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—— Abstract

We revisit a classical scheduling model to incorporate modern trends in data center networks and

cloud services. Addressing some key challenges in the allocation of shared resources to user requests
(jobs) in such settings, we consider the following variants of the classic resource allocation problem
(RAP). The input to our problems is a set J of jobs and a set M of homogeneous hosts, each has an
available amount of some resource. A job is associated with a release time, a due date, a weight
and a given length, as well as its resource requirement. A feasible schedule is an allocation of the
resource to a subset of the jobs, satisfying the job release times/due dates as well as the resource
constraints. A crucial distinction between classic RAP and our problems is that we allow preemption
and migration of jobs, motivated by virtualization techniques.

We consider two natural objectives: throughput mazimization (MaxT), which seeks a maximum
weight subset of the jobs that can be feasibly scheduled on the hosts in M, and resource minimization
(MinR), that is finding the minimum number of (homogeneous) hosts needed to feasibly schedule all
jobs. Both problems are known to be NP-hard. We first present an (1)-approximation algorithm
for MaxT instances where time-windows form a laminar family of intervals. We then extend the
algorithm to handle instances with arbitrary time-windows, assuming there is sufficient slack for
each job to be completed. For MinR we study a more general setting with d resources and derive an
O(log d)-approximation for any fixed d > 1, under the assumption that time-windows are not too
small. This assumption can be removed leading to a slightly worse ratio of O(log dlog™ T'), where T
is the maximum due date of any job.
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1 Introduction

We revisit a classical scheduling model to incorporate modern trends in data center networks
and cloud services. The proliferation of virtualization and containerization technologies, along
with the advent of increasingly powerful multi-core processors, has made it possible to execute
multiple virtual machines (or jobs) simultaneously on the same host, as well as to preempt
and migrate jobs with relative ease. We address some fundamental problems in the efficient
allocation of shared resources such as CPU cores, RAM, or network bandwidth to several
competing jobs. These problems are modeled to exploit multi-job execution and facilitate
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preemption and migration, while respecting resource and timing constraints. Typically, the
infrastructure service providers are oversubscribed; therefore, the common goals here include
admission control of jobs to maximize throughput, or minimizing the additional resource
required to process all jobs.

The broad setting considered in this paper is the following. Suppose we are given a set
of jobs J that need to be scheduled on a set of identical hosts M, where each host has a
limited amount of one or more resources. Each job j € J has release time r;, due date d;,
and length p;, along with a required amount of the resource s; (5; for multiple resources). A
job j can be preempted and migrated across hosts but cannot be processed simultaneously
on multiple hosts, i.e., at any time a job can be processed by at most one host. However,
multiple jobs can be processed by any host at any given time, as long as their combined
resource requirement does not exceed the available resource. We consider two commonly
occurring objectives, namely, throughput mazimization and resource minimization.

In the mazimum throughput (MaxT) variant, we are given a set of homogeneous hosts M
and a set of jobs J, such that each job j has a profit w; > 0 and attributes (p;, sj,r;,d;).
The goal is to find a subset S C J of jobs of maximum profit Zjes w; that can be feasibly
scheduled on M. This problem can be viewed as a preemptive variant of the classic resource
allocation problem (RAP) [26, 11, 8, 5].

In the resource minimization (MinR) variant, we assume that each job j has a resource
requirement vector §; € [0, 1]¢ as one of the attributes, where d > 1 is the number of available
resources. W.l.o.g., we assume that each host has a unit amount of each of the d resources. A
schedule that assigns a set of jobs S;+ to a host ¢ € M at time ¢ is feasible if Ejesi.t 5; < 1.
Given a set of jobs J with attributes (p;, §;,7;,d;), we seek a set of (homogeneous) hosts M
of minimum cardinality such that all of the jobs can be scheduled feasibly on M. MinR is a
generalization of the classic vector packing (VP) problem, in which a set of d-dimensional
items needs to be feasibly packed into a minimum number of d-dimensional bins of unit size
in each dimension, i.e., the vector sum of all the items packed into each bin has to be less
than or equal to 1¢. Any instance of VP can be viewed as an instance of MinR with r; = 0,
dj =1 and p; =1 for job j € J.

Another application of this general scheduling scenario relates to the allocation of space
and time to advertisements by online advertisement platforms (such as Google or Facebook).
In the ad placement problem [14, 18] we are given a schedule length of T' time slots and a
collection of ads that need to be scheduled within this time frame. The ads must be placed
in a rectangular display area. whose contents can change in different time slots. All ads
share the same height, which is the height of the display area, but may have different widths.
Several ads may be displayed simultaneously (side by side), as long as their combined width
does not exceed the width of the display area. In addition, each advertisement specifies a
display count (in the range 1,...,T'), which is the number of time slots during which the ad
must be displayed. The actual time slots in which the advertisement will be displayed may
be chosen arbitrarily by the scheduler, and, in particular, need not be consecutive. Suppose
that each advertisement is associated with some positive profit, and the scheduler may accept
or reject any given ad. A common objective is to schedule a maximum-profit subset of ads
within a display area of given width. Indeed, this problem can be cast as a special case of
MaxT with a single host, where all jobs have the same release time and due date.

