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Abstract
The International Young Physicists’ Tournament is an established team-oriented scientific competition between high school
students from 37 countries on 5 continents. The competition consists of scientific discussions called Fights. Three or four
teams participate in each Fight, while rotating the roles of Presenter, Opponent, Reviewer, andObserver among them. The rules
of a few countries require that each team announces in advance three problems they will present at the regional tournament.
The task of the organizers is to choose the composition of Fights in such a way that each team presents each of its chosen
problems exactly once and within a single Fight no problem is presented more than once. Besides formalizing these feasibility
conditions, in this paperwe formulate several additional fairness criteria for tournament schedules.We show that the fulfillment
of some of them can be ensured by constructing suitable edge colorings in bipartite graphs. To find fair schedules, we propose
integer linear programs and test them on real as well as randomly generated data.
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1 Introduction

Teams of high school students have been competing annu-
ally at the InternationalYoungPhysicists’ Tournament (IYPT
for short), sometimes referred to as Physics World Cup,
since 1988. Each year the international jury publishes a set
of 17 problems. In the preparation phase that takes several
months, teams can use any resources to solve the problems
theoretically and/or experimentally and to prepare a care-
fully polished presentation of the results they obtain. The
competition culminates in regional, national, and interna-
tional tournaments that are organized in several rounds of
small scientific workshops, called Fights. During a Fight,
students practice how to lead scientific discussion, ask ques-
tions and evaluate the work of their adversaries by taking
the roles of a Presenter, an Opponent, a Reviewer, and, occa-
sionally, an Observer. Detailed information about the exact
rules, schedule, past problems, winners, etc., can be found
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on the international webpage http://iypt.org and on
the webpages of national committees.

The rules of the international final specify that a team can
challenge another team to present a solution of any of the
17 published problems, but for their national and regional
tournaments, each of the participating 37 countries can set
the rules on their own. This paper deals with the situation
that occurs in a few countries (Austria, Germany, Slovakia,
Switzerland), where a regional tournament consists of three
rounds so that each team participates in exactly three Fights,
and in each of these Fights it presents a different problem,
taken from the set of three problems it has chosen in advance.

The authors of the present paper have been contacted by
members of the Slovak IYPT organizing committee who felt
that besides guaranteeing the fulfillment of the necessary cri-
teria stated in the international rules, it is desirable to create
comparable conditions for all the participants, to ensure their
equal treatment. The first aim of this paper is to formally
define the necessary (feasibility) constraints for the schedule
of the regional and national tournaments. Then we formulate
several fairness conditions, proposed by the organizers of
these tournaments.On the theoretical side,we drawa connec-
tion between feasible and fair schedules and edge colorings
of graphs. On the practical side and to construct fair sched-
ules we propose several integer linear programs and test them
on real and randomly generated data.

1.1 Related work

Scheduling problems appear in real life, often connected
with the construction of timetables at schools or sched-
ules of sports matches. They are also a popular research
topic in Mathematics and Computer Science. Many vari-
ants of scheduling problems are difficult to solve in practice
even for small instances. Also, scheduling problems were
among the first problems proven to be computationally hard
theoretically (Ullman, 1975; Even et al., 1976). In solv-
ing scheduling problems many different approaches have
been used, among them variants of graph coloring problems
(Lewis & Thompson, 2011; Januario et al., 2016), integer
programming (Briskorn & Drexl, 2009; Atan & Çavdaroǧlu,
2018), constraint programming (Baptiste et al., 2012), appli-
cation of SAT encoding (Achá & Nieuwenhuis, 2014), and
various heuristic algorithms, such as ant colony optimization
(Lewis & Thompson, 2011).

Fairness in connection with scheduling appears in differ-
ent contexts. Several works (Mühlenthaler & Wanka, 2016;
Martin et al., 2013) incorporate fairness requirements in the
form of soft constraints in addition to hard constraints that
define the feasibility of the proposed schedule. Violation
of soft constraints incurs penalty and the authors use vari-
ous aggregation functions (MinMax,MinDev,MinError, Jain
index, etc.) to incorporate penalties into the objective func-

tion of their model. Here we review progress on the study of
fair schedules in the three most relevant fields to our study:
work shifts, timetables, and sports tournaments. Finally, we
mention several types of student scientific or debating com-
petitions where it might be possible to incorporate some
fairness criteria into the preparation of their schedules.
Work shifts Typically, the shift scheduling problem involves
determining the number of employees to be assigned to each
shift while minimizing the total staffing cost and the number
of employees needed. Stolletz and Brunner (2012) consider
the following fairness aspects in scheduling work shifts of
doctors: stable shift starting times within each week, an even
distribution of working hours, and an even assignment of on-
call services. The choice of these fairness aspects is based
on interviews of the authors with physicians. Bruni and Detti
(2014) implement fairness in the form of balancing the total
workload among doctors, and also aim for an even distribu-
tion of night and weekend shifts within the same department.
Martin et al. (2013) consider fairness of shift scheduling
for nurses with respect to the assignment to their primary
skill, rest times, and time-related constraints concerned with
sequences of shift patterns.
Timetables A widespread application of timetable design is
creating a timetable for students and teachers in a school.
The soft constraints introduced by Mühlenthaler and Wanka
(2016) for a university timetable require that each lecture be
assigned to a room of sufficient size, the lectures of each
course be distributed over a certain minimum, all lectures
associated to a curriculumbe scheduled in adjacent time slots,
the lectures of each course be assigned to the same room, etc.
Muklason et al. (2017) deal with examination timetabling.
Based on an extensive survey seeking student preferences
they use equitability of preparation time between examina-
tions among all student cohorts to form a measure of fairness
that is added as a new objective in addition to the standard
objectives.
Sports tournaments Fairness plays an essential role also in
professional sports tournament scheduling (Drexl & Knust,
2007; Briskorn & Knust, 2010; Van Bulck & Goossens,
2020). In works dealing with the scheduling of round
robin tournaments, fairness criteria appear in various forms.
Ribeiro andUrrutia (2009) balance the number of caseswhen
teams play two consecutive home or away games, Durán et
al. (2021) balance the travel distances of the various teams,
Miyashiro and Matsui (2005) aim at equitable home-away
assignment, Atan and Çavdaroǧlu (2018) balance the time
after the most recent game of two opposing teams, Zeng
and Mizuno (2013) try to avoid situations when a team has
to play against extremely strong/weak teams consecutively,
Suksompong (2016) wants to guarantee at least a certain
number of rest days between any consecutive games for
each team and balances the difference between the number
of games played by any two teams at any point in the sched-
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ule, Günneç and Demir (2019) minimize carry-over effects
that relate to the opponent’s previous game. In a recent book
chapter (Goossens et al., 2020) three fairness issues, namely
consecutive home games, the carry-over effect, and the num-
ber of rest days each team has between consecutive games
are discussed with respect to the necessary trade-offs that
have to be made. Timetables that reconcile overall fairness
with an equitable distribution of unfairness over the teams
are compared and a number of official timetables frommajor
European football competitions are evaluated with respect to
fairness criteria.
Student scientific and debating competitions IYPT has its
counterpart in mathematics, the International Tournament of
Young Mathematicians (ITYM), which has a similar tourna-
ment structure, with teams playing the roles of the Presenter,
Opponent, Reviewer, and Observer. Another branch of stu-
dent competitions organized in rounds in which teams take
turns are debating tournaments (Neumann & Wiese, 2016;
Bradbury et al., 2017). The World Universities Debating
Championship is theworld’s largest debating tournament and
one of the largest annual international student events in the
world. At their events, the British Parliamentary format is
used, in which four teams participate in each round (The
World Universities Debating Championships, 2014). Two
teams form the “government” and the other two the “opposi-
tion” in each debate room, and the order of speeches assigns
a different role to each of the teams. Such competitions
promote democratic education and they are shown to sig-
nificantly enhance student performance in the subject, hence
they are currently on the rise (Spies-Butcher, 2007; Pang et
al., 2018).

