
Noname manuscript No.
(will be inserted by the editor)

Equitable Scheduling on a Single Machine

Klaus Heeger · Danny Hermelin · George B. Mertzios · Hendrik Molter ·
Rolf Niedermeier · Dvir Shabtay

Accepted: 11 August 2022

Abstract We introduce a natural but seemingly yet

unstudied variant of the problem of scheduling jobs on

a single machine so as to minimize the number of tardy

jobs. The novelty of our new variant lies in simultane-

ously considering several instances of the problem at

once. In particular, we have n clients over a period of

m days, where each client has a single job with its own

processing time and deadline per day. Our goal is to

provide a schedule for each of the m days, so that each

client is guaranteed to have their job meet its deadline

An extended abstract of this paper appeared in the proceed-
ings of the 35th AAAI Conference on Artificial Intelligence
(AAAI ’21) [29]. This version contains full proof details and
additional hardness results.

Klaus Heeger was supported by DFG Research Training
Group 2434 “Facets of Complexity”. George B. Mertzios was
supported by the EPSRC grant EP/P020372/1 and by DFG
RTG 2434 while visiting TU Berlin. Hendrik Molter was sup-
ported by the German Research Foundation (DFG), project
MATE (NI 369/17), and by the Israeli Science Foundation
(ISF), grant No. 1070/20. Main work done while Hendrik
Molter was affiliated with TU Berlin.

The authors do not have conflicts of interest to declare. No
data, material, or code is used in this work. All authors con-
tributed equally.

K. Heeger, R. Niedermeier
Algorithmics and Computational Complexity, Faculty IV,
TU Berlin, Berlin, Germany
E-mail: heeger@tu-berlin.de, rolf.niedermeier@tu-berlin.de

D. Hermelin, H. Molter, D. Shabtay
Department of Industrial Engineering and Management,
Ben-Gurion University of the Negev, Beer-Sheva, Israel
E-mail: hermelin@bgu.ac.il, molter@post.bgu.ac.il,
dvirs@bgu.ac.il

G. B. Mertzios
Department of Computer Science, Durham University,
Durham, UK
E-mail: george.mertzios@durham.ac.uk

in at least k ≤ m days. This corresponds to an equitable

schedule where each client is guaranteed a minimal level

of service throughout the period of m days. We provide

a thorough analysis of the computational complexity of

three main variants of this problem, identifying both ef-

ficient algorithms and worst-case intractability results.

Keywords Resource Allocation · Fairness · Equity ·
Fixed-Parameter Tractability · Approximation

1 Introduction

One of the most basic and fundamental scheduling

problems is that of minimizing the number of tardy jobs

on a single machine. In this problem we are given n jobs,

where each job j has an integer processing time pj and

an integer deadline dj , and the goal is to find a permu-

tation of the jobs so that the number of jobs exceeding

their deadlines is minimized (a job j exceeds its deadline

if the total processing time of jobs preceding it in the

schedule, including itself, is larger than dj). This prob-

lem is known as the 1||
∑
Uj problem in the classical

three-field notation for scheduling problems by Graham

et al. [26]. It is well-known that 1||
∑
Uj is solvable in

O(n log n) time [45, 48, 54], but becomes NP-hard in

case of simple (chain) precedence constraints even if all

processing times pj are the same [42]. There is also a

more recent survey concerning the minimization of the

weighted number of tardy jobs [1], and the problem has

also been thoroughly studied for parallel machines [6].

Due to the ever increasing importance of high cus-

tomer satisfaction, fairness-related issues are becoming

more and more important in all areas of resource allo-

2 Heeger et al.

cation [12, 22, 39, 40, 56]1. For instance, in their sem-

inal work Baruah et al. [7] introduced the concept of

proportionate progress, a fairness concept for resource

allocation problems. Nowadays, equity and fairness in

resource allocation is a widely discussed topic, leading

to considerations such as the “price of fairness” [10],

or to discussions about the abundance of fairness met-

rics [27].

We study a natural yet seemingly novel variant of

the 1||
∑
Uj problem which takes into account a very

basic aspect of equity among the customers. In our

model, we have m instances of 1||
∑
Uj which repre-

sent scheduling requests of a set of n clients over a pe-

riod of m days. As this is an initial study, we assume

all instances are known in advance, and focus solely

on the offline setting. Additionally, we receive as input

a non-negative integer k ≤ m representing the equity

parameter. Our goal is provide a schedule for each of

the m days that ensures an equitable service among

the clients. More specifically, we want to ensure that

the jobs of each client are non-tardy in at least k out

of the m days. In this way, the number of days differ-

ent clients receive satisfactory service differs by at most

m − k, and so the larger k is, the more equitable our

solution becomes.

1.1 Formal Model

Our model can be formally described as follows: We

wish to schedule non-preemptively the jobs of a set of

n clients over a period of m days in an equitable way.

At each day, each client has a single job to be sched-

uled non-preemptively on a single machine. We let pi,j
and di,j respectively denote the integer processing time

and deadline of the job of client i ∈ {1, . . . , n} at day

j ∈ {1, . . . ,m}. In addition, we let k denote an equity

parameter given as input, with k ∈ {0, . . . ,m}.
A schedule σj for day j ∈ {1, . . . ,m} is a permuta-

tion σj : {1, . . . , n} → {1, . . . , n} representing the order

of jobs to be processed on our single machine on day j.

For a given schedule σj , the completion time Ci,j of the

job of client i is defined as Ci,j =
∑
σj(i0)≤σj(i) pi0,j .

In this way, the job meets its deadline on day j if

Ci,j ≤ di,j . If this is indeed the case, then we say that

client i is satisfied on day j, and otherwise i is unsat-

isfied. Our goal is to ensure that each client is satisfied

in at least k days out of the entire period of m days;

such a solution schedule (for all m days) is referred to

as k-equitable. Thus, depending on how large k is in

1 In 2018, ACM started its new conference series on
“Fairness, Accountability, and Transparency (originally FAT,
since 2021 FAccT)”.

comparison with m, we ensure that no client gets sig-

nificantly worse service than any other client.

Equitable Scheduling (ES):

Input: A set of n clients, each having a job with

processing time pi,j and deadline di,j for

each day j ∈ {1, . . . ,m}, and an integer k.

Task: Find a set of m schedules {σ1, . . . , σm} so

that for each i ∈ {1, . . . , n} we have |{j |
1 ≤ j ≤ m ∧ Ci,j ≤ di,j}| ≥ k.

1.2 Three Equitable Scheduling Variants

As Equitable Scheduling turn to be strongly NP-

hard even for very restricted special cases (see Sec-

tion 1.5), we decided to look on special cases which

are commonly studied in the scheduling literature.

– In the first variant, which we call Equitable

Scheduling with Unit Processing Times

(ESUP), the processing time of all jobs are unit

in each day. That is, we have pi,j = 1 for each

i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.
– In the Equitable Scheduling with Single

Deadlines (ESSD) problem, all jobs have the same

deadline at each day. That is, at each day j ∈
{1, . . . ,m} we have di,j = dj for each i ∈ {1, . . . , n}.

– In the final variant, called Equitable Schedul-

ing with Precedence Constraints (ESPC), all

processing times are unit, and jobs share the same

deadline at each day, i.e., pi,j = 1 and di,j = dj
for each i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. In ad-

dition, in each day we are given a precedence di-

rected acyclic graph (DAG) Gj = ({1, . . . , n}, Ej)
which represents precedence constraints on the jobs

at day j. We say that a schedule σj is feasible if for

each (i1, i2) ∈ Ej we have σj(i1) < σj(i2).

Note that equal processing time is one of the most

widely studied special cases in the scheduling litera-

ture (see e.g. [3, 4, 5, 13, 14, 50, 53, 57]). Such models

typically deal with real-world applications of repetitive

manufacturing of the same product to satisfy differ-

ent orders. The single deadline case is also very com-

mon in real-world applications, as it captures cases

where there is a single shipment for all jobs during

the scheduling horizon, and/or cases where jobs are as-

signed the same due-date in order to treat costumers

equally (e.g. [2, 11, 41, 49, 52, 55]). Finally, precedence

constraints are widely studied in the area of schedul-

ing (e.g. [15, 16, 19, 33, 43, 47]), typically in scenarios

such as engineering, where machines are assembled or

disassembled, logistics, or project management.

Equitable Scheduling on a Single Machine 3

For each of the three variants above, we will also

consider the special case where the input for each day

is the same, and we will append an ‘*’ to the name of

the problem variant to indicate that this is the case we

are considering. For example, in the ESPC* problem we

have dj1 = dj2 and Gj1 = Gj2 for all j1, j2 ∈ {1, . . . ,m}.

1.3 Example Applications

Below we discuss three example applications of our eq-

uitable scheduling model. The goal of these examples

is not only to illustrate real-world scenarios where our

model can be useful, but also to better illuminate the

three variants discussed above.

As a first example, consider the following patient

scheduling problem: There is a set of n patients that

must be treated by a single machine in a clinic, say

a dialysis machine. The machine works on daily basis

and each of the patients must receive a daily treatment

throughout m days. The daily schedule begins at 7:00

AM, and each of the patients has a different deadline in

each day that he wishes to meet (corresponding to the

public transportation time tables and constraints from

his workplace). To ensure fairness among the patients,

the clinic wishes to make sure that each of the patients

will not be late to the last train or work in at least

k of the days. This scenario can naturally be modeled

by our Equitable Scheduling problem. In case the

treatment is in fact dialysis, typically each treatment

takes four hours regardless of the patient, and the prob-

lem naturally becomes Equitable Scheduling with

Unit Processing Times.

Consider now a second example of a research group

with n PhD students that have access to a single re-

search lab. At the beginning of the semester, each stu-

dent has to submit a plan for their experiments for the

next m days, where each experiment requires the usage

of the entire lab for a varying amount of time. In addi-

tion, due to space constraints (and possibly health regu-

lations) at most one student can use the lab at any given

time. All students request access to the lab each day,

but due to high demand not all of them can be sched-

uled early enough before the lab closes for the day. The

chair of the group wants to ensure fairness amongst the

students, and so they are looking for a schedule where

every student can perform their experiments in the lab

on at least k out of the m days. This problem precisely

corresponds to the Equitable Scheduling with Sin-

gle Deadlines problem, as all students have the same

deadline for their experiments (the closing time of the

lab). We remark that the authors of the paper faced a

similar problem to the one described above when the

second author was visiting TU Berlin.

As a final example, consider a factory manufactur-

ing three products: A, B, and C. The time for man-

ufacturing each product takes roughly the same time.