1.1 Prior Work

The classical problem of preemptively scheduling a set of jobs with attributes (p;, s; = 1,75, d;)
on a single machine so as to maximize throughput can be cast as a special case of MaxT
with a single host, where each job requires all of the available resource. Lawler [24] showed
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that in this special case MaxT admits a polynomial time approximation scheme (PTAS),
and the problem is polynomially solvable for uniform job weights. For multiple hosts (i.e.,
m = |M| > 1), this special case of MaxT (s; =1 for all j € J) admits a 6ﬁ-approxirnation7
for any fixed ¢ > 0. This follows from a result of Kalyanasundaram and Pruhs [21].

As mentioned earlier, another special case of MaxT was studied in the context of advert-
isement placement. The ad placement problem was introduced by Adler et al. [1] and later
studied in numerous papers (see, e.g., [14, 18, 15, 23, 22] and the survey in [25]). Freund
and Naor [18] presented a (1/3 — &)-approximation for the maximum profit version, namely,
for MaxT with a single host and the same release time and due date for all jobs.

Fox and Korupula [17] studied our preemptive scheduling model, with job attributes
(pj, 84,75, d;), under another popular objective, namely, minimizing weighted flow-time. Their
work differs from ours in two ways: while they focus on the online versions, we consider our
problems in an offline setting. Further, as they note, while the throughput and resource
minimization objectives are also commonly considered metrics, their techniques only deal
with flow-time. In fact, these objectives are fundamentally different, and we need novel
algorithms to tackle them.

The non-preemptive variant of MaxT, known as the resource allocation problem (RAP), was
introduced by Phillips et al. [26], and later studied by many authors (see, e.g., [7, 6, 8, 9, 19, 11]
and the references therein).! Chakaravarthy et al. [9] consider a generalization of RAP and
obtain a constant approximation based on a primal-dual algorithm. We note that the
preemptive versus non-preemptive problems differ quite a bit in their structural properties.

As mentioned above, MinR generalizes the classic vector packing (VP) problem. The
first non-trivial O(log d)-approximation algorithm for VP was presented by Chekuri and
Khanna [10], for any fixed d > 1. This ratio was improved by Bansal, Caprara and
Sviridenko [3] to a randomized algorithm with asymptotic approximation ratio arbitrarily close
to Ind+ 1. Bansal, Elids and Khan [4] recently improved this ratio further to 0.807+1In(d+1).
A “fractional variant” of MinR was considered by Jansen and Porkolab [20], where time was
assumed to be continuous. For this problem, in the case of a single host, they obtain a PTAS,
by solving a configuration linear program (rounding the LP solution is not necessary because
time is continuous in their case).

Resource minimization was considered also in the context of the ad placement problem.
In this variant, all ads must be scheduled, and the objective is to minimize the width of the
display area required to make this possible. Freund and Naor [18] gave a 2-approximation
algorithm for the problem, which was later improved by Dawande et al. [15] to 3/2. This
implies a 3-approximation for MinR instances with d = 1, where all jobs have the same release
time and due date. We note that this ratio can be slightly improved, using the property that
s; <1 forall j € J. Indeed, we can schedule the jobs to use the resource, such that the total
resource requirements at any two time slots differ at most by one. Thus, the total amount of
resource required at any time exceeds the optimum, O PT', at most by one unit, implying the
jobs can be feasibly scheduled on 20 PT + 1 hosts.

Another line of work relates to the non-preemptive version of MinR, where d = 1 and
the requirement of each job is equal to 1 (see, e.g. [13, 12]); thus, at most one job can be
scheduled on each host at any time.

1 RAP is also known as the bandwidth allocation problem.
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1.2 Contributions and Techniques

For summarizing our results, we need the notion of slackness. Denote the time window for
processing job j € J by x; = [r;,d,], and let |x;| = d; — r; + 1 denote the length of the
interval. Throughout the discussion, we assume that time windows are large enough, i.e.,
there is a constant A € (0,1), such that p; < A|x;| for any job j. Such an assumption is
quite reasonable in scenarios arising in our applications. We call X the slackness parameter
of the instance.

For the MaxT problem, we present (in Section 3) an Q(1)-approximation algorithm. As
mentioned above, the non-preemptive version of this problem is the classic RAP. To see
the structural differences between the non-preemptive and preemptive versions, we consider
their natural linear programming relaxations. In solving RAP it suffices to have a variable
x;+ for each job j and time slot ¢, indicating the start of job j at slot ¢. This allows to
apply a natural randomized rounding algorithm, where job j is scheduled to start at time
t with probability x;;. On the other hand, in MaxT a job can be preempted; therefore,
each job requires multiple indicator variables. Further, these variables must be rounded in
an all-or-nothing fashion, i.e., either we schedule all parts of a job or none of them. Our
approach to handle this situation is to, somewhat counter-intuitively, “dumb down” the
linear program by not committing the jobs to a particular schedule; instead, we choose a
subset of jobs that satisfy certain knapsack constraints and construct the actual schedule in
a subsequent phase.

