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Abstract

We consider an optimal control problem for the time-dependent

Schrödinger equation modeling molecular dynamics. Given a molecule

in its ground state, the interaction with a tuned laser pulse can result in

an excitation to a state of interest. By these means, one can optimize the

yield of chemical reactions. The problem of designing an optimal laser

pulse can be posed as an optimal control problem. We reformulate the op-

timization problem by Fourier-transforming the electric field of the laser

and narrow the frequency band. In this way, we reduce the dimensional-

ity of the control variable. This allows for storing an approximate Hessian

and, thereby, we can solve the optimization problem with a quasi-Newton

method. Such an implementation provides superlinear convergence. We

show computational results for a Raman-transition example and give nu-

merical evidence that our algorithm can outperform the standard Krotov-

like method which does not employ approximative second derivatives.

Key words quantum optimal control · Schrödinger equation · BFGS

1 Introduction

Ever since the introduction of femtosecond lasers in the 1980s, chemists have

had means at hand to watch the motion of nuclei in a molecule. Such exper-

iments reveal processes on the quantum level. These techniques were even

brought one step further when scientists started using ultra-fast laser pulses to

manipulate the state of molecules. Given a molecule in its ground state, the
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interaction with a designed laser pulse can yield an excitation to some target

state. In this way, the quantum state of molecules can be controlled and specific

chemical reactions initiated.

We consider the problems of how to optimally choose the electric field to

get a maximal cross-correlation with a target state and how to make the wave

packet follow a prescribed trajectory. This problem is commonly formulated as

an optimal control problem with the pulse field as the control variable (cf. [22,

Chap. 16.2]).

In quantum control, originally only targets for some final time were ad-

dressed. Shi et al. [18] solved the optimal control problem [11] by a gradient-type

method. Somlói et al. [21] proposed to use the Krotov method [12] for which

they obtained faster convergence. The idea of the Krotov scheme is to solve the

first-order optimality condition for the control parameter and solve the result-

ing equation by fixed-point iteration. Zhu et al. [28, 29] refined this ansatz in a

similar fashion as Gauss–Seidel iteration improves Jacobi’s method. Maday and

Turinici [13] generalized this further and formulated a framework of Krotov-like

methods where the old and the new field are combined in various ways. Later,

Serban et al. [17] also explained how to handle time-dependent targets using the

Krotov method.

One main bottleneck in optimal control procedures used for femtosecond

pulse shaping is the computer memory. The number of time-steps needed for

the simulation is usually very large. Therefore, care has to be taken when the

first-order optimality condition (which requires solution of a primal and a dual

problem) is evaluated, so that the memory consumption is not prohibitive. Fur-

thermore, it is not possible to store an (approximate) Hessian for large time in-

tervals.

In this article, we propose to Fourier transform the pulse and to reformulate

the problem such that the Fourier coefficients are optimized. This type of pro-

cedure imitates the way pulses are normally shaped in an experimental setup

[27, 25] and reduces the dimensionality of the optimization problem since not

all the frequencies that can be resolved in the discrete time domain (that is

chosen for numerical optimization) are actually of interest. Moreover, we pro-

pose to use a memory efficient way of computing the gradient (cf. Ref. [26]).

For solving the reformulated problem, we use a quasi-Newton method with the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) update formula. The BFGS algo-

rithm was applied to quantum optimal control for Bose–Einstein condensate by

von Winckel and Borzì in the context of their study of L2- versus H1-based min-

imization [24].

Note that all the algorithms mentioned above only find local optima. Finding

a global minimizer is even more complicated since then these procedures would

have to be combined with some global optimization strategy.

The outline of this article is as follows. In the next section, we will introduce

the continuous optimization problem. A discretization of the problem is dis-

cussed in Sec. 3. We then describe our implementation of the optimal control
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problem in Sec. 4, and a numerical study for the rubidium diatom demonstrates

the potential of our approach in Sec. 5. Sec. 6 gives some concluding remarks.

