SY and SX ,

respectively. Similarly, the 3SCA initial solution yields

the best average solution 8 and 9 times for SY and

SX , respectively. Thus, the results show no clear supe-

riority between the two initial solution heuristics. For

only producing an initial solution, the 2SCA does so

more robustly and quickly, producing an initial solu-

tion for all instances. However, the 3SCA is not with-

out merit, as there are cases where it provides an initial

A Parallelized Matheuristic for the International Timetabling Competition 2019 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Time (h)

25000

50000

75000

100000

125000

150000

175000

200000

Va
lu

e

agh-ggis-spr17

2SCA timetable
2SCA with students
3SCA timetable
3SCA with students

0 1 2 3 4
Time (h)

20000

40000

60000

80000

100000

Va
lu

e

pu-llr-spr17
2SCA timetable
2SCA with students
3SCA timetable
3SCA with students

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (h)

0

100000

200000

300000

400000

500000

600000

700000

800000

Va
lu

e

muni-fsps-spr17c

2SCA timetable
2SCA with students
3SCA timetable
3SCA with students

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time (h)

5000

10000

15000

20000

25000

30000

35000

40000

45000

Va
lu

e

agh-fis-spr17

2SCA timetable
2SCA with students
3SCA timetable
3SCA with students

Fig. 2 Solution values per time for solutions generated by
the 2SCA and the 3SCA on agh-ggis-spr17, mary-fal18, muni-

fspsx-fal17 and agh-fis-spr17.

2SCA 3SCA

Instance SY SX SY SX

agh-fis-spr17 5,156.0 4,518.0 5,536.6 4,337.6
agh-ggis-spr17 46,204.2 46,487.6 49,098.6 46,294.6
bet-fal17 345,482.4 327,404.0 - -
iku-fal17 30,805.2 24,483.8 23,176.0 21,307.4
mary-spr17 16,358.0 15,762.2 15,425.8 15,444.8
muni-fi-spr16 3,940.8 3,988.4 3,900.8 3,937.8
muni-fsps-spr17 870.6 870.2 870.8 868.6

muni-pdf-spr16c 121,942.2 86,645.6 225,511.4 146,454.4
pu-llr-spr17 10,143.0 10,184.6 10,112.2 10,157.0
tg-fal17 4,215.0 4,215.0 4,215.0 4,215.0

agh-ggos-spr17 11,381.4 6,754.6 14,330.2 7,386.6
agh-h-spr17 27,361.6 27,173.6 26,974.8 26,614.2
lums-spr18 99.0 98.2 99.6 95.8

muni-fi-spr17 4,227.0 4,369.6 4,241.4 4,192.8

muni-fsps-spr17c 21,370.2 10,102.8 31,753.0 7,061.0
muni-pdf-spr16 34,173.8 28,103.6 34,709.4 22,231.4

nbi-spr18 18,032.0 18,171.0 18,097.4 18,064.6
pu-d5-spr17 20,366.0 22,321.8 18,108.8 20,009.4
pu-proj-fal19 - - - -
yach-fal17 4,353.6 5,251.8 4,882.0 5,260.2

agh-fal17 333,869.4 285,111.6 348,112.6 311,511.6
bet-spr18 390,160.0 389,610.6 - -
iku-spr18 39,325.6 51,181.8 - -
lums-fal17 358.4 358.0 358.0 360.4
mary-fal18 5,291.0 5,684.8 5,446.4 5,313.2
muni-fi-fal17 3,531.2 3,602.6 3,595.0 3,575.8
muni-fspsx-fal17 172,442.2 40,678.0 213,343.6 57,734.8
muni-pdfx-fal17 421,507.2 162,142.4 - -
pu-d9-fal19 143,942.6 141,219.0 56,230.2 65,756.0
tg-spr18 12,704.0 12,704.0 12,704.0 12,772.0

Table 4 Average best solution found by fix-and-optimize us-
ing 2SCA and 3SCA initial solutions. We run each fix-and-
optimize search for 24 hours minus the time required to find
the initial solution (shown in Table 3).

solution of much better quality only shortly after the

2SCA, resulting in better performance for the following

fix-and-optimize search. Additionally, we also use the

generated initial solutions as new initial solutions for

fix-and-optimize during diversification, where it typi-
cally is better to use higher quality solutions.

7.2 Fix-and-optimize

Using different heuristics for choosing classes to unfix

is only relevant if these heuristics achieve different re-

sults. We compare the chosen classes to remain unfixed

from each heuristic pair, using the same course list as

input and extracting 25% of all instance classes. Table 5

shows the average percentage overlap in chosen classes

for five different course list inputs. We expect some

overlap since we give the same input to each heuristic,

and all heuristics includes all classes when considering

a course. The overlap between the Standard heuristic

and the others is approximately 50%. As mentioned

in Section 5.1, the Adjacent heuristic is partly simi-

lar to the Common heuristic, as it focuses mainly on

hard distribution constraints. This similarity leads to

an increased overlap, averaging 72.3% for all instances.

14 Rasmus Ø. Mikkelsen, Dennis S. Holm

Instance S-C S-A C-A

agh-fis-spr17 40.6 45.0 72.6
agh-ggis-spr17 45.3 65.3 52.0
bet-fal17 50.6 50.9 86.7
iku-fal17 34.4 33.1 69.3
mary-spr17 48.5 59.5 63.7
muni-fi-spr16 46.0 57.3 62.1
muni-fsps-spr17 45.4 45.8 79.4
muni-pdf-spr16c 37.3 42.3 73.4
pu-llr-spr17 61.9 56.4 55.7
tg-fal17 39.4 27.2 81.1

agh-ggos-spr17 44.2 44.3 83.2
agh-h-spr17 40.1 43.0 85.8
lums-spr18 35.8 37.3 94.0
muni-fi-spr17 59.5 60.5 78.2
muni-fsps-spr17c 57.6 58.7 90.9
muni-pdf-spr16 41.9 42.7 80.2
nbi-spr18 50.7 50.5 85.1
pu-d5-spr17 81.8 84.9 78.9
pu-proj-fal19 68.5 57.9 51.8
yach-fal17 59.6 67.2 71.4

agh-fal17 41.3 54.1 68.1
bet-spr18 47.1 48.3 89.0
iku-spr18 33.7 32.3 61.8
lums-fal17 37.3 38.0 99.1
mary-fal18 55.4 69.9 62.0
muni-fi-fal17 55.1 58.3 69.7
muni-fspsx-fal17 33.7 47.8 44.4
muni-pdfx-fal17 32.9 39.1 58.6
pu-d9-fal19 71.8 72.8 69.6
tg-spr18 27.0 30.8 50.8

Average 47.5 50.7 72.3

Table 5 The percentage overlap of classes for each neighbor-
hood pair using the same course list input and extracting 25%
of all classes.

Three instances have more than 90% overlap due to the

instances having a large percentage of hard constraints

used in the conflict graph. For example, in lums-fal17,

91% of its distribution constraints are hard and are of

types which contribute to the conflict graph.