Compared to professional sports tournaments, schedul-
ing scientific or debating competitions for students is an
admittedly much less profitable, but highly noble branch
of tournament scheduling. To our knowledge, no formal
scheduling model for organizing student competitions has
been reported on yet. In this work, we make an attempt to
demonstrate how students’ competitions can be organized
with the aid of integer programming, which not only auto-
mates the cumbersome task of scheduling, but also calculates
a solution that is provably more fair for the participating stu-
dents.

1.2 Outline

In Sect. 2 we outline the rules and organization of the IYPT
in more detail and in Sect. 3 we formally introduce the stud-
ied problem and the related notions. Section 4 is devoted
to a discussion of how the edge coloring of bipartite graphs
leads to a feasible schedule and to schedules that give each
team 3 different order positions in its 3 Fights. We formulate
several fairness criteria for schedules; as far as we know, fair-
ness criteria similar to ours have not been considered before

in scheduling problems. In Sect. 5 we formulate integer
linear programs to find fair schedules fulfilling alternative—
weaker and stronger—forms of fairness. Then, in Sect. 6 we
report on the results we obtained when the designed ILPs
were applied to real data: we used the application sets from
regional tournaments in Slovakia in recent years.We also ran-
domly generated sets of applications that have some features
similar to the expected situations and performed numerical
tests on these random data.

2 Organization of regional tournaments

According to the rules of the Austrian, German, Slovak, and
Swiss regional and national tournaments, each team applying
for participation announces a subset of exactly 3 problems
from the published set of 17 problems. This subset is called
the team’s portfolio and it contains the 3 problems the team
will present at the tournament. A set of portfolios may look
similar to the ones presented in Table 1, which shows the real
situation in regional tournaments in the years 2017-2020.

The tournament is organized in 3 rounds. In each round,
the set of teams is partitioned into rooms, each of which
hosts a so-called Fight. The number of teams participating in
a Fight is 3 or 4, and the number of stages in a Fight is also 3
or 4, respectively. Now we describe the structure of a Fight.

An assignment of teams to rooms in the rounds also
specifies which team will present which problem from their
portfolio. Suppose that the set of teams in a room is A, B, C
(see Table 2) and assume that these teams have been assigned
problems pA, pB , and pC , respectively, to present. In the first
stage of the Fight, team A is the Presenter; it delivers a report
on problem pA. Team B is the Opponent. After the report of
the Presenter team, the Opponent team evaluates the report,
stressing its pros and cons. Afterwards the third team C, the
Reviewer, can ask questions to both other teams and then
the Reviewer presents an overview of the performance of
the Opponent. The stage ends by the Presenter stating some
concluding remarks. After that, the jury may ask some short
questions to all three active teams. Finally, each jury member
shows integer marks from 1 to 10 which are used to calculate
the points awarded to each team in that stage.

After a short break, another stage with the same structure
begins, but the roles of teams are rotated, as illustrated by
Table 2. This means that in stage two, teamB is the Presenter,
team C is the Opponent and team A is the Reviewer; in stage
three team C is the Presenter, team A is the Opponent and
teamB is the Reviewer. Hence, each team performs each role
during a Fight exactly once. The final ordering of the teams
is based on the highest number of points collected over all
three stages.

If the total number of teams is not divisible by three or if
the organizers have some other issues to deal with (e.g., there
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Table 1 Profiles of regional tournaments in years 2017-2020. We use
regional tournament Bratislava 2018 as an example instance through-
out the entire paper. The participating teams are anonymized by having
been given animal names. To indicate which teams are from the same
school we use the name of the same animal and distinguish the different

teams only by the final digit. Notice that in 2020 in reality two indepen-
dent regional tournaments were organized, the city of Košice hosted the
teams with numbers 1-13 while teams 14-16 were competing in Poprad

Bratislava 2017 Bratislava 2018 Bratislava 2019

No. Team Portfolio No. Team Portfolio No. Team Portfolio

1 Sharks1 2,12,17 1 Sharks1 4,6,14 1 Sharks1 2,12,17

2 Sharks2 3,6,9 2 Sharks2 10,16,17 2 Sharks2 3,6,9

3 Sharks3 5,11,16 3 Sharks3 1,7,13 3 Sharks3 5,11,16

4 Whales1 15,16,17 4 Whales1 3,7,14 4 Whales1 5,16,17

5 Whales2 7,14,15 5 Whales2 2,5,12 5 Whales2 7,14,15

6 Turtles 6,8,9 6 Whales3 4,9,10 6 Turtles1 4,13,15

7 Bears 5,6,14 7 Bears1 3,4,8 7 Turtles2 1,4,14

8 Cats1 4,13,15 8 Bears2 5,9,17 8 Bears 6,8,9

9 Cats2 1,5,14 9 Turtles1 2,3,14 9 Eagles 5,6,14

10 Turtles2 5,6,10

11 Eagles 4,9,10

12 Lions 4,9,16

13 Zebras 3,4,7

Košice 2018 Košice 2019 Košice + Poprad 2020

No. Team Portfolio No. Team Portfolio No. Team Portfolio

1 Sharks 3,4,7 1 Sharks 4,6,10 1 Sharks1 4,6,8

2 Whales 1,4,9 2 Whales 1,4,6 2 Sharks2 2,10,14

3 Turtles 2,7,16 3 Turtles 4,5,14 3 Sharks3 3,5,13

4 Bears 3,4,16 4 Bears 1,6,7 4 Whales1 5,14,15

5 Eagles 4,12,13 5 Eagles 7,8,14 5 Whales2 1,8,10

6 Lions1 4,11,14 6 Lions1 1,6,14 6 Turtles1 8,14,15

7 Lions2 2,5,13 7 Lions2 2,8,9 7 Turtles2 2,7,10

8 Lions3 3,7,15 8 Lions3 4,5,15 8 Bears 1,8,10

9 Zebras1 3,4,17 9 Lions4 3,11,17 9 Eagles 2,5,16

10 Zebras2 7,9,13 10 Zebras 7,11,14 10 Lions 6,8,10

11 Snakes1 3,10,13 11 Frogs 3,8,14 11 Zebras 1,6,15

12 Snakes2 4,5,16 12 Cats1 4,5,6 12 Snakes 1,8,13

13 Sparrows 3,9,17 13 Cats2 12,14,16 13 Sparrows 2,8,9

14 Cats1 2,9,13 14 Cats1 1,10,15

15 Cats2 4,7,10 15 Cats2 2,5,14

16 Lizards 1,13,14

are not enough rooms on the premises where the tournament
takes place, or the number of available qualified jurors is
small, etc.), the number of teams in a roommay be 4. In such
a Fight, the 4 teams also exchange their roles cyclically (see
the right hand-side of Table 2), with one of them playing
the role of the Observer, which is the team not participating
actively in the given stage.

Given the set of portfolios, an important task of the orga-
nizers is to prepare a schedule of the tournament. For each
team, the schedule specifies the problem, the room, and the

stage for each of the three rounds. For example, the sched-
ule depicted in Table 3, which corresponds to the profile
Bratislava 2018, instructs team Sharks1 to present problem 4
in room 1 in the first round as the Presenter in the first stage
in that Fight. According to the same schedule, Sharks1 will
present problem6 in room4 in the second round, and itwill be
the third team to present a problem in that Fight; and, finally,
it will present problem 14 in room 3 in the third round, again
as the third Presenter in that Fight.
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Table 2 Schemes for 3- and 4-team Fights, extracted from the IYPT
official regulations

Team Stage

1 2 3

A Pres. Rev. Opp.

