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ADMITTANCE IDENTIFICATION FROM POINT-WISE SOUND

PRESSURE MEASUREMENTS USING REDUCED-ORDER

MODELLING

S. VOLKWEIN

Abstract. In this work an acoustic application is studied. The goal is to

estimate the complex-valued admittance from given point measurements of
the sound pressure. This parameter identification problem is formulated in
terms of an infinite-dimensional optimization problem. First- and second-order
optimality conditions are discussed. For the numerical realization a reduced-
order model based on proper orthogonal decomposition is used. Numerical
examples illustrate the efficiency of the proposed approach.

1. Introduction

The acoustical impedance of a component or trim part is one of its most impor-
tant characteristics. The trim and its absorption behavior contributes significantly
to the comfort inside the car. Therefore, correct impedance values are needed when
acoustical simulations of car interior noise are carried out.

A generally used methodology to determine the acoustical impedance of relevant
acoustic materials is to use cut-out round samples of the material in question and
measure the acoustic characteristic in the impedance tube; see Figure 1.1.

Figure 1.1. Classical impedance tube for the measuremant of
normal impedances; see [10].
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2 S. VOLKWEIN

As a result, values for the normal impedance and absorption coefficients can be
obtained for this material. Typical damping materials are shown in Figure 1.2.
Disadvantages of this method are that the measurement considers normal acoustic

Figure 1.2. Damping materials Melamin (white) and C20mm
(black); see [10].

waves, only, that some materials are inappropriate for the impedance tube and that
the effects of the shape of the whole part have to be neglected. Therefore efforts
have been made to develop methods for impedance measurements of entire trim
parts, such as carpets, dashboards or seats.

Our approach is based on a mathematical model for the sound pressure distri-
bution (inside the idealized car geometry). More precisely, the sound pressure is
governed by the Helmholtz equatin, where the impedance or admittance (the re-
ciprocal value of the impedance) arises as a parameter in the Helmholtz equation.

In this paper we formulate the identification problem as an optimal control
problem, where the cost functional contains a regularization term as well as a
least-squares term for the difference of the measurements and the sound pressure p
computed by solving the Helmholtz equation. The obtained optimal control prob-
lem can be treated by methods from infinite dimensional optimization; see, e.g.,
[12]. In contrast to [10] we identify the admittance A ∈ C instead of the impedance
Z = 1/A. Due to the the term Ap in the Helmholtz equation (see (2.1c)) the
obtained optimal control problem has a bilinear structure, whereas in [10] the non-
linearity is of the form p/Z. If the admittance A has been estimated, then Z = 1/A
is an estimate for the impedance. The optimal control problem is solved by a glob-
alized quasi-Newton method with BFGS update of the Hessian. Furthermore, a
discretization based on proper orthogonal decomposition (POD) is utilized for the
solution of the Helmholtz equation. POD is a powerful technique for model reduc-
tion of nonlinear systems. It is based on a Galerkin type discretization with basis
elements created from solutions to the Helmholtz equation itself.

Compared to [25] the new contribution of this article are the following aspects:

• Since the measurements are usually difficult to get for each single frequency,
we identify the admittance from mean values over a frequency band.

• We consider a different cost functional involving a log-function, because the
measurements are usually provided in the logarithmic unit decibel (dB).

• First- and second-order optimality conditions for the infinite-dimensional
optimization problem are investigated.
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• Inequality constraints for the admittance are taken into account in our
numerical solution method (positivity of the real and imaginary parts of
the admittance).

POD is successfully used in different fields including signal analysis and pattern
recognition (see, e.g., [6]), fluid dynamics and coherent structures (see, e.g., [14, 23])
and more recently in control theory (see, e.g., [11, 18]). The relationship between
POD and balancing is considered in [17, 22, 26].

Let us mention that in [10] a standard finite element discretization for the Helm-
holtz equation is applied. Alternatively, the wave based technique (WBT) is used
in [4, 9]. A-posteriori analysis is utilized in [24] to determine the number of POD
ansatz functions in the POD Galerkin projection for an optimal control problem
governed by the Helmholtz equation. We refer to [2], where an optimal control
problem for an impedance factor is studied. The frequency is kept fixed and the
goal is to obtain the least amount of noise propagation to the far field.

The paper is organized in the following manner: In Section 2 we formulate our
parameter identification problem as an infinite dimensional optimization problem
and prove existence of optimal solutions. Optimality conditions are derived in
Section 3. The reduced-order approach is described in Section 4, where we also
explain our numerical optimization method. Numerical experiments are carried
out in Section 5. Finally, some of the proofs are given in the Appendix.

2. Admintance estimation as a non-linear optimization problem

In section we formulate the parameter estimation problem for the admittance as
an infinite-dimensional optimization problem. Existence of optimal solutions are
proved and first-order necessary optimality conditions are derived.

2.1. Function spaces. Througout the paper we write ℜe(z) and ℑm(z) for the
real and imaginary part, respectively, for z ∈ C. Moreover, z stands for the complex
conjugate of z.

Let Ω ⊂ Rd, d ∈ {2, 3}, be an open and bounded domain with Lipschitz-
continuous boundary Γ = ∂Ω. The domain Ω represents the interior of the car
vehicle. Recall that for s ∈ [1,∞) the Lebesgue space Ls

C
(Ω) is defined as

Ls
C(Ω) =

{

ϕ : Ω → C
∣

∣

∣ ϕ measurable and ‖ϕ‖Ls
C
(Ω) =

(∫

Ω

∣

∣ϕ(x)
∣

∣

s

C
dx

)1/s

< ∞
}

.

In particular, we set H = L2
C
(Ω), which is a Hilbert space endowed with the inner

product

〈ϕ,ψ〉H =

∫

Ω

ϕ(x)ψ(x) dx for ϕ,ψ ∈ H

and the induced norm ‖ϕ‖H = 〈ϕ,ϕ〉1/2
H for ϕ ∈ H. The Hilbert space V = H1

C
(Ω)

is supplied with the inner product

〈ϕ,ψ〉V = 〈ϕ,ψ〉H +

3
∑

i=1

〈

∂ϕ

∂xi
,

∂ψ

∂xi

〉

H

for ϕ,ψ ∈ V

and its induced norm ‖ϕ‖V = 〈ϕ,ϕ〉1/2
V for ϕ ∈ V . For more details on Lebesgue

and Sobolev spaces we refer the reader, e.g., to [1, 5].
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Figure 2.1. Impedance (in Pa
m/s ) and admittance (in m/s

Pa ) values

for Melamin 50mm in the frequency range from 200 to 500Hz.

2.2. The Helmholtz equation. For given frequency f > 0 the complex-valued
sound pressure p = p(x) solves the Helmholtz equation

−∆p(x) − k2p(x) = q(x) for all x ∈ Ω,(2.1a)



̺◦ω

∂p

∂n
(s) = 0 for all s ∈ ΓN ( Γ = ∂Ω,(2.1b)



̺◦ω

∂p

∂n
(s) = Ap(s) =

p(s)

Z
for all s ∈ ΓR = Γ \ ΓN,(2.1c)

where q stands for the complex-valued source term modelling the excitation at the
point x ∈ Ω at the frequency f , the parameter A ∈ C denotes the admittance and
Z = 1/A stands for the impedance. Furthermore,  is the imaginary unit, n denotes
the outward normal vector and the constants in (2.1) are

(2.2) c = 343.799
m

s
, k =

2πf

c
, ̺◦ = 1.19985

kg

m3
, ω = 2πf = ck,

i.e., both the wave number k and the angular frequency ω depend on f . The
admittance and therefore the impedance are frequency-dependent. In Figure 2.1
we plot the impedance and admittance values for the damping material Melamin
50mm in the frequency range from 200 to 500Hz.