We first consider a laminar variant of the problem, where the time windows for the
jobs are chosen from a laminar family of intervals.? This setting includes several important
special cases, such as () all jobs are released at t = 0 but have different due dates, or (i7)
jobs are released at different times, but all must be completed by a given due date. Recall

1

that m = |M| is the number of hosts. Our result for the laminar case is a 3 — A (3 + 1)-

approximation algorithm, assuming that the slackness parameter satisfies A < 1 — mi—Q—Q
1 1,1

Using a simple transformation of an arbitrary instance to laminar, we obtain a g — A (5 + E)'

approximation algorithm for general instances, assuming that \ < % — 2(T1+2) Our results
imply that as A decreases, the approximation ratio approaches % and % for the laminar and
the general case, respectively.

Subsequently, we tighten the slackness assumption further to obtain an (1)-approxima-
tion algorithm for any constant slackness A € (0,1) for the laminar case and any constant
A€ (0, i) for the general case. In the special case where the weight of the job is equal
to its area, we extend an algorithm due to Chen, Hassin and Tzur [11] to obtain an Q(1)-
approximation guarantee for the general case with no assumption on slackness.

Our algorithm for the laminar case relies on a non-trivial combination of a packing phase
and a scheduling phase. While the first phase ensures that the output solution has high profit,
the second phase guarantees its feasibility. To facilitate a successful completion of the selected
jobs, we formulate a set of conditions that must be satisfied in the packing phase. Both
phases make use of the structural properties of a laminar family of intervals. In the packing
phase, we apply our rounding procedure (for the LP solution) to the tree representation
of the intervals.> We further use this tree in the scheduling phase, to feasibly assign the
resource to the selected jobs in a bottom-up fashion. Our framework for solving MaxT is
general, and may therefore find use in other settings of non-consecutive resource allocation.

2 See the formal definition in Section 2.
3 This procedure bears some similarity to the pipage rounding technique of [2].
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For the MinR problem, we obtain (in Section 4) an O(logd)-approximation algorithm
for any constant d > 1, under a mild assumption that any job has a window of size
Q(d*logdlogT), where T = max; d;j. We show that this assumption can be removed, leading
to a slight degradation in the approximation factor to O(logdlog™ T'), where log™ T is the
smallest integer x such that loglog...logT < 1. Our approach builds on a formulation of

—_——

K times

the problem as a configuration LP, inspired by the works of [3, 16]. However, we quickly
deviate from these prior approaches, in order to handle the time-windows and the extra
constraints. Our algorithm involves two main phases: a mazimization phase and residual
phase. Roughly speaking, a configuration is a subset of jobs that can be feasibly assigned to a
host at a given time slot ¢. For each ¢, we choose O(mlogd) configurations with probabilities
proportional to their LP-values. In this phase, jobs may be allocated the resource only for
part of their processing length. In the second phase, we construct a residual instance based
on the amount of time each job has been processed. A key challenge is to show that, for any
time window Y, the total “area” of jobs left to be scheduled is at most 1/d of the original
total area. We use this property to solve the residual instance.

2 Preliminaries

We start with some definitions and notation. For our preemptive variants of RAP, we assume
w.l.o.g. that each host has a unit amount of each resource. We further assume that time
is slotted. We allow non-consecutive allocation of a resource to each job, as well as job
migration. Multiple jobs can be assigned to the same machine at a given time but no job
can be processed by multiple machines at the same time. Formally, we denote the set of jobs
assigned to host ¢ € M at time ¢ by S; ;. We say that job j is completed if there are p; time
slots t € [rj,d;] = x; in which j is allocated its required amount of the resource on some
host. A job j is completed if [{t € x; : 3i € M such that j € S;;}| > p;. Let T = max;c;d;
be the latest due date of any job.

In MaxT, each job j € J has a resource requirement s; € (0,1]. An assignment of a subset
of jobs S C J to the hosts in M is feasible if each job j € S is completed, and for any time
slot ¢t and host i € M, Zjesm s; < 1, i.e., the sum of requirements of all jobs assigned to

host ¢ is at most the available resource. For the MinR variant, we assume multiple resources.
Thus, each job j has a resource requirement vector §; € [0, 1]4, for some constant d > 1.

Further, each host has a unit amount of each of the d resources. An assignment of a set of
jobs S;; to a host i € M at time ¢ is feasible if Zjesm 5; < 14,

Let a; = sjp; denote the total resource requirement (or, area) of job j € J and refer to
the quantity w;/a; as the density of job j. Finally, a set of intervals is laminar if for any two
intervals x’ and x”, exactly one of the following holds: ¥’ C x”, x” C x' or X' Nx" = ¢.

3  Throughput Maximization

We first consider the case where £ = {x; : j € J} forms a laminar family of intervals.

In Section 3.1, we present an (1)-approximation algorithm for the laminar case when

e (07 1-— miﬁ) Following this, we describe (in Section 3.2) our constant approximation

for the general case for \ € (O7 % — M) We then show, in Section 3.3, how to tighten the
results to any constant slackness parameter (i) A € (0,1) in the laminar case (ii) A € (0, 1) in

1
logn

the general case. As an interesting corollary, we obtain an ( )—approximation algorithm

26:5

FSTTCS 2019



26:6

The Preemptive Resource Allocation Problem

for the general MaxT problem with no slackness assumption. Further, we show that in the
special case of maximum utilization (i.e., the profit of each job equals its “area”), we obtain
an (1) guarantee with no assumption on the slackness.