B Opp. Pres. Rev.

C Rev. Opp. Pres.

Team Stage

1 2 3 4

A Pres. Obs. Rev. Opp.

B Opp. Pres. Obs. Rev.

C Rev. Opp. Pres. Obs.

D Obs. Rev. Opp. Pres.

Each schedule has to fulfill the following obvious condi-
tions.

(a) Each team presents exactly the 3 problems from its port-
folio.

(b) No problem is presented more than once during the same
Fight.

(c) In each Fight, the correct number of problems (3 or 4) is
presented.

A schedule fulfilling conditions (a)−(c) is said to be feasible.
In Sect. 4 we will see that feasible schedules are guaranteed
to exist under very mild conditions.

A usual requirement of the organizers is to group the teams
intoFights so that all participating teams in aFight come from
different schools. Besides avoiding bias and possible help
between teams from the same school, such non-cooperative

schedules encourage scientific interaction between students
who have not met before.

Recall now the cyclic exchange of roles of teams within
a Fight, defined in Table 2. A team may feel to be put at a
disadvantage if it plays the role of team A in all its Fights,
because then it has to start each of these Fights as the first
Presenter. So we introduce another fairness notion: we say
that a schedule is order fair if each team has three different
order positions in its three Fights.

We now explain the most challenging fairness concern for
schedules on an intuitive level and by an example. Assume
that teams ti and t j are in the same Fight and team ti presents
problem p. If team t j has problem p in its portfolio too, then
it has either presented p before in a previous round or will
present it in some later round. In the former case, team t j had
prepared its own presentation for p, moreover, it has already
heard the comments of its own Opponent and Reviewer on
problem p, so now team t j is likely to be better prepared for
the tasks of the Opponent as well as of the Reviewer. In the
latter case, team t j has a chance to update its ownpresentation
based onwhat it has heard during the presentation of problem
p by team ti and also be better prepared for answering the
challenges of its future Opponent and Reviewer on problem
p. The organizers wish to avoid that such injustice happens.

We say that a feasible schedule is fair if the following
condition for each pair of teams ti , t j is fulfilled: If teams
ti , t j are in the same Fight at any time during the tournament
and team ti presents problem p in this Fight, then problem p
is not in the portfolio of team t j .

In reality, it has not always been the case that the used
schedules fulfilled the fairness requirements. Table 3 depicts
the real schedule of the regional tournament Bratislava 2018,
corresponding to the set of portfolios from Table 1. Have a
look at team Lions. In the first round, it presents problem 9

Table 3 The real schedule used in the regional tournament Bratislava 2018

Room 1 Room 2 Room 3 Room 4

Team Problem Team Problem Team Problem Team Problem

Round 1 A Sharks1 4 Whales2 2 Bears1 4 Whales3 10

B Turtles1 3 Sharks3 7 Whales1 14 Zebras 3

C Lions 9 Eagles 9 Turtles2 10 Bears2 5

D Sharks2 17

Round 2 A Lions 4 Turtles1 14 Zebras 7 Eagles 4

B Sharks2 10 Whales3 4 Bears2 9 Whales1 7

C Bears1 3 Sharks3 1 Whales2 12 Sharks1 6

D Turtles2 5

Round 3 A Bears2 17 Sharks2 16 Turtles2 6 Sharks3 13

B Whales2 5 Zebras 4 Eagles 16 Bears1 8

C Turtles1 2 Whales1 3 Sharks1 14 Whales3 9

D Lions 10
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Table 4 A fair schedule for the
regional tournament Bratislava
2018. Since no Fight contains
two teams from the same school,
this schedule is non-cooperative.
Strong fairness does not hold;
e.g., team Whales1 deals with
problem 4 in Round 2 and
Round 3 as well. Team Lions
plays role A in all its Fights, thus
the schedule is not order fair

Room 1 Room 2 Room 3 Room 4

Team Problem Team Problem Team Problem Team Problem

Round 1 A Sharks1 6 Lions 9 Sharks3 1 Bears1 8

B Whales1 3 Sharks2 16 Whales3 4 Turtles2 10

C Bears2 9 Whales2 12 Turtles1 3 Eagles 9

D Zebras 7

Round 2 A Sharks1 4 Sharks2 10 Lions 4 Whales3 10

B Whales1 7 Whales2 2 Sharks3 7 Bears2 5

C Turtles1 2 Bears1 4 Turtles2 6 Eagles 16

D Zebras 3

Round 3 A Lions 10 Sharks2 17 Whales2 5 Sharks3 13

B Sharks1 14 Whales1 14 Turtles1 14 Whales3 9

C Bears2 17 Eagles 4 Zebras 4 Bears1 3

D Turtles2 5

and sees team Sharks1 presenting problem 4 in the same
Fight. In the second round, team Lions presents problem 4
and sees team Sharks2 presenting problem 10. In the final
round, teamLions presents problem10. Thismeans that team
Lions had seen two problems from its portfolio, namely prob-
lems 4 and 9, before it had to present them. This is clearly
unfair, as team Lions had a great advantage to other teams.
For the set of portfolios in this regional tournament a fair
schedule exists, and it is presented in Table 4.

Notice further that the schedule in Table 4 is also unbal-
anced in anotherway.TeamSharks1has to oppose or review6
different problems during the tournament, namely problems
2, 3, 7, 9, 10, and 17. By contrast, team Turtles1 opposes or
reviews only four problems: 1, 4, 5, and 7. Clearly, this gives
Turtles1 another form of advantage to team Sharks1. We will
say that a feasible schedule is strongly fair if each team deals
with each problem (in any role) during the tournament at
most once.

3 Notation and optimality concepts

We start this sectionwith introducing the notation used in this
paper. In Sect. 3.1 we define feasible schedules and Sect. 3.2
formalizes various fairness notions.

T = {t1, . . . , tn} is a set of n teams with a partition T =
{T1, T2, . . . , TΛ}, where the partition sets are called schools.
P = {p1, . . . , pm} is a set of m problems.

Each team t applies with a set of exactly 3 problems from
set P; these three problems will be called the portfolio of
team t and denoted by P(t). The profile is an n-tuple of
portfolios Π = (P(t1), P(t2), . . . , P(tn)). For a given S ⊆
T , we denote by P(S) the set of problems that appear in
the portfolio of at least one team from S, that is, P(S) =

∪t∈S P(t). If p /∈ P(t) for team t ∈ T and problem p ∈ P ,
then we say that team t avoids problem p.

There are s rooms R = {r1, . . . , rs}. The set of rooms is
partitioned into two subsets R3 and R4. If r ∈ R3 then room r
hosts 3-Fights (i.e., exactly three teams perform a Fight in r );
if r ∈ R4 then room r hosts 4-Fights (Fights of 4 teams). The
size of room r is denoted by size(r). Obviously, size(r) = 3
for r ∈ R3 and size(r) = 4 if r ∈ R4.

An instance of IYPT is a tuple (T , P,Π, R), denoting
the teams, the problems, the profile, and the rooms. Now we
describe the output, denoted by P,R,O. For an integer k,
the notation [k] represents the set {1, 2, . . . , k}.

There are 3 rounds, and a Fight is uniquely defined by the
pair ( j, r), where j is a round and r is a room. For each of the
3 rounds, each team needs to be assigned the problem it will
present, the room in which this presentation will take place,
and its stage of presentation within the Fight. We formalize
this as follows. The collection P = {π j : T → P; j ∈ [3]}
consists of functions π1, π2, π3, where each of these three
functions maps exactly one problem to each team. The value
π j (t) for a given team t is the problem t will present in
round j . Another collection of functions is R = {ρ j : T →
R; j ∈ [3]}; where ρ j (t) for a given team t specifies the
room t is assigned to for round j .