2 Optimization Problem

The interaction of a molecule with an electric field is modeled by the time-

dependent Schrödinger equation (TDSE),

iħ
∂

∂t
ψ=

(
Ĥ0 + µ̂ε(t )

)
ψ,

ψ(x,0) =ψ0,

(1)

where Ĥ0 = T̂ ( ∂2

∂x2
i

)+V̂ (x) is the molecular Hamiltonian with kinetic (T̂ ) and po-

tential (V̂ ) energy of the system, µ̂ is the molecular dipole moment vector, and

ε(t ) is the electric field of the laser pulse [22, Chap. 13].

Our goal is to design a laser field that maximizes the transition from the given

initial state to some target state after a certain time t f . Furthermore, we some-

times want to include a time-dependent objective, e.g., penalization of the tran-

sition to some undesired state. Conversely, we can specify a density that should

be maximized. Let us define the generic projection operator

Ô = Ô1(t )+δ(t − t f )t f Ô2,

and formulate the general minimization problem

minimizeε∈L2([0,t f ]) J1(ε,ψ) =
1

t f

∫t f

0
〈ψ(·, t )|Ô|ψ(·, t )〉d t

subject to iħ
∂

∂t
ψ=

(
Ĥ0 + µ̂ε(t )

)
ψ,

ψ(x,0) =ψ0.

(2)

The operator Ô2 projects onto the orthogonal complement of the target state

and Ô1(t ) represents the time-dependent objective. For instance, we can set

Ô1 ≡ 0 and let Ô2 be the projection to the orthogonal complement of a wave-

function φ, i.e.,

J1 = 〈φ−ψ(·, t f )|φ−ψ(·, t f )〉, (3)

to formulate the important special case of finding a laser pulse that yields maxi-

mal overlap with φ at final time.

The optimization problem (2) is generally unbounded: An optimization pro-

cedure would tend to choose pulses with energy tending to infinity. Therefore,

we have to make sure to optimize the quality, not the quantity of the field. We

want to bound the strength
∫t f

0 |ε(t )|2 d t of the laser pulse, and accomplish this

by adding a Tikhonov regularization term [23],

J2(ε) = η

∫t f

0
|ε(t )|2 d t , η> 0,
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to the objective function. The weighting of the total pulse energy by the pa-

rameter η influences the strength of the pulse as well as the properties of the

optimization problem. The larger the value of η the weaker the optimal pulse

will be and the more regular the problem becomes. To summarize, we consider

the following optimization problem,

minimizeε∈L2([0,t f ]) J (ε,ψ) =
1

t f

∫t f

0
〈ψ(·, t )|Ô|ψ(·, t )〉d t

+η

∫t f

0
|ε(t )|2 d t

subject to iħ
∂

∂t
ψ=

(
Ĥ0 + µ̂ε(t )

)
ψ,

ψ(x,0) =ψ0.

(4)

Peirce et al. [15] show existence of an optimal solution to the control problem

(4) for the objective (3). Their proof also applies to more general objectives, as

long as the objective function is weakly lower semicontinuous in ψ.

For the solution of the problem (4), we introduce the Lagrange function,

L (ε,ψ,χ) =
1

t f

∫t f

0
〈ψ(·, t )|Ô|ψ(·, t )〉d t +η

∫t f

0
|ε(t )|2 d t

−2 ·

∫t f

0
ℜ〈χ|

(
∂

∂t
+

i

ħ

(
Ĥ0 + µ̂ε(t )

))
|ψ〉d t .

Variation of L with respect to ψ yields the following adjoint equation for the

Lagrange multiplier χ,

∂

∂t
χ=−

i

ħ

(
Ĥ0 + µ̂ε(t )

)
χ−

1

t f

Ô1(t )ψ(r, t ),

χ(x, t f )= Ô2ψ(x, t f ).

(5)

The TDSE is self-adjoint because the Hamiltonian is symmetric. Hence the dual

equation is well-posed and can be solved by the same means as the primal prob-

lem, but backwards in time. The sensitivity is then given by

δL

δε
=

1

ħ
ℑ

(
〈χ|µ̂|ψ〉

)
+ηε.

The optimality system for the optimal control problem (4) is thus given by the

state equation (1), the adjoint equation (5), and the first order optimality condi-

tion,

1

ħ
ℑ

(
〈χ|µ̂|ψ〉

)
+ηε= 0. (6)
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2.1 Optimization in Fourier Space

The control variable of the optimization problem is the pulse ε(t ). After dis-

cretization in time this is a vector with the value of the pulse at the grid points in

time. The dimensionality of the optimization problem thus corresponds to the

number of time steps. A fruitful complementary view is given by considering

the Fourier-transformed pulse and the amplitudes corresponding to the differ-

ent frequencies. We propose to use the Fourier coefficients as control variables

and to narrow the frequency band, hereby focusing on relevant wave numbers.

A main motivation for examining the Fourier-transformed pulse is the exper-

imental setup for femtosecond pulse shaping. Here, the laser field is split into

different frequencies and each frequency is separately manipulated [27]. Tech-

nical constraints, such as the frequency band of the laser or the assembly of the

shaper, restrict the shapes that can be produced in the laboratory. For this rea-

son, an optimization loop without constrictions of the wave numbers may pro-

pose a pulse that cannot be realized.

Moreover, narrowing the frequency band results in a reduction of the dimen-

sionality of the control variable, which makes the optimization problem both

more regular and less memory-intensive. Physical reasoning can help to iden-

tify the most interesting frequencies when we are seeking to reduce the dimen-

sionality of the control variables. According to Fermi’s Golden Rule (cf. Chap. 14

in [22]), a pulse with an oscillatory frequency corresponding to the energy dif-

ference between initial and target state gives a high transition probability. This

intuitive rule does not include phase information and interference effects of in-

termediate states. Therefore, the solution of the optimal control problem can

usually not be reduced to only one Fourier coefficient. However, in practice, the

interesting frequencies are indeed found around the one given by the Golden

Rule.

Given the domain Ω ⊂R of interesting frequencies, the optimization problem

in Fourier space is given as

minimizeε̂∈L2(Ω) I (ε̂) = 〈ψ(·, t f )−φ,ψ(·, t f )−φ〉+ η̂

∫

Ω

|ε̂(ω)|2 dω

subject to iħ
∂

∂t
ψ=

(
Ĥ0 + µ̂

1

2π

∫

Ω

ε̂(ω)eiωt dω

)
ψ,

ψ(x,0) =ψ0.

(7)

Remark. In pulse shaping by feedback control [8], Fourier coefficients are

often considered as control parameters [1, 19] because the experimental setup

is usually based on grading of the laser pulse.

3 Discretization

To solve the optimal control problem formulated in the previous section, we

have to repeatedly solve the Schrödinger equation and to evaluate the sensitiv-

5



ity. In order to do so numerically, we have to discretize the problem. We will first

describe the discretization scheme and then discuss the discrete formulation of

the optimal control problem.

3.1 Discretization of the Schrödinger Equation

We discretize the Schrödinger equation using the method of lines. A grid in the

spatial dimensions is introduced and we compute the kinetic energy by a pseu-

dospectral method with Fourier basis. After discretization in space, we end up

with a system of ordinary differential equations of the form

d

d t
v =

(
H0 +µε(t )

)
v,

v(0) = v0,

where H0 and µ are matrices representing the molecular Hamiltonian and the

transition dipole moment, respectively, and v0 gives the initial value at the grid

points. Then, we also discretize in time and denote the step length by ∆t and

the number of grid points by N . For sufficiently small time steps, the evolution

operator (propagating the solution from t to t +∆t ) can be computed based on

the Magnus expansion [7]. Truncating the expansion after the first term yields

v(t +∆t )= e−i∆t (H0+µ
∫t+∆t

t ε(τ)dτ)v(t ).

The matrix exponential can efficiently be computed using Strang splitting [16]

which is also known as split operator. Let e = (en)0≤n≤N be a discrete represen-

tation of the pulse. The integral over the pulse on the nth interval can be approx-

imated by ∆t
2 (en +en+1). To sum up, this yields the following standard second-

order time-propagation scheme for discretization of the Schrödinger equation:

un+1 = e−i ∆t
2

T e−i∆t (V + 1
2
µ(en+en+1))e−i ∆t

2
T

︸ ︷︷ ︸
:=Mn (en ,en+1)

un .

There are two main reasons to choose the Strang splitting method. Firstly, the

discrete evolution operator is unitary, i.e., (Mn)∗Mn = I . The numerical method

thus retains the self-adjointness of the continuous problem which will be very

important when formulating the discrete adjoint problem in Sec. 3.2. Moreover,

the TDSE has to be solved hundreds of times during the optimization proce-

dure, and the use of a highly accurate (and computationally more expensive)

method is out of reach. As reported in [10], Strang splitting is very efficient for

low-accuracy computations.

3.2 Discrete Formulation of the Optimal Control Problem

In Sec. 2, the continuous formulation of the optimal control problem resulted in

expression (6) for the gradient. However, discretization and gradient computa-

tion do not commute (cf. Chap. 3.2 in [6] and Chap. 4 in [2]). Therefore, it is often
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favorable to first discretize and then formulate the optimal control problem. By

pursuing this approach, we are provided with the exact gradient information for

the discrete optimization problem (to which we actually apply the numerical

optimization algorithm). To derive this, let us first reconsider the optimization

problem in time domain. We refer to Fisher and Jennings’ work [3] for a detailed

discussion on discrete-time optimal control problems.

As introduced in the previous section, the discrete primal problem is given by

u0 = v0,

un+1 =Mn(en ,en+1)un , n = 0, . . . , N −1.

The discretized objective function then reads

J(e) =∆xuH
N O2uN +

∆x ·∆t

t f

N−1∑

k=0

uH
k O1uk +η ·∆t

N∑

k=0

e2
k .

The primal equation is enforced by using the Lagrangian

L(e) = J(e)−2 ·∆x ·∆tℜ

(
N−1∑

k=0

λH
k+1(Mk (ek ,ek+1)uk −uk+1)

)

,

where

λN =−O2uN ·
1

∆t
,

λn = (Mn(en ,en+1))H λn+1 −
1

T
O1un , n = N −1, . . . ,1.

Exploiting the fact that the evolution operator Mk only depends on components

k and k +1 of e, we can compute the derivative of L with respect to en ,

∂L

∂en
=∆t

(
η ·en −ℜ

(
λH

n+1

∂

∂en
Mnun +λH

n

∂

∂en
Mn−1un−1.

)
·∆x

)
.

For e0 and eN , we will only get the first or the second term within the real part,

respectively. Note also that the evolution operator is symmetric in en and en−1

which is why the first term in ∂L
∂en

is the same as the second term in ∂L
∂en+1

.

We are however actually interested in is the optimization in frequency do-

main for a number of discrete frequencies Ω. To compute the gradient of

I (ê) = J(e) with respect to the Fourier coefficients êω, ω ∈ Ω, we use the chain

rule ∂I
∂êi

=
∂J
∂ei

∂ei

∂êi
. The derivative

∂ei

∂êi
is the same in each iteration and can there-

fore be precomputed.

4 Optimization Algorithm and Implementation

In this section, we discuss the BFGS optimization method and compare it with a

Krotov-like scheme, which is the standard algorithm for quantum optimal con-

trol.
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4.1 BFGS

We use the so-called Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [5]

to solve the optimization problem (7). BFGS is a method for unconstrained

minimization. The method is applicable since we have formulated the opti-

mization problem such that explicit constraints are avoided. This includes the

Schrödinger equation which is not treated as a constraint but as part of the ob-

jective function.