To compare neighborhood and algorithm perfor-

mance, we run the fix-and-optimize search using each

neighborhood on all instances. We use the first ini-

tial solution available as shown in Table 3, i.e., the

2SCA solution for all but muni-fsps-spr17 which uses

the 3SCA solution. When solving subproblems in the

fix-and-optimize algorithm, we set the MIP focus pa-

rameter to “feasibility” (MIPFocus=1 for Gurobi), pri-

oritizing finding feasible solutions quickly. We compare

the fix-and-optimize searches to the full MIP model,

solved using default settings. To have a fair compari-

son, we warm-start the MIP solver with the same initial

solution. We run all experiments for 24 hours and using

four threads.

Table 6 shows the average best solutions obtained

for each neighborhood and the full MIP model solve. We

run each test five times and highlight the best results

using boldface. As expected, when comparing fix-and-

optimize and solving the full MIP model, the matheuris-

tic generally yields much better results. For many in-

stances, the full MIP model is simply too comprehen-

sive for the solver to handle. All values marked with an

asterisk in the UB column show cases where the MIP

solver only found one or two solutions, where the first

is the initial warm-started solution and the second is

a heuristic solution found during the presolve phase.

In some cases, the solver did not even finish solving

the root node relaxation. However, we also see cases

where the MIP solver produces the average best re-

sults, most notably for instance iku-fal17, where it has

substantially better average performance than the fix-

and-optimize searches. Additionally, the lower bound

information provided by the MIP solver is valuable, in-

dicating that we solve at least one instance to optimal-

ity and others with a small optimality gap.

The table also shows that the neighborhoods based

on the Standard heuristic generally have better perfor-

mance than the others, finding a majority of the best

average solutions. In fact, S-based neighborhoods re-

sulted in the best average solution on 20 instances,

C-based neighborhoods on 5 instance, and A-based

neighborhoods on 9 instances. Especially, CY and AX

have poor performance, only finding the best average

solution on tg-fal17, which all methods individually

solve to optimality. In most cases where either C or A

have the best performance, the solutions of S are not far

behind. The most notable exceptions are pu-d5-spr17,

iku-spr18 and pu-d9-fal19, where the best performing

S-based neighborhood has a gap to the best performing

neighborhood of 9.9%, 11.5%, and 13.3%, respectively.

For pu-d5-spr17 the results are relatively stable, as the

neighborhood with the largest relative standard devia-

tion (RSD) is SX with a value of 3.81%, which is very

stable. The results are less stable for iku-spr18 and pu-

d9-fal19, where SX and AY respectively result in the

largest RSD values of 28.97% and 13.63%.

In general, it seems that S-based neighborhoods re-

sult in the best performance of the fix-and-optimize

search. The success of the S heuristic compared to the

others may be attributed to the fact that we give all

methods a initial solution of low quality and a rel-

atively short running time, considering that we have

tuned the heuristic to a 10-day run. Perhaps the Stan-

dard heuristic is especially good for an initial dive, while

the others are better for thoroughly searching the so-

lution space, once improving solutions are more diffi-

cult to find. Conversely, possibly C and A are only well

suited for specific cases. For example, there certainly

seems to be a pattern of AY resulting in a good per-

A Parallelized Matheuristic for the International Timetabling Competition 2019 15

Fix-and-optimize MIP

Instance SY SX CY CX AY AX UB LB

agh-fis-spr17 5,380.8 4,512.0 5,955.0 5,173.6 5,204.6 5,133.6 17,129.0 875.0
agh-ggis-spr17 46,793.6 43,564.2 43,704.0 40,861.4 48,784.4 46,748.6 161,115.0 12,241.6
bet-fal17 323,545.2 309,112.2 348,339.2 327,760.0 345,421.4 327,480.0 375,833.0∗ 21,288.0
iku-fal17 28,848.6 24,355.4 28,594.6 24,134.4 23,164.6 28,287.2 20,256.0 16,151.2
mary-spr17 15,658.2 17,364.2 20,899.2 21,581.8 15,293.6 16,106.2 15,367.6 14,064.0
muni-fi-spr16 3,957.0 3,942.0 4,196.0 4,294.4 3,852.8 4,194.8 14,566.0 3,301.0
muni-fsps-spr17 870.8 868.6 2,391.2 4,268.8 869.2 869.6 868.0 867.0
muni-pdf-spr16c 113,079.2 82,564.2 146,395.4 98,361.8 146,361.2 100,031.8 519,123.0∗ 0.0
pu-llr-spr17 10,183.2 10,221.4 24,925.2 35,823.2 10,119.4 17,643.8 10,057.2 9,864.8
tg-fal17 4,215.0 4,215.0 4,215.0 4,215.0 4,215.0 4,215.0 4,215.0 4,215.0

agh-ggos-spr17 10,122.0 6,888.6 13,889.8 9,552.4 13,110.4 9,695.8 59,472.0 851.0
agh-h-spr17 27,145.6 26,255.8 32,263.4 30,895.6 28,447.0 28,761.0 43,076.0 7,222.0
lums-spr18 98.0 98.4 189.4 199.6 122.4 125.6 95.0 24.0
muni-fi-spr17 4,371.8 4,336.8 5,080.8 5,338.6 4,238.8 4,554.4 15,232.0 2,249.0
muni-fsps-spr17c 22,234.0 10,531.2 31,002.8 15,592.4 29,360.2 19,485.0 469,457.0 246.0
muni-pdf-spr16 44,524.8 29,486.0 51,321.8 38,663.4 53,810.4 38,900.8 288,154.0∗ 0.0
nbi-spr18 18,073.8 18,096.8 18,284.6 18,323.0 18,105.4 18,337.2 18,181.0 17,646.6
pu-d5-spr17 21,201.6 23,774.6 22,014.0 24,021.2 19,288.0 22,194.4 27,007.0 4,474.0
pu-proj-fal19 - - - - - - - -
yach-fal17 3,795.0 4,444.0 4,223.2 5,816.0 4,011.6 5,949.2 16,217.0 514.0

agh-fal17 334,852.6 286,555.2 355,222.6 317,845.4 376,150.4 319,616.4 538,236.0∗ 1,125.0
bet-spr18 392,999.2 383,667.6 408,694.4 394,488.6 410,585.0 395,778.6 448,581.0∗ 19,326.0
iku-spr18 38,532.4 39,503.6 37,572.4 34,553.2 36,984.6 39,968.2 35,126.2 20,607.2
lums-fal17 357.6 357.6 464.6 505.6 371.8 371.8 460.6 250.0
mary-fal18 5,355.0 6,161.8 8,763.2 9,516.6 5,459.8 6,605.8 13,783.0 2,926.4
muni-fi-fal17 3,764.4 3,546.8 4,346.4 4,277.8 3,541.4 3,582.4 21,462.0∗ 1,610.8
muni-fspsx-fal17 170,151.8 44,470.0 177,999.8 104,173.6 165,552.8 142,950.6 804,607.0∗ 1,406.4
muni-pdfx-fal17 402,218.0 170,695.8 461,588.0 219,444.2 490,537.8 248,263.8 778,492.0∗ 0.0
pu-d9-fal19 137,127.2 139,684.2 164,506.8 184,878.0 121,022.4 127,100.8 316,313.0∗ 0.0
tg-spr18 12,704.0 12,704.0 12,908.0 12,704.0 12,704.0 17,900.0 12,704.0 12,389.6

Table 6 Best average solution and bound values found in 24 hours. Bold results shows the best for that instance.

formance on muni-fi-* and pu-d* instances. In the fu-

ture, we could investigate the connection between well-

performing neighborhoods and instance characteristics.