Integration by parts and using (2.1c) yield

〈−∆p, ϕ〉H =

∫

Ω

−∆pϕ dx = −
∫

ΓR

∂p

∂n
ϕ ds +

∫

Ω

∇p · ∇ϕ dx

= −1



∫

ΓR

̺◦ωAp ϕ ds +

∫

Ω

∇p · ∇ϕ dx

=

∫

Ω

∇p · ∇ϕ dx + ̺◦ωA

∫

ΓR

pϕds

for every ϕ ∈ V , where we have assumed that −∆p ∈ H and 〈· , ·〉H denotes the
inner product in H of square integrable functions ϕ : Ω → C. This motivates the
next definition.
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Definition 2.1. For given f > 0 and A ∈ C the function p is called a weak solution
to (2.1) provided p ∈ V holds and p satisfies

B(p, ϕ;A) =

∫

Ω

q(f)ϕ dx for all ϕ ∈ V,

where the parameter-dependent bilinear form B(· , · ;A) : V × V → C is defined as

(2.3) B(p, ϕ;A) =

∫

Ω

∇p · ∇ϕ − k2pϕ dx + ̺◦ωA

∫

ΓR

pϕds for p, ϕ ∈ V.

The existence of a weak solution to (2.1) follows from the the next theorem.
Its proof is based on the Fredholm alternative; see, e.g., [5, p. 640-644]. For more
details we refer to the Appendix A.1.

Theorem 2.2. 1) One of the following statements hold: either

(2.4)























for each q ∈ H there exists a unique weak solution p to

(2.4a)











−∆p − k2p = q in Ω,


̺◦ω
∂p
∂n = 0 on ΓN,


̺◦ω

∂p
∂n = Ap on ΓR

or else

(2.5)























there exists a unique weak solution ψ 6= 0 to

(2.5a)











−∆ψ − k2ψ = 0 in Ω,


̺◦ω
∂ψ
∂n = 0 on ΓN,


̺◦ω

∂ψ
∂n = Aψ on ΓR.

2) If (2.5) is satisfied, the dimension of the subspace N ⊂ V of weak solutions
to (2.5a) is finite and equals the dimension of the subspace N∗ ⊂ V of weak
solutions λ to the adjoint (or dual) problem

(2.6)

−∆λ − k2λ = 0 in Ω,



̺◦ω

∂λ

∂n
= 0 on ΓN,



̺◦ω

∂λ

∂n
= −Aλ on ΓR.

3) Finally, (2.4a) has a weak solution if and only if
∫

Ω

qλ dx = 0 for all λ ∈ N
∗.

Remark 2.3. (1) From the theory of compact operators and the Fredholm
alternative it follows that case (2.5) appears only for a countable set.

(2) If (2.5) is true, we infer that its solutions ψ satisfies

d
∑

i=1

∥

∥

∥

∥

∂ψ

∂xi

∥

∥

∥

∥

2

H

− k2 ‖ψ‖2
H + ̺◦ωA ‖ψ‖2

L2

C
(ΓR) = 0.

Hence, ̺◦ωℜe(A) ‖ψ‖2
L2

C
(ΓR)

= 0, i.e., ψ = 0 on ΓR provided ℜe(A) 6= 0. ♦

If a weak solution p to (2.4a) exists the following regularity result.
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Corollary 2.4. Let A ∈ C be given. Suppose that there exists a weak solution
p = p(A) ∈ V to (2.4a). Then, p lies in the space CC(Ω) of all continuous functions
defined on Ω with values in C. Moreover, there exists a constant C > 0 independent
of f , q, A, and p such that

‖p‖V + ‖p‖CC(Ω) ≤ C
(

‖q‖H + ‖p‖H + |A|
C
‖p‖Ls

C
(ΓR)

)

for s ∈ (2, 4]. Furthermore, p ∈ H
3/2
C

(Ω).

Proof. The solution p solves

−∆p + a0p = h in Ω,
∂p

∂n
= g on Γ

weakly with a0 > 0, h = q +(a0 +k2)p in Ω, g = 0 on ΓN and g = −̺◦ωAp on ΓR.

From q ∈ H and p ∈ V we infer that h ∈ H holds. Moreover, p|ΓR
∈ H

1/2
C

(ΓR).
From the Sobolev embedding theorem [1, p. 144] we infer that p|ΓR

∈ Ls
C
(ΓR) holds

for s ∈ (2, 4]. Thus, g ∈ Ls
C
(Γ) and s > d− 1. Therefore, the claim follows from [3]

and regularity results for elliptic equations. ¤

Remark 2.5. For p ∈ V and A ∈ C the function

g =

{

0 on ΓN,
−̺◦ωAp on ΓR

may not belong to H
1/2
C

(Γ). Therefore, we can not guarantee H2-regularity for a
solution p to (2.4a). ♦

2.3. The Helmholtz equation on a frequency band. Let f be a given fre-
quency and δf a positive scalar with fa = f − δf > 0. Then, we set fb = f + δf
and define the frequency band I = [fa, fb] ⊂ R+ and introduce a function space
taking into account the varying frequency in (2.1). By H = L2(I;H) we denote the
space of all functions ϕ : I → H, f 7→ ϕ(· ; f), which are square integrable, i.e.,

‖ϕ‖
H

=

√

∫

I

‖ϕ(· ; f)‖2
H df < ∞ for every ϕ ∈ H.

Analogously, the Hilbert space V = L2(I;V ) is defined. Throughout we denote by
ϕ(f) the complex-valued function defined on Ω when the frequency f ∈ I is fixed.

The admissible admittance values belong to the bounded, closed and convex set

Aad =
{

A ∈ C
∣

∣ℜe(A) ∈ [Aℜ, Aℜ] and ℑm(A) ∈ [Aℑ, Aℑ]
}

with constants Aℜ ≤ Aℜ and Aℑ ≤ Aℑ. For given source term q ∈ C(I;V ) and for
admittance A ∈ Aad we consider the Helmholtz equation over the band I:

−∆p(f) − k2p(f) = q(f) in Ω and f.a.a. f ∈ I,(2.7a)



̺◦ω

∂p

∂n
(f) = 0 on ΓN and f.a.a. f ∈ I,(2.7b)



̺◦ω

∂p

∂n
(f) = Ap(f) on ΓR and f.a.a. f ∈ I,(2.7c)

where ‘f.a.a.’ stands for ‘for almost all’.
Let us introduce the Banach spaces

P = V ∩ L2(I;CC(Ω)) and X = P × C,
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where P is endowed with the norm

‖p‖
P

= ‖p‖
V

+ ‖p‖L2(I;CC(Ω)) for p ∈ P.

We identify the dual space V′ of V with L2(I;V ′). Moreover, let us define the
nonlinear operator e : X → V′ by

〈e(p,A), ϕ〉
V′,V =

∫

I

B(p(f), ϕ(f);A) df for (p,A) ∈ X and ϕ ∈ V,

where the parameter dependent bilinear form B has been introduced in (2.3). Then,
e(p,A) = 0 in Y ′ holds if and only if (p,A) ∈ X satisfies (2.7). Finally, we set

Xad = P × Aad.

Assumption 1. Let q ∈ C1
C
(I × Ω)) be given and A ∈ Aad arbitrarily chosen.

1) Existence: There exists at least one solution p ∈ P to e(p,A) = 0 in V′.
2) Estimate: If (p,A) satisfies e(p,A) = 0 in V ′, then we have

‖p‖
P
≤ C

(

1 + |A|
C

)

for a constant C > 0 independent of A and f ∈ I.

Remark 2.6. 1) Notice that the existence of a solution p to e(p,A) = 0
depends on the chosen source term q, the values of k2, and the boundary
conditions. In our numerical experiments we observe unique solvability of
the discretized Helmholtz equation for the used frequency grid.