3.1 The Laminar Case

Our algorithm proceeds in two phases. While the first phase ensures that the output solution
has high profit, the second phase guarantees its feasibility. Specifically, let w € (0,1 — %] be
a parameter (to be determined).

In Phase 1, we find a subset of jobs S satisfying a knapsack constraint for each x. Indeed,
any feasible solution guarantees that the total area of jobs within any time-window x € L is
at most m|x|. Our knapsack constraints further restrict the total area of jobs in y to some
fraction of m|y|. We adopt an LP-rounding based approach to compute a subset S that is
optimal subject to the further restricted knapsack constraints. (We remark that a dynamic
programming approach would work as well. However, such an approach would not provide us
with any intuition as to how an optimal solution for the further restricted instance compares
with the optimal solution of the original instance.)

In Phase 2 we allocate the resource to the jobs in S, by considering separately each host
i at a given time slot ¢ € [T] as a unit-sized bin (i,t) and iteratively assigning each job j € S
to a subset of such available bins, until j has the resource allocated for p; distinct time slots.
An outline of the two phases is given in Algorithm 1.

Algorithm 1 Throughput maximization algorithm outline.

Input: Set of jobs J, hosts M and a parameter w € (0,1 — %]
Output: Subset of jobs S C J and a feasible assignment of S to the hosts in M
Phase 1: Select a subset S C J, such that for each x € L:
Zjes;xjgx aj < (w+ %)mb{\
Phase 2: Find a feasible allocation of the resource to the jobs in .S

Phase 1: The algorithm starts by finding a subset of jobs S C J such that for any x € L:
Djesgox @ < (Wt 2)m|x|. We solve the following LP relaxation, in which we impose
stricter constraint on the total area of the jobs assigned in each time window x.

LP: Maximize ). ;w;x;
Subject to: Zj:ngX a;xz; <wm|x| VxeL
0<z; <1 ViedJ

Rounding the Fractional Solution: Suppose x* = (x; : j € J) is an optimal fractional solution
for the LP. Our goal is to construct an integral solution X = (£; : j € J). We refer to a job j
with z} € (0,1) as a fractional job, and to the quantity ajz; as its fractional area. W.l.o.g.,
we may assume that for any interval x € £, there is at most one job j with x; = x such that
0 <z} <1, ie., it is fractional. Indeed, if two such jobs exist, then the fractional value of
the higher density job (breaking ties arbitrarily) can be increased to obtain a solution no
worse than the optimal. Note, however, that there could be fractional jobs j’ with x; C x.

We start by setting #; =z for all j € J. Consider the tree representation of £, which
contains a node (also denoted by x) for each x € £, and an edge between nodes corresponding
to x and y’, where ' C ¥, if there is no interval x” € £ such that x' C x” C x.* Our

4 Throughout the discussion we use interchangeably the terms node and interval when referring to a
time-window x € L.
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rounding procedure works in a bottom-up fashion. As part of this procedure, we label the
nodes with one of two possible colors: gray and black. Initially, all leaf nodes are colored
black, and all internal nodes are colored gray. The procedure terminates when all nodes are
colored black. A node y is colored as black if the following property holds:

» Property 1. For any path P(x,x1) from x to a leaf x; there is at most one fractional job
J such that x; lies on P(x, x1)-

We note that the property trivially holds for the leaf nodes. Now, consider a gray interval
x with children x1, x2, ..., Xv, each colored black. Note that x is well defined because leaf
intervals are all colored black. If there is no fractional job that has x as its time-window,
Property 1 follows by induction, and we color x black. Assume now that j is a fractional job
that has x as its time-window (i.e., x; = x). If there is no other fractional job that has its
time-window (strictly) contained in y, Property 1 is trivially satisfied. Therefore, assume that
there are other fractional jobs ji, ja, ..., J; that have their time-windows (strictly) contained
in x. Now, we decrease the fractional area (i.e., the quantity a;Z;) of j by A and increase the

fractional area of jobs in the set {j1, ja,...,Ji} by Ay for job ji, such that A = Eke[l] Ag.

Formally, we set £; — &; — a% and Z;, — &, + aAT: We choose these increments such that
either ; becomes 0, or for each k € [l], #;, becomes 1. Clearly, in both scenarios, Property 1
is satisfied, and we color x black.

When all nodes are colored black, we round up the remaining fractional jobs. Namely, for
all jobs j such that Z; € (0,1), we set £; = 1. It is important to note that by doing so we
may violate the knapsack constraints. However, in Theorem 1, we bound the violation.