We also see that for a given instance, fix-and-optimize

will generally have better performance using either xc,t,r

or yc,t for fixing, regardless of the class choosing heuris-

tic, i.e., if SX ≥ SY then we likely have that CX ≥ CY

and AX ≥ AY . It appears that the favorable variable

set is mostly related to the size of the instance and

MIP model, such that large instances achieve better

performance using xc,t,r and smaller instances using

yc,t. This separation makes sense, as using xc,t,r on diffi-

cult instances results in more constrained and more eas-

ily solved subproblems. Conversely, using yc,t on more

easily handled problems results in subproblems with a

larger solution space and allows for greater flexibility in

the search.

Finally, for the fix-and-optimize matheuristic, we in-

vestigate the effects of dynamically updating the neigh-

borhood size throughout the search. We do so by run-

ning fix-and-optimize using different fixed neighborhood

sizes (5%, 15%, 25%, 35%, and 45%). To limit the num-

ber of runs, we settle for only using the best performing

neighborhood as shown in Table 6. Table 7 shows the

average results of five 24-hour runs compared to the

default setting where the size starts at 25% and is dy-

namically updated (values taken from Table 6).

The results show that dynamic neighborhood sizes

result in the best performance on nine instances. On

the remaining 20 tested instances, a fixed neighborhood

size results in the best performance, with nine instances

favoring 15% and the other 11 instances distributed al-

most evenly among the other fixed sizes. However, dy-

namically updating the size is almost as good as the

best fixed neighborhood size in all cases, achieving the

second-best performance on 16 out of the 20 instances.

Figure 3 shows the solution value progression of a

single comparison run of the dynamic and fixed sizes

searches and the dynamic neighborhood size for in-

stances yach-fal17, tg-fal17, and agh-ggos-spr17.

The plots for yach-fal17 and tg-fal19 show oppo-

site situations where fix-and-optimize gets better re-

sults from a small and large neighborhood size, respec-

tively. On yach-fal17, 5% and 15% yield the best results,

16 Rasmus Ø. Mikkelsen, Dennis S. Holm

No update

Instance Neighborhood 5% 15% 25% 35% 45% Dynamic

agh-fis-spr17 SX 8,287.4 5,217.6 4,559.0 5,280.4 6,831.0 4,512.0

agh-ggis-spr17 CX 51,991.8 42,155.0 42,030.4 45,238.0 57,988.2 40,861.4
bet-fal17 SX 322,693.0 308,225.4 329,497.2 356,191.6 365,520.6 309,112.2
iku-fal17 AY 36,018.6 24,568.8 23,275.6 23,446.0 23,807.4 23,164.6

mary-spr17 AY 18,889.4 15,521.8 15,426.0 15,442.6 15,425.4 15,293.6
muni-fi-spr16 AY 3,968.2 3,849.8 3,819.8 3,975.0 7,461.8 3,852.8
muni-fsps-spr17 SX 1,506.4 876.0 872.6 873.0 871.0 868.6

muni-pdf-spr16c SX 134,328.4 75,917.0 85,483.8 107,368.0 141,031.0 82,564.2
pu-llr-spr17 AY 10,345.4 10,237.6 10,168.6 10,108.2 10,176.6 10,119.4
tg-fal17 SY 8,506.4 5,449.0 4,978.8 4,707.4 4,375.0 4,215.0

agh-ggos-spr17 SX 15,577.0 6,381.6 7,338.6 16,328.4 28,663.2 6,888.6
agh-h-spr17 SX 29,578.2 26,525.4 26,481.4 24,465.2 26,283.4 26,255.8
lums-spr18 SY 123.6 103.8 101.0 99.6 97.6 98.0
muni-fi-spr17 AY 5,060.4 4,260.4 4,206.8 6,421.4 8,749.6 4,238.8
muni-fsps-spr17c SX 19,699.8 11,174.0 7,136.2 49,897.0 225,230.0 10,531.2
muni-pdf-spr16 SX 65,957.0 34,477.4 28,038.8 53,604.8 93,544.2 29,486.0
nbi-spr18 SY 21,755.8 19,403.8 18,436.4 18,311.2 18,174.2 18,073.8

pu-d5-spr17 AY 20,299.6 19,230.0 21,595.4 24,844.4 34,175.2 19,288.0
pu-proj-fal19 - - - - - - -
yach-fal17 SY 2,810.4 2,929.2 6,684.4 7,755.8 7,954.8 3,795.0

agh-fal17 SX 295,353.4 316,191.4 340,419.0 464,210.4 482,725.0 286,555.2

bet-spr18 SX 386,302.8 381,474.8 403,388.4 422,996.2 441,730.4 383,667.6
iku-spr18 CX 44,922.2 37,993.0 33,326.6 32,575.2 34,089.6 34,553.2
lums-fal17 SY 458.4 384.8 381.6 363.4 357.0 357.6
mary-fal18 SY 7,472.8 5,130.8 6,748.8 9,253.2 13,952.2 5,355.0
muni-fi-fal17 AY 3,474.2 3,461.0 3,888.0 6,232.4 11,294.0 3,541.4
muni-fspsx-fal17 SX 124,667.4 39,755.2 57,901.0 298,199.8 491,193.4 44,470.0
muni-pdfx-fal17 SX 254,471.0 147,203.8 201,668.4 279,862.6 715,373.2 170,695.8
pu-d9-fal19 AY 120,455.4 203,953.2 296,574.6 323,173.2 327,100.0 121,022.4
tg-spr18 SY 20,498.0 17,952.8 17,732.4 16,724.8 12,874.0 12,704.0

Table 7 Best average solution values in 24 hours for different fixed and dynamic neighborhood sizes.