2) Due to Theorem 2.2, part 3), there exists a solution to e(p,A) = 0 in V′ for
every A ∈ Aad if and only if

∫

Ω

q(f)λ(f) dx = 0 for all λ ∈ V and f.a.a. f ∈ I,

where λ ∈ V solves
∫

I

( ∫

Ω

∇λ · ∇ϕ − k2λϕ dx − ̺◦ωA

∫

ΓR

λϕ ds

)

df = 0

for all ϕ ∈ V. ♦

2.4. The optimization problem. The goal of the parameter identification prob-
lem is to identify the complex admittance A from given real-valued quantities
pm

i for the amplitude of the sound pressure at the given the microphon positions
xi ∈ Ω ∪ ΓN, for 1 ≤ i ≤ nm. For 1 ≤ i ≤ nm we choose 0 < γi ≪ 1 and introduce
the bounded operators Ci : P → R by

(2.8) Ci(p) = η ln

(

γi +

∫

I

∣

∣p(xi; f)
∣

∣

2

C
df

)

for p ∈ P.

From γi > 0 it follows that Ci is well-defined for i ∈ {1, . . . , nm}.
Now we introduce the cost functional J : X → R by

J(p,A) =
1

nm

nm
∑

i=1

∣

∣Ci(p) − pm
i

∣

∣

2
+

σ

2

∣

∣A − Â
∣

∣

2

C
for (p,A) ∈ X.

The first term of the cost measures the distance between the sound pressure and
the corresponding measurement at each microphon position xi using the averaging
over the intervall I as well as the logarithmic scaling. The last term is needed to
regularize the ill-posed inverse problem. For that purpose we assume that σ is a
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positive regularization parameter ensuring that A is not too far from a nominal
value Â ∈ C for the admittance.

Remark 2.7. For every p ∈ P the function Gi(· ; p) : Ω → R, 1 ≤ i ≤ nm, defined
by

Gi(x; p) = η ln

(

γi +

∫

I

∣

∣p(x; f)
∣

∣

2

C
df

)

, x ∈ Ω,

is continuous, i.e., Gi(· ; p) ∈ C(Ω). Let δxi
denote the Dirac delta function that is

continuous on C(Ω). Thus, using the point measure µi = δxi
we can express the

cost functional in integral form as follows:

J(p,A) =
1

nm

nm
∑

i=1

∫

Ω

∣

∣Gi(· ; p) − pm
i

∣

∣

2
dµi +

σ

2

∣

∣A − Â
∣

∣

2

C
for (p,A) ∈ X.

In particular, we have
∫

Ω

∣

∣Gi(· ; p) − pm
i

∣

∣

2
dµi =

∣

∣Ci(p) − pm
i

∣

∣

2
for i ∈ {1, . . . , nm},

where p ∈ L2(I;CC(Ω)). ♦

Now we formulate our parameter estimation problem in terms of an infinite
dimensional optimization problem:

(P) min J(x) subject to (s.t.) x ∈ F(P) =
{

x̃ ∈ Xad

∣

∣ e(x̃) = 0 in V
′
}

.

To prove existence of optimal solutions the next assumption is required.

Assumption 2. If (p,A) ∈ Xad satisfies e(p,A) = 0 in V′, then

‖p(xi; ·)‖Hs
C
(I) ≤ C

(

1 + |A|
C

)

for 1 ≤ i ≤ nm

with some s > 0 and with a constant C > 0.

Remark 2.8. 1) By the Sobolev embedding theorem [1, p. 144] the Hilbert
space Hs

C
(I) is compactly embedded into L2

C
(I) for all s > 0.

2) One possibility to ensure more regularity for p(xi; ·) is to add the quadratic
term ‖p(xi; ·)‖2

H1

C
(I)

to the cost functional. In our numerical experiments it

turns out that even ‖p(xi; ·)‖W 1,∞

C
(I) is bounded on I. ♦

Theorem 2.9. Let Assumptions 1 and 2 hold. Then, (P) admits at least one local
optimal solution denoted by x∗ = (p∗, A∗).

Theorem 2.9 is proved in the Appendix.

2.5. The reduced problem. Problem (P) is an infinite-dimensional optimization
problem with equality and inequality constraints. In this section we introduce the
so-called reduced problem, where the equality constraint e(x̃) = 0 in V′ is elimi-
nated by considering a reduced cost functional that is defined on the admittance
parameter only. For that purpose we assume instead of Assumption 1 the following
stronger condition.

Assumption 3. Let q ∈ C1
C
(I × Ω) and A ∈ Aad be given. Then there exists a

unique solution p ∈ P to e(p,A) = 0 in V′ satisfying

‖p‖
P
≤ C

(

1 + |A|
C

)

for a constant C > 0 independent of A and f ∈ I.
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Proposition 2.10. Let Assumption 3 hold. Then, the non-linear solution operator
S : Aad → P with e(S(A), A) = 0 in V′ is well-defined, bounded, and continuous.

Proof. By Assumption 3 the operator S is well-defined. Using Assumption 1 and
A ∈ Aad we have

‖S(A)‖
P
≤ C

(

1 + |A|
C

)

≤ C
(

1 + max
{

|A|C, |A|C
})

,

i.e., S is bounded. To prove the continuity of S let {An}n∈N be a sequence in Aad

and A∗ ∈ Aad satisfying (A.9d). Then, by Assumption 1 the sequence {pn}n∈N

defined by pn = S(An) is bounded in P. Thus, the continuity follows by analogous
arguments as in the proof of Theorem 2.9. ¤

Utilizing the operator S we define the reduced cost functional

Ĵ : Aad → R, Ĵ(A) = J(S(A), A) for A ∈ Aad.

Then, we consider the reduced problem

(P̂) min Ĵ(A) s.t. A ∈ Aad.

Clearly, A∗ is a local solution to (P̂) if and only if x∗ = (S(A∗), A∗) solves (P).

Remark 2.11. Note the A 7→ Ĵ(A) is a real-valued function of a complex number

A = Aℜ + Aℑ 7→ Ĵ(A). In our numerical realization we consider Ĵ as a map-
ping from R2 → R (for brevity, we use the same notation for the mapping), i.e.,

(Aℜ, Aℑ) 7→ Ĵ(Aℜ, Aℑ). ♦

3. Optimality conditions

To solve (P) or (P̂) we make use of the associated optimality conditions. This
section is devoted to derive these first- and second-order necessary optimality condi-
tions. For that purpose we have to ensure differentiablity properties of the mappings
e and J . The second-order conditions are important for the numerical solution pro-
cedure.

For the derivation of the optimlaity conditions let us introduce the Lagrange
functional associated to (P) by

L(x, λ) = J(x) + ℜe
(

〈e(x), λ〉
V′,V

)

=

∫

Ω

1

nm

nm
∑

i=1

∫

Ω

∣

∣Gi(· ; p) − pm
i

∣

∣

2
dµi +

σ

2

∣

∣A − Â
∣

∣

2

C

+

∫

I

ℜe
(

B(p(f), ϕ(f);A)
)

df for (x, λ) ∈ X × V,

where the mappings Gi, 1 ≤ i ≤ nm, and the parameter-dependent bilinear form B
have been introduced in (2.3) and Remark 2.7, respectively.

3.1. Differentiability properties of constraints and the cost functional. In
Section 3.2 we will study optimality conditions for (P). For that purpose we inves-

tigate differentiability properties of the functions J , e, and Ĵ . The next proposition
is proved in the Appendix.

Proposition 3.1. The operator e : X → V′ and the cost functional are twice
continuously Fréchet-differentiable. Moreover, their second Fréchet-derivatives are
Lipschitz-continuous on X.
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Let Assumption 3 be valid. In Section 2.5 we have introduced the reduced
problem. From Proposition 3.1 we infer that e is Fréchet-differentiable. Using
e(S(A), A) = 0 for all A ∈ Aad we obtain

0 = ∇A

(

e(S(A), A)
)

Aδ = ∇pe(S(A), A)S ′(A)Aδ + ∇Ae(S(A), A)Aδ

for any direction Aδ ∈ C.
The following assumption ensures a standard constraint qualification for (P̂).

Assumption 4. For every A ∈ Aad and Aδ ∈ C there exists a unique weak solution
pδ ∈ P such that

(3.1)

−∆pδ(f) − k2pδ(f) = 0 in Ω,



̺◦ω

∂pδ

∂n
(f) = 0 on ΓN,



̺◦ω

∂pδ

∂n
(f) = Apδ(f) + Aδp(f) on ΓR

f.a.a. f ∈ I, where p = S(A). Moreover, pδ satisfies

‖pδ‖P
≤ C

(

1 + |Aδ|C
)

with a constant C > 0 independent of Aδ.