3.1 Feasibility

Now we are ready to define a feasible schedule formally.

Definition 1 A feasible schedule is a pair (P,R)whereP =
{π j : T → P; j ∈ [3]}, R = {ρ j : T → R; j ∈ [3]} are
mappings of teams to problems and rooms respectively, such
that

(i) {π1(t), π2(t), π3(t)} = P(t) for each team t ∈ T ;
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(ii) if ρ j (t) = ρ j (t ′) then π j (t) �= π j (t ′) for each round
j ∈ [3] and each pair of different teams t, t ′ ∈ T ;

(iii) |{t ∈ T : ρ j (t) = r}| = size(r) for each round j ∈ [3]
and each room r ∈ R;

Condition (i) of Definition 1 makes certain that each team
presents exactly the problems from its portfolio during the
tournament; condition (i i) means that in no Fight the same
problem is presented more than once; condition (i i i) ensures
the correct number of teams for each room, i.e., this should
be equal to the size of the respective room. These points
correspond to the requirements (a) − (c) listed in Sect. 2.

Having a feasible schedule, we still have to make sure that
exactly one team is chosen to be the Presenter in each stage
of a Fight. This is ensured by a collection of three functions
O = {ω j : T → {A, B,C, D}; j ∈ [3]} that map each
team to an element in the order set {A, B,C, D}. For team
t ∈ T , function ω j (t) tells in which stage team t will be the
Presenter in round j . To simplify notation, capital letters A,
B, C, and D will be reserved for denoting that a team plays
the role of the Presenter in stage 1, 2, 3, and 4, respectively,
within a Fight, see the explanation in Table 2.

Definition 2 Given a feasible schedule (P,R), the three
mappings O = {ω j : T → {A, B,C, D}; j ∈ [3]} such
that
{ω j (t) : ρ j (t) = r for t ∈ T } = {A, B,C} for each j ∈ [3]
and r ∈ R3

and
{ω j (t) : ρ j (t) = r for t ∈ T } = {A, B,C, D} for each
j ∈ [3] and r ∈ R4

are called the ordering in the schedule (P,R).

3.2 Fairness properties

To avoid cooperation of teams from the same school, a sched-
ule might be required to prevent two teams from the same
school from participating in the same Fight. We remind the
reader that one partition subset from T corresponds to the
set of teams from the same school.

Definition 3 A schedule (P,R) is non-cooperative if it is
feasible and

ρ j (t) �= ρ j (t
′) for each j ∈ [3]

whenever t and t ′ belong to the same partition subset Tλ ∈ T ,
λ ∈ [Λ].

The following definition ensures that no teamhas the same
ordering position (A, B, C, D) in two Fights it participates
in.

Definition 4 An orderingO in a feasible schedule (P,R) is
said to be fair if

|{ω1(t), ω2(t), ω3(t)}| = 3 for each t ∈ T .

The most striking problem with feasible schedules is that
certain teams have considerable advantage to others, if they
repeatedly encounter the problems in their own portfolio.
In the following, we define 3 degrees of fairness based on
restrictions applied to what presentations a team can wit-
ness. The condition that no team can see a presentation of a
problem in its portfolio by some other team is captured by
Definition 5.

Definition 5 A schedule is fair if it is feasible and the fol-
lowing condition holds for all rounds j ∈ [3]:

if ρ j (t) = ρ j (t
′)for two different teams

t, t ′ ∈ T then π j (t) /∈ P(t ′). (1)

In some cases, a fair schedule does not exist or it cannot
be computed. For these cases, the organizers suggested to
‘sacrifice’ the fairness of the last round. Enforcing the fair-
ness condition (1) only for the first two rounds ensures that
no team presents a problem after having watched some other
team presenting the same problem, which would be a hard
violation of fairness. However, it allows a team to play the
role of the Opponent or the Reviewer for a problem it pre-
sented in an earlier round. This is perceived to be a milder
violation of fairness. The following definition captures this
relaxation of fairness.

Definition 6 A schedule is weakly fair if it is feasible and
condition (1) holds for rounds j = 1, 2.

To define a stronger form of fairness, let us introduce the
following notation that represents the set of problems that
team t deals with in round j in any role (Presenter, Opponent,
Reviewer, or, in case of 4-rooms, Observer).

P( j, t) = {π j (t
′) : ρ j (t) = ρ j (t

′) and t ′ ∈ T }.

Definition 7 A schedule is strongly fair if it is feasible and
for each team t ∈ T the following holds:

|P(1, t) ∪ P(2, t) ∪ P(3, t)| = size(ρ1(t))

+ size(ρ2(t)) + size(ρ3(t)). (2)

In other words, Definition 7 means that no two problems
a team t deals with during the tournament are identical. In
particular, if p ∈ P(t) and team t can see the presentation of
problem p in some Fight, then this implies that team t deals
with p at least twice (the other occasion is when t presents
p) and hence condition (2) is violated for team t . Therefore
we have the following relation between fairness notions.
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Fig. 1 The portfolios Bratislava
2018 from Table 1, represented
by the bipartite graph
G(T ) = (T ∪ P(T ), ET ). The
team names are abbreviated to
their first letter and team
number, e.g., S1 denotes
Sharks1

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17

S1 S2 S3 W1 W2 W3 T1 T2 B1 B2 E L Z

Observation 1 Each strongly fair schedule is fair and each
fair schedule is weakly fair.

4 Finding solutions via graph coloring

In this sectionwe utilize edge colorings and basic theorems in
matching theory to derive necessary and sufficient conditions
for the existence of feasible schedules in Sect. 4.1, and to
give a constructive algorithm to compute a fair ordering for
a feasible schedule in Sect. 4.2.

4.1 Feasible schedules

We first characterize the existence of solutions that keep the
composition of the teams in each room fixed in all three
rounds; such schedules will be called simple. The drawback
of a simple schedule is that the students can only meet and
exchange ideas with a very small subset of other participants.
Thus, although simple schedules should be avoided in reality,
they represent a convenient approach for the study of the
existence of feasible schedules.

Definition 8 Aschedule is simple if it is feasible and ρ1(t) =
ρ2(t) = ρ3(t) for each team t ∈ T .

Let us recall somebasic notions of graph theory.Agraph is
a pair G = (V , E), where V is a set of vertices and E is a set
of edges, i.e., pairs of vertices.We say thatG is bipartite, if the
vertex set V can be partitioned into two sets so that each edge
connects two vertices from different partitions. If e = {u, v}
is an edge, we say that edge e is incident to vertices u and
v, and that vertices u, v are adjacent. The number of edges
incident to a vertex v is called its degree and is denoted by
deg(v); while Δ(G) = maxv∈V (G) deg(v) is the maximum
degree in graph G. The neighborhood of a vertex setU ⊆ V
inG is the set of all vertices that are adjacent to vertices inU .
For a set of vertices U , we denote by G(U ) the subgraph
of G containing U , all the edges incident to vertices in U ,
and the other vertices incident to these edges. A matching
in G is a set of edges M such that no two edges in M have
a vertex in common. A function c : E → N is an edge
coloring of G if c(e) �= c(e′)whenever two edges e, e′ share

a common vertex. In this section we shall use König’s edge
coloring theorem ( König (1916), see also Diestel (2005),
Proposition 5.3.1.), which asserts that a bipartite graph G
admits an edge coloring by Δ(G) colors. For a thorough
review on the listed and other basic graph-theoretic notions,
we recommend consulting the book of Diestel (2005).