0 5 10 15 20 25 30 35 40 45
Iteration

4000

6000

8000

10000

12000

14000

16000

So
lu

tio
n

va
lu

e

5

10

15

20

25

Pe
rc

en
t t

o
un

fix

yach-fal17

SY (dynamic)
SY (5%)
SY (15%)
SY (25%)
SY (35%)
SY (45%)
P

0 10 20 30 40
Iteration

5000

7500

10000

12500

15000

17500

20000

22500

So
lu

tio
n

va
lu

e

25
30
35
40
45
50
55
60
65
70
75
80
85

Pe
rc

en
t t

o
un

fix

tg-fal17

SY (dynamic)
SY (5%)
SY (15%)
SY (25%)
SY (35%)
SY (45%)
P

0 10 20 30 40 50
Iteration

20000

40000

60000

80000

So
lu

tio
n

va
lu

e

10

15

20

25

Pe
rc

en
t t

o
un

fix

agh-ggos-spr17

SX (dynamic)
SX (5%)
SX (15%)
SX (25%)
SX (35%)
SX (45%)
P

Fig. 3 Solution values and neighborhood size (P) per iteration for the dynamic and fixed neighborhood size fix-and-optimize
searches on yach-fal17, tg-fal17, and agh-ggos-spr17.

A Parallelized Matheuristic for the International Timetabling Competition 2019 17

and we see the dynamic neighborhood gradually reduc-

ing its size to a minimum of 5%, which allows it to lack

less behind than the other runs. Oppositely, the plot

for tg-fal17 shows the dynamic neighborhood increas-

ing its size to 85%, allowing the fix-and-optimize search

to produce an (optimal) solution costing 4,215 in 32 it-

erations. The searches limited to a fixed neighborhood

size have much worse performance. Unsurprisingly, the

largest fixed neighborhood of 45% returns the second-

best result, finding a solution costing 4,357 in 7,799

iterations.

The plot for agh-ggos-spr17 shows a more balanced

situation. For this instance, a fixed size of 15% results in

the best average performance, followed closely by 25%

and dynamic setting. The figure supports this, show-

ing a quick dive in solution value for most settings but

with the 15%, 25%, and dynamic runs the most per-

sistent. The figure also shows the dynamic neighbor-

hood size decreasing from the initial 25% to 10%, with

a 5% decrease at iterations 7, 15, and 26. Thus, the dy-

namic neighborhood size does not quickly decrease but

strikes some balance, consistent with the 15% and 25%

fixed size having the best performance. In this partic-

ular comparison, the searches using the dynamic and

25% fixed sizes actually end up finding better solutions

than the 15% run.

7.3 Solution sharing

In the parallelized matheuristic, we share solutions be-

tween the fix-and-optimize searches and the full MIP

model solver to have most computational time spent

where there is a chance of moving the search forward.

Doing so is especially important for fix-and-optimize,

where an individual search may fall behind due to a

poor neighborhood fit or misfortune. By periodically

moving the fix-and-optimize search to the best-known

solution, we increase its chance of contributing to the

overall search. While we also continually feed the best-

known solution to the full MIP model solver, this is

primarily to help prune nodes in the branch and bound

tree.

To investigate the effects of solution sharing, we re-

peat the experiments of Table 6, with the same settings

except that we include solution sharing. That is, we

have five runs with six fix-and-optimize searches (one

for each neighborhood) and one full MIP model solve for

24 hours and have them share solutions as described in

Section 6.2. Table 8 shows the average results, demon-

strating that solution sharing yields better or similar

results compared to no sharing in all cases except one.

The exception is pu-llr-spr17, for which solution sharing

in this experiment resulted in an average best solution

value that is 0.6 worse compared to no sharing. How-

ever, this is a minute difference, and the considerable

improvements seen for many other instances dramati-

cally outweigh it. The average improvement for all in-

stances in the best-found solution value is 12.2%. This

improvement rate is quite significant, especially consid-

ering that we have solved some instances to (or close to)

optimality, and the room for improvement thus is rela-

tively small. Of the 29 considered instances, 13 saw an

improvement in the best-found solution value of more

than 10%.

Table 8 also includes the average best-found lower

bounds of the full MIP solver, for which we see no ma-

jor change with an average improvement of only 0.1%.

However, this is not surprising considering the short

running time. Solution sharing is beneficial for improv-

ing the bound when new solutions can help prune nodes

in the branch and bound tree. The MIP solver only

begins branching for nine of the instances. All others

are working in the root node of the tree; some even

still solving the root node linear relaxation. Some in-

stances achieve a worse lower bound when sharing solu-

tions, which may be a consequence of the MIP solving

spending time parsing and handling passed solutions,

resulting in the solver changing search strategy. How-

ever, given the short running time and the fact that

we do not tune the MIP solver to focus on improving

the lower bound, these results regarding the change in

produced lower bound are nonessential.

In all, solution sharing improves the search’s over-

all speed and consistently achieves better results within

the first 24 hours. Furthermore, although we see no im-

provement in the lower bound, this would be expected

for longer running times.

7.4 Large Student Sectioning

The MIP model for pu-proj-fal19 is massive, requiring

a significant amount of RAM and making it intractable

to solve both the full MIP model and the significantly

constrained MIP model used in fix-and-optimize. To

counter this problem, we introduced some additions

that decouple timetable development and student sec-

tioning. By using these methods, we can find feasible

solutions for pu-proj-fal19. The additions are invoked

for instances with 30,000 students or more, meaning

that pu-proj-fal19 and pu-d9-fal19 are the only affected

instances.

Table 9 shows the best solution values found in 24

hours using three different setups on pu-proj-fal19 and

pu-d9-fal19 five times. The tested setups are as fol-

lows. The default parallelized matheuristic where we

run the 2SCA, the 3SCA, six fix-and-optimize, and one

18 Rasmus Ø. Mikkelsen, Dennis S. Holm

No sharing Sharing Improvement (%)

Instance UB LB UB LB UB LB

agh-fis-spr17 4,512.0 875.0 3,631.2 875.0 19.5 0.0
agh-ggis-spr17 40,861.4 12,241.6 38,772.6 12,146.0 5.1 -0.8
bet-fal17 309,112.2 21,288.0 305,422.0 21,288.0 1.2 0.0
iku-fal17 20,256.0 16,151.2 19,227.0 16,166.2 5.1 0.1
mary-spr17 15,293.6 14,064.0 14,927.2 14,026.4 2.4 -0.3
muni-fi-spr16 3,852.8 3,301.0 3,831.6 3,279.8 0.6 -0.6
muni-fsps-spr17 868.0 867.0 868.0 867.2 0.0 0.0
muni-pdf-spr16c 82,564.2 0.0 62,797.2 0.0 23.9 0.0
pu-llr-spr17 10,057.2 9,864.8 10,057.8 9,905.4 0.0 0.4
tg-fal17 4,215.0 4,215.0 4,215.0 4,215.0 0.0 0.0