Remark 3.2. 1) Note that Assumption 4 is closely related to Assumption 3.
2) Let Assumptions 1, 3-4 hold, then S is Fréchet-differentiable and its Fréchet

derivative is pδ = S ′(A)Aδ, where pδ solves (3.1) in the weak sense. In

particular, pδ = −
(

∇pe(S(A), A)
)−1∇Ae(S(A), A)Aδ. ♦

3.2. First-order necessary optimality conditons. Problem (P̂) is a non-convex
programming problem so that different local minima might occur. A numerical
method will produce a local minimum close to its starting value. Hence, we do
not restrict our investigations to global solutions of (P̂). We will assume that a
fixed reference solution is given satisfying certain first- and second-order optimality
conditions (ensuring local optimality of the solution).

In our non-convex optimization problem the cost functional is defined pointwise
in Ω. This leads to an adjoint problem with measures on the right-hand side. For
this reason suppose that A∗ ∈ Aad is a local solution to (P̂) and p∗ = S(A∗). We

define λ∗ ∈ W = L2(I;W 1,s
C

(Ω)), s ∈ [1, 3/2), to be a weak solution to

−∆λ∗(f) − k2λ∗(f) =
4η

nm

nm
∑

i=1

(

pm
i − Ci(p

∗)
)

p∗δxi

γi + ‖p(xi; ·)‖2
L2

C
(I)

in Ω,(3.2a)



̺◦ω

∂λ∗

∂n
(f) = 0 on ΓN,(3.2b)



̺◦ω

∂λ∗

∂n
(f) + A∗λ∗(f) = 0 on ΓR(3.2c)

for almost all f ∈ I, where δxi
denotes the Dirac delta distribution, i.e.,

δxi
(ϕ) = ϕ(xi) for ϕ ∈ CC(Ω) and 1 ≤ i ≤ nm.
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Remark 3.3. Let r = s/(s−1) for s ∈ (1, 3/2). Then, 3 < r < ∞ and s−1 +r−1 =
1. The function λ∗ is a weak solution to (3.2) provided

(3.3)

∫

I

∫

Ω

∇λ∗ · ∇ϕ − k2λ∗ϕ dx − ̺◦ωA∗

∫

ΓR

λ∗ϕdsdf

=
4η

nm

nm
∑

i=1

(

pm
i − Ci(p

∗)
)

γi + ‖p(xi; ·)‖2
L2

C
(I)

∫

I

p∗(xi, ·)ϕ(xi, ·) df

for all ϕ ∈ L2(I;W 1,r
C

(Ω)). Notice that W 1,r
C

(Ω) is continuously embedded into

the space CC(Ω); see [1, p. 144]. Thus, ϕ ∈ L2(I;CC(Ω)) in (3.3). Moreover,

from λ∗(f) ∈ W 1,s
C

(Ω) f.a.a. f ∈ I we infer that λ∗(f)|ΓR
∈ Lν

C
(ΓR) for 1 ≤ ν ≤

6s/(6 − s). Therefore, in (3.3) all integrals are well-defined. ♦

The necessary optimality conditions are stated in the next theorem which is
proved in the Appendix.

Theorem 3.4 (KKT conditions). Let Assumptions 1-4 hold. Suppose that A∗ ∈
Aad is an optimal solution to (P̂) and p∗ = S(A∗) holds. Suppose that there exists
a weak solution λ∗ ∈ W to (3.3). Then, the variational inequality

(3.4) ℜe

(

(

σ
(

A∗ − Â
)

− ̺◦

∫

I

(

ω

∫

ΓR

λ∗p∗ ds
)

df

)

(

A∗ − Aδ

)

)

≥ 0

holds for all Aδ ∈ Aad.

Summarizing, the first-order necessary optimality conditions consist in the state
equation (2.1) with (p,A) replaced by (p∗, A∗), the dual equation (3.2) and the
optimality condition (3.4).

Remark 3.5. It follows from Theorem 3.4 that we obtain the gradient (Aℜ, Aℑ) 7→
Ĵ ′(Aℜ, Aℑ) of the reduced cost is given by

(3.5) Ĵ ′(Aℜ, Aℑ) =





σ
(

Aℜ − Âℜ

)

+ ̺◦ℑm
(

∫

I

(

ω
∫

ΓR

λp ds
)

df
)

σ
(

Aℑ − Âℑ

)

− ̺◦ℜe
(

∫

I

(

ω
∫

ΓR

λpds
)

df
)



 ,

where A = Aℜ + Aℑ, Â = Âℜ + Aℑ, p ∈ P solves (2.7) and λ ∈ L2(I;W 1,s(Ω; C)),
s ∈ [1, 3/2), is the solution to

(3.6)

−∆λ(f) − k2λ(f) =
4η

nm

nm
∑

i=1

(

pm
i − Ci(p

∗)
)

p∗δxi

γi + ‖p(xi; ·)‖2
L2(I;C)

in Ω,



̺◦ω

∂λ

∂n
(f) = 0 on ΓN,



̺◦ω

∂λ

∂n
(f) = −Aλ(f) on ΓR

f.a.a. f ∈ I; compare Remark 2.11. ♦

3.3. Second-order conditions. We infer from Proposition 3.1 that the second
Fréchet derivative of the Lagrange functional with respect to x = (p,A) ∈ X at a
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point (x◦, λ◦) ∈ X × W, x◦ = (p◦, A◦), is given by

∇xxL(x◦, λ◦)(xδ, xδ) =
2

nm

nm
∑

i=1

∣

∣C′
i(p

◦)p̃δ

∣

∣

2
+ ℜe

(

2̺◦Aδ

∫

I

ω

∫

ΓR

pδλ◦ dsdf

)

+
2

nm

nm
∑

i=1

(

Ci(p
◦) − pm

i

)

C′′
i (p◦)(pδ, pδ) + σ

∣

∣Aδ

∣

∣

2

C

and, by (A.14b), we have

C′′
i (p◦)(pδ, pδ) =

2ηℜe
( ∫

I

∫

Ω

∣

∣p̃δ

∣

∣

2

C
dµidf

)

γi + ‖p◦(xi; ·)‖2
L2(I;C)

− 4ηℜe
( ∫

I

∫

Ω
p◦pδ dµidf

)2

(

γi + ‖p◦(xi; ·)‖2
L2(I;C)

)2 .

Thus, we have the following result.

Theorem 3.6. Assume that Assumptions 1-4 are satisfied. Let x∗ = (p∗, A∗) ∈
F(P) be a feasible point for (P) satisfying together with λ∗ ∈ W the dual system
(3.2). Suppose that xδ = (pδ, Aδ) ∈ ker∇e(x∗), i.e., ∇e(x∗)xδ = 0 in V′. If

‖pδ‖2
P
≤ Cker

∣

∣Aδ

∣

∣

2

C
,(3.7a)

∣

∣

∣

∣

2

nm

nm
∑

i=1

(

Ci(p
∗) − pm

i

)

C′′
i (p∗)(pδ, pδ)

∣

∣

∣

∣

≤ σ

4

∣

∣Aδ

∣

∣

2

C
,(3.7b)

∣

∣

∣

∣

ℜe

(

2̺◦Aδ

∫

I

ω

∫

ΓR

pδλ∗ dsdf

)∣

∣

∣

∣

≤ σ

4

∣

∣Aδ

∣

∣

2

C
(3.7c)

hold, the point (x∗, λ∗) satisfies the second-order sufficient optimality conditions,
i.e., there exists a κ > 0 such that

(3.8) ∇xxL(x∗, λ∗)(xδ, xδ) ≥ κ ‖xδ‖2
X for all xδ ∈ ker∇e(x∗).