The BFGS method converges superlinearly. It uses the objective function

value as well as its gradient and builds an approximate Hessian. This approx-

imate Hessian makes the method superior compared to first order methods like

conjugate gradient both with respect to convergence properties and sensitiv-

ity to scaling of the optimization parameters. The algorithm is most efficient

when the approximate Hessian can be stored. However, there also exist limited-

memory versions with linear memory consumption that are more suited for

large-scale problems. In our experiments in Sec. 5, we use the implementation

within the Matlab optimization toolbox (Matlab version 7.8).

When using the BFGS algorithm, we have to compute the value of the objec-

tive function as well as the gradient ∇e L ·∇ê e in each iteration. Especially when

computing the gradient, care has to be taken not to use too much computer

memory. This is the subject of the following subsection.

4.2 Memory Efficient Implementation

Computing the gradient involves solving the primal and the dual equation.

Since the primal equation has to be solved forward and the dual backward in

time, it is not possible to compute both problems simultaneously. A straight-

forward implementation would therefore be to first solve the primal problem

saving all the values u j . Then, the dual problem is solved backwards and

the inner product 〈λ j+1, d
de j

M j u j 〉 can be computed step by step. For high-

dimensional problems, storing the forward solution for every time step would

require far too much memory.

However, at the expense of one additional PDE-solving procedure, the gradi-

ent computations can be implemented in a very memory efficient way: First, we

solve the primal problem without saving any intermediate step. This provides

uN as well as λN . Because of the time reversibility of the Schrödinger equation

(and our discretization of it), we can now solve the dual — as well as the primal

— equation backward in time. If we do this simultaneously, we only need the

memory to compute both problems and one additional wave function (for the

computation of the derivative with respect to the control variable). Note that

Werschnik and Gross [26] discuss a similar procedure for the Krotov method.

The algorithm can be summarized as follows:

1. Solve the primal Schrödinger equation for uN
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2. Compute λN from uN

3. For j from N −1 to 0

(a) Compute u j =M ∗
j

u j+1

(b) Compute ∂
∂e j

M j u j

(c) Set temp = 2ℜ〈λ j+1, ∂
∂e j

M j u j 〉

(d) Add temp to ∂L
∂e j

and ∂L
∂e j+1

(e) Compute λ j =M ∗
j
λ j+1

4. Compute ∇eL ·∇êe , where ∇êe can be precomputed.

Note that step 3(e) and 3(a) in the next cycle can be computed in parallel.

4.3 Comparison with the Krotov Method

We now compare our BFGS-based optimization scheme with the Krotov

method. The idea of the latter algorithm is to reformulate the first order opti-

mality condition (6) as

ε(t )=−
1

η ·ħ
ℑ

(
〈χ(t )|µ̂|ψ(t )〉

)
. (8)

This expression is a non-linear equation for the laser field. The Krotov method

solves equation (8) as a fixed point iteration. One starts with some initial guess

— often ε≡ 0 — and then alternately solves for ψ and χ based on a pulse that is

updated in each iteration. There are different strategies for updating the pulse,

summarized in [13], based on two parameters σ and τ. The kth step of a Krotov-

like method reads

iħ
∂

∂t
ψk =

(
Ĥ0 + µ̂εk ,0(t )

)
ψk , ψk (x,0) =ψ0,

εk ,0(t ) = (1−σ)εk−1,1(t )−
σ

η ·ħ
ℑ

(
〈χk−1(t )|µ̂|ψk (t )〉

)
,

iħ
∂

∂t
χk =

(
Ĥ0 + µ̂εk ,1(t )

)
χk −

1

t f

Ô1(t )ψk (r, t ), χk (x, t f ) = Ô2ψ(r, t f ),

εk ,1(t ) = (1−τ)εk ,0(t )−
τ

η ·ħ
ℑ

(
〈χk (t