agh-ggos-spr17 6,888.6 851.0 4,854.2 851.0 29.5 0.0
agh-h-spr17 26,255.8 7,222.0 22,601.0 7,222.0 13.9 0.0
lums-spr18 95.0 24.0 95.0 19.8 0.0 -17.5
muni-fi-spr17 4,238.8 2,249.0 3,972.4 2,255.0 6.3 0.3
muni-fsps-spr17c 10,531.2 246.0 4,340.6 246.0 58.8 0.0
muni-pdf-spr16 29,486.0 0.0 23,496.6 0.0 20.3 0.0
nbi-spr18 18,073.8 17,646.6 18,015.2 17,663.0 0.3 0.1
pu-d5-spr17 19,288.0 4,474.0 18,214.4 4,474.0 5.6 0.0
pu-proj-fal19 - - - - - -
yach-fal17 3,795.0 514.0 2,213.4 514.6 41.7 0.1

agh-fal17 286,555.2 1,125.0 269,101.4 1,125.0 6.1 0.0
bet-spr18 383,667.6 19,326.0 373,840.2 19,326.0 2.6 0.0
iku-spr18 34,553.2 20,607.2 27,684.0 20,360.0 19.9 -1.2
lums-fal17 357.6 250.0 349.8 250.6 2.2 0.2
mary-fal18 5,355.0 2,926.4 4,640.8 2,901.0 13.3 -0.9
muni-fi-fal17 3,541.4 1,610.8 3,173.4 1,591.0 10.4 -1.2
muni-fspsx-fal17 44,470.0 1,406.4 33,306.6 1,758.0 25.1 25.0
muni-pdfx-fal17 170,695.8 0.0 143,734.2 0.0 15.8 0.0
pu-d9-fal19 121,022.4 0.0 90,635.2 0.0 25.1 0.0
tg-spr18 12,704.0 12,389.6 12,704.0 12,299.2 0.0 -0.7

Table 8 Best solution and bound values found in 24 hours with and without solution sharing.

full MIP solve and include solution sharing. Large Stu-

dent Sectioning (LSS) has the 2SCA and the 3SCA

skipping student sectioning, two fix-and-optimize im-
proving those solutions (ignoring student sectioning),

and five ASST adding students to the produced timeta-

bles. The last setup is “Default+LSS” in which we com-

bine the two, such that we also include the six fix-and-

optimize searches and the full MIP solve.

The best solutions produced for pu-proj-fal19 using

the LSS setup vary somewhat in solution value; the av-

erage value is 204,011.2, but the greatest difference is

30,963. The solutions found for pu-d9-fal19 using LSS

are more consistent (the largest difference is 6,017) but

of much worse quality than those produced by the other

setups. For pu-d9-fal19, we observe a slight benefit to

using the default setup without the addition of LSS,

with an average best-found solution value of 48,333.4

and 52,748.6, respectively. We explain the difference

due to the high quality of the first initial solution found

by the 3SCA, which costs on average 107,983 and is

found after 4,420 seconds. In the default setup, this

initial solution is significantly better than any solution

found so far, and due to solution sharing, the fix-and-

optimize searchers soon after “jump” to this solution

and continue the search from a much better solution.

When using the LSS methods, the 3SCA skips the last

stage of adding students, which the ASST methods in-

stead handle. However, since the ASST methods priori-

tize investigating solutions produced by the specialized

fix-and-optimize searches (that ignoring students), the

excellent 3SCA solution never has students added. Thus

the collective search does not have a chance for the same

initial significant dive and instead has a more uniform

search progression. However, it is interesting that the

differences are almost negated within the 24-hour time

limit.

Finally, we note that the three tested setups for

pu-d9-fal19 achieved comparable or better results than

those shown in Table 8, which is due to those tests using

the much worse 2SCA initial solution. It is noteworthy

that, given a time frame of 24 hours, the LSS setup

alone, i.e., methods designed to produce initial solu-

tions, achieve the same solution quality as the default

setup limited to using the weaker 2SCA initial solution.

A Parallelized Matheuristic for the International Timetabling Competition 2019 19

pu-proj-fal19 pu-d9-fal19

Run LSS Default LSS Default+LSS

1 188,892 48,348 88,598 53,147
2 219,855 46,147 94,615 53,540
3 199,040 49,657 92,027 50,449
4 198,095 48,449 88,799 54,781
5 214,174 49,066 89,305 51,821

Average 204,011.2 48,333.4 90,668.8 52,747.6

Table 9 The best solutions found for five runs of 24 hours
on the pu-proj-fal19 and pu-d9-fal19 instances using different
setups.

7.5 Full setup with diversification

Here we run the complete setup on all instances for

a total of ten days, closely mimicking the setup used

during the final part of the competition. That is, we

run the 2SCA and the 3SCA producing up to 200 ini-

tial solutions (both using four threads), a single MIP

solve focusing on improving bound (using four threads

instead of the 16 used in the competition), six fix-and-

optimize processes (each using a different neighborhood

and four threads). Additionally, for pu-proj-fal19 and

pu-d9-fal19 we include the LLS setup. However, com-

pared to during the competition, we use different com-

puters and MIP model solver as described at the begin-

ning of Section 7.

Table 10 shows the results of a single 10-day run

of the complete parallelized matheuristic on all com-

petition instances. We show both the best-known so-

lution after the first 24 hours and ten days and the

lower bound provided by the MIP solver. The algo-

rithm has solved three instances to proven optimality

and six other instances to an optimality gap of less

than 5%. There are also instances where there is little

to no difference between the best-known solution after

24 hours and ten days. However, there are a few difficult

instances for which there is considerable improvement

after the initial 24 hours.

To investigate the effects of diversification, we exam-

ine the progression of solution values per time. Figure 4

shows such plots for instances agh-h-spr17, iku-spr18,

and agh-fal17, respectively. The search stagnates and

begins diversification for the first two instances. Note

that since fix-and-optimize uses all heuristics for choos-

ing classes while diversifying, the plots do not reflect

the actual heuristic used during diversification but keep

their original format for clarity.

For agh-h-spr17, the parallelized matheuristic en-

ters diversification twice during the search. The best

solution of the initial dive is found after approximately

78 hours with an objective value of 22,372. Diversi-

fication begins 12 hours later, and at approximately

Best solution

Instance 24 Hours 10 Days Lower bound Gap

agh-fis-spr17 3,463 3,094 1,336 56.8 %
agh-ggis-spr17 38,026 35,147 16,556 52.9 %
bet-fal17 319,059 290,127 22,248 92.3 %
iku-fal17 19,498 18,989 18,069 4.8 %
mary-spr17 14,924 14,922 14,289 4.2 %
muni-fi-spr16 3,766 3,764 3,602 4.3 %
muni-fsps-spr17 868 868 868 0.0 %
muni-pdf-spr16c 66,812 35,731 0 100.0 %
pu-llr-spr17 10,055 10,038 10,010 0.3 %
tg-fal17 4,215 4,215 4,215 0.0 %

agh-ggos-spr17 4,652 3,237 1,577 51.3 %
agh-h-spr17 23,883 21,559 7,705 64.3 %
lums-spr18 95 95 24 74.7 %
muni-fi-spr17 3,845 3,796 2,478 34.7 %
muni-fsps-spr17c 3,777 2,780 1,360 51.1 %
muni-pdf-spr16 22,533 19,320 10,402 46.2 %
nbi-spr18 18,014 18,014 17,924 0.5 %
pu-d5-spr17 17,731 15,842 5,923 62.6 %
pu-proj-fal19 219,832 178,135 0 100.0 %
yach-fal17 1,717 1,410 516 63.4 %

agh-fal17 261,826 140,194 1,125 99.2 %
bet-spr18 375,677 350,410 61,821 82.4 %
iku-spr18 28,436 25,863 25,752 0.4 %
lums-fal17 349 349 252 27.8 %
mary-fal18 4,546 4,331 3,385 21.8 %
muni-fi-fal17 3,199 3,129 1,786 42.9 %
muni-fspsx-fal17 36,461 12,390 6,328 48.9 %
muni-pdfx-fal17 138,916 84,703 0 100.0 %
pu-d9-fal19 47,938 39,251 0 100.0 %
tg-spr18 12,704 12,704 12,704 0.0 %