For a set of portfolios Π and a subset of teams S ⊆ T
we shall denote by G(S) the bipartite graph G(S) = (S ∪
P(S), ES) such that the pair {t, p} ∈ ES if and only if t ∈ S
and p ∈ P(t). Figure 1 illustrates the graph G(T ) for the
instance Bratislava 2018 from Table 1.

The official rules of the IYPT prefer 3-team Fights and
admit 4-team Fights only if the total number of teams n is
not divisible by 3. In such cases, the number of 4-teamFights,
i.e., |R4|, should be equal to n modulo 3. We will deal with
the cases when n modulo 3 is equal to 0, 1, and 2 separately.

Theorem 1 If the number of teams n is divisible by 3, then a
simple schedule exists.

Proof Partition the set of teams into 3-rooms arbitrarily. The
only thing to ensure a feasible schedule is to decide for each
room who will present which problem in which round—
without scheduling two presentations of the same problem
for the same Fight. Fix a room r and assume that the three
teams assigned to the three Fights to be performed in r are
T (r) = {t1, t2, t3}. Notice that in the bipartite graphG(T (r))
the maximum degree of a vertex is Δ(G(T (r))) = 3. This
is because the degrees of vertices in T (r) are exactly 3 (the
size of the portfolio of each team is 3) and the degrees of
vertices in P(T (r)) are at most 3. Therefore, by König’s
theorem G(T (r)) admits an edge coloring by 3 colors. One
color class corresponds to the assignment of problems to be
presented by teams in one stage of the Fight. �	

If n is not divisible by 3, then we need one or two rooms
with 4 teams. Now we only need to ensure that the set of
portfolios contains a suitable set of 4 teams (or two disjoint
quadruples of teams) that can be organized in the same room
during the tournament, as the rest of teams can be dealt with
according to the previous theorem. Notice that the assign-
ment of problems to be presented in the three rounds in a
4-room containing the set of teams S again corresponds to a
3-coloring of graphG(S). Again, by König’s theorem, this is
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Fig. 2 A special profile Π of 8
portfolios for 17 problems, out
of which q7, . . . , q14 are not
chosen by any team. This
instance admits no simple
schedule

t1 t2 t3 t4 t5 t6 t7 t8

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14pi pj pk

ensured if Δ(G(S)) = 3. We will call a set of teams S ⊆ T
with |S| = 4 fine if Δ(G(S)) = 3.

Now we discuss the case of one 4-room only.

Theorem 2 If the number of teams n fulfills n ≡ 1 (mod 3),
then a simple schedule exists if and only if each problem
p ∈ P is avoided by at least one team.

Proof As we argued above, a simple schedule exists if and
only if a fine set of teams exists. Let t1 ∈ T be an arbitrary
team and let P(t1) = {p1, p2, p3}. Let team t2 be any team
that avoids problem p1. Now we distinguish three cases. If
|P({t1, t2})| = 6 then the quadruple t1, t2, t3, t4 is fine for
any two teams t3, t4. If |P({t1, t2})| = 5, assume w.l.o.g.
that P(t1) ∩ P(t2) = {p2}. Then choose any team t3 that
avoids problem p2 and add an arbitrary team t4. Finally, if
|P({t1, t2})| = 4, then P(t1)∩P(t2) = {p2, p3}. To get a fine
quadruple, choose any team t3 that avoids p2. If t3 happens to
avoid p3 too, choose t4 arbitrarily, otherwise choose t4 that
avoids problem p3. The other direction is straightforward:
each problem adjacent to any of the four teams in the fine
set S is avoided by at least one of the teams in S, because
Δ(G(S)) = 3. All other problems are avoided by all teams
in S. �	

Finally, we turn to the case of two 4-rooms. A necessary
and sufficient condition for the existence of two disjoint fine
sets of teams follows fromCorollary 1 of Keszegh (2020). To
be able to formulate this assertion, let us call a setΠ of n port-
folios special if it has the following structure: there are n−3
portfolios of the form {pi , p j , pk} for some i, j, k ∈ [m]
and the remaining 3 portfolios are of the form {pi , q1, q2},
{p j , q3, q4}, and {pk, q5, q6}, where qu /∈ {pi , p j , pk} for
each u ∈ [6]. A special set of portfolios is illustrated by
Figure 2.

Theorem 3 (Keszegh, 2020) For the number of teams n such
that n ≡ 2 (mod 3) and n ≥ 8, a simple schedule with just
two 4-rooms exists if and only if the profileΠ simultaneously
fulfills the following two conditions:

(i) each problem is avoided by at least two teams;
(ii) Π is not special.

Now we turn to feasible schedules that are not necessarily
simple.

Theorem 4 For n ≥ 8, a feasible schedule with |R4| = 	

exists if and only if each problem is avoided by at least 	

teams where 	 is such that n ≡ 	 (mod 3).

Proof Theorems 1 and 2 imply that for 	 = 0, 1 the condition
is sufficient, as in this case a simple schedule exists, which
is by definition feasible.

Conversely, if n = 3k + 1 for some k and a problem p is
chosen by all teams, then p must be presented 3k + 1 times,
but the number of Fights is only 3k. Similarly, if n = 3k + 2
for some k, if a problem p is chosen by at least n − 1 teams,
then pmust be presented at least n−1 = 3k+1 times in only
3k Fights, which again violates condition (i i) ofDefinition 1.

Finally, we deal with the case when n = 3k+2 for some k
and all problems are avoided by at least two teams. IfΠ is not
special, Theorem 3 ensures the existence of a feasible simple
schedule. Now we show that a feasible non-simple sched-
ule exists for special profiles. So let problems pi , p j , pk be
chosen by all but 3 teams (among them teams t1, t2, . . . , t5)
and let {pi , q1, q2}, {p j , q3, q4}, and {pk, q5, q6}, where
qu /∈ {pi , p j , pk} for each u ∈ [6] be the portfolios of teams
t6, t7, and t8, respectively. It is easy to see that if we schedule
teams t1 − t8 into two 4-rooms according to Table 5, then for
the remaining teams a feasible schedule exists. �	

Let us remark that while Theorems 1–4 imply that a fea-
sible schedule with |R4| ∈ [0, 2] can be found in polynomial
time, we do not have a necessary and sufficient condition
for the existence of a feasible schedule for cases when more
4-rooms are to be used and leave this problem open.

4.2 Fair ordering for a feasible solution

Fair ordering means that no team takes up the same ordering
position in any two of its Fights. We now prove that, using
methods of graph theory, it is possible to find a fair ordering
efficiently.

Theorem 5 A fair ordering can be constructed in polynomial
time for each feasible schedule.
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Table 5 A feasible schedule for the special set of portfolios in Figure 2

Room 1 Room 2

Team Problem Team Problem

Round 1 A t6 q1 t7 q3

B t1 pi t4 pi

C t2 p j t5 p j

D t3 pk t8 pk

Round 2 A t8 q5 t6 q2

B t1 pk t4 pk

C t2 pi t5 pi

D t3 p j t7 p j

Round 3 A t7 q4 t8 q6

B t1 p j t4 p j

C t2 pk t5 pk

D t3 pi t6 pi

Proof Let a feasible schedule (P,R) be given. We construct
the collectionO that encodes the order of teamswithin Fights
in such a way that it fulfills Definition 4.

This time, we reach this goal with the help of a different
bipartite graph than in Theorem 1.We start with constructing
the bipartite graph H(P,R) = (T ∪ F, E) where the sets
T and F of vertices correspond to the set of teams and to
the set of Fights—i.e., pairs ( j, r) where j is a round and r
is a room—defined by (P,R), respectively. The pair {t, f }
where f = ( j, r) is an edge in H if and only if 
 j (t) = r ,
i.e., team t is assigned in round j to room r .