Proof. From (3.7) we infer that

∇xxL(x∗, λ∗)(xδ, xδ) ≥
σ

4Cker
‖pδ‖2

P
+

σ

4

∣

∣Aδ

∣

∣

2

C
≥ κ ‖xδ‖2

X

with κ = σ/max(4Cker, 4) > 0. This gives (3.8). ¤

Remark 3.7. 1) From xδ ∈ ker∇e(x∗) we infer that xδ = (pδ, Aδ) satisfies
∫

I

B(pδ(f), ϕ(f);A) df = −̺◦Aδ

∫

I

ω

∫

ΓR

p∗ϕ dsdf for all ϕ ∈ V.

Hence, f.a.a. f ∈ I the function pδ(f) is a weak solution to

(3.9)

−∆pδ(f) − k2pδ(f) = 0 in Ω,



̺◦ω

∂pδ

∂n
(f) = 0 on ΓN,



̺◦ω

∂pδ

∂n
(f) − Apδ(f) = Aδp

∗(f) on ΓR.

For Aδ = 0 we observe that pδ(f) = 0 solves (3.9) f.a.a. f ∈ I. To ensure
(3.7a) the norm ‖pδ‖P has to be small provided |Aδ| is small. Of course,
the constant Cker can depend on p∗.
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2) If for 0 < τ ≪ 1 it follows that

∣

∣Ci(p
∗) − pm

i

∣

∣ ≤
σ

∣

∣Aδ

∣

∣

2

C

8
(

τ + |C′′
i (p∗)(pδ, pδ)|

) , 1 ≤ i ≤ nm.

Then, we have
∣

∣

∣

∣

2

nm

nm
∑

i=1

(

Ci(p
∗) − pm

i

)

C′′
i (p∗)(pδ, pδ)

∣

∣

∣

∣

≤
σ

∣

∣Aδ

∣

∣

2

C

4nm

nm
∑

i=1

∣

∣C′′
i (p∗)(pδ, pδ)

∣

∣

τ + |C′′
i (p∗)(pδ, pδ)|

≤ σ

4

∣

∣Aδ

∣

∣

2

C
.

Thus, (3.7b) can be guaranteed if |Ci(p
∗) − pm

i | is small.
3) Using (3.7a), Lemma A.1 with ε = 1 and 0 < ω ≤ 2πfb we estimate

∣

∣

∣

∣

ℜe

(

2̺◦Aδ

∫

I

ω

∫

ΓR

pδλ∗ dsdf

)∣

∣

∣

∣

≤ C ‖λ∗‖L2(I;L1(ΓR;C))

∣

∣Aδ

∣

∣

2

C
,

where C = 4π̺◦fbCΓCker. Thus, (3.7c) holds provided

‖λ∗‖L2(I;L1(ΓR;C)) ≤
σ

4C
.

Recall that λ∗ is a weak solution to (3.2). In particular, if |Ci(p
∗)−pm

i | = 0,
1 ≤ i ≤ nm, holds, we have λ∗ = 0. Thus, if ‖λ∗‖L2(I;L1(ΓR;C)) is small for
small residuals |Ci(p

∗)−pm
i |, condition (3.7c) can be ensured; compare part

2). ♦

4. POD reduced-order modelling

In this section we recall briefly the POD method and explain the reduced-order
model for the Helmholtz equation as well as for the identification problem. More-
over, we present two numerical examples.

4.1. The POD method. Let w1, . . . , wn ∈ Rm be given vectors and w̄ =
∑n

i=1 wi

the corresponding mean value. We set yj = wj − w̄, j = 1, . . . , n, and V =
span {yj}n

j=1 with d = dimV ≤ m and Y = [y1, . . . , yn] ∈ Rm×n. On Rm we
use the inner product

(4.1) 〈u, v〉W = uT Wv for u, v ∈ Rm

with a symmetric, positive definite weighting matrix W ∈ Rm×m and its induced
norm ‖u‖W = (uT Wu)1/2. Since W is a symmetric and positive definite matrix,
W 1/2 is also defined via the eigenvalue decomposition of W . Then, for an arbitrary
ℓ ≤ d we consider the minimization problem

(4.2)
min

ψ1,...,ψℓ

n
∑

j=1

αj

∥

∥yj −
ℓ

∑

i=1

〈yj , ψi〉W ψi

∥

∥

2

W

subject to 〈ψi, ψj〉W = δij for 1 ≤ i, j ≤ ℓ,

where {αj}n
j=1 are nonnegative weights, δij stands for the Kronecker symbol, i.e.,

δii = 1 and δij = 0 for j 6= i. A solution to (4.2) is called a POD basis of rank ℓ.

We have D1/2 = diag (
√

α1, . . . ,
√

αn). Let us define the m × n matrix Ŷ =

W 1/2Y D1/2. A solution (4.2) is characterized by the first-order necessary optimality
conditions: Solve the n × n symmetric eigenvalue problem

(4.3) Ŷ T Ŷ v̂i = λiv̂i, 1 ≤ i ≤ ℓ,
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Figure 4.1. Acoustic domain Ω and nm = 12 measurement points
(∗) for the sound pressure and loud speker (◦) (left plot); absolut
value of the source function for frequency f = 300 (right plot).

where λ1 ≥ . . . ≥ λℓ > 0, and set ψi = Y D1/2vi/
√

λi; see, e.g., [14]. Note that

Ŷ T Ŷ = D1/2Y T WY D1/2. It can be shown that {ψi}ℓ
i=1 is already a solution to

(4.2).
For the application of POD to concrete problems the choice of ℓ is certainly of

central importance for applying POD. It appears that no general a-priori rules are
available. Rather the choice of ℓ is based on heuristic considerations combined with
observing the ratio of the modeled to the total energy contained in the system Y ,
which is expressed by

E(ℓ) =

∑ℓ
i=1 λi

∑d
i=1 λi

=

∑ℓ
i=1 λi

trace(Ŷ T Ŷ )
.

4.2. Computation of the POD basis and reduced-order modelling. The
acoustic domain is presented in the left plot of Figure 4.1. The impedance boundary
is ΓR = {(x, 0) | 0.5 ≤ x ≤ 2.5} and the loud speaker is located in xq = (0.21, 1.28) ∈
Ω. Therefore, we use the complex-valued source term

q(x; f) =
1

5
exp

(

π(f − 200)

50

)

exp
(

− 50|x − xq|2
)

for x ∈ Ω and f ∈ [200, 500],

see Figure 4.1 (right plot). We apply a standard piecewise linear finite element (FE)
discretization with m = 4957 degrees of freedom. Let {ϕi}m

i=1 denote the piecewise
linear finite element ansatz functions. Then, a finite element function is described
by a coefficient vector in Rm containing the values of the finite element function at
each grid points. We introduce the symmetric and positive definite stiffness matrix
S ∈ Rm×m with the elements

Sij =

∫

Ω

ϕj(x)ϕi(x) + ∇ϕj(x) · ∇ϕi(x) dx, 1 ≤ i, j ≤ m.

Then the H1-inner product of the two FE functions is given by the the weihgthed
inner product (4.1) of their coefficient vectors with W = S.

The POD basis is computed from FE solutions ph = ph
ℜ + ph

ℑ to (2.1) for the
frequencies f = 200, 201, . . . , 500Hz, where for every f we vary the admittance
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Figure 4.2. Decay of the first ℓ = 65 eigenvalues of Ŷ T Ŷ .
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Figure 4.3. The first two POD basis functions for the imaginary part.

A = Aℜ + Aℑ as follows

Aℜ = 2 · 10−4, 4 · 10−4, 6 · 10−4, (in m/s
Pa ),

Aℑ = 6 · 10−4, 10−3, 1.6 · 10−3, (in m/s
Pa ),

i.e., we compute n = 301 ∗ 9 = 2709 FE solutions ph. In particular, we obtain for

the real part coefficient vectors aj ∈ Rm, j = 1, . . . , n. Note that that 2·10−4 m/s
Pa ≤

Aid
ℜ ≤ 6 · 10−4 m/s

Pa and 6 · 10−4 m/s
Pa ≤ Aid

ℑ ≤ 1.6 · 10−3 m/s
Pa hold; see Figure 2.1.