» Theorem 1. Suppose T = (J, M, L) is a laminar instance of MaxT with optimal profit W
and Vj € J: pj < Ax;|. For any w € (0,1 — %], the subset S = {j € J: &; = 1}, obtained
as above, satisfies 3 ;cqw; > wW, and for any x € L, Zjes:xjcx a; < (w+ %)mbd

Proof. We first observe that any optimal solution x* for the LP satisfies: > jed
Indeed, consider an optimal solution O for the instance Z. We can construct a fractional
feasible solution x’ for the LP by setting 2 = w if j € O; otherwise, ; = 0. Clearly, x" is a
feasible solution for the LP with profit wW.

Consider an integral solution X, obtained by applying the rounding procedure on x*. We
first show that } .. ; w;2; > wW. To this end, we prove that >, ;w;i; > >, ;wiz; >
wW. Suppose we decrease the fractional area of a job j by an amount A, i.e., we set
22— %. By the virtue of our procedure, we must simultaneously increase the fractional
area of some subset of jobs F};, where for each k € F; we have x;, C x;. Further, the combined
increase in the fractional area of the jobs in Fj is the same A. Now, we observe that the
density of job j (i.e., Z’—:) cannot be higher than any of the jobs in F}j. Indeed, if j* € F} has
density strictly lower than j, then the optimal solution x* can be improved by decreasing the
fractional area of j' by some e while increasing that of j by the same amount (it is easy to
see that no constraint is violated in this process) — a contradiction. Therefore, our rounding
procedure will never result in a loss, and Zje] w;t; > ZjeJ wjx;‘» > wW.

We now show that, for each x € £, }7;c ;. o\ ;8 < (w+ 2)m|x|. First, observe
that for any gray interval x the total fractional area is conserved. This is true because
there is no transfer of fractional area from the subtree rooted at x to a node outside this
subtree until x is colored black. Now, consider an interval y that is colored black. We note
that for any job j with 7 = 0, our algorithm ensures that &; = 0, i.e., it creates no new

fractional jobs. Consider the vector X when the interval x is converted from gray to black.

At this stage, we have that the total (fractional) area packed in the subtree rooted at x is

. *
w;a] > wW.
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V(x) def > jerxsox % < wmlx|. Let F(x) denote the set of all fractional jobs j’ that

have their time-windows contained in x (i.e., x;» € x). We claim that the maximum increase
in V(x) by the end of the rounding procedure is at most Zj’e]—'(x) ajr. This holds since our
procedure does not change the variables Z; € {0,1}. Thus, the maximum increase in the
total area occurs due to rounding all fractional jobs into complete ones, after all nodes are
colored black. To complete the proof, we now show that the total area of the fractional jobs

in the subtree rooted at y satisfies A[x] = e &' < Alx|. We prove this by induction
on the level of node x. Clearly, if x is a leaf then the claim holds, since there can exist at
most one fractional job j in x, and a; < p; < A|x|. Suppose that {x1,x2,...x:} are the
children of x. If there is a fractional job j with x; = x then, by Property 1, there are no
other fractional jobs with time-windows contained in x. Hence, A[x] = a; < A|x|. Suppose
there is no fractional job with x; = x; then, by the induction hypothesis: A[xx] < A|xx| for

all k € [I]. Further, >, x| < [x| and Alx] = 325 Alxe] < 2pep Alxal < Alxl- <

Let O be an optimal solution for Z satisfying: Vy € £ : ZjeO:ngx a; < emly|, for
some ¢ > 1. Then it is easy to verify that any optimal solution x* for the LP satisfies:
> wixt > “W. Hence, we have

jeJ Ivg c

» Corollary 2. Suppose T = (J,M, L) is a laminar instance of MaxT, such that Vj €
J i pj < Axjl. Let ST C J be a subset of jobs of total profit W satisfying Vx € L:
ZjGSJ_ngX a; < cem|x|, for some ¢ > 1. Then, for any w € (0,1 — %], there exists a subset

S C J satisfying 3 ;cswj > 2W, such that Vx € L, Zjes:xjgx a; < (w4 2)m|x|.

Phase 2: In Phase 1 we obtained a subset S C J, such that for each x € L: Zjes:xjgx
(w+ 2)m|x|. We now show that it is always possible to find a feasible packing of all jobs in
S. We refer to host i at time ¢ as a bin (4,t). In the allocation phase we label a bin with one
of three possible colors: white, gray or black. Initially, all bins are colored white. We color a
bin (7,t) gray when some job j is assigned to host ¢ at time ¢ and color it black when we
decide to assign no more jobs to this bin. Our algorithm works in a bottom-up fashion and
marks an interval x as done when it has successfully completed all the jobs j with x; C x.
Consider an interval x such that any x’ C x has already been marked done. Let j € S be
a job with time-window x; = x, that has not been processed yet. To complete job j, we
must pick p; distinct time slots in x and assign it to a bin in each slot. Suppose that we
have already assigned the job to p;- < pj slots so far. Denote by avail(j) C x the subset of
time slots where j has not been assigned yet. We pick the next slot and bin as shown in
Algorithm 2.

(ng

» Theorem 3. For any A < 1— mi—ﬂ’ there exists a % - A (% + %)—appmximation algorithm

for the laminar MaxT problem, assuming that p; < X|x;| for all j € J.