An ordering of teams in Fights corresponds to an edge
coloring in H by four colors A, B, C, and D, with a special
condition: color D can only be used for edges incident to ver-
tices in F that are of degree 4, i.e., based on rooms from R4.
Team t plays the role of the first Presenter in Fight f if edge
{t, f } is colored by A. Similar holds for the remaining three
colors. The special condition on colorD is necessary, because
the role of a fourth Presenter should only be allocated to 4-
Fights.

We propose a simple algorithm to construct an edge color-
ing respecting our conditions. In the first step, we calculate a
matching MD covering all vertices f ∈ F with deg( f ) = 4.
Such amatching is guaranteed to exist, because any vertex set
of 4-Fights fulfills the Hall-criterion (Hall, 1935). We know
that k 4-Fights are incident to 4k edges, which lead to some
team vertices forming the neighborhood of the k 4-Fights.
Each of these team vertices is counted at most 3 times in the
enumeration of the 4k edges, because of deg(t) = 3 in H .
Thus the neighborhood of the k chosen vertices in F has car-
dinality at least k and so a matching MD covering all 4-Fight
vertices must exist. For the edges in MD we fix color D, and
remove these edges from the edge set E . Notice that themax-

imumdegree in the remainder of H is 3, and each f ∈ F now
has deg( f ) = 3. By König’s theorem, an edge coloring with
3 colors exists in this graph, and it can be found efficiently,
by iteratively coloring all edges of a matching covering all
vertices in F with a fixed color (König, 1916). This coloring
defines the roles A, B, and C so that each Fight will have
exactly one team in each of these three roles.

This algorithm computes a maximum matching for each
of the four roles. Computing such a matching is of com-
putational complexity O(

√|T ∪ F ||E |) (Hopcroft & Karp,
1973). Since the graph is of bounded degree, there are at most
as many Fights as teams, and there is a constant number of
matchings to be calculated, the computational complexity
reduces to O(n1.5). �	

We now demonstrate our algorithm on the Example from
Table 4, which contains a fair schedule (P,R) for the real
data from the tournament Bratislava 2018. Figure 3 depicts
the bipartite graph H(P,R) built for this schedule, and
Table 6 contains the schedule computed with the help of this
graph.

5 Integer program for a fair schedule

In this section we present a family of integer linear programs
to find fair schedules. First, we develop a compact represen-
tation of portfolios in order to model the scheduling problem
with a small number of variables. Then we define the ILPs
corresponding to our fairness notions.

From now on we assume that the profile Π is given in the
form of ordered triples, where P(ti ) = (pi1, p

i
2, p

i
3) denotes

the three problems in the portfolio of team ti . We denote by
	(i, q) the index of the problem that is in the qth position
in the portfolio of team ti , i ∈ [n], q ∈ [3]. Further, we
construct for each 	 ∈ [m] the list T (	) of pairs (i, q) such
that problem p	 is the qth problem in the portfolio of team
ti , i.e.,

T (	) = {(i, q) | piq = p	, i ∈ [n], q ∈ [3]}.

Let matrix C with n rows and m columns be

ci	 =
{
1 if p	 ∈ P(ti )
0 otherwise.

We illustrate this notation using the profileBratislava 2018
from Table 1. Let us consider team Sharks1 to be team t1.
Then P(t1) = (p4, p6, p14), hence 	(1, 1) = 4, 	(1, 2) = 6,
and 	(1, 3) = 14. If we take problem p16, then T (16) =
{(2, 2), (11, 3)}, when we take team Sharks2 to be team t2
and team Eagles to be team t11.
Let us introduce binary variables

xi jkq ∈ {0, 1} for i ∈ [n]; j ∈ [3]; k ∈ [s] q ∈ [3]
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S1 S2 S3 W1 W2 W3 T1 T2 B1 B2 E L Z

F1.1 F1.2 F1.3 F1.4 F2.1 F2.2 F2.3 F2.4 F3.1 F3.2 F3.3 F3.4

Fig. 3 The four matchings from Theorem 5 constructed for the tour-
nament Bratislava 2018. The team names are abbreviated to their first
letter and teamnumber, e.g., S1 denotes Sharks1,while the Fights can be
identified based on the round and room in this order, e.g., F1.4 denotes

round 1, room 4. Matching MD and role D is marked by wavy orange
edges, role A is marked by dashed green edges, role B is marked by
dotted black edges, and finally, role C is marked by solid gray edges

Table 6 A fair schedule with a
fair ordering for the regional
tournament Bratislava 2018

Room 1 Room 2 Room 3 Room 4

Team Problem Team Problem Team Problem Team Problem

Round 1 A Sharks1 6 Sharks2 16 Turtles1 3 Turtles2 10

B Whales1 3 Whales2 12 Sharks3 1 Eagles 9

C Bears2 9 Lions 9 Whales3 4 Bears1 8

D Dogs 7

Round 2 A Whales1 7 Whales2 2 Sharks3 7 Bears2 5

B Sharks1 4 Bears1 4 Lions 4 Dogs 3

C Turtles1 2 Sharks2 10 Turtles2 6 Eagles 16

D Whales3 10

Round 3 A Lions 10 Eagles 4 Dogs 4 Whales3 9

B Bears2 17 Sharks2 17 Turtles1 14 Turtles2 5

C Sharks1 14 Whales1 14 Whales2 5 Sharks3 13

D Bears1 3

with the following interpretation.

xi jkq =
{
1 if team ti presents the qth problem from its portfolio in round j in room rk
0 otherwise

A feasible schedule is defined by the following system of
equations and inequalities:

3∑
j=1

s∑
k=1

xi jkq = 1 for each team ti and each q ∈ [3] (3)

s∑
k=1

3∑
q=1

xi jkq = 1 for each team ti and each round j (4)

n∑
i=1

3∑
q=1

xi jkq = size (rk) for each round jand each room rk ∈ R

(5)

∑
(i,q)∈T (	)

xi jkq ≤ 1 for each round j, each room rk , and each problem p	

(6)

Binary solutions of system (3)-(6) correspond to feasible
schedules, because these equations and inequalities mean the
following.
(3): Each team presents each problem from its portfolio
exactly once.
(4): Each team presents in each round exactly one problem.
(5): In each round and in each room rk the number of pre-
sented problems is equal to size(rk).
(6): In each round and each room each problem is presented
at most once.
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These conditions are equivalent to criteria (a)–(c) from
Sect. 2. We remark that choosing an ordering of Presenters
so that it fulfills Definition 2 can be done easily, for example
by assigning roles A, B, C—and D, in the case of 4-rooms—
in an increasing order of team indices in each Fight. Fair
ordering, if required, can be obtained afterwards using our
algorithm in Sect. 4.2.

Let us now recall the fairness condition fromDefinition 5.
A feasible schedule is fair if the following holds: If team tα
is in some round j in a room rk together with team ti who
presents problem p	 then p	 /∈ P(tα). This can be expressed
by the following inequalities:

xi jkq +
3∑

w=1

xα jkw + cα	(i,q) ≤ 2for each k ∈ [s], each q ∈ [3],

and each pair i �= α. (7)

Let us see how (7) ensures fairness. Assume that team ti
presents the problem that is stated in the qth position in P(ti )
during the Fight that takes place in room rk in round j . This
means that xi jkq = 1. Team tα is assigned to the same Fight
if and only if it presents some problem in room rk in round
j ; this holds if and only if the second term on the left hand-
side of inequality (7) is equal to 1. In this case, inequality
(7) implies cα	(i,q) = 0, i.e., problem p	(i,q) is not in the
portfolio of team tα .

This discussion implies the following assertion.

Observation 2 Fair schedules for IYPT correspond to the
solutions of the integer linear program consisting of the fea-
sibility constraints (3)–(6) and the fairness constraint (7)
formulated for each round j ∈ [3]. Weakly fair schedules
correspond to the solutions of (3)–(6) and the constraint (7)
for j = 1, 2.