Table 10 The results of a single 10-day run of the complete
parallelized matheuristic on all competition instances.

126 hours (36 hours into diversification), the search

finds a new best-known solution with an objective value

of 22,350. As seen in the figure, all fix-and-optimize

searches reset to this solution and continue a collabo-

rated search. The fix-and-optimize searches collabora-

tively improve the solution 84 times during the next

48 hours before once again stagnating (at a solution

costing 21,559), resulting in a new diversification search

that does not find any improving solutions for the

remaining 54 hours. However, the first diversification

search indeed helped to move the search forward.

The search on iku-spr18 shows close collaboration

between the full MIP solve and the fix-and-optimize

searches and that the full MIP solver can be great

for pushing the search forward once improving solu-

tions become challenging to find. The fix-and-optimize

searches collectively improve upon the initial solution

quickly, and after approximately 19 hours, the full MIP

solver processes its first best-known solution. From then

on, the MIP solver and the fix-and-optimize searches

all slowly improve upon the best-known solution. The

fix-and-optimize searches find their last improving so-

lution after 122 hours, but the full MIP solver produces

two additional improving solutions. The best-known so-

20 Rasmus Ø. Mikkelsen, Dennis S. Holm

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240
Time (h)

20000

30000

40000

50000

60000

Va
lu

e

agh-h-spr17

SY SX CY CX AY AX

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240
Time (h)

25000

50000

75000

100000

125000

150000

175000

Va
lu

e

iku-spr18

SY SX CY CX AY AX MIP_Sol MIP_LB

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240
Time (h)

200000

300000

400000

500000

Va
lu

e

agh-fal17

SY SX CY CX AY AX

Fig. 4 Solution values per time using the complete parallelized matheuristic with diversification for ten days on agh-h-spr17,
iku-spr18, and agh-fal17.

A Parallelized Matheuristic for the International Timetabling Competition 2019 21

lution of the initial dive was found after 129 hours

with a value of 25,875, and, at that time, the best

known lower bound was 25,621 resulting in a relative

optimality gap of 0,98%. The fix-and-optimize searches

then enter the diversification mode but do not pro-

duce any new best-known solution. Instead, at approxi-

mately 215 hours into the run, the full MIP solver alone

pushes the search forwards, finding a new best-known

solution (costing 25,865). Since the best-known solu-

tion is improved, the fix-and-optimize searches stop di-

versification and resume the search from the solution.

Shortly after, the full MIP solver again improves the

best-known solution (to 25,864), providing a new solu-

tion for the fix-and-optimize searches to use. Still, they

cannot produce improving solutions and begin diver-

sifying again after approximately 232 hours. However,

the full MIP solver alone improves the best-known solu-

tion once more, and the fix-and-optimize searches begin

intensification from that solution for the time remain-

ing. In summary, this ten-day run of the parallelized

matheuristic on iku-spr18 resulted in a solution costing

25,863 and a lower bounds of 25,752, giving a relative

optimality gap of 0,43%.

The search on agh-fal17 does not begin diversifi-

cation within the ten-day running time. Instead, the

search progresses slowly, and progressive improvements

are visible in the plot until the end. No bound data

is available as the MIP did not finish solving the root

node linear relaxation. Thus, on large instances like agh-

fal17, the collaborating fix-and-optimize searches are

essential for the complete parallelized matheuristic to

produce high-quality solutions. In this run, the fix-and-

optimize searches start from an initial solution costing

538,236 and produce a solution costing 140,194.

8 Conclusion

We have proposed a parallelized matheuristic for the

ITC 2019 problem. The combined approach uses mul-

tiple different methods, all using the graph-based MIP

model detailed by Holm et al. (2022). We use two dif-

ferent constructive heuristics to quickly find an initial

solution and find additional solutions for future diver-

sification. We run multiple fix-and-optimize searches in

parallel and solve the full MIP model to obtain bound-

ing information, continually sharing the best-known

solution between each search to push the search for-

ward more quickly. We have also proposed a diversifica-

tion scheme, which the parallelized matheuristic invokes

when the search stagnates. Additionally, we have imple-

mented a unique setup for instances with a considerable

number of students, which decouples class assignments

and student sectioning to find initial solutions.

Computational results show that the implemented

fix-and-optimize matheuristic does well to advance the

search. We investigated several aspects of fix-and-

optimize, including the effects of the initial solution, the

neighborhood, and dynamically updating the neighbor-

hood size. We could not determine any definitive best

initial solution heuristic but have found that the choice

of neighborhood and dynamically updating its size is

essential for excellent performance.

Experiments also show that collaboration between

multiple fix-and-optimize searches and the full MIP

model solver is especially effective at helping the search

move forward. Sharing solutions resulted in better per-

formance on all but one instance compared to no so-

lution sharing. The inclusion of a unique setup for in-

stances with a large student sectioning was also benefi-

cial. This addition enables the parallelized matheuristic

to find feasible solutions on instances like pu-proj-fal19,

which otherwise proved to be too memory-intensive for

the other methods used. However, for the other affected

instance (pu-d9-fal19), it provided no benefit. We also

ran the complete parallelized matheuristic for ten days,

showcasing situations where the diversification scheme

helped move an otherwise stuck search forward. Ad-

ditionally, on the iku-spr18 instance, this experiment

showed a situation where the fix-and-optimize searches

were unlikely capable of moving the search forward but

where the full MIP model solver did, further validating

the solver’s inclusion.

The proposed parallelized matheuristic has proved

to be a competitive solution approach to the problem

posed in the ITC 2019. It can find solutions for all com-

petition instances, with some even to proven optimality.

The merit of the approach is further attested to by the

fact that it is the winning algorithm of the ITC 2019. In

Appendix A, we show the objective values of our sub-

mitted solutions and bounds at the time of writing.∗

8.1 Future research

Although the parallelized matheuristic proved to per-

form well, we have identified some immediate avenues

for improvement, which we should address in future re-

search.