Proof. Given an instance Z = (J, M, L) and a parameter w € (0,1 — %], let W denote the
optimal profit. We apply Theorem 1 to find a subset of jobs S C J of profit wWW, such that

for any x € L: ZjeS:xjgx a; < (w+ %)m|x| We now show that there is a feasible resource
assignment to the jobs in S for w = % —A (% + %) Clearly, this would imply the theorem.

We show that for the above value of w Algorithm 2 never reports fail, i.e., the resource is
feasibly allocated to all jobs in S. Assume towards contradiction that Algorithm 2 reports
fail while assigning job j. Suppose that j was assigned to p; < p; bins before this fail. For
t € x = x;j, we say that bin (¢,t) is bad if either (7,t) is colored gray, or j has been assigned
to some bin (7', ¢) in the same time slot. We first show that the following invariant holds, as

long as no job jT such that x C x;+ has been allocated the resource: the number of bad bins
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Algorithm 2 Resource allocation to job j in a single time slot.

1: if there exists a gray bin (i,t) in avail(j) then

2: let S(; ) be the set of jobs assigned to this bin

3: if Zj’GS(i‘t) 84 + S5 <1 then

4: assign j to host ¢ at time ¢

5: else if there exists a white bin (¢/,¢') in avail(j) then
6: assign j to host i’ at time ¢'.

7 color (4,t) and (¢, t") black

8: pair up (4,t) <> (¢/,t')

9: else

10: report fail

11: end if

12: else if there exists a white bin (4,¢) in avail(j) then
13: assign j to host ¢ at time ¢

14: color the bin (i,t) gray

15: else

16: report fail

17: end if

while processing job j is at most Am|x|. Assuming that the claim is true in each of the child
intervals of x, {x1,X2---, X1}, before any job with time window x is allocated the resource,
we have the number of bad bins = number of gray bins is at most -, c;; Am|xx| < Am|[x|.
Now, consider the iteration in which we assign j to host i at time ¢. If (¢,¢) is a gray bin,
then the number of bad bins cannot increase. On the other hand, suppose (¢,t) was white
before we assign j. If there are no gray bins in x, then the number of bad bins is at most
mp; < Am/|x|. Suppose there exist some gray bins, and consider those bins of the form (', ")
such that job j has not been assigned to any host at time #’. If there are no such bins, then
again the number of bad bins is at most mp; < Am|x|. Otherwise, we must have considered
one such gray bin (¢',¢') and failed to assign j to host ' at time t’. By the virtue of the
algorithm, we must have colored both (i,t) and (i’,¢') black. Thus, the number of bad bins
does not increase, and our claim holds. Now, since we pair the black bins (i,t) < (¢/,t)

only if ZjeS(M) sj + ZJ”ESW,M sjs > 1, the total number of black bins < 2(w + 2)m|y|.

Hence, the total number of bins that are black or bad is < (A+2(w + 2 ))m/|x|. Now, setting

w=12-X (% + %), there should be at least one bin (i*,¢*) that is neither black nor bad.

2
But in this case, we could have assigned j to host ¢* at time ¢*, which is a contradiction to

the assumption that the algorithm reports a fail. <
For convenience, we restate the claim shown in the proof of Theorem 3.

» Corollary 4. Let 7 = (J, M, L) be a laminar instance where p; < X x;| Vj € J, for X €
(0,1). Let S C J be a subset of jobs, such that for any x € L: ZjeS:xjgx a; < (w+ 2)mlx|,

where w < % - A (% + %) Then, there exists a feasible resource assignment to the jobs in S.

3.2 The General Case

We use a simple transformation of general instances of MaxT into laminar instances and
prove an §2(1)-approximation guarantee. Let W denote the set of all time-windows for jobs
in J,ie, W= {x;:j € J}. Wenow construct a laminar set of intervals £ and a mapping
£:W — L. Recall that T' = maxje s d;. The construction is done via a binary tree 7 whose
nodes correspond to intervals [I,7] C [T]. The construction is described in Algorithm 3.
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Algorithm 3 Transformation into a laminar set.

Input: Jobset Jand W= {x;:j € J}
Output: Laminar set of intervals £ and a mapping £: W — L
: let [T] be the root node of tree T
while 3 a leaf node [/, 7] in 7 such that r — > 1 do
add to T two nodes [I, |5 ]] and [| %~ + 1, 7] as the children of [I,7]
end while
let £ be the set of intervals corresponding to the nodes of T

For each x € W, let £(x) = x/, where Y’ is the largest interval in £ contained in Y,
breaking ties by picking the rightmost interval.

» Lemma 5. In Algorithm 8, the following properties hold (Proof in final version):

1. For any j € J, |x;| < 4€(x;)|-

2. Forxe L, let x={tex;:j5€J, £(x;) =X}, ie., the union of all time-windows in
W that are mapped to x. Then, |x| < 4|x|.

» Theorem 6. For any A < i— 2(ml+2) , there exists a g L_)\ (% + L ) -approzimation algorithm
for MaxT | assuming that p; < A|x;| for all j € J.