Let us now consider the strong fairness condition. Recall
that a feasible schedule is strongly fair if no team ti deals
with a problem p	 more than once during the tournament (in
any role). To formulate this condition, we introduce another
set of non-negative variables:

yi jk	 ≥ 0 for i ∈ [n]; j ∈ [3]; k ∈ [s]; 	 ∈ [m].

The desired interpretation of these variables is that yi jk	 ≥ 1
if team ti can see problem p	 during its presentation in round
j in room rk ; this is ensured by the inequalities (8):

yi jk	 ≥
3∑

w=1

xi jkw +
∑

(α,q)∈T (	)

xα jkq − 1 for each i ∈ [n],

j ∈ [3], k ∈ [s], 	 ∈ [m]. (8)

To see this, notice that the first sum on the right-hand side
is equal to 1 if team ti presents some problem in round j in
room rk , which is equivalent to team ti being in this room in
the respective round, otherwise it is equal to 0. The second
sum is equal to 1 if problem p	 is presented in round j in
room rk by some team tα , otherwise it is equal to 0. The
inequalities ensuring strong fairness are

3∑
j=1

s∑
k=1

yi jk	 ≤ 1 for each i ∈ [n] and each 	 ∈ [m], (9)

as they mean that each team ti can see any problem p	 at
most once.

Observation 3 Strongly fair schedules for IYPT correspond
to the solutions of the integer linear program consisting of
the feasibility constraints (3)–(6), and inequalities (8) and
(9).

Finally, we express the condition of non-cooperativity in
the form of an inequality. A schedule is non-cooperative if
the inequality

∑
i∈Tλ

3∑
q=1

xi jkq ≤ 1. (10)

holds for each j ∈ [3], each k ∈ [s] and each λ ∈ [Λ].

6 Computations

We now present our computational work on real and gener-
ated data in Sects. 6.1 and 6.2, respectively.

6.1 Real data

The members of the two regional committees of the IYPT
in Slovakia (based in Bratislava and in Košice) provided us
with the portfolios for the years 2017 (Bratislava), 2018-
2021; these are given in Table 1. They also showed us the
schedules they prepared for regional tournaments in these
years. All schedules used in reality were non-cooperative,
but none of them was fair, not even weakly. More so, we
encountered a team that had seen presentations of two of
its problems before it presented them—see team Lions in
Table 3.

We attempted to compute schedules that are non-
cooperative and fair. In our simulations we used the open
source solver lpsolve (Berkelaar et al., 2007), version 5.5
under Java wrapper library. We kept the default parameter
settings for integer and mixed integer problems. The solver
was running on a desktop computer with the processor Intel
(R) Core (TM) i5-2500 3.3 GHz and 6 GB RAM.
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Table 7 Summary of computations of non-cooperative fair schedules
for real tournaments. The columns contain the number of teams, the
number of 3-rooms and 4-rooms, the number of variables and con-
straints in the constructed ILP, the computation time in seconds, and

the degree of fairness, respectively. For all instances, we attempted to
ensure first strong fairness, then fairness, then weak fairness.We always
include the data belonging to the highest degree of fairness that was
reached within one hour

File T eams 3-rooms 4-rooms Variables Constraints Run-time (s) Result

BA2017 9 3 0 1620 5580 2.52 Strongly fair

KE2018 15 5 0 675 11,220 3.43 Fair

KE2018 15 1 3 540 6474 6.51 Weakly fair

BA2018 13 3 1 468 6894 6.38 Fair

KE2019 13 3 1 468 6870 48.86 Fair

BA2019 9 3 0 243 2673 0.09 Fair

KE2020 13 3 1 468 6870 95.36 Fair

KE+PP2020 16 4 1 720 12,682 7.42 Fair

Slovakia2021 9 3 0 1620 5580 1.26 Strongly fair

A summary of the computations with real data is given in
Table 7. In 2018, the organizers of the regional tournament
in Košice used three 4-rooms and only one 3-room for 15
teams and for this case the solver was not able to either find
a solution or prove infeasibility within 1 hour. However, we
found a non-cooperative weakly fair solution for this case,
and also a non-cooperative fair solution if the 15 teams were
scheduled to fill up five 3-rooms. For all other available real
portfolios from years 2017 and 2019 we obtained a non-
cooperative, fair, in two cases a strongly fair schedule within
seconds.

We first became involved in the preparation of the sched-
ules for regional tournaments in 2020. In this year, the
organizers expanded the number of regional tournaments
from 2 to 4, in order to provide access to the competition to
students from rural schools. The two additional tournaments
took place in smaller cities of Martin (closer to Bratislava)
and Poprad (closer to Košice), each of them involving just
3 teams. This drained the Bratislava round to only 5 par-
ticipating teams, while the Košice event took place with 13
teams. Moreover, one of the teams in Bratislava, calledMIX,
involved students from different schools and the portfolio of
MIX contained the same problem twice. This highly unusual
makeshift team does not fit the standard input conditions.
For these reasons, our only real challenge was to prepare a
non-cooperative fair schedule for the Košice event, which we
succeeded in. Additionally, a non-cooperative fair schedule
were also possible if the three teams from Poprad would have
joined the Košice event. When we merged the teams at the
Bratislava and the Martin events, and deleted the makeshift
teamMIX, we got a profile with 8 teams. However, 3 of them
belonged to the same school and that precluded even the pos-
sibility of a noncooperative schedule without any additional
fairness requirements. The solver needed 0.09 seconds to
prove the infeasibility of the ILP for a non-cooperative fair

schedule and 0.056 seconds for the variant with weak fair-
ness.

We remark that for the strong fairness criterion, the solver
did not reach any conclusion within the time limit of 1 hour
for any of the instances from the years 2018-2020.

Year 2021 was again special. Because of the COVID-19
pandemic, only one tournament in Slovakia was organized
with 9 participating teams, moreover, it took place online.
One of the teams proposed to present either problem 13 or
problem17.Weoffered a strongly fair solution using problem
17. When we used problem 13, we were able to compute a
fair solution, however, in this solution the same composition
of a Fight was repeated in all three rounds. For the strong
fairness criterion we were not able to reach any conclusion
within more than one hour.

6.2 Randomly generated data

We randomly generated profiles that resemble situations that
could typically occur in practice. The structure of the gen-
erated samples was derived from the structure of profiles
in recent years and from our knowledge of the situation in
Physics education and schools in the respective regions.

Teams for the competition are nominated by schools and
we assume that a ‘big’ school nominates between 2 and 4
teams whilst a ‘small’ school nominates 1 or 2 teams. Higher
numbers were less probable. In more detail, we set the prob-
abilities that a big school nominates 2, 3, and 4 teams to 0.5,
0.3, and 0.2, respectively. For small schools, the probability
of nominating one team was 0.75 and that of nominating 2
teams 0.25.