We can improve the performance of an individ-

ual fix-and-optimize search by refining how it dynam-

ically updates its neighborhood size. We should allow

it to update the neighborhood size more fluidly and

with smaller/larger changes than the implemented fixed

increase/decrease of 5%. Furthermore, the algorithm

∗An updated table is available at https://dsumsoftware.

com/itc2019/.

https://dsumsoftware.com/itc2019/
https://dsumsoftware.com/itc2019/

22 Rasmus Ø. Mikkelsen, Dennis S. Holm

should try to set an appropriate initial neighborhood

size based on the instance instead of using a fixed ini-

tial size of 25%. Especially for very hard instances, this

leads to wasted time, as the algorithm has to spend

several iterations decreasing the neighborhood size to

an appropriate level. Additionally, it could be a good

idea to dynamically update other algorithm parame-

ters during the search, especially the subproblem’s time

limit. For example, in cases where the algorithm con-

verges and it becomes more challenging to find improv-

ing solutions, the algorithm should be given more time

to explore each subproblem thoroughly. In such cases,

the neighborhood size updating heuristic could also use

other criteria for making decisions. For example, when

the search converges towards the optimal solution, an

initial low gap is unavoidable and should not be used

in the decision-making process.

We can improve the complete parallelized matheuris-

tic by further developing the diversification scheme. In

the current implementation, the fix-and-optimize pro-

cesses simply search individually and hope to find a

new best-known solution, an approach that is somewhat

dependent on randomness. Perhaps it would be benefi-

cial to divide diversification into two phases. First, each

fix-and-optimize would search individually and produce

some high-quality solutions, and, in phase two, the fix-

and-optimize processes start sharing solutions again,

using the potential solutions from phase one as start-

ing points. Another interesting option is applying meth-

ods like path relinking (Glover et al., 2000) to combine

high-quality solutions and using the results for further

searching.

However, another option is to dedicate a single fix-

and-optimize process to generating high-quality diversi-

fication solutions from the beginning. Then, once diver-

sification is necessary, the other fix-and-optimize pro-

cesses use these solutions instead of random initial solu-

tions. Saviniec et al. (2018) describes such an approach

for the high school timetabling problem, and it achieves

state-of-the-art performance.

Each fix-and-optimize search only uses a single neigh-

borhood during the default intensification search in our

implementation. Solution sharing is one approach for

countering problems resulting from such a rigid setting.

Another option is to look into each search using multi-

ple or all neighborhoods and then to adaptively update

how often it uses each neighborhood, similar to adaptive

large neighborhood search (Røpke and Pisinger, 2006).

That way, the fix-and-optimize search uses neighbor-

hoods that consistently move the search forward more

often than the underperforming neighborhoods. Such a

design should help find better solutions quicker.

We tried decomposing the problem into class assign-

ments and student sectioning for instances with 30,000

students or more. This affected two instances: pu-proj-

fal19 and pu-d9-fal19. For pu-proj-fal19 the decompo-

sition proved to be invaluable, but it provided no ben-

efit for pu-d9-fal19. Perhaps the number of students

should not be the only deciding factor for determining

when to use this decoupling. For example, the search

on agh-fal17 showed moderate progression after many

days of running the full parallelized matheuristic, indi-

cating that it is an especially challenging instance to

solve. This instance is also substantial (has the largest

number of classes besides pu-proj-fal19) and could per-

haps benefit from the same decoupling, even though it

“only” has 6,925 students. Additionally, we would like

to examine other forms of problem decomposition.

Finally, we should also investigate how to improve

the collaboration between search methods. Experiments

show that solution sharing an average improves perfor-

mance given a 24-hour time frame. However, we could

investigate more balanced collaboration. For example,

in the experiment where we run the algorithm for ten

days on agh-h-spr17 (see Figure 4), we see a case where

no collaboration yielded a better result more quickly.

The initial dive of the search took about 78 hours with

very slow progression after the first 36 hours, meaning

that the algorithm spends about 42 hours on only very

slight improvements. However, when the search begins

diversifying and each fix-and-optimize searches individ-

ually, the algorithm finds a better solution in only 36

hours. Therefore, we could investigate balancing inten-

sification and diversification better instead of simply

turning solution sharing (collaboration) on or off.

References

Bettinelli, A., Cacchiani, V., Roberti, R., and Toth, P.

(2015). An overview of curriculum-based course time-

tabling. Top, 23(2):313–349. https://doi.org/10.

1007/s11750-015-0363-2.

Burke, E. K., Mareček, J., Parkes, A. J., and Rudová,

H. (2010). Decomposition, reformulation, and diving

in university course timetabling. Computers & Oper-

ations Research, 37(3):582–597. https://doi.org/

10.1016/j.cor.2009.02.023.

Burke, E. K., Mareček, J., Parkes, A. J., and Rudová,

H. (2012). A branch-and-cut procedure for the

Udine Course Timetabling problem. Annals of Op-

erations Research, 194(1):71–87. https://doi.org/

10.1007/s10479-010-0828-5.

Di Gaspero, L., Mccollum, B., and Schaerf, A. (2007).

The Second International Timetabling Competition

(ITC-2007): Curriculum-based Course Timetabling

https://doi.org/10.1007/s11750-015-0363-2
https://doi.org/10.1007/s11750-015-0363-2
https://doi.org/10.1016/j.cor.2009.02.023
https://doi.org/10.1016/j.cor.2009.02.023
https://doi.org/10.1007/s10479-010-0828-5
https://doi.org/10.1007/s10479-010-0828-5

A Parallelized Matheuristic for the International Timetabling Competition 2019 23

(Track 3). Technical report. Queen’s University,

Belfast.

Dorneles, Á. P., de Araújo, O. C., and Buriol, L. S.

(2014). A fix-and-optimize heuristic for the high

school timetabling problem. Computers & Opera-

tions Research, 52:29–38.

Fonseca, G. H., Santos, H. G., and Carrano, E. G.

(2016). Integrating matheuristics and metaheuris-

tics for timetabling. Computers & Operations Re-

search, 74:108–117. https://doi.org/10.1016/j.

cor.2016.04.016.

Glover, F., Laguna, M., and Mart́ı, R. (2000). Funda-

mentals of scatter search and path relinking. Control

and cybernetics, 29(3):653–684.

Helber, S. and Sahling, F. (2010). A fix-and-optimize

approach for the multi-level capacitated lot sizing

problem. International Journal of Production Eco-

nomics, 123(2):247–256.

Holm, D., Mikkelsen, R., Sørensen, M., and Stid-

sen, T. (2022). A graph-based MIP formulation

of the International Timetabling Competition 2019.

Journal of Scheduling. https://doi.org/10.1007/

s10951-022-00724-y.

Kristiansen, S. and Stidsen, T. (2013). A Compre-

hensive Study of Educational Timetabling - a Sur-

vey. Number 8.2013 in DTU Management Engineer-

ing Report. DTU Management Engineering.