First we compute a POD basis for the real part. The CPU time for the snapshot
computation was 359 seconds. In the context of Section 4.1 we choose W = S for
the weighting matrix and the vectors wj = aj , j = 1, . . . , n. In (P) we take the
weights αj = 1 for all j. Then, we compute the POD basis {ψi}ℓ

i=1 of rank ℓ = 65
for the approximation of the real part of the sound pressure. For the imaginary
part we proceed analogously and determine a POD basis {φi}ℓ

i=1. In Figure 4.2

the decay of the eigenvalues of the correlation matrix Ŷ T Ŷ are shown. The first
two POD eigenfunctions are presented in Figures 4.3 and 4.4. The CPU time for
the computation of the POD basis was 36 seconds. The values for ratio E(ℓ) for
different ℓ’s are presented in Table 4.4.

Next we utilize the computed POD basis functions to derive a POD Galerkin
scheme for (2.1). For that purpose let χik = ψi + φk : Ω → C for 1 ≤ j, k ≤ ℓ.
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Figure 4.4. The first two POD basis functions for the imaginary part.

ℓ = 5 ℓ = 10 ℓ = 15 ℓ = 20 ℓ = 30 ℓ = 35

E(ℓ) for real part 78.59% 93.73% 97.20% 98.97% 99.92% 99.99%
E(ℓ) for imaginary part 80.99% 94.35% 97.71% 99.13% 99.93% 99.99%

Table 4.4. Values for ratio E .

Then, we make the ansatz

pℓ(x) =

ℓ
∑

i=1

aiψi(x) + biφi(x), ai, bi ∈ R,

multiply (2.1a) by the test functions ψi + φj , i, j = 1, . . . , ℓ and integrate over Ω.
Integration by part and the boundary conditions (2.1b)-(2.1c) we end up with a
linear system in the 2ℓ real coefficients ai, bi, 1 ≤ i ≤ ℓ, whereas in the FE case we
have a linear system of the size 2m = 9914 ≫ 2ℓ = 130. In an analogous way we
derive a POD Galerkin scheme for the adjoint equation.

5. Numerical experiments

This section is devoted to present numerical examples for the identification prob-
lem. We apply a projected gradient method for the solution of (P̂). For the line
search we apply the Armijo step size rule. The existence of second-order derivatives
justifies the use of a second-order information. Therefore, we utilize a BFGS-quasi
approximation for the second derivative to scale our gradient direction. If the BFGS
approximation is not positive definite, we use the BFGS approximation of the pre-
vious iteration. In particular, if no inequality constraints are active, we obtain a
variant of the quasi Newton method. For more details we refer, e.g., to [19].

In Figure 4.1 the nm = 12 measurement points xi for the sound pressure are
plotted.

Run 5.1. In the first test we want to identify the reference admittance Aid for
Melamin 50mm (see Figure 2.1) from exact simulation data. Let us devide the
frequency interval from 200 to 499 Hz into nI = 100 disjunct intervals Ik = [200 +
3(k − 1), 199 + 3k], 1 ≤ k ≤ nI, and solve sequentially (P) for all k with I = Ik.
The computed optimal admittance values are denoted by Ak

opt, k = 1, . . . , nI. We
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Figure 5.5. Run 5.1: Real part (left plot) and imaginary part
(right plot) of the optimal and ideal admittance.
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Figure 5.6. Error in the admittance: Run 5.1 with interval length
δf = 3 (left plot) and Run 5.2 with δf = 5 (right plot).

use the corresponding FE solution ph to get the pm
i , i = 1, . . . , nm, by

(5.4) pm
i = η ln

(

0.01 +

∫

Ik

|ph(xi; f)|2 df

)

, k = 1, . . . , nI.

For the cost functional we take γi = 0.01, η = 5000, and σ = 106. The nominal
admittance Â is chosen as follows: For k = 1 we set the nominal admittance to be
Â = 0.0002 + 0.0006 and solve (P) to get an optimal solution A

(1)
opt. The relative

error for the starting admittance is about 21%. To improve the result we solve (P)

again on I1 with Â = A
(1)
opt to get A1

opt = A
(2)
opt. Then we go to k = 2 and solve

(P) on I2 with Â = A1
opt. We compute the optimal solution A2

opt and continue
analogously for i = 3, . . . , nI. The numerical method stops after 254 seconds, i.e.,
each optimization solve requires about 2.5 seconds on average. In Figure 5.5 the
real and imaginary part of the optimal admittances as well as the corresponding
values for Aid are plotted. The relative error can be seen in Figure 5.6. It turns out
that by our initialization strategy the error for k = 1 can be reduced from 15,1%
to 5,3% for the real part. for a summary of the CPU times we refer to Table 5.6.♦

Run 5.2. Now we repeat Run 5.1, but we enlarge the intervals Ik. We set Ik =
[200 + 5(k − 1), 199 + 5k], 1 ≤ k ≤ nI with nI = 60. The error in A is presented in
the right plot of Figure 5.6. We observe that – compared to the previous run – the
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Compute snapshot 359
Compute POD basis of rank ℓ = 65 36
Run 5.1 254
Run 5.2 301
Run 5.3 261

Table 5.6. CPU-times in seconds.
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Figure 5.7. Run 5.3: Real part (left plot) and imaginary part
(right plot) of the optimal and ideal admittance.

error is slightly enlarged but still smaller than 5%. Note the the CPU time is larger
(although the number of frequency bands is reduced from 100 to 60. Therefore, on
average each optimization solve requires more iterations. ♦

Run 5.3. In the third test run we want to identify the same reference admittance
as in Run 5.1, but now from perturbed measurement data. Instead of (5.4) we
utilize

pm
i = η ln

(

0.01 +

∫

Ik

|ph(xi; f) + εi(f)|2 df

)

, k = 1, . . . , nI,

where εi : I → C, 1 ≤ i ≤ nm, is a perturbation satisfying

|εi(f)|/|ph(xi; f)| ≤ 5% for f ∈ Ik and i = 1, . . . , nm.

For the cost functional we take the same parameters as in Run 5.1. We also choose
the same POD basis as in the previous run. The numerical method stops after
261 seconds. In Figure 5.7 the real and imaginary part of the optimal admittances
as well as the corresponding values for Aid are plotted. The relative error can
be seen in the right plot of Figure 5.8. Again, our initialization strategy reduces
significantly the error for k = 1. In particular, from 25% to 9% for the real part.♦

Appendix

A.1. Proof of Theorem 2.2. To prove the claim of the theorem we make use of
the following two lemmas.
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Figure 5.8. Error in the admittance: Run 5.3.

Lemma A.1. There exists a constant CΓ > 0 such that, for every ϕ ∈ V and
ε > 0, we have

‖ϕ‖2
L2

C
(Γ) ≤

CΓ

ε
‖ϕ‖2

H + CΓε

d
∑

i=1

∥

∥

∥

∂ϕ

∂xi

∥

∥

∥

2

H
.

Proof. The lemma is a complex variant of Lemma 3.3 in [20]. ¤

For given µ ≥ 0 we introduce the parameter-dependent bilinear form Bµ : V ×
V → C as

Bµ(p, ϕ) =

∫

Ω

∇p · ∇ϕ +
(

µ − k2
)

pϕ dx + ̺◦ωA

∫

ΓR

pϕ ds for p, ϕ ∈ V.

Lemma A.2. Suppose that µ > k2 + 2C2
Γ̺2

◦ω
2|A|2 hold, where CΓ has been intro-

duced in Lemma A.1. Then, for every g ∈ H there exists a unique solution p ∈ V
solving

(A.1) Bµ(p, ϕ) =

∫

Ω

gϕdx for all ϕ ∈ V.

If Ω is bounded and convex, p ∈ H2
C
(Ω) holds.