Further, we assumed that not all problems are equally
popular. Based on the situation in years 2017-2020 we esti-
mated that in the set of 17 published problems there are 8
problems with low popularity, 6 problems with medium pop-
ularity and 3 problems with high popularity. We assumed

123



16 Journal of Scheduling (2023) 26:3–18

Table 8 Summary of
computations for randomly
generated data - room sizes
according to the international
rules

Number and ratio of instances CPU time (feasible) CPU time (infeasible)

Criterion Infeasible Undecided Feasible Median Maximum Median Maximum

Košice

Weakly fair 2 (4%) 3 (6%) 45 (90%) 0.66 47.48 0.53 91.56

Fair 2 (4%) 20 (40%) 28 (56%) 2.27 269.63 1.42 169.61

Strongly fair 2 (4%) 47 (94%) 1 (2%) 93.84 93.84 0.72 23.04

Bratislava

Weakly fair 6 (12%) 7 (12%) 37 (74%) 0.29 156.51 8.86 231.49

Fair 7 (14%) 14 (24%) 29 (58%) 0.61 112.64 2.65 239.93

Strongly fair 6 (12%) 43 (86%) 1 (2%) 1.22 1.22 1.26 162.46

Table 9 Summary of
computations with minimum
number of rooms, randomly
generated data

Number and ratio of instances CPU time (feasible) CPU time (infeasible)

Criterion Infeasible Undecided Feasible Median Maximum Median Maximum

Košice

Weakly fair 7 (33%) 6 (29%) 8 (38%) 0.94 189.04 4.14 399.45

Fair 7 (33%) 10 (48%) 4 (19%) 3.68 26.06 12.60 572.56

Strongly fair 7 (33%) 14 (67%) 0 n.a. n.a. 1.20 39.82

Bratislava

Weakly fair 8 (57%) 3 (21%) 3 (21%) 1.10 100.92 0.10 21.62

Fair 2 (66%) 1 (33%) 0 n.a. n.a. 1.10 1166.80

that a team chooses a problem of low popularity with prob-
ability μ, a problem of medium popularity with probability
2μ and a problem of high popularity with probability 4μ.
To achieve this, we used a special modification of Pólya’ s
urn model (Mahmoud, 2009). First, we put one ball with
the number of each low popularity problem into a vir-
tual urn, so we have balls 1,2,…,8. Then we added to the
same urn two balls for each problem with medium probabil-
ity and four balls for each problem with high popularity.
So we have additionally the balls numbered as follows:
9,9,10,10,…,14,14,15,15,15,15,16,16,16,16,17,17,17,17.
When a ball with a certain number is randomly drawn from
the urn, all the balls with the same number are removed from
the urn and the next ball is drawn.

Wegenerated 50 samples for regionBratislava and another
50 samples for region Košice. We assumed that in region
Bratislava there are 3 big schools and 3 small schools, whilst
in region Košice there are 2 big schools and 6 small schools.
The number of teams n in the generated sampleswas between
9 and 15 for Bratislava and it was between 10 and 16 for
Košice.

The results of computations of non-cooperative weakly
fair, fair, and strongly fair schedules are summarized in
Table 8. The column labelled undecided shows the number
and ratio of instances for which the solver stopped after 5
minutes due to the prescribed time-out without any result.
Computation times are summarized separately for feasible

and infeasible instances. Notice that we performed the com-
putations of fair and strongly fair schedules even for instances
where we already knew that a schedule fulfilling a weaker
form of fairness does not exist so as to obtain a comparison
of computation times.

The computations depicted in Table 8 correspond to the
choice of room sizes that follow the international rules. This
means that 4-rooms are only used when necessary, i.e., when
the number of teams n is not divisible by 3, hence the number
of 4-rooms is 0, 1, or 2. However, sometimes the organizers
of regional tournaments want to minimize the number of
rooms used and prefer 4-rooms. A different composition of
room sizes is possible in our case if n = 12, 15 or 16. For
n = 12 and n = 16, a schedule that uses only 4-rooms is
possible, and for n = 15, one can use 3 rooms of size 4 and
one 3-room. The number of instances with such n among
Bratislava-type data was 14 and among Košice-type data it
was 21. In this case chances of the existence of a fair schedule
are much lower. For Bratislava region and non-cooperative
weak fairness, 8 instances out of 14 were infeasible, for 3 of
them the solver was not able to find an answer within 1 hour,
and only 3 instances admitted a weakly fair schedule; for one
of them the answer was output after 19 minutes. For these 3
instances we attempted fairness; the solver proved in 2 cases
infeasibility and one case remained undecided within 1 hour.
The results are given in Table 9.
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7 Conclusion, open problems, and directions
for further research

In this paper we studied the scheduling problem arising in
the organization of regional competitions of the International
Young Physicists’ Tournament. Based on considerations of
organizers, we introduced novel fairness criteria for schedul-
ing problems. To find fair schedules we employed algorithms
based on graph colorings and proposed integer linear pro-
grams, applied them successfully to real profiles from recent
years, and explored their behaviour on randomly generated
data.

Using the free software package lpsolve has its limitations,
as we were not able to find a fair solution or a proof of its
non-existence in quite a large number of instances within an
acceptable time limit. It could be interesting to explore vari-
ous possibilities of speeding up the computations. In addition
to exploiting faster commercial software one can try to find
a more compact ILP formulation. Other options may be the
use of constraint programming or SAT encoding.

Our simulations revealed that if teams are allowed
to choose their portfolios completely arbitrarily, then the
chances of a non-cooperative fair schedulemay be low. Let us
therefore think about another approach. Suppose that instead
of submitting a fixed portfolio, each team submits a pref-
erence ordering of the problems—perhaps it might even be
allowed to label some problems as unacceptable. We seek a
matching of teams to triples of problems, which enables a fair
schedule, and is in a sense optimal. Several optimality crite-
ria can be thought of, for example minimizing the position
of the least preferred problem in the final portfolio of each
team, or minimizing the weighted sum of ranks of assigned
problems in the portfolio.

Notice thatwe leave the theoretical complexity of the exis-
tence of a fair schedule open. The feasibility constraints (3)–
(5) resemble a multi-index transportation problem (MITP)
(Queyranne & Spieksma, 2001) known to be an NP-hard
problem, but constraint (6) and the additional constraints on
non-cooperativity and fairness make our problem different.

Practically, in some cases it is easy to see why a fair sched-
ule does not exist, e.g., if the portfolios are too similar to each
other. The next theoretical step could be deriving some eas-
ily verifiable combinatorial certificates for unsolvable fair
schedule instances.

Let us recall here that the countries participating in IYPT
are free to state their own rules for the organization of the
regional tournaments. For example, up to the academic year
2020/2021, German national committee organized Fights
similarly as described in the current paper and they stated
three fairness conditions to be fulfilled in decreasing order of
importance: : (1) no two teams from the same school (center)
compete within one Fight, (2) no team has the same Oppo-
nentmore than once, (3) if possible, each team competeswith

6 different teams in its 3 Fights in the tournament. Notice that
the first condition was our non-cooperativity constraint and
the last condition was similar to our strong fairness, but we
enforce a lower bound on the number of problems a team
encounters during the tournament, instead of teams.

For the academic year 2021/2022, as published in the Ger-
mannational IYPTwebpagehttps://www.gypt.org/,
Germany defines Fights with only two teams: the Reporter
and the Opponent. Each team reports on the problems it
announced beforehand, and the organizers prepare a schedule
stating who will oppose which problem of which team. No
fairness criteria have been officially formulated, so a ques-
tions for possible future research may be to find plausible
ones and explore their computability.

Let us recall that teams taking part in the international final
cannot choose the problems to present in advance, because
theOpponent team is allowed to challenge the Presenter team
with any of the 17 problems. Here, one cannot foresee which
problemswill be presented in the Fights, so to define fairness,
only teams participating in common Fights can be taken into
account.

We hope to have opened a new perspective on scheduling
student scientific or debating competitions with our work.
Our ILP model seems to be useful for the preparation of fair
schedules of regional tournaments that are consistent with
the IYPT rules of at least four countries: Austria, Slovakia,
Switzerland and, until recently, Germany. Furthermore, other
competition schedules could potentially be automated as
well. A good starting point here is the analogous version of
IYPT inmathematics, the InternationalTournament ofYoung
Mathematicians. By applying an ILP approach to the rules
at The World Universities Debating Championship or other
debating tournaments one could also potentially determine
fair schedules for debate rooms.
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