Lach, G. and Lübbecke, M. E. (2012). Curriculum

based course timetabling: New solutions to Udine

benchmark instances. Annals of Operations Re-

search, 194(1):255–272. https://doi.org/10.1007/

s10479-010-0700-7.

Lang, J. C. and Shen, Z.-J. M. (2011). Fix-and-optimize

heuristics for capacitated lot-sizing with sequence-

dependent setups and substitutions. European Jour-

nal of Operational Research, 214(3):595–605.

Lewis, R., Paechter, B., and Mccollum, B. (2007). Post

Enrolment based Course Timetabling: A Description

of the Problem Model used for Track Two of the Sec-

ond International Timetabling Competition. Cardiff

Working Papers in Accounting and Finance A2007-

3, Cardiff Business School, Cardiff University.

Lindahl, M., Sørensen, M., and Stidsen, T. R. (2018).

A fix-and-optimize matheuristic for university time-

tabling. Journal of Heuristics, 24(4):645–665.

McCollum, B., Schaerf, A., Paechter, B., McMullan, P.,

Lewis, R., Parkes, A. J., Di Gaspero, L., Qu, R., and

Burke, E. K. (2010). Setting the Research Agenda in

Automated Timetabling: The Second International

Timetabling Competition. INFORMS Journal on

Computing, 22(1):120–130. https://doi.org/10.

1287/ijoc.1090.0320.

Müller, T., Rudová, H., and Müllerová, Z. (2018a). Uni-

versity course timetabling and International Time-

tabling Competition 2019. In Burke, E. K.,

Di Gaspero, L., McCollum, B., Musliu, N., and

Özcan, E., editors, Proceedings of the 12th Interna-

tional Conference of the Practice and Theory of Au-

tomated Timetabling (PATAT 2018), Vienna, Aus-

tria, pages 5–31.

Müller, T., Rudová, H., and Müllerová, Z. (2018b).

University course timetabling and International

Timetabling Competition 2019. https://www.

unitime.org/present/patat18-slides.pdf. Ac-

cessed: 2022-04-12.

Røpke, S. and Pisinger, D. (2006). An Adaptive Large

Neighborhood Search Heuristic for the Pickup and

Delivery Problem with Time Windows. Transporta-

tion Science, 40(4):455–472. https://doi.org/10.

1287/trsc.1050.0135.

Saviniec, L., Santos, M. O., and Costa, A. M. (2018).

Parallel local search algorithms for high school time-

tabling problems. European Journal of Operational

Research, 265(1):81–98.

Schaerf, A. (1999). A Survey of Automated Time-

tabling. Artificial intelligence review, 13(2):87–127.

Tan, J. S., Goh, S. L., Kendall, G., and Sabar, N. R.

(2021). A survey of the state-of-the-art of optimisa-

tion methodologies in school timetabling problems.

Expert Systems with Applications, 165:113943.

Tripathy, A. (1992). Computerised decision aid for

timetabling—a case analysis. Discrete applied math-

ematics, 35(3):313–323.

A Our submitted solutions and bounds

Table 11 shows the results submitted during the competi-
tion, the 10-day results from Section 7.5 (Table 10), and our
best-known lower bounds. During the competition, we pro-
duced the results for the Late instances using the described
parallelized matheuristic with the precise setup detailed in
Section 6.5. Since the competition organizers published the
Late instances ten days before the deadline, we know that we
produced our submitted results in less than that. However,
we cannot say anything for sure regarding the time to pro-
duce our other results. The competition organizers released
the Early and Middle instances earlier during the competi-
tion, and we have developed the parallelized matheuristic and
its components using those instances. Consequently, we have
often used previously found solutions for warm-starting MIP
solvers and as initial solutions for fix-and-optimize searches
and different parameter settings for our methods, including
the number of cores.

Therefore, for comparison, Table 11 also shows the re-
sults of the 10-day runs produced for this paper. Here we use
hardware and software slightly different from what we used
during the competition. Comparing the 10-day and competi-
tion results, we see that the presented parallelized algorithm

https://doi.org/10.1016/j.cor.2016.04.016
https://doi.org/10.1016/j.cor.2016.04.016
https://doi.org/10.1007/s10951-022-00724-y
https://doi.org/10.1007/s10951-022-00724-y
https://doi.org/10.1007/s10479-010-0700-7
https://doi.org/10.1007/s10479-010-0700-7
https://doi.org/10.1287/ijoc.1090.0320
https://doi.org/10.1287/ijoc.1090.0320
https://www.unitime.org/present/patat18-slides.pdf
https://www.unitime.org/present/patat18-slides.pdf
https://doi.org/10.1287/trsc.1050.0135
https://doi.org/10.1287/trsc.1050.0135

24 Rasmus Ø. Mikkelsen, Dennis S. Holm

can produce solutions comparable to those submitted in the
competition on all instances.

Finally, the table also reports our best-known lower
bounds, some of which we have produced with methods not
discussed in this paper. Using these lower bounds, we see
that we solved five instances to optimality both during the
competition and in the 10-day runs.

Best solution

Instance Competition 10-day run Lower bound

agh-fis-spr17 3,081 3,094 1,336
agh-ggis-spr17 35,808 35,147 23,164
bet-fal17 290,086 290,127 89,278
iku-fal17 18,968 18,989 18,021
mary-spr17 14,910 14,922 14,359
muni-fi-spr16 3,756 3,764 3,602
muni-fsps-spr17 868 868 868
muni-pdf-spr16c 36,487 35,731 14,279
pu-llr-spr17 10,038 10,038 10,038
tg-fal17 4,215 4,215 4,215

agh-ggos-spr17 3,055 3,237 1,982
agh-h-spr17 23,502 21,559 8,945
lums-spr18 95 95 24
muni-fi-spr17 3,825 3,796 2,500
muni-fsps-spr17c 2,596 2,780 1,361
muni-pdf-spr16 18,151 19,320 13,008
nbi-spr18 18,014 18,014 18,014
pu-d5-spr17 15,910 15,842 6,981
pu-proj-fal19 148,016 178,135 54,872
yach-fal17 1,239 1,410 516

agh-fal17 186,200 140,194 5,728
bet-spr18 348,589 350,410 63,444
iku-spr18 25,878 25,863 25,781
lums-fal17 349 349 254
mary-fal18 4,423 4,331 3,496
muni-fi-fal17 2,999 3,129 1,890
muni-fspsx-fal17 17,074 12,390 7,747
muni-pdfx-fal17 117,412 84,703 26,711
pu-d9-fal19 43,006 39,251 28,000
tg-spr18 12,704 12,704 12,704

Table 11 An overview of the best solution we submitted dur-
ing the competition, the results of the single 10-day run (Ta-
ble 10), and our best-known lower bounds.

	Introduction
	Related work
	Problem definition
	Mixed Integer Programming model
	Fix-and-optimize matheuristic
	Parallelized matheuristic
	Computational results
	Conclusion
	Our submitted solutions and bounds