Proof. First, we prove that Bµ is bounded. Therefore, we estimate

∣

∣Bµ(p, ϕ)
∣

∣ ≤
d

∑

i=1

∥

∥

∥

∂p

∂xi

∥

∥

∥

H

∥

∥

∥

∂ϕ

∂xi

∥

∥

∥

H
+

∣

∣µ − k2
∣

∣ ‖p‖H‖ϕ‖H

+
∣

∣̺◦ω(f)A(f)
∣

∣ ‖p‖L2

C
(Γ)‖ϕ‖L2

C
(Γ)

for all p, ϕ ∈ V . From Lemma A.1 with ε = 1 we infer

∣

∣Bµ(p, ϕ)
∣

∣ ≤
(

1 +
∣

∣µ − k2
∣

∣ + 2CΓ̺◦ω|A|
)

‖p‖V ‖ϕ‖V for all p, ϕ ∈ V,



20 S. VOLKWEIN

i.e., Bµ is a bounded bilinear form. Applying Lemma A.1 with ε = 1/(2CΓ̺◦ω|A|)
and using η := µ − k2 − 2C2

Γ̺2
◦ω

2|A|2 > 0 we find

(A.2)

Bµ(p, p) ≥
d

∑

i=1

∥

∥

∥

∂p

∂xi

∥

∥

∥

2

H
+

(

µ − k2
)

‖p‖2
H − ̺◦ω|A| ‖p‖2

L2(Γ;C)

≥ 1

2

d
∑

i=1

∥

∥

∥

∂p

∂xi

∥

∥

∥

2

H
+

(

µ − k2 − 2C2
Γ̺2

◦ω
2|A|2

)

‖p‖2
H

≥ min

(

1

2
, η

)

‖p‖2
V for all p ∈ V,

which implies that Bµ is coercive. Thus, the existence of a unique weak solution
p ∈ V to (2.1) follows from a complex variant of the Lax-Milgram theorem [5,
p. 297]. For the regularity results we refer to [8]. ¤

Remark A.3. If p ∈ V satisfies (A.1) then p is a weak solution to the elliptic
boundary value problem

−∆p +
(

µ − k2
)

p = g in Ω,



̺◦ω

∂p

∂n
= 0 on ΓN,



̺◦ω

∂p

∂n
= Ap on ΓR

for given g ∈ H. ♦

Observe that p solves (2.4a) weakly if and only if

(A.3) Bµ(p, ϕ) =

∫

Ω

(

µp + q
)

ϕ dx for all ϕ ∈ V

holds. Introducing the linear solution operator Sµ : H → H as follows: v = Sµg is
the unique solution to

Bµ(v, ϕ) =

∫

Ω

gϕdx for all ϕ ∈ V.

By Lemma A.2 the operator Sµ is well-defined. Moreover, we infer from µ >
k2 + 2C2

Γ̺2
◦ω

2|A|2 and (A.2) that for given g ∈ H and for p = Sµ(g) we have

1

2
min

(

1, 2η) ‖p‖2
V ≤ Bµ(p, p) =

∫

Ω

gp dx ≤ ‖g‖H‖p‖H ≤ ‖g‖H‖p‖V

i.e.,

‖Sµ(g)‖H ≤ ‖Sµ(g)‖V ≤ 2

min(1, 2η)
‖g‖H .

Therefore, Sµ is also bounded. Since p = Sµ(g) belongs to V and V is compactly
embedded into H, we conclude that Sµ is also a compact operator.

The function p solves (2.4a) weakly if and only if

(A.4) p = Sµ(µp + q) = µSµ(p) + Sµ(q) in H.

or, equivalently

(A.5) p − µSµ(p) = Sµ(q) in H.
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We set h = Sµ(q) ∈ V ⊂ H. Since Sµ is compact, we can apply the Fredholm
alternative [5, p. 641]: either

(A.6) for each h ∈ V the equation p − µSµ(p) = h has a unique solution p ∈ H

or else

(A.7) the equation p − µSµ(p) = 0 has nonzero solutions in H.

If (A.6) hold, then it follows from (A.3), (A.4) and (A.5) that there exists a unique
weak solution to (2.4-a). On the other hand, if (A.7) is satisfied, then µ 6= 0 holds
and the dimension of the space N of the solutions to (A.7) is finite [5, p. 641] and
equals the dimension of the space N∗ of solutions to

(A.8) λ − µSµ(λ) = 0 in H,

where S∗
µ : H → H denotes the adjoint operator to Sµ. Note that p solves (A.7)

if and only if p is a weak solution to (2.5-a). Furthermore, λ satisfies (A.8) if and
only if λ is a weak solution to (2.6).

Finally, it follows from the Fredholm alternative that (A.6) has a solution if and
only if

〈h, λ〉H = 〈Sµ(q), λ〉H = 〈q, S∗
µ(λ)〉

H
=

1

µ
〈q, λ〉H .

Hence, (2.4a) has a solution provided 〈q, λ〉H = 0 for all weak solutions to (2.6).

A.2. Proof of Theorem 2.9. By Assumptions 1 and 2 the set Xad is non-empty.
Hence, there exists a minimizing sequence {xn}n∈N in Xad with xn = (pn, An) so
that

0 ≤ inf
x∈F(P)

J(x) = lim
n→∞

J(xn) < ∞.

Since An ∈ Aad holds for all n, the sequence {An}n∈N is bounded in C. By As-
sumption 1, the sequence {pn}n∈N is bounded in P. Furthermore, we infer from As-
sumption 2 and from the boundedness of {An}n∈N that the sequence {pn(xi; ·)}n∈N

is bounded in Hs
C
(I). Using Remark 2.8, part 1), it follows that there exist a sub-

sequence {xnk}k∈N with xnk = (pnk , Ank) and an element x∗ = (p∗, A∗) ∈ X such
that

lim
k→∞

∫

I

〈pnk(f) − p∗(f), ϕ(f)〉V df = 0 for all ϕ ∈ V,(A.9a)

lim
k→∞

‖pnk(xi; ·) − p∗(xi; ·)‖L2

C
(I) = 0 for 1 ≤ i ≤ nm,(A.9b)

lim
k→∞

∫

I

〈pnk(f) − p∗(f), ϕ(f)〉L2

C
(ΓR) df = 0 for all ϕ ∈ V,(A.9c)

lim
k→∞

∣

∣Ank − A∗
∣

∣

C
= 0,(A.9d)

where we have used Lemma A.1, p|Γ ∈ L2(0, T ;H
1/2
C

(Γ)) and the Sobolev embed-
ding theorem [1, p. 144]. Since Aad is closed in C, we have A∗ ∈ Aad. Moreover,
we infer from (A.9a) that

(A.10) lim
k→∞

∫

I

(

∫

Ω

∇pnk · ∇ϕ − k2pnkϕ dx
)

df = 0 for all ϕ ∈ V.
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Recall that ω ≤ 2πfb for f ∈ I. Utilizing (A.9c), (A.9d), and Lemma A.1 imply
the existence of a constant C > 0 satisfying

(A.11)

∣

∣

∣

∣

̺◦
(

Ank − A∗
)

∫

I

(

ω

∫

Ω

pnkϕ ds
)

df

∣

∣

∣

∣

≤ ̺◦2πfb

∣

∣Ank − A∗
∣

∣

C
‖pnk‖L2(I;L2

C
(ΓR))‖ϕ‖L2(I;L2

C
(ΓR))

≤ ̺◦2πfbC
∣

∣Ank − A∗
∣

∣

C
‖pnk‖

V
‖ϕ‖

V
→ 0 as k → ∞

for all ϕ ∈ V. Using (A.9c) we conclude

(A.12) lim
k→∞

∣

∣

∣

∣

̺◦A
∗

∫

I

(

ω

∫

ΓR

(

pnk − p∗
)

ϕds
)

df

∣

∣

∣

∣

= 0 for all ϕ ∈ V.

Combining (A.10)–(A.12) it follows that

lim
k→∞

〈e(xnk) − e(x∗), ϕ〉
V′,V = 0 for all ϕ ∈ V.