Proof. Given an instance (J, M, W) of MaxT with slackness parameter A € (0,1), we first
use Algorithm 3 to obtain a laminar set of intervals £ and the corresponding mapping
£:W — L. Consider a new laminar instance (J; = {j¢ : j € J}, My = M, L), constructed
by setting x;, = £(x;). Note that if S; C J; is a feasible solution for this new instance,
the corresponding set S = {j : j» € S¢} is a feasible solution for the original instance.
Let Ay denote the slackness parameter for the new instance. We claim that A, < 4.
Assume this is not true, i.e., there exists a job j,, such that p;, > 4X|x;,|; however, by
Lemma 5, we have p;, = p; < A|x;| < 4A|xj,|- A contradiction. Now, suppose O C J is
an optimal solution of total profit W for the original (non-laminar) instance. Consider the
corresponding subset of jobs Oy = {j; : j € O}. By Lemma 5, for any x € L, |x| < 4|x].
It follows that, for any x € L, ZjeGOe:x]‘eQx WG, =D jcoie(x)cx % < 4mlx|. Now, we use
Corollary 2 for the laminar instance, taking ¢ = 4, ST = Oy and )y € (0,1). Then, for any

€ (0,1 — 22], there exists Sy C Jy of total profit 3 jees, Wi = ¢W, such that Vyx € L,
Z je€Suix; Cx Bie < (w+ ;\; )m|x|. By Corollary 4, there is a feasible assignment of the resource

1 1 1 1 1 1
to the jobs in Sy for w < 3 —X¢ (5 + L). Takingw:§—4)\ (—i—) —)\g( +m>’

2 m 2 2
we have the approximation ratio ‘> = é — 4\ (% 4m) for any A < 7 — m We now
return to the original instance and take for the solution the set S = {j ] © Je € Se}. <

3.3 Eliminating the Slackness Requirements

In this section we show that the slackness requirements in Theorems 3 and 6 can be
eliminated, while maintaining a constant approximation ratio for MaxT . In particular, for
laminar instances, we show below that Algorithm 1 can be used to obtain a polynomial
time Q(1)-approximation for any constant slackness parameter A € (0,1). For general MaxT
instances, this leads to an Q(1)-approximation for any constant X\ € (0, i) We also show a

polynomial time (- )-approximation algorithm for general MaxT using no assumption

logn
on slackness. We use below the next result, for instances with “large” resource requirement.

The proof is deferred to the full version.
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» Lemma 7. For any 6 € (0,1) there is an Q(m)-appmmimation for any instance

Z=(J,M,W) of MaxT satisfying s; >V j € J.
3.3.1 Laminar Instances

Recall that m = | M| is the number of hosts. Given a fixed A € (0,1), let

M1 =)
Cl-A+ 2

m

a=a(m,A) (1)

In Phase 1 of Algorithm 1, we round the LP solution to obtain a subset of jobs S C J.

We first prove the following.
» Lemma 8. Let A € (0,1) be a slackness parameter, and

aA
—(1-a)(1-N -2 2
w=(-a)-n- 2 (2
where « is defined in (1). Then, given a laminar instance T = (J, M, L) satisfying p; < A|x;|
and s; < «, there is a feasible allocation of the resource to the jobs in S.

Proof. We generate a feasible schedule of the jobs in S proceeding bottom-up in each laminar
tree. That is, we start handling job j only once all the jobs ¢ with time windows x, C x;

have been scheduled. Jobs having the same time window are scheduled in an arbitrary order.

Let j be the next job, whose time window is x = x;. We can view the interval x as a set of
|x| time slots, each consisting of m unit size bins. We say that a time slot ¢ € x; is “bad” for
job j if there is no space for one processing unit of j (i.e., an “item” of size s;) in any of the
bins in ¢; else, time slot ¢ is “good”. We note that immediately before we start scheduling job
4 the number of bad time slots for j is at most mlx‘(:a)_(lsf)a)faj. Indeed, by Theorem 1,
choosing for w the value in (2), after rounding the LP solution the total area of jobs £ €S,
such that x, C x;, is at most

alx  al

(0 ymixd = (1= a)(1 = 3) = 22 4 Lyl 3)

In addition, for a time slot ¢ to be “bad” for job j, each bin in ¢ has to be at least (1 — s;)-full.

Hence, the number of good time slots for j is at least

~omx[(1L =M1 —a) —a; _(1=N0-0) aj
X m(1 —s;) = @ 1—sj )+ m(1 —s;)
by (=N-0) |
S S T T R R

The first inequality follows from the fact that p; < A|x;| = A|x|, and the second inequality
holds since s; < a. Hence, job j can be feasibly scheduled, for any j € S. |

Using Lemmas 7 and 8, we prove our main result.

» Theorem 9. For any m > 1 and constant X € (0,1), MaxT admits a polynomial time
Q(1)-approzimation on any laminar instance T = (J, M, L) with slackness parameter X.

Proof. Given a laminar instance 7 satisfying the slackness condition, we handle separately
two subsets of jobs.

26:11
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Subset 1: Jobs j satisfying s; < a = a(m, ), where « is defined in (1). We solve MaxT
for these jobs using Algorithm 1, taking the value of w as in (2). By Theorem 1, the
approximation ratio is w = (1 — a)(1 — A) — 2 = (1 — A)?, i.e., we have a constant factor.