However, due to the configuration process of the ma-

chines at the factory, all orders of product A must be

manufactured first, followed by all orders of product B,

and finally all orders of product C. The factory has n

clients who place requests for the next m days. In the

basic case, each client orders a single product every day

(but the products they order may differ between differ-

ent days), and all clients want their product shipped to

them at the same time (say, before the end of the day).

To ensure an equitable solution amongst its clients, the

factory wishes to meet the deadlines of the clients in

at least k out of the m days. This naturally corre-

sponds to the Equitable Scheduling with Prece-

dence Constraints problem, where the precedence

constraints are determined by the manufacturing order

of all products of the same day.

1.4 Methodology

We are mainly interested in theoretical analysis of the

problems, focusing on complexity analysis of the prob-

lems in hand, and providing exact algorithms or algo-

rithms with provable approximation guarantees.

We study the (parameterized) algorithmic complex-

ity2 of all three main variants (and some further vari-

ations) discussed above. We use the following concepts

from parameterized complexity theory [17, 20, 21, 51].

A parameterized problem L ⊆ {(x, k) ∈ Σ∗ × N} is a

subset of all instances (x, k) from Σ∗ × N, where k de-

notes the parameter. A parameterized problem L is

– FPT (fixed-parameter tractable) if there is an al-

gorithm that decides every instance (x, k) for L

in f(k) · |x|O(1) time, and

– contained in the class XP if there is an algorithm

that decides every instance (x, k) for L in |x|f(k)
time,

where f is any computable function that depends only

on the parameter. If a parameterized problem L is

W[1]-hard, then it is presumably not fixed-parameter

tractable [17, 20, 21, 51].

We remark that any NP-hardness result for any

variant of Equitable Scheduling for a specific k ∈
{1, . . . ,m} (or m − k ∈ {1, . . . ,m}), implies NP-

hardness for all k′ > k (or m − k′ > m − k). This can

be seen by adding and additional k′ − k days in which

2 Parameterized complexity studies of NP-hard schedul-
ing problems gained more and more interest over the recent
years [8, 9, 23, 30, 31, 32, 46]; we contribute to this field with
several of our results.

4 Heeger et al.

all jobs are early under any schedule (or all jobs are

late under any schedule), e.g. the common deadline on

each day is larger than the total processing time of all

jobs on that day (or the processing time of all jobs on

that day is by one larger than the deadline). Consider

now the special case of either of our problems where we

have the same instance for each of the days e.g. ESSD*

and ESPC*, and assume that it is NP-hard for k = 1

(or m−k). For proving that it is NP-hard for any k′ > 1

(or m− k′ > m− k) value we simply duplicate the re-

duction for k = 1 (or m−k = 1) by including additional

(k′ − 1)m (or (m − k′ − 1)m) days. Thus, in what fol-

lows, all NP-hardness results presented for k = 1 (or

m−k = 1) actually apply for all values of k (or m−k).

In the case of ESPC, all NP-hardness results for unit

processing times also transfer to the case of equal but

non-unit processing times. This can be shown by appro-

priately rescaling the processing times and deadlines in

the NP-hardness reductions.

1.5 Our Results and Roadmap

We present several positive and negative results regard-

ing the computational complexity of the three variants

of Equitable Scheduling discussed above. Our main

findings in the paper are listed below.

– For ESUP, we show that the problem can be solved

in polynomial time by devising a reduction to the

Bipartite Maximum Matching problem. Our re-

duction can also be applied when jobs have arbitrary

integral release times and there is a fixed number of

machines available on each day.

– For ESSD and ESSD*, we show strong NP-

hardness and W[1]-hardness for parameter m (num-

ber of days) even if k = 1 or m − k = 1, and weak

NP-hardness even if m = 2 and k = 1. On the

positive side, we show that ESSD can be solved

in pseudo-polynomial time for m = O(1), and is

in FPT when parameterized by the number n of

clients. For ESSD*, we give a polynomial-time al-

gorithm that for any k, computes a 2k-equitable so-

lution assuming there exists a 3k-equitable solution.

– For ESPC, we show NP-hardness even if k = 1

and m = 2. For ESPC*, we show NP-hardness

and W[1]-hardness for parameter m even if k = 1

or m − k = 1 and the precedence DAG only con-

sists of disjoint paths. For ESPC, we also show NP-

hardness for k = 1 if each precedence DAG either

consists of a constant number of disjoint paths or

disjoint paths of constant length. On the positive

side, we show that ESPC is in FPT when parame-

terized by the number n of clients.

The remainder of the paper is organized according

to the three variants of Equitable Scheduling. All

results for ESUP are presented in Section 2, Section 3

contains all results for ESSD and ESSD*, while Sec-

tion 4 is concerned with ESPC and ESPC*. Finally,

we discuss some open problems in Section 5.

2 Unit Processing Times

In this section, we show that Equitable Scheduling

with Unit Processing Times can be solved in poly-

nomial time by a reduction to the Bipartite Maxi-

mum Matching problem. Later in the section we will

show that our reduction can also be applied when jobs

have arbitrary integer release times, and there is a fixed

number of machines available on each day.

Recall that pi,j and di,j respectively denote the pro-

cessing time (which is unit in this case, i.e., pi,j = 1)

and deadline of the job of client i on day j, and that k

is the equity parameter. Let d∗j = max1≤i≤n di,j denote

the maximal deadline on day j ∈ {1, . . . ,m}. We create

an undirected graph G with the following vertices:

– For each i ∈ {1, . . . , n} and each j ∈ {1, . . . ,m}, we

create a vertex vi,j . The set of vertices V = {vi,j :

1 ≤ i ≤ n, 1 ≤ j ≤ m} represents all input jobs of

all clients.

– For each d ∈ {1, . . . , d∗j} and each j ∈ {1, . . . ,m},
we create a vertex ud,j . The set U = {ud,j : 1 ≤ d ≤
d∗j , 1 ≤ j ≤ m} represents all possible completion

times of the all input jobs that meet their deadline.

– For each i ∈ {1, . . . , n} and each j ∈ {1, . . . ,m−k},
we create a vertex wi,j . The set W = {wi,j : 1 ≤
i ≤ n, 1 ≤ j ≤ m−k} represents the set of jobs that

exceed their deadline.

The edges of G are constructed as follows. For each

i ∈ {1, . . . , n} and each j ∈ {1, . . . ,m} we connect vi,j
to:

– vertices wi,1, . . . , wi,m−k, and

– vertices u1,j , . . . , ud,j , where d = di,j .

Lemma 1 G has a matching of size nm if and only if

there exists schedules {σ1, . . . , σm} where no client is

unsatisfied in more than m− k days.

Proof (⇐): Let {σ1, . . . , σm} be a set of schedules where

no client is unsatisfied on more than m− k days. Con-

sider the job of client i on day j, for some i ∈ {1, . . . , n}
and j ∈ {1, . . . ,m}. Note that the completion time of

this job is C = Ci,j = σj(i). If C ≤ di,j , then there

is an edge {vi,j , uC,j} in G, and we add this edge to

the matching. If C > di,j , then client i is unsatisfied on

day j. Let ` denote the number of days prior to j that

Equitable Scheduling on a Single Machine 5

client i is unsatisfied. Then ` < m− k, since otherwise

client i would be unsatisfied in more than m − k days

(including day j). We add the edge {vi,j , wi,`+1} to the

matching. In total, this gives us a matching of size nm

in G.

(⇒): Assume that G contains a matching of size nm.

We create a set of schedules {σ1, . . . , σm} accordingly.

First note that the fact that G is bipartite with one

part being V , and |V | = mn, implies that every ver-

tex in V has to be matched. Let vi,j ∈ V . Then this

vertex is either matched to a vertex in U or a vertex

in W . Because N(ud+1,j) ⊆ N(ud,j) holds for every

j ∈ {1, . . . ,m} and d ∈ {1, . . . , d∗j − 1}, we may assume

that for every j ∈ {1, . . . ,m} there exists some dj such

that vertex ud,j is matched if and only if d ≤ dj .

– Suppose that vi,j is matched to some ud,j0 ∈ U .

Observe that j = j0 and d ≤ di,j by construction

of G. We set σj(i) = d, and so client i is satisfied

on day j. Observe that the fact that ud,j0 cannot be

matched to any other vertex in V guarantees that

σj(i) 6= σj(i0) for any i0 6= i. Let sj denote the

number of clients satisfied by σj in this way.

– Suppose that vi,j is matched to some vertex wi0,j0 ∈
W . Note that i = i0 and j0 ≤ m−k by construction

of G. Let xi,j = |{i0 < i : wi0,j is matched }|. Then

we set σj(i) = sj + xi,j + 1.

After each σj is permutation from {1, . . . , n} to

{1, . . . , n}, and no client is unsatisfied in more than

m− k days under {σ1, . . . , σm}. ut

Since we may assume that d∗j ≤ n for every j ∈
{1, . . . ,m}, we observe that G has O(mn) vertices and

O(mn2 + m2n) edges, and it can be constructed in

O(mn2 + m2n) time. Using the algorithm of Hopcroft

and Karp [34] for Bipartite Maximum Matching,

this gives us the following:

Theorem 1 ESUP can be solved in O((n+m)·(nm)
3
2)

time.

We remark that the algorithm behind Theorem 1

is very flexible and can easily be extended to the set-

tings where there are multiple parallel machines and

jobs have either arbitrary integral release dates or equal

processing time (which is not necessarily of unit length).

The main idea is to first modify the meaning of the

vertices in U . In the first case (multiple parallel ma-

chines and arbitrary release dates) the vertices in U

represent unit time slots for jobs and a job has an edge

to all time slots that begins not earlier than the job’s re-

lease date and finish no later then the job’s deadline. In

the second case (multiple parallel machines and equal

processing times) the vertices in U represent time slots

of equal length for jobs, and a job has an edge to all

time slots that ends before the job’s deadline.

In both cases, we model parallel machines by essen-

tially introducing copies of the vertices in U for each of

the machines.

We next give a formal description on how to con-

struct the graph G for the first case, but leave out the

details for the second case (for the sake of brevity, and

due to high level of similarity in the reduction).

Recall that pi,j and di,j respectively denote the pro-

cessing time and deadline of the job of client i on day j,

and that k is the equity parameter. Let ri,j < di,j the

release date of the job of client i on day j and xj the

number of parallel machines available on day j. Let

d∗j = max1≤i≤n di,j denote the maximal deadline on

day j ∈ {1, . . . ,m} and let x∗ = max1≤j≤m xj denote

the maximal number of machines available on a day.

We create an undirected graph G with the following

vertices:

– For each i ∈ {1, . . . , n} and each j ∈ {1, . . . ,m}, we

create a vertex vi,j . The set of vertices V = {vi,j :

1 ≤ i ≤ n, 1 ≤ j ≤ m} represents all input jobs of

all clients.

– For each d ∈ {1, . . . , d∗j}, each j ∈ {1, . . . ,m}, and

each x ∈ {1, . . . , x∗}, we create a vertex ud,j,x. The

set U = {ud,j,x | 1 ≤ d ≤ d∗j , 1 ≤ j ≤ m, 1 ≤
x ≤ x?} represents all possible completion times on

some machine of the all input jobs that meet their

deadline.

– For each i ∈ {1, . . . , n} and each j ∈ {1, . . . ,m−k},
we create a vertex wi,j . The set W = {wi,j : 1 ≤
i ≤ n, 1 ≤ j ≤ m−k} represents the set of jobs that

exceed their deadline.

The edges of G are constructed as follows. For each

i ∈ {1, . . . , n} and each j ∈ {1, . . . ,m} we connect vi,j
to:

– vertices wi,1, . . . , wi,m−k, and

– vertices ur,j,1, . . . , ud,j,x, where d = di,j , r = ri,j+1,

and x = xj .

The proof of correctness is analogous to the proof

of Lemma 1. We omit the details.

3 Single Deadline on Each Day

In this section, we investigate the computational com-

plexity of Equitable Scheduling with Single

Deadlines.

3.1 Hardness Results

We first show that ESSD is NP-hard even if all numbers

involved are small constants.

6 Heeger et al.

Theorem 2 ESSD is NP-hard even if k = 1 and

d = 3.

Proof We present a polynomial-time many-one reduc-

tion from Independent Set on 3-regular graphs. In

this problem we are given a graph G = (V,E) where

every vertex has degree 3 and an integer `, and we are

then asked whether G contains an independent set of

size `. This problem is known to be NP-hard [25]. Let

(G = (V,E), `) be an instance of Independent Set,

where G is an 3-regular graph.

We construct an instance of ESSD as follows. We

set k = 1 and d = 3. For each vertex v ∈ V , we add a

client cv, and for each edge e ∈ E, we add a client ce.

There are m = 2|V | − ` many days. We order the ver-

tices arbitrarily, i.e., V = {v1, . . . , vn}. On day i, the

job of client cvi has processing time 3, while the jobs

of client cv with v 6= vi have processing time 4. The

jobs of clients ce have processing time 1 if e is incident

to vi and processing time 4 otherwise. Finally, on days

|V | + 1 to 2|V | − `, jobs of clients cv for v ∈ V have

processing time 3, and jobs of clients ce for e ∈ E have

processing time 4.

(⇒): An independent set I of size ` implies a feasible

schedule by scheduling the jobs of the |V | − ` clients cv
with v ∈ V \ I to the days |V | + 1 to 2|V | − `. For

each vi ∈ I, we schedule the job of client cvi to day i.

For all clients ce we schedule one of their jobs on a day

corresponding to an arbitrary endpoint of e that is not

contained in the independent set I.

(⇐): Note that every feasible schedule must sched-

ule a job of client cvi to day i for at least ` different

clients cvi . We claim that I := {vi ∈ V | cvi has a job

that is scheduled on day i} is an independent set. If

there exists an edge e = {vi, vi′} for vi, vi′ ∈ I, then

this edge can be scheduled neither on a day i nor on

day i′ and therefore cannot be scheduled on any day.

Thus, these at least ` vertices in I form an independent

set. ut

Note that in ESSD w.l.o.g. the maximum processing

times (and hence also the number of processing times)

is upper-bounded by the deadline. Thus Theorem 2 also

gives us also NP-hardness for constant maximum pro-

cessing time.

We can further show that ESSD* (i.e., ESSD where

the processing time of the job of each client is the same

every day) is NP-hard and W[1]-hard when parameter-

ized by the number of days.

Theorem 3 ESSD* is NP-hard and W[1]-hard when

parameterized by the number m of days even if k = 1

and all numbers are encoded in unary.

Proof We present a parameterized reduction from

Unary Bin Packing, where given a set I = {1, . . . , n}

of items with sizes si for i ∈ I, b bins of size B, we are

asked to decide whether it is possible to distribute the

items to the bins such that no bin is overfull, i.e., the

sum of the sizes of items put into the same bin does

not exceed B. Unary Bin Packing is known to be

NP-hard and W[1]-hard when parameterized by b [35].

Given an instance of Unary Bin Packing, we con-

struct an instance of ESSD* as follows.

We set the number of days to b, i.e., m = b. For

each item i ∈ I and each day j ∈ {1, . . . ,m} we create

a job for client i with processing time pi,j = si, i.e., the

processing time is the same every day. The deadline

for every day is d = B. Finally, we set k = 1. This

finishes the construction which can clearly be done in

polynomial time.

(⇒): Assume the Unary Bin Packing instance is

a YES-instance. Then there is a distribution of items to

bins such that no bin is overfull. If item i ∈ I is put into

the jth bin for some j ∈ {1, . . . , b}, then we schedule the

job of of client i on day j to be processed. Since every

item is put into one bin, every client has a job that is

scheduled to be processed at one day and since no bin

is overfull, all scheduled jobs can be processed before

their deadline d. It follows that we have a 1-equitable

set of schedules.

(⇐): Assume we have a 1-equitable set of schedules.

Then every client has a job on at least one day that is

processed. Let client i have a job that is processed on

day j. Then we put item i into the jth bin. Since the

processing time pi,j is the same as the size of item i and

the sum of the processing times of jobs that are sched-

uled to be processed on the same day is at most d = B,

the sum of sizes of items that are put into the same

bin is at most B. Hence, we have a valid distribution of

items into bins.

We remark that the W[1]-hardness only transfers to

all larger constant values of k by “duplicating” the re-

duction as described in Section 1.4, because the number

of days is also increased by this process. ut

Note that the hardness result above applies for cases

where the clients do not need to be satisfied most of the

days. Next we show that with minor modifications to

the reduction above, we can also obtain hardness for

the case that m− k ≥ 1.

Corollary 1 ESSD* is NP-hard and W[1]-hard when

parameterized by the number m of days even if m−k =

1 and all numbers are encoded in unary.

Proof (sketch) We use the same reduction from Unary

Bin Packing [35] as in the proof of Theorem 3 with

some minor changes: We set the deadline for every day

to d =
∑
i si −B. We furthermore assume w.l.o.g. that

Equitable Scheduling on a Single Machine 7∑
i si = b·B (this can be achieved by adding a sufficient

amount of size one items to the Unary Bin Packing

instance). Lastly, we set k = m− 1.

(⇒): Assume the Unary Bin Packing instance is

a YES-instance. Then there is a distribution of items

to bins such that no bin is overfull and since we assume∑
i si = b ·B, we have that every bin is exactly filled. If

item i ∈ I is put into the jth bin for some j ∈ {1, . . . , b},
then we do not process the job of client i on day j,

otherwise we do. Since every item is put into exactly

one bin, every client has a job that is scheduled to be

processed on all except one day and since all bins are

exactly filled, all scheduled jobs on every day can be

processed before their deadline d. It follows that we

have a m− 1-equitable set of schedules.

(⇐): Assume we have a m−1-equitable set of sched-

ules. Then every client has a job on exactly all but one

days that is processed. This follows from the fact that

the total available processing time is exactly sufficient

to process m−1 jobs of every client. Let client i have a

job that is not processed on day j. Then we put item i

into the jth bin. Since the processing time pi,j is the

same as the size of item i and the sum of the processing

times of jobs that are not scheduled to be processed on

the same day is exactly B, all bins are exactly filled.

Hence, we have a valid distribution of items into bins.

ut

Finally, we can observe that ESSD* is still weakly

NP-hard for two days.

Observation 4 ESSD* is NP-hard even if m = 2.

Proof This can be shown with a straightforward re-

duction from Partition, where given a set S =

{s1, . . . , s|S|} of integers, we are asked whether there

is a partition of S into S1 and S2 (i.e., S1 ∪S2 = S and

S1 ∩S2 = ∅) such that
∑
s∈S1

s =
∑
s∈S2

s. Partition

is known to be weakly NP-hard [24].

Given an instance S of Partition we construct an

instance of ESSD* with n = |S| clients and m = 2

days in the following way. We set

pi,j = si for all i ∈ {1, . . . , |S|} and j ∈ {1, 2},

and we set k = 1 and d = 1
2

∑
s∈S s (note that in any

yes-instance of Partition, the sum of all integers in S

needs to be an even number). This can clearly be done

in polynomial time.

(⇒): Assume the Partition instance is a YES-

instance. Then there is a partition of S into S1 and

S2 such that
∑
s∈S1

s =
∑
s∈S2

s = 1
2

∑
s∈S s. For

each client i we schedule its job to be processed on

day one if si ∈ S1 and on day two otherwise. Since∑
s∈S1

s =
∑
s∈S2

s = 1
2

∑
s∈S s we know that on both

days the scheduled jobs finish before the deadline.

(⇐): Assume we have a 1-equitable set of sched-

ules. Then if client i has its job processed on day j,

we put si into Sj . We first claim that this produces

a partition of S. Clearly every si ∈ S is at least in

one of the sets S1 and S2, since otherwise client i has

none of its jobs scheduled. Assume for contradiction

that there is a client i that has its job scheduled on

both days. Then the total processing time of both days

is at least si +
∑
s∈S s >

∑
s∈S s, hence on one of

the days not all jobs can finish before the deadline,

a contradiction. It follows that
∑
s∈S1

s ≤ 1
2

∑
s∈S s

and
∑
s∈S2

s ≤ 1
2

∑
s∈S s which implies that

∑
s∈S1

s =∑
s∈S2

s = 1
2

∑
s∈S s. ut

3.2 Algorithmic Results

We first show that we can solve ESSD in pseudo-

polynomial time if the number m of days is constant.

Note that this implies that ESSD is in XP when pa-

rameterized by the number of days if all processing

times and the deadline are encoded in unary. Theo-

rem 3 shows that we presumably cannot expect to be

able to obtain an FPT algorithm for this case.

Theorem 5 ESSD can be solved in O(dmmax ·
(
m
k

)
· n)

time, where dmax = maxj dj.

Proof We give a dynamic programming algorithm for

this problem. The table T maps from {0, . . . , n} ×
{1, . . . , dmax}m to {true, false} and intuitively an en-

try T [i, b1, . . . , bm] is true if and only if it is possible to

schedule k jobs of each client {1, . . . , i} such that the

total processing time on day j is at most bj for all days

j ∈ {1, . . . ,m}. Formally, the table is defined as follows.

T [0, b1, . . . , bm] = true

T [i, b1, . . . , bm] =∨
{x1,...,xk}∈({1,...,m}k)

T [i−1, . . . , bx1−pi,x1 , . . . , bxk−pi,xk , . . .]

Intuitively, we “guess” on which days we want to sched-

ule jobs of client i and then look up whether there exists

a set of k-equitable schedules for clients {1, . . . , i−1} to

which we can add k jobs of client i such that the total

processing time comply with the upper bounds.

It is easy to check that the input instance is a YES-

instance if and only if T [n, d1, . . . , dm] = true. The

size of the table T is in O(dmmax · n) and computing one

table entry takes O(
(
m
k

)
) time. Hence, we arrive at the

claimed running time. ut

Next, we show that ESSD can be solved in poly-

nomial time if the number n of clients is constant. In

other words, we show that ESSD is in XP when pa-

rameterized by the number of clients.

8 Heeger et al.

Theorem 6 ESSD can be solved in O((2k + 2)n ·m)

time.

Proof We give dynamic programming algorithm for

this problem. The table T maps from {1, . . . ,m} ×
{0, . . . , k}n to {true, false}. Entry T [j, `1, . . . , `n] is

true if and only if it is possible to provide schedules for

days {1, . . . , j} such that for each client i we have that

its job is processed on exactly `i days (`i ≤ k). We have

that

T [j, 0, . . . , 0] = true for all j ∈ {1, . . . , n}, and

T [j, `1, . . . , `n] = true

if there exists a subset of clients I∗ ⊆ {1, . . . , n} such

that∑
i∈I∗

pi,j ≤ dj

and that

T [j − 1, `1 − I1∈I∗ , . . . , `n − In∈I∗] = true

where Ii∈I∗ is an indicator variable for the event that

i ∈ I∗, i.e.,

Ii∈I∗ =

{
1 if i ∈ I∗
0 otherwise

It is easy to check that the input instance is a

YES-instance if and only if T [m, k, . . . , k] = true.

The theorem follows from the fact that we have O(m ·
(k + 1)n) many T [j, `1, . . . , `n] values to compute and

O(2n) possible I∗ subsets to check for calculating any

T [j, `1, . . . , `n] value. ut

We now strengthen the above result by showing that

ESSD is in FPT when parameterized by n. To do this,

we give an integer linear programm formulation for the

problem and use a famous result by Lenstra Jr [44].

Note, however, that Theorem 6 is a purely combinato-

rial result and that the implicit running time of Theo-

rem 7 is at least double exponential.

Theorem 7 ESSD is in FPT when parameterized by

the number of clients n.

Proof First we partition the days into equivalence

classes. We say that two days j and j′ are equivalent if

for any subset S of clients all jobs of S can be sched-

uled together on day j if and only if they can be sched-

uled together on day j′. Let E be the set of equivalence

classes. Clearly, |E| ≤ 22
n

. We write that S � E for a

set S of clients and an equivalence class E if the sum

of the processing times of all jobs from S exceeds the

deadline on every day from E.

We design an ILP with one variable xE,S for each

pair of equivalence class E ∈ E and subset of clients S

from E as follows.

xE,S = 0 if S � E∑
S:i∈S

∑
E∈E

xE,S ≥ k ∀i ∈ {1, . . . , n}∑
S⊆{1,...,n}

xE,S = |E| ∀E ∈ E

Since the number of variables is at most 2n · 22n , it

follows by Lenstra Jr [44] that the ILP can be solved in

FPT-time parameterized by n.

Given a solution to the ILP, we get a k-equitable

schedule by scheduling for each variable xE,S the jobs

of S on exactly xE,S days of the equivalence class E.

By the third condition, this results in one schedule for

every day. By the first condition none of the scheduled

jobs is tardy. By the second condition, the schedule is

k-equitable.

Vice versa, given a k-equitable schedule, we con-

struct a feasible solution to the ILP by setting xE,S
to be the number of days from equivalence class E

scheduling exactly the jobs from S before the deadline.

The first condition is then fulfilled by the definition of

S � E. The second condition is fulfilled as the schedule

is k-equitable. The third condition is fulfilled as there

is exactly one schedule for each day. ut

In the remainder of this subsection, we investigate

the canonical optimization version of ESSD* where

we want to maximize k. Note that the existence of

a polynomial-time approximation algorithm with any

factor (i.e., an algorithm computing a solution for an

instance I of value ALG(I) such that f(I) ·ALG(I) ≥
OPT(I) for some function f) implies P = NP, since

distinguishing between the cases k = 0 and k = 1 is

NP-hard (see Theorem 3).

However, we will show that for any instance with

optimal solution value 3k, we can find a solution of

value 2k. We make a case distinction on k: we first show

an algorithm for that case that k ≤ m
2 and afterwards

an algorithm for the case of k > m
2 .

Lemma 2 Given a YES-instance I =

({p1, . . . , pn},m, d, k) with k ≤ m
2 of ESSD*,

one can compute a solution to the instance

I ′ := ({p1, . . . , pn},m, d, k′) with k′ := 2bk3 c in

O(n · (k + log n)) time.

Proof We apply an algorithm similar to the so-

called “First-Fit-Decreasing” algorithm for Bin Pack-

ing [37]. Set k′ := 2bk3 c. The algorithm works in the

following steps.

Equitable Scheduling on a Single Machine 9

1. Order the clients decreasingly by the processing

time of their jobs.

2. Iterate through the clients in the computed order.

For each client we schedule k′ of their jobs on the

first k′ days that have enough space, i.e., after the

jobs are scheduled the sum of processing times of

the scheduled jobs for each day is at most d.

Note that so far (i.e., without Step 3), the jobs of

each client are scheduled in a block of k′ consecutive

days that starts a some day j with j mod k′ = 0.

3. If there is a client i who cannot have k′ of its jobs

scheduled that way, then do the following:

Note that when this happens for the first time, it

means that all blocks of k′ consecutive days that

start at some day j with j mod k′ = 0 are “full”. We

now make a case distinction on the number m mod

k′ of days that are not part of any of these blocks.

– If Step 3 is invoked for the first time, then let

i′ be the client with smallest processing time

scheduled on day b 2m3 c + 1. Let j be the first

day that has a job of client i′ scheduled. Sched-

ule jobs of clients i and i′ to days {m− (m mod

k′) + 1, . . . ,m − (m mod k′) + k′

2 } and replace

the jobs of client i′ that are scheduled on days

{j, . . . , j + k′

2 − 1} with jobs of client i.

If Step 3 is invoked for the second time, then

output FAIL.

– If m mod k′ < k′

2 , then output FAIL.

4. If all clients are processed, then output the sched-

ules.

We first show that if the presented algorithm out-

puts a set of schedules, then the set is k′-equitable. If

m mod k′ < k′

2 , then this is obvious. If m mod k′ ≥ k′

2 ,

then we have to check that Step 3 of the algorithm

does not produce infeasible schedules. Observe that in

Step 3, we have that pi′ ≥ pi since the clients are or-

dered by the processing time of their jobs and client i′

is processed before client i. This means that replacing

a jobs of client i′ by a job of client i on some day can-

not violate the deadline unless it was already violated

before swapping the jobs. Observe that if I is a YES-

instance, then there can be at most bmk c jobs with pro-

cessing time more than d
2 . Thus there are at most b 2m3 c

days on which our algorithm schedules a job with pro-

cessing time more than d
2 . Since the algorithm processes

the jobs in decreasing order, all jobs with length more

than d
2 are scheduled only on the first b 2m3 c days. It fol-

lows that pi′ ≤ d
2 since it is scheduled on day b 2m3 c+ 1.

It follows that pi ≤ pi′ ≤ d
2 , and thus, the deadline is

not violated on days m− (m mod k′) + 1, . . . ,m− (m

mod k′) + k′

2 . This implies that Step 3 always produces

k′-equitable sets of schedules.

In the remainder of the proof we show that if the

presented algorithm outputs FAIL, then I is a NO-

instance. On an intuitive level, the main idea is to show

that the first d 2m3 e days are “full” and the remaining

bm3 c days have at least d 2m3 e − k
′ jobs (in total) sched-

uled. This then allows us to show that the total process-

ing time if k jobs of each client were scheduled exceeds

m · d, which implies that I is a NO-instance.

Since all jobs with length more than d
2 are sched-

uled only on the first b 2m3 c days, it follows that if the

algorithm outputs FAIL, then the last dm3 e days have

either at least two jobs scheduled or none.

Assume that our algorithm outputs FAIL and let

client i∗ be the client that was processed when the al-

gorithm output FAIL. Note that there are strictly less

than k′

2 days with no jobs scheduled, independent on

whether m mod k′ ≤ k′

2 . Thus, among the last bm3 c
days, (strictly) less than k′

2 days have no jobs sched-

uled and all others have at least two jobs scheduled.

Together with k′ jobs of client i∗ which are not sched-

uled at all, we have at least 2(bm3 c−
k′

2 +1)+k′ ≥ 2dm3 e
jobs, all of which have a processing time of at least pi∗ .

Let the set of these jobs be called J∗. Since the jobs of

client i∗ could not be scheduled in the first d 2m3 e days,

we know that the total processing time of all jobs from

one of the first d 2m3 e days plus pi∗ or the processing

time of any job in J∗ is larger than the deadline d. In-

tuitively, this allows us to “distribute” the processing

times of the jobs in J∗ to the first d 2m3 e days (note

that |J∗| ≥ d 2m3 e) and derive the following estimate:

k′
∑
i:pi≥pi∗ pi > d

2m
3 e · d. Substituting k′ with k and

summing over all clients, we get k
∑
i∈{1,...,n} pi > m·d,

which is a contradiction to the assumption that I is a

YES-instance.

Since First-Fit-Decreasing can be implemented in

O(n∗ log n∗) [36], where n∗ is the number of elements,

Steps 1 and 2 can be performed in time O(n log n+n·k)

by running First-Fit-Decreasing on the instance with

one element of size pi for each client i and bmk′ c bins of

size d, and then cloning the solution k′ times. Step 3

clearly runs in O(k) while Step 4 runs in constant time.

The running time of O(n(k + log n)) follows. ut

We now turn to the case k > m
2 .

Lemma 3 Given a YES-instance I =

({p1, . . . , pn},m, d, k) with k > m
2 of ESSD*,

one can compute a solution to the instance

I ′ := ({p1, . . . , pn},m, d, k′) with k′ := b 2k3 c in

O(n · (k + log n)) time.

Proof We classify the clients into two groups based on

the processing time of their jobs: A client i is large

if pi >
d
3 and small otherwise (i.e., if pi ≤ d

3). Set

k′ := b 2k3 c. We start with some basic observations:

10 Heeger et al.

1. There are no two clients i1 and i2 with pi1 +pi2 > d.

Since k > m
2 , every solution to I must schedule jobs

of clients i1 and i2 at least once to the same day

by the pigeonhole principle, which is impossible if

pi1 + pi2 > d.

2. There are at most three large clients. Assume for

contradiction that there are four large clients. Then,

since k > m
2 , by the pigeonhole principle there is one

day that has three jobs from three of the four large

clients scheduled, which is impossible since the total

processing time on that day would exceed d.

3. The total processing time of all jobs that need to be

scheduled cannot exceed m·d, i.e., k
∑
i∈{1,...,n} pi ≤

m · d.

Note that this implies that if a k′-equitable set of

schedules schedules on each day jobs with total pro-

cessing time larger than 2d
3 , then I is a NO-instance,

since then k
∑
i∈{1,...,n} pi ≥

3
2k
′∑

i∈{1,...,n} pi >
3
2m

2d
3 = m · d.

From now on we assume that the first two observations

hold, otherwise I is a NO-instance.

Intuitively, we will mostly try to use the third obser-

vation to show that our algorithm is correct: We greed-

ily fill up all days with jobs until no job of a small client

fits in any day. If this happens and we do not have a k′-

equitable set of schedules, then by the third observation

we can deduce that we were facing a NO-instance. How-

ever, in order to do this, we first have to deal with some

special cases explicitely (which are handled in Steps 2

and 3 of the algorithm in the next paragraph). If the to-

tal processing time of the jobs of all small clients is very

small (i.e., at most d
3) we can construct a k′-equitable

set of schedules directly. We also need to treat some

cases where the total processing time of the jobs of all

small clients is at most 2d
3 separately, hence then we

can have the case that we cannot schedule a job of any

small client on a certain day and still the total process-

ing time on that day does not exceed 2d
3 , which prevents

us from applying the third obervation. Formally, we sort

once in all clients by the processing times of their jobs,

and then we compute a set of schedules in the following

way.

1. If the sum of processing times of all small clients is

at most d
3 and there are at least two large clients,

then we do the following.

We schedule the jobs of the up to three large clients

one after another in the following way. We pick

the k days having the most free processing time

and schedule a job of client whose job we currently

schedule on these days. If these schedules exceed the

deadline on one day, then we output FAIL.

Now we pick dk3 e days where the first large client

has a job scheduled, we remove that job and replace

it with jobs of all small clients. Next, we pick dk3 e
different days where the second large client has a

job scheduled, we remove that job and replace it

with jobs of all small clients.

2. If the sum of processing times of all small clients is

at most 2d
3 and there are at most two large jobs,

then we do the following.

– If there are no large clients, then we schedule all

jobs of all small clients on the first k′ days.

– If there is only one large client, then we schedule

the job of the large client on the first k′ days and

on the m − k′ remaining days we schedule jobs

of all small clients.

If m < 2k′, then we recursively find a b 23 (k +

k′ −m)c-equitable schedule for the small clients

on the first k days where the deadline is set to

d−p`, where p` is the processing time of the job

of the large client.

– If there are two large clients and k′ < m
2 , then

we schedule jobs of the two large clients on the

first k′ days and jobs of all small clients on the

last k′ days.

3. We schedule the jobs of the up to three large clients

one after another in the following way. We pick

the k′ days having the most free processing time

and schedule a job of client whose job we currently

schedule on these days. If these schedules exceed the

deadline on one day, then we output FAIL.

4. We schedule the jobs of the small clients of after

another in the following fashion. We fix an order of

the small clients and create a list L repeating this

order k′ times. We process the days from the first

one to the last one as follows. Until the list L gets

empty, we schedule the job of the first client i in L

and delete (this appearance of) i from L, unless the

job of i is already scheduled on this day, or the pro-

cessing time of this job together with the processing

time of all jobs already scheduled on this day ex-

ceeds the deadline. If the list L is non-empty after

we processed the last day, then we return FAIL.

Assuming the algorithm does not recurse in Step 2,

it is easy to check that if the algorithm does not output

FAIL, then we found a k′-equitable set of schedules.

If the algorithm recurses in Step 2, then the large job

is scheduled k′ times and every small job is scheduled

m − k′ + b 23 (k + k′ −m)c times. Note that using k′ ≤
min{m, 2k3 }, we get m− k′+ 2

3 (k+ k′−m) = m
3 + 2k

3 −
k′

3 ≥
k′

3 + k′ − k′

3 = k′. Thus, due to the integrality of

m and k′, every small job is scheduled at least k′ times.

In the remainder of the proof we show that if the

algorithm outputs FAIL, then I is a NO-instance.

Equitable Scheduling on a Single Machine 11

Assume that the algorithm outputs FAIL in Step 1.

Since we assume that the first basic observation holds

this can only happen if there are three large clients and

the algorithm schedules one job of each large client to

one day and all other days have two jobs of large clients

scheduled. This can only happen if 3k > 2m, however

then, by the pigeonhole principle, any feasible solution

would have to schedule jobs of each of the three large

clients on the same day. This is a contradiction to the

assumption that I is a YES-instance.

By the same argument, we have that if the algorithm

outputs FAIL in Step 3, then I is a NO-instance.

Now assume that the algorithm outputs FAIL in

Step 4. Since Step 4 was applied, the sum of processing

of all small clients is larger than 2d
3 , or the processing

time of all small clients exceeds d
3 and on each day, at

least one large job is scheduled. This implies that for

each day the sum of processing times of jobs scheduled

at that day is larger than 2d
3 , since otherwise the algo-

rithm would have scheduled the job from the next client

in L. However then, by the third basic observation, we

know that I is a NO-instance.

Finally, in Step 3, the algorithm may output FAIL

only in the recursive call. Fix a solution to I which

schedules the large jobs on the first k days. Thus, on

the first k′ days, this solution has to schedule each of the

small jobs at least m−k′ times, and has only d−p` time

on each of these days, where p` is the processing time of

the large job. It follows that the created instance admits

a k − (m− k′)-equitable-schedule. Thus, by induction,

our algorithm finds a k + k′ −m-equitable-schedule on

this instance and does not output FAIL.

Except for the recursion, all of Steps 1-4 can clearly

be performed in O(n · k). Since we sort the clients by

the processing time of their job, calling the recursion

in Step 2 can be done in constant time, as only the

large jobs (which are first up to three jobs) need to

be removed from the instance and k′ and d need to be

adjusted. Thus, a total running time of O(n(k+ log n))

follows. ut

Now we can combine Lemma 2 and Lemma 3 to get

the following result.

Theorem 8 Given a YES-instance I =

({p1, . . . , pn},m, d, k) of ESSD*, one can compute a

solution to an instance I ′ := ({p1, . . . , pn},m, d, k′)
with b2k3 c ≥ k

′ ≥ 2bk3 c in O(n · (k + log n)) time.

We leave as an open question whether a similar re-

sult can be obtained for ESSD.

4 Precedence Constraints

In this section, we investigate the computational com-

plexity of Equitable Scheduling with Prece-

dence Constraints.

4.1 Hardness Results

The hardness result from Theorem 3 and Corollary 1 for

ESSD* can easily be adapted to ESPC* by modeling

processing times by paths of appropriate length in the

precedence DAG. Hence, we get the following result.

Corollary 2 ESPC* is NP-hard and W[1]-hard when

parameterized by the number of days m even if k = 1 or

m−k = 1, and the precedence DAG consists of disjoint

paths.

Proof (sketch) We use the same idea as in the proof

of Theorem 3 and Corollary 1. For each client i the

reduction in the proof of Theorem 3 created one job of

each day j with processing time pi that can be encoded

in unary. This allows us to introduce pi − 1 additional

dummy clients for each client i. In the precedence DAG

for each day j we add a directed path of length pi where

the job of client i is the last one in the path and the

other jobs in the path are the ones of the dummy clients

for client i in some arbitrary order. This means that of

the job of client i to be scheduled on a day j, the jobs of

the dummy clients for client i also have to be scheduled

on that day which simulated the processing time pi. ut

For the setting where we do not have that all days

look the same, we get NP-hardness even for two days

and common deadlines for all jobs in each of the days.

Theorem 9 ESPC is NP-hard even if k = 1 and

m = 2.

Proof We present a polynomial-time many-one reduc-

tion from Clique, where given a graph H = (U,F) and

an integer h, we are asked to decide whether H con-

tains a complete subgraph with h vertices. This prob-

lem is known to be NP-complete [38]. Given a graph

H = (U,F) and an integer h we construct an instance

of ESPC as follows. Assume that the vertices in U

are ordered in some fixed but arbitrary way, that is,

U = {v1, v2, . . . , v|U |}.

– For each vertex v ∈ U we create one “vertex

client” iv and for each edge e ∈ F we create one

“edge client” je.

– For day one we create the precedence DAG G1

where for all ` ∈ [|U | − 1] we have that (iv` , iv`+1
) ∈

E1 and for all e ∈ F we have that (iv|U| , je) ∈ E1.

12 Heeger et al.

That is, the precedence DAG is a directed path con-

taining all jobs of vertex clients and all jobs of edge

clients are out-neighbors of the job of the last vertex

client in the path. Furthermore, we set the dead-

line d1 for day one to |U |+ |F | −
(
h
2

)
.

– For day two we create the precedence DAG G2

where for all v ∈ U we have that (iv, je) ∈ E2 if

and only if v ∈ e. That is, for each edge e of H the

precedence DAG contains two arcs from the jobs

of the vertex clients corresponding to the endpoints

of e to the job of the edge client corresponding to e.

Furthermore, we set the deadline d2 for day two

to h+
(
h
2

)
.

– We set k = 1.

Clearly, the reduction can be performed in polynomial

time. Intuitively, day one is a “selection gadget”. The

deadline and the precedence DAG are chosen in a way

such that all jobs except the ones of
(
h
2

)
edge clients can

be scheduled. The second day is a “validation gadget”

that ensures that the edges corresponding to the
(
h
2

)
edge clients that have no job scheduled on day one form

a clique in H.

(⇒): Assume that H contains a clique X ⊆ U

of size h. On day one, we schedule all jobs of vertex

clients iv in the order prescribed by the precedence

DAG G1. Then for all edges e ∈ F such that not both

endpoints of e are in X we schedule the job of the cor-

responding edge client je. Note that G1 allows us to do

this, since all jobs of vertex clients are already sched-

uled. Furthermore, the deadline of day one allows us to

schedule jobs of all but
(
h
2

)
clients. Since the vertices

of X form a clique, there are exactly
(
h
2

)
edges that

have both their endpoints in X. Hence all jobs that are
scheduled on day one finish before the deadline.

On day two, we first schedule all jobs of vertex

clients iv with v ∈ X. Then we schedule the jobs of

edge clients je with e ⊆ X, that is, both endpoints of e

are part of the clique X. Note that G2 allows us to

schedule the jobs of these edge clients since we already

scheduled the jobs of the vertex clients corresponding

to the endpoints the edges corresponding to the jobs of

these edge clients. Note that those edge clients are ex-

actly the ones that do not have their jobs scheduled on

day one. Furthermore, the total number of jobs sched-

uled on day two is h+
(
h
2

)
, hence they all finish before

the deadline. It follows that we have found a set of 1-

equitable schedules.

(⇐): Assume that there is a set of 1-equitable sched-

ules. Note that on day one, the precedence DAG re-

quired that the jobs of all vertex clients are scheduled

first, and then an arbitrary set of |F |−
(
h
2

)
jobs of edge

clients can be scheduled. Let F ? ⊆ F be the set of

edges such that the corresponding edge clients do not

have a job scheduled on day one. Note that |F ?| ≥
(
h
2

)
and that all edge clients corresponding to edges in F ?

have their job scheduled on day two, otherwise the set

of schedules would not be 1-equitable. The precedence

DAG G2 for day two requires that if a job of an edge

client je is scheduled, the jobs of the vertex clients cor-

responding to the endpoints of e need to be scheduled

before. The deadline of day two allows for at most h

additional jobs to be scheduled, hence there need to be

h jobs that can be scheduled on day two such that all

precedence constraints for the jobs of edge clients cor-

responding to edges in F ? are fulfilled. Note that by

construction of G2 we can assume that all additionally

scheduled jobs belong to vertex clients. Let U? ⊆ U be

the set of vertices corresponding to vertex clients that

have a job scheduled on day two. We already argued

that |U?| ≤ h. However, we also have that |U?| ≥ h

since otherwise, by the pidgeon hole principle, there is

at least one edge client corresponding to an edge in F ?

that does not have the precedence constraints of its job

fulfilled. It follows that |U?| = h which implies that the

vertices in U? form a clique in H. ut

In the following, we present some hardness results

that show that even further restrictions on the prece-

dence DAG presumably cannot yield polynomial-time

solvability.

Theorem 10 ESPC is NP-hard even if k = 1, d = 3,

and the precedence DAG of each day consists of at most

two disjoint paths.

Proof We present a polynomial-time many-one reduc-

tion from the restriction of Monotone Not-All-

Equal-Sat, where every variable appears in exactly

three clauses, every clause contains two or three vari-

ables, and every clause contains only non-negated liter-

als. Given a set of clauses, we are asked whether there is

an assignment of truth values to the variables such that

every clause contains at least one variable that is set to

true and at least one variable that is set to false. This

problem is known to be NP-complete [18]. By Hall’s

Marriage Theorem [28], the incidence graph contains a

matching M which leaves no variable unmatched. By

considering the clause to which M matches to a given

variable x as the last occurence of x, we may assume

that the last occurrence of variable x is the last variable

of the clause. Let a be the number of variables, b2 be

the number of clauses with two variables, and b3 the

number of clauses with three variables. We construct

an instance of ESPC as follows.

– We set the deadline to three, i.e., d = 3, and we set

k = 1.

Equitable Scheduling on a Single Machine 13

– For each variable xj , we create six clients: i
(j,T)
1 ,

i
(j,T)
2 , i

(j,T)
3 , i

(j,F)
1 , i

(j,F)
2 , i

(j,F)
3 .

– We create three “dummy clients” i
(D)
1 , i

(D)
2 , i

(D)
3 .

– We create m = 1 + a+ b2 + 2b3 days: one “dummy

day”, a variable days, and b2 + 2b3 clause days.

Dummy day: For the first day we create a precedence

DAG that is one directed path starting with jobs of

clients i
(D)
1 , i

(D)
2 , i

(D)
3 and then the jobs of all remaining

clients in an arbitrary order.

Variable days: For variable xj we create day j+ 1 with

a precedence DAG that consists of two directed paths.

The first path contains jobs of clients i
(j,T)
1 , i

(j,T)
2 , i

(j,T)
3

in that order. The second path starts with jobs of clients

i
(j,F)
1 , i

(j,F)
2 , i

(j,F)
3 in that order and then the jobs of all

remaining clients in an arbitrary order.

Clause days: Let (xj1 , xj2) be the jth clause contain-

ing two variables and let it contain the t1th and t2th

appearence of xj1 and xj2 , respectively. We create

day a + j + 1 with a precedence DAG containing of

the two paths i
(D)
1 , i

(j1,T)
t1 , i

(j2,F)
t2 and i

(D)
2 , i

(j1,F)
t1 , i

(j2,T)
t2 .

Let (xj1 , xj2 , xj3) be the jth clause containing three

variables and let it contain the t1th, t2th, and t3th

appearance of xj1 , xj2 , and xj3 , respectively. We cre-

ate days a + b2 + 2j and a + b2 + 2j + 1 with prece-

dence DAGs consisting of two directed paths. On day

a + b2 + 2j, the first path contains jobs of clients

i
(j1,F)
t1 , i

(j2,F)
t2 , i

(j3,T)
t3 in that order. The second path con-

tains jobs of clients i
(j1,T)
t1 , i

(j2,T)
t2 , i

(j3,F)
t3 in that order.

On day a + b2 + 2j + 1, the first path starts with jobs

of clients i
(D)
1 , i

(j1,F)
t1 , i

(j2,T)
t2 in that order and then the

jobs of all remaining clients in an arbitrary order. The

second path contains jobs of clients i
(D)
2 , i

(j1,T)
t1 , i

(j2,F)
t2

in that order.

This finishes the construction. Since maximum

matchings on bipartite graphs can be computed in poly-

nomial time [34], the reduction runs in polynomial time.

(⇒) Assume we have a satisfying assignment of the

Monotone Not-All-Equal-SAT formula. We pro-

duce a set of k-equitable schedules for k = 1 as follows.

On day 1, we schedule the jobs of clients i
(D)
1 , i

(D)
2 , i

(D)
3 .

On each variable day, we schedule either jobs of clients

i
(j,T)
1 , i

(j,T)
2 , i

(j,T)
3 or jobs of clients i

(j,F)
1 , i

(j,F)
2 , i

(j,F)
3 .

We do the latter if variable xj is set to true and

the former otherwise. For each clause containing ex-

actly two variables xj1 and xj2 , we schedule jobs of

clients i
(D)
1 , i

(j1,T)
t1 , i

(j2,F)
t2 if xj1 is set to true, while

we schedule jobs of clients i
(D)
2 , i

(j1,F)
t1 , i

(j2,T)
t2 other-

wise. For each clause containing three variables xj1 , xj2 ,

and xj3 , we schedule jobs of clients i
(j1,F)
t1 , i

(j2,F)
t2 , i

(j3,T)
t3

on the first clause day if xj3 is set to true and

jobs of clients i
(j1,T)
t1 , i

(j2,T)
t2 , i

(j3,F)
t3 otherwise. On

the second clause day, we schedule the jobs of

clients i
(D)
1 , i

(j1,F)
t1 , i

(j2,T)
t2 if either xj1 is set to false

and xj3 is set to false or xj2 is set to true and xj3
is set to true. Otherwise, we schedule the jobs of

clients i
(D)
2 , i

(j1,T)
t1 , i

(j2,F)
t2 .

It is easy to verify that all clients have at least on

of their jobs scheduled.

(⇐) Assume that we have a k-equitable set of sched-

ules for k = 1. On day 1, we may assume that jobs of

clients i
(d)
1 , i

(d)
2 , i

(d)
3 are scheduled, since it is never ben-

eficial to leave slots empty. First we show that one each

variable day either jobs of clients i
(j,T)
1 , i

(j,T)
2 , i

(j,T)
3 or

jobs of clients i
(j,F)
1 , i

(j,F)
2 , i

(j,F)
3 are scheduled: Assume

for a contradiction that this is not true for variable xj .

Since the third appearance of xj is the last variable

of the corresponding clause, either job of client i
(j3,T)
t3

or i
(j3,F)
3 is not scheduled, a contradiction. We claim

that setting variable xj to true if and only if jobs of

clients i
(j,F)
1 , i

(j,F)
2 , i

(j,F)
3 are scheduled on day j + 1

yields a satisfying assignment.

Consider the jth clause (xj1 , xj2) with two vari-

ables, containing the t1th and t2th appearance of xj1
and xj2 , respectively. By the precedence constraints,

jobs of clients i
(j1,T)
t1 , i

(j1,F)
t1 , i

(j2,T)
t2 , i

(j2,F)
t2 can only be

scheduled on day j1 + 1, day j2 + 1 or day a + 1 + j.

If xj1 and xj2 are both set to true, then the jobs of both

i
(j1,T)
t1 and i

(j2,T)
t2 need to be scheduled on day a+1+ j,

which is impossible. Similarly, if xj1 and xj2 are both

set to false, then the jobs of both i
(j1,F)
t1 and i

(j2,F)
t2 need

to be scheduled on day a+ 1 + j, which is impossible.

Consider the jth clause (xj1 , xj2 , xj3) with

three variables, containing the t1th, t2th, and

t3th appearance of xj1 , xj2 , and xj3 , respectively.

By the precedence constraints, jobs of clients

i
(j1,T)
t1 , i

(j1,F)
t1 , i

(j2,T)
t2 , i

(j2,F)
t2 , i

(j3,T)
t3 , i

(j3,F)
t3 can only

be scheduled on day j1 + 1, day j2 + 1, day j3 + 1, day

a + b2 + 2j or day a + b2 + 2j + 1. If xj1 , xj2 , and xj3
are set to true, then the job of client i

(j3,T)
t3 needs to

be scheduled on the first clause day. Thus, jobs of both

i
(j1,T)
t1 and i

(j2,T)
t2 need to be scheduled on the second

clause day, which is impossible. The case that xj1 , xj2 ,

and xj3 are set to false leads to a contradiction by

symmetric arguments. ut

We remark that by introducing additional dummy

clients, the reduction for Theorem 10 can be modified

in a way that the precedence DAGs consists of disjoint

paths of constant length. Hence, we get the following

result.

Corollary 3 ESPC is NP-hard even if k = 1 and the

precedence DAG of each day consists of disjoint paths

of length at most four.

14 Heeger et al.

Proof (sketch) In the proof of Theorem 10 we have that

the precedence DAG consists of two disjoint paths on

each day. However,s the deadline for each day is d = 3,

which means that every job that is located in one of the

paths at a distance larger than three from the source

of the path cannot be scheduled on that day. We can

achieve the same by introducing at most 3 · n dummy

clients and n additional days (where n is the number of

clients in the instance constructed in the proof of The-

orem 10). On the new days we make sure that all jobs

of the dummy clients can be scheduled. That can be

done by using a precedence DAG that consist of disjoint

paths of length four where the first three jobs of each

path stem from dummy clients and the last job of each

path (which cannot be scheduled before the deadline)

stems from an original client. For each of the original

days we modify the precedence DAG in the following

way. We replace each of the disjoint paths by its first

four vertices. For each job that was located at a distance

larger than four from the source of the path, we intro-

duce a new path of length four to the precedence DAG

that starts with three jobs of dummy clients and then

the job from the original client. This ensures that this

job now also cannot be scheduled on that day. Note that

we have introduced sufficiently many dummy clients to

be able to do this. The jobs of the (potentially) re-

maining dummy clients are distributed arbitrarily into

disjoint paths of length at most four. Note that now all

precedence DAGs consist of disjoint paths of length at

most four. ut

4.2 Algorithmic Result

In the following, we give an ILP formulation for ESPC

to obtain fixed-parameter tractability for the number

of clients that are incident to an arc in at least one

precedence DAG.

Theorem 11 ESPC is fixed-parameter tractable when

parameterized by the number of clients that are incident

to an arc in at least on precedence DAG.

Proof Let I be an instance of ESPC. We assume

without loss of generality that dj ≤ n for all days

j ∈ {1, . . . ,m} (since on every day at most n jobs can be

scheduled, we can replace the deadline by n otherwise).

Let A be the set of clients incident to at least one arc ap-

pearing in some precedence DAG. Let α := |A| and β be

the number of arcs appearing in at least one incidence

DAG. Note that α
2 ≤ β ≤

(
α
2

)
. Note that the number of

different precedence DAGs is at most 2β . For a prece-

dence DAG G and a deadline d ∈ {1, . . . ,m}, let γ(G, d)

denote the number of days with precedence DAG G

and deadline d. We define γ(G) :=
∑n
r=1 γ(G, r) and

γ≤d(G) :=
∑d
r=1 γ(G, r).

We construct an integer linear program (ILP) as fol-

lows. For each precedence DAG G, subset A′ ⊆ A, and

d ∈ {n − α + 1, . . . , n}, we add a variable xG,A′,d, in-

dicating on how many days with precedence DAG G

and deadline d exactly the jobs from clients in A′ are

scheduled. Additional, for each precedence DAG G and

subset A′ ⊆ A, we add a variable x≤n−αG,A′ , indicating on

how many days with precedence DAG G and deadline

at most n − α the jobs from clients in A′ are sched-

uled. Furthermore, there are the constraints specified

by Equations 1, 2, 3, 4, 5, 6, 7, and 8.

The number of variables in this ILP is upper-

bounded by α2α+β and therefore it can be solved in

FPT-time with respect to α+ β by Lenstra Jr [44]. We

now show that any solution to this ILP corresponds to

a feasible schedule, and each solution to I corresponds

to a solution to the ILP.

(⇒): Let x be a feasible solution to the ILP. For each

precedence DAG G and each d ∈ {n−α+ 1, . . . , n}, we

schedule on xG,A′,d of the days with precedence DAG G

and deadline d the jobs of clients contained in A′, and

no job of a client from A \ A′. For each precedence

DAG G, we schedule on x≤n−αG,A′ of the γ≤n−α(G) days

with precedence DAG G and deadline at most n−α the

jobs of clients contained in A′, and no job of a client

from A \ A′. We do this in such a way that for each

A′, A′′ ⊆ A with |A′| < |A′′|, it holds that the dead-

line of the days on which A′′ is scheduled is at least

the deadline of the days on which A′ is scheduled. We

iterate from day 1 to m. Let Aj ⊆ A be the set of

clients which have already a job scheduled on day j.

For each day j, as long as there are less than dj jobs

scheduled on this day, and there is one job from a client

in {1, . . . , n} \ A which has not been scheduled on this

day, we pick a client i ∈ {1, . . . , n} \ A whose job has

been scheduled fewest time till now, and schedule its

job on day j. Note that this procedure ensures that for

two jobs i, i′ ∈ {1, . . . , n} \ A, during any point of the

procedure, job i is scheduled at most once more than

job i′. Thus, no job is scheduled twice on one day.

Equations 1 and 2 ensure that each precedence DAG

is considered exactly the number of times it actually

appears in I. Equation 3 ensures that every client in A

has at least k of its jobs scheduled, while Equation 8

ensures this for all clients in {1, . . . , n} \A: On a day j

with dj ∈ {n − α + 1, . . . , n}, we schedule min{dj −
|A′|, n − |A|} jobs of these clients, while on a day j

with dj ≤ n − α, we schedule dj − |A′j | jobs of these

clients. Since jobs of client i are scheduled at most once

more than jobs of clients i′, it follows that the jobs of

every client are scheduled at least k times. Equations 6

Equitable Scheduling on a Single Machine 15

∑
A′⊆A

xG,A′,d = γ(G, d) ∀d ∈ {n− |A|+ 1, . . . , n}, precedence DAGs G (1)

∑
A′⊆A

x≤n−αG,A′ = γ≤n−α(G) ∀ precedence DAGs G (2)

∑
A′:i∈A′

∑
G

(
x≤n−αG,A′ +

n∑
d=n−α+1

xG,A′,d
)
≥ k ∀i ∈ A (3)

xG,A′,d = 0 if |A′| > d (4)∑
A′⊆A:|A′|≤d

x≤n−αG,A′ ≥ γ
≤d(G) ∀d ∈ {1, . . . , n− α} (5)

xG,A′ = 0 ∀A′, G : ∃(i, i′) ∈ E(G) with i /∈ A′ ∧ i′ ∈ A′ (6)

xG,A′,d = 0 ∀A′, G, d ∈ {n− α+ 1, . . . , n} : ∃(i, i′) ∈ E(G)

with i /∈ A′ ∧ i′ ∈ A′ (7)∑
A′⊆A,G,d∈{n−α+1,...,n}min{d−|A′|, n−α}·xG,A′,d+

∑
j∈{1,...,m}:dj≤n−α dj−

∑
A′⊆A,G |A′|·x≤n−α(G,A′) ≥ k(n−|A|)

(8)

and 7 ensure that the precedence DAG is obeyed on

every day. Equation 4 ensures that for every day with

deadline at least n−α+1, the jobs scheduled on this day

can be performed before the deadline. For all days with

deadline at most n− α, this is ensured by Equation 5:

This inequality ensures that for any precedence graph G

and any d ≤ n − α, there are at least γ≤d(G) many

days on which at most d jobs from A are scheduled,

and consequently, we schedule at most dj jobs on each

such day j.

(⇐): Consider a feasible schedule. We set xG,A′,d to

be the number of days with precedence DAG G and

deadline d ∈ {n− α+ 1, . . . , n} on which all jobs from

clients in A′ but no job from a client in A \A′ is sched-

uled. Thus, Equation 1 is fulfilled. Similarly, let x≤n−αG,A′

be the number of days with precedence DAG G and

deadline at most n − α on which all jobs from clients

in A′ but no job from a client in A \ A′ is scheduled.

It follows that Equation 2 is fulfilled. Since every client

in A has at least k of its jobs scheduled, also Equa-

tion 3 is fulfilled. Since for any day j with deadline

dj ∈ {n−α+1, . . . , n} there are at most dj jobs (fromA)

scheduled on this day, it follows that Equation 4 is ful-

filled. Similarly, for each d ∈ {1, . . . , n− α}, on each of

the days with deadline d and precedence graph G, the

set A′ of clients from A whose jobs are scheduled on this

day fulfills |A′| ≤ d, and therefore, Equation 5 holds.

By the precedence constraints also Equations 6 and 7

are fulfilled. For any day j ∈ {1, . . . ,m}, let |A′j | be the

set of clients from A whose jobs have been scheduled

on day j. There are at most min{dj − |A′j |, n − |A|}
jobs from {1, . . . , n} \ A′ scheduled on day j. Since

min{dj − |A′j |, n − α} = dj − |A′j | if dj ≤ n − α, and

every client in {1, . . . , n} \ A has at least k of its jobs

scheduled, it follows that Equation 8 is fulfilled. ut

We remark that this algorithm can easily be ex-

tended to the settings where jobs have equal processing

time (which is not necessarily of unit length).

5 Conclusion

We have introduced a promising new framework for sin-

gle machine scheduling problems. We investigated three

basic single machine scheduling problems in this frame-

work and we believe that it might also be interesting in

other scheduling contexts.

We leave several questions open for future research.

We believe that it would be promising to implement

our approximation algorithm for ESSD* and, once pro-

vided with appropriate real-world data, test how well it

performs in practice. The question whether we can get

similar approximation results also for ESSD and ESPC

remains unresolved. For ESPC, it is also remains open

whether we can get similar combinatorial algorithms as

for ESSD.

References

1. M. Adamu and A. Adewumi. Survey of single ma-

chine scheduling to minimize weighted number of

tardy jobs. Journal of Industrial and Management

Optimization, 10:219, 2014. 1

2. U. Bagchi, R. Sullivan, and Y. Chang. Minimizing

mean squared deviation of completion times about

a common due date. Management Science, 33(7):

894–906, 1987. 2

3. N. Bansal, T. Kimbrel, and M. Sviridenko. Job shop

scheduling with unit processing times. Mathematics

of Operations Research, 31(2):381–389, 2006. 2

16 Heeger et al.

4. P. Baptiste. Polynomial time algorithms for mini-

mizing the weighted number of late jobs on a single

machine with equal processing times. Journal of

Scheduling, 2(6):245–252, 1999. 2

5. P. Baptiste. Scheduling equal-length jobs on identi-

cal parallel machines. Discrete Applied Mathemat-

ics, 103:21–32, 2000. 2

6. P. Baptiste, P. Brucker, S. Knust, and V. G.

Timkovsky. Ten notes on equal-processing-time

scheduling. Quarterly Journal of the Belgian,

French and Italian Operations Research Societies,

2(2):111–127, 2004. 1

7. S. K. Baruah, N. K. Cohen, C. G. Plaxton, and

D. A. Varvel. Proportionate progress: A notion of

fairness in resource allocation. Algorithmica, 15(6):

600–625, 1996. 2

8. M. Bentert, R. van Bevern, and R. Niedermeier. In-

ductive k-independent graphs and c-colorable sub-

graphs in scheduling: a review. Journal of Schedul-

ing, 22(1):3–20, 2019. 3

9. M. Bentert, R. Bredereck, P. Györgyi, A. Kacz-

marczyk, and R. Niedermeier. A multivariate com-

plexity analysis of the material consumption prob-

lem. In Proceedings of the 35th AAAI Conference

on Artificial Intelligence, AAAI 2021, pages 11755–

11763. AAAI Press, 2021. 3

10. D. Bertsimas, V. F. Farias, and N. Trichakis. The

price of fairness. Operations Research, 59(1):17–31,

2011. 2

11. K. Bülbül, S. Kedad-Sidhoum, and H. Şen. Single-

machine common due date total earliness/tardiness

scheduling with machine unavailability. Journal of

Scheduling, 22:543–565, 2019. 2

12. R. Bredereck, A. Kaczmarczyk, and R. Nieder-

meier. Envy-free allocations respecting social net-

works. In Proceedings of the 17th International

Conference on Autonomous Agents and Multiagent

Systems, AAMAS 2018, pages 283–291, 2018. 2

13. P. Brucker, J. Hurink, and S. Knust. A polynomial

algorithm for p|pj = 1, rj , outtree|
∑
cj problem.

Mathematical Methods of Operations Research, 56:

407–412, 2002. 2

14. C. Chen and R. Bulfin. Scheduling unit processing

time jobs on a single machine with multiple criteria.

Computers & Operations Research, 17(1):1–7, 1990.

2

15. H. Chetto, M. Silly, and T. Bouchentouf. Dynamic

scheduling of real-time tasks under precedence con-

straints. Real-Time Systems, 2(3):181–194, 1990. 2

16. J. R. Correa and A. S. Schulz. Single-machine

scheduling with precedence constraints. Mathemat-

ics of Operations Research, 30(4):1005–1021, 2005.

2

17. M. Cygan, F. V. Fomin, L. Kowalik, D. Loksh-

tanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and

S. Saurabh. Parameterized Algorithms. Springer,

2015. 3

18. A. Dehghan, M. Sadeghi, and A. Ahadi. On the

complexity of deciding whether the regular number

is at most two. Graphs and Combinatorics, 31(5):

1359–1365, 2015. 12

19. U. Dorndorf, E. Pesch, and T. Phan-Huy. A time-

oriented branch-and-bound algorithm for resource-

constrained project scheduling with generalised

precedence constraints. Management Science, 46

(10):1365–1384, 2000. 2

20. R. G. Downey and M. R. Fellows. Fundamentals of

Parameterized Complexity. Springer, 2013. 3

21. J. Flum and M. Grohe. Parameterized Complexity

Theory, volume XIV of Texts in Theoretical Com-

puter Science. An EATCS Series. Springer, 2006.

3

22. T. Fluschnik, P. Skowron, M. Triphaus, and

K. Wilker. Fair knapsack. In Proceedings of the

33rd AAAI Conference on Artificial Intelligence,

AAAI 2019, pages 1941–1948. AAAI Press, 2019.

2

23. R. Ganian, T. Hamm, and G. Mescoff. The com-

plexity landscape of resource-constrained schedul-

ing. In Proceedings of the 29th International Joint

Conference on Artificial Intelligence, IJCAI 2020,

pages 1741–1747. ijcai.org, 2020. 3

24. M. R. Garey and D. S. Johnson. Computers

and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman, 1979. 7

25. M. R. Garey, D. S. Johnson, and L. Stockmeyer.

Some simplified NP-complete problems. Theoretical

Computer Science, 1(3):237–267, 1976. 6

26. R. Graham, E. Lawler, J. Lenstra, and A. Kan. Op-

timization and approximation in deterministic se-

quencing and scheduling: a survey. Annals of Dis-

crete Mathematics, 3:287–326, 1979. 1

27. S. Gupta, A. Jalan, G. Ranade, H. Yang, and

S. Zhuang. Too many fairness metrics: Is there a so-

lution? SSRN, 2020. URL https://dx.doi.org/

10.2139/ssrn.3554829. 2

28. P. Hall. On representatives of subsets. Journal of

the London Mathematical Society, 10:26–30, 1935.

12

29. K. Heeger, D. Hermelin, G. B. Mertzios, H. Molter,

R. Niedermeier, and D. Shabtay. Equitable schedul-

ing on a single machine. In Proceedings of the 35th

AAAI Conference on Artificial Intelligence, AAAI

’21, pages 11818–11825. AAAI Press, 2021. 1

30. D. Hermelin, M. Pinedo, D. Shabtay, and N. Tal-

mon. On the parameterized tractability of single

https://dx.doi.org/10.2139/ssrn.3554829
https://dx.doi.org/10.2139/ssrn.3554829

Equitable Scheduling on a Single Machine 17

machine scheduling with rejection. European Jour-

nal of Operational Research, 273(1):67–73, 2019. 3

31. D. Hermelin, D. Shabtay, and N. Talmon. On the

parameterized tractability of the just-in-time flow-

shop scheduling problem. Journal of Scheduling, 22

(6):663–676, 2019. 3

32. D. Hermelin, G. Manoussakis, M. Pinedo, D. Shab-

tay, and L. Yedidsion. Parameterized multi-

scenario single-machine scheduling problems. Al-

gorithmica, 82(9):2644–2667, 2020. 3

33. D. J. Hoitomt, P. B. Luh, E. Max, and K. R. Patti-

pati. Scheduling jobs with simple precedence con-

straints on parallel machines. IEEE Control Sys-

tems Magazine, 10(2):34–40, 1990. 2

34. J. E. Hopcroft and R. M. Karp. An n5/2 algorithm

for maximum matchings in bipartite graphs. SIAM

Journal on Computing, 2(4):225–231, 1973. 5, 13

35. K. Jansen, S. Kratsch, D. Marx, and I. Schlotter.

Bin packing with fixed number of bins revisited.

Journal of Computer and System Sciences, 79(1):

39–49, 2013. 6

36. D. S. Johnson. Fast algorithms for bin packing.

Journal of Computer and System Sciences, 8(3):

272–314, 1974. 9

37. D. S. Johnson, A. J. Demers, J. D. Ullman, M. R.

Garey, and R. L. Graham. Worst-case performance

bounds for simple one-dimensional packing algo-

rithms. SIAM Journal on Computing, 3(4):299–

325, 1974. 8

38. R. M. Karp. Reducibility among combinatorial

problems. In Complexity of Computer Computa-

tions, pages 85–103. Springer, 1972. 11

39. A. Kumar and J. M. Kleinberg. Fairness measures

for resource allocation. SIAM Journal on Comput-

ing, 36(3):657–680, 2006. 2

40. J. Lang and J. Rothe. Fair division of indivisible

goods. In J. Rothe, editor, Economics and Compu-

tation, An Introduction to Algorithmic Game The-

ory, Computational Social Choice, and Fair Divi-

sion, Springer Texts in Business and Economics,

pages 493–550. Springer, 2016. 2

41. V. Lauff and F. Werner. Scheduling with common

due date, earliness and tardiness penalties for mul-

timachine problems: A survey. Mathematical and

Computer Modelling, 40(5):637–655, 2004. 2

42. J. Lenstra and A. Rinnooy Kan. Complexity results

for scheduling chains on a single machine. European

Journal of Operational Research, 4(4):270 – 275,

1980. 1

43. J. K. Lenstra and A. Rinnooy Kan. Complexity

of scheduling under precedence constraints. Oper-

ations Research, 26(1):22–35, 1978. 2

44. H. W. Lenstra Jr. Integer programming with a fixed

number of variables. Mathematics of Operations

Research, 8(4):538–548, 1983. 8, 14

45. W. L. Maxwell. On sequencing n jobs on one ma-

chine to minimize the number of late jobs. Man-

agement Science, 19(1):295–297, 1970. 1

46. M. Mnich and R. van Bevern. Parameterized com-

plexity of machine scheduling: 15 open problems.

Computers & Operations Research, 100:254–261,

2018. 3

47. R. H. Möhring, M. Skutella, and F. Stork. Schedul-

ing with and/or precedence constraints. SIAM

Journal on Computing, 33(2):393–415, 2004. 2

48. J. Moore. An n job, one machine sequencing al-

gorithm for minimizing the number of late jobs.

Management Science, 15(2):102–109, 1968. 1

49. G. Mosheiov and S. Pruwer. On the minmax

common-due-date problem: extensions to position-

dependent processing times, job rejection, learning

effect, uniform machines and flowshops. Engineer-

ing Optimization, 53(3):408–424, 2021. 2

50. G. Mosheiov and U. Yovel. Minimizing weighted

earliness–tardiness and due-date cost with unit

processing-time jobs. European Journal of Oper-

ational Research, 172(2):528–544, 2006. 2

51. R. Niedermeier. Invitation to Fixed-Parameter Al-

gorithms. Oxford University Press, 2006. 3

52. S. S. Panwalkar, M. L. Smith, and A. Seidmann.

Common due date assignment to minimize total

penalty for the one machine scheduling problem.

Operations Research, 30(2):391–399, 1982. 2

53. D. Shabtay, K. Arviv, Y. Edan, and H. Stern. A

combined robot selection and scheduling problem

for flow-shops with no-wait restrictions. Omega,

43:96–107, 2014. 2

54. L. B. J. M. Sturm. A simple optimality proof of

Moore’s sequencing algorithm. Management Sci-

ence, 17(1):116–118, 1970. 1

55. V. T’kindt, L. Shang, and F. D. Croce. Expo-

nential time algorithms for just-in-time scheduling

problems with common due date and symmetric

weights. Journal of Combinatorial Optimization,

39:764–775, 2020. 2

56. T. Walsh. Fair division: The computer scientist’s

perspective. In Proceedings of the 29th Interna-

tional Joint Conference on Artificial Intelligence,

IJCAI 2020, pages 4966–4972. ijcai.org, 2020. 2

57. T. Wang and O. Bellenguez-Morineau. The com-

plexity of parallel machine scheduling of unit-

processing-time jobs under level-order precedence

constraints. Journal of Scheduling, 22:263–269,

2019. 2

	Introduction
	Unit Processing Times
	Single Deadline on Each Day
	Precedence Constraints
	Conclusion