Due to e(xnk) = 0 in V′ for all k we have e(x∗) = 0 in V′. Thus, x∗ ∈ F(P). By
(A.9b) we conclude that

(A.13) lim
k→∞

Ci(p
nk) = Ci(p

∗) for 1 ≤ i ≤ nm.

Hence, it follows from (A.9d) and (A.13) that

inf
x∈F(P)

J(x) = lim
k→∞

J(xnk) = J(x∗),

i.e., x∗ = (p∗, A∗) is a (global) solution to (P). ¤

A.3. Proof of Proposition 3.1. Recall that the operators Ci, 1 ≤ i ≤ nm, have
been introduced in (2.8). To prove differentiability properties of the cost functional
we make use of the following lemma.

Lemma A.4. Then, for every i ∈ {1, . . . , nm} the operator Ci : P → R is twice
Fréchet-differentiable. Its first and second Fréchet derivatives are given by

C′
i(p)pδ =

2ηℜe
( ∫

I

∫

Ω
ppδ dµidf

)

γi + ‖p(xi; ·)‖2
L2

C
(I)

,(A.14a)

C′′
i (p)(p̃δ, pδ) =

2ηℜe
( ∫

I

∫

Ω
p̃δpδ dµidf

)

γi + ‖p(xi; ·)‖2
L2

C
(I)

− 4ηℜe
( ∫

I

∫

Ω
pp̃δ dµidf

)

ℜe
( ∫

I
ppδ dµidf

)

(

γi + ‖p(xi; ·)‖2
L2

C
(I)

)2

(A.14b)

for any directions pδ, p̃δ ∈ P. Moreover, the second Fréchet-derivative of Ci is
locally Lipschitz-continuous on P.

Proof. Let i ∈ {1, . . . , nm}. We introduce the operator Di : P → R by

Di(p) = γi + ‖p(xi; ·)‖2
L2

C
(I) for p ∈ P.
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It follows by standard arguments that Di is twice Fréchet-differentiable. Its first
and second Fréchet derivatives at a point p ∈ P are given as

(A.15)

D′
i(p)pδ = 2ℜe

( ∫

I

∫

Ω

p(x; f)pδ(x; f) dµidf

)

,

D′′
i (p)(p̃δ, pδ) = 2ℜe

( ∫

I

∫

Ω

p̃δ(x; f)pδ(x; f) dµidf

)

for any directions pδ, p̃δ ∈ P. Moreover, D′′
i is independent of p. Thus, in particular,

D′′
i is Lipschitz-continuous on P. Notice that Di(p) > 0 and Ci = 2(ln ◦Di). Since

s 7→ ln(s) is three times continuously differentiable on (0,∞), the claim follows
from (A.15) and the chain rule for Fréchet derivatives; see, e.g., [16, p. 176]. ¤

Next we prove Proposition 3.1. Let x = (p,A) be chosen. Utilizing ω ≤ 2πfb for
all f ∈ I and Lemma A.1 with ε = 1 we find

‖e(x + xδ) − e(x) − e′(x)xδ‖V′ = sup
‖ϕ‖

V
=1

∣

∣

∣

∣

̺◦Aδ

∫

I

ω

∫

ΓR

pδϕ dsdf

∣

∣

∣

∣

≤ 2C1 |Aδ|C‖pδ‖V
≤ C1

(

|Aδ|2C + ‖pδ‖2
V

)

≤ C1 ‖xδ‖2
X

for any direction xδ = (pδ, Aδ) ∈ X with the constant C1 = π̺◦fbCΓ > 0. Hence,

lim
‖xδ‖Xց0

‖e(x + xδ) − e(x) − e′(x)xδ‖V′

‖xδ‖X

= 0,

i.e., the operator e is Fréchet-differentiable and its first Fréchet derivative is given
by (A.16). Moreover, we infer from

‖e′(x + x̃δ) − e′(x) − e′′(x)x̃δ‖L(X,V′)

= sup
‖xδ‖X=1

sup
‖ϕ‖

V
=1

∣

∣

∣〈e′(x + x̃δ)xδ − e′(x)xδ − e′′(x)(x̃δ, xδ), ϕ〉V′,V

∣

∣

∣ = 0

that the operator e is also twice Fréchet-differentiable and its second Fréchet de-
rivative is given by

〈e′(x)xδ, ϕ〉V′,V =

∫

I

∫

Ω

∇pδ · ∇ϕ − k2pδϕ dxdf

+ ̺◦

∫

I

ω

∫

ΓR

(

Aδp + Apδ

)

ϕ dsdf,

(A.16)

for any directions xδ = (pδ, Aδ), x̃δ = (p̃δ, Ãδ) ∈ X and for ϕ ∈ V, where the
Fréchet derivatives of the Ci’s are stated in Lemma A.4. Since e′′(x) is independent
of x, the second Fréchet-derivative of e is Lipschitz-continuous on X. Here, L(X,V′)
denotes the Banach space of all bounded linear operators from X to V′. It follows
thatIts first and second Fréchet derivatives at a point x = (p,A) ∈ X are given by

〈e′′(x)(x̃δ, xδ), ϕ〉V′,V = ̺◦

∫

I

ω

∫

ΓR

(

Aδ p̃δ + Ãδpδ

)

ϕ dsdf

for any directions xδ = (pδ, Aδ), x̃δ = (p̃δ, Ãδ) ∈ X and for ϕ ∈ V. The proof for
the cost functional follows directly from the chain rule for Fréchet derivatives [16,
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p. 176] and Lemma A.4. In particular, we find

J ′(x)xδ =
2

nm

nm
∑

i=1

(

Ci(p) − pm
i

)

C′
i(p)pδ + σℜe

(

(A − Â)Aδ

)

,

J ′′(x)(x̃, xδ) =
2

nm

nm
∑

i=1

(

C′
i(p)p̃δ

)(

C′
i(p)pδ

)

+
2

nm

nm
∑

i=1

(

Ci(p) − pm
i

)

C′′
i (p)(p̃δ, pδ) + σℜe

(

ÃδAδ

)

for any directions xδ = (pδ, Aδ), x̃δ = (p̃δ, Ãδ) ∈ X. ¤

A.4. Proof of Theorem 3.4. By Proposition 3.1 and Remark 3.2-2) the reduced

cost functional Ĵ is Fréchet-differentiable. It follows from [15] that first-order nec-

essary optimality conditions for (P̂) are given by

(A.17) ℜe
(

〈Ĵ ′(A∗), A∗ − Aδ〉C

)

≥ 0 for all Aδ ∈ Aad.

Using Proposition 3.1, (3.1), and (3.3) we find for the gradient Ĵ ′ at A∗ ∈ Aad

〈Ĵ ′(A∗), A∗ − Aδ〉C
= 〈∇AJ(x∗), A∗ − Aδ〉C

+ 〈∇pJ(x∗), pδ〉P′,P

= σ〈A∗ − Â, A∗ − Aδ〉C
+

4η

nm

nm
∑

i=1

(

pm
i − Ci(p

∗)
)

γi + ‖p(xi; ·)‖2
L2(I;C)

∫

I

p∗(xi, ·)pδ(xi, ·) df

= σ〈A∗ − Â, A∗ − Aδ〉C
+

∫

I

∫

Ω

∇λ∗ · ∇pδ − k2λ∗pδ dxdf

− ̺◦

∫

I

ωA∗

∫

ΓR

λ∗pδ dsdf

= σ〈A∗ − Â, A∗ − Aδ〉C
+

∫

I

∫

Ω

∇pδ · ∇λ∗ − k2pδλ∗ dxdf

− ̺◦

∫

I

ωA∗

∫

ΓR

λ∗pδ dsdf

= σ〈A∗ − Â, A∗ − Aδ〉C
− ̺◦

∫

I

ω

∫

ΓR

Aδp∗λ∗ dsdf

= σ

〈

A∗ − Â + ̺◦

∫

I

ω

∫

ΓR

λ∗p∗ dsdf,A∗ − Aδ

〉

C

.

Inserting this expression for the gradient into (A.17) we obtain (3.4). ¤
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