Subset 2: For jobs j satisfying s; > «, use Lemma 7 to obtain an Q(m)—approximation.

Taking the best among the solutions for the two subsets of jobs, we obtain an Q(1)-
approximation. <

3.3.2 The General Case

Recall that, given a general MaxT instance, (J, M, W), with a slackness parameter A € (0, 1),
our transformation yields a new laminar instance (J, = {j; : j € J}, My = M, L) with a
slackness parameter Ay < 4\ (see the proof of Theorem 6). Now, define

Ae(1— Ng)
G elm A = T A .
and set
g
w:(1—a4)(1—xg)—%. (5)

Then, by Lemma 8, we have that any job j, € J; selected for the solution set S can be
assigned the resource (using Algorithm 1).

» Theorem 10. For any m > 1 and constant A € (0, i), MaxT admits a polynomial time
Q(1)-approzimation on any instance T = (J, M, W) with slackness parameter \.

Proof. Given such an instance Z, consider the resulting laminar instance. As before, we

handle separately two subsets of jobs.

Subset 1: For jobs j, € Jy satisfying s;, < ay, where ay is defined in (4), apply Algorithm 1
with w value as in (5). Then, the approximation ratio is w = (1 — A\¢)? > (1 — 4))2.

Subset 2: For jobs j, where s;, > g, use Lemma 7 to obtain Q(m)—approximation.

Taking the best among the solutions for the two subsets of jobs, we obtain an (1)-
approximation. <

Finally, consider a general instance of MaxT . By selecting 6 = %, we can apply Lemma 7
to obtain an Q(loén)—approximate solution, S; for the jobs j € J of heights s; > % Let S,
be a solution consisting of all jobs j for which s; < 711 Note that this solution is feasible

since > jes, $j < 1. Selecting the highest profit solution between S and Sz, we have:

1
logn

» Corollary 11. There is a polynomial time €

)-approxzimation algorithm for MaxT .

3.3.3 Maximizing Utilization

Consider instances of MaxT where the profit gained from scheduling job j is w; = a; = s;p;.
We give the proof of the following in [27].

» Theorem 12. There is a polynomial time Q(1)-approzimation for any instance of MaxT
where w; = a; for all j € J.
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4 Resource Minimization

In this section, we consider the MinR problem with d resources, where d > 1 is some constant.
We show that the problem admits an O(log d)-approximation algorithm under some mild
assumptions on the slack and minimum window size. Further, we show that the latter
assumption can be removed with a slight degradation in the approximation guarantee.

Our approach builds on a formulation of the problem as a configuration LP and involves
two main phases: a maximization phase and residual phase. We start by describing the
configuration LP that is at the heart of our algorithm. Let J; C J denote the set of all
jobs j such that ¢t € yj, i.e., j can be allocated resources at time slot t. For any t € [T
and S C Ji, C = (S,) is a valid configuration on a single host if }°. 5 5; < 19, i.e., the
jobs in S can be feasibly assigned to a single host at time slot ¢. Denote the set of all valid
configurations at time ¢ by C;, and by C? the set of all valid configurations (S, ¢), such that
S contains job j. Denote by z¢ the indicator variable for choosing configuration C and by
m the number of hosts needed to schedule all jobs. The fractional relaxation of the integer
program formulation of our problem is given below.

Primal : Minimize m
Subject to: m — ) e, o 2 0, vt € [T]
_ZCGCJ'HC,, rxo>-—1, Vjed te [T]
>_ceci TC 2 Djs vjed
Tc > O, vC

The first constraint ensures that we do not pick more than m configurations for each
time slot ¢ € [T]. The second constraint guarantees that at most one configuration is chosen
for each job j at a given time ¢t. Finally, the last constraint guarantees that each job j is
allocated the resource for p; time slots, i.e., job j is completed. The proof of the following
theorem (see [27]) is similar to a result of Fleischer et al. [16], with some differences due to
“negative” terms in the objective of the dual program.

» Theorem 13. For any e¢ > 0, there is a polynomial time algorithm that yields a (1 + €)-
approximate solution for the configuration LP.

Given the objective value m of the approximate LP solution, we choose for each t
O(mlogd) configurations with probabilities proportional to their LP-values. In this phase,
jobs may be allocated the resource only for part of their processing length. In the second
phase, we construct a residual instance based on the amount of time each job has been
processed. A key challenge is to show that, for any time window Yy, the total “area” of jobs
left to be scheduled is at most 1/d of the original total area. We use this property to solve
the residual instance. The detailed algorithm and its analysis are given in [27].

» Theorem 14. Let (J, W) be an instance of MinR with slackness parameter A € (0, 1). Fix
an e € (0,1). If |x;| > %t9d2 logdlog(Te*%) Y j € J, for sufficiently large constant 0, we
obtain an O(logd) approximation guarantee with probability at least 1 — e.

» Theorem 15. Let (J,W) be an instance of MinR with slackness parameter X € (0, 7).
Fiz an € € (0,1). There is a polynomial time algorithm that yields an O(logdlog™ T')
approximation ratio with probability at least 1 — €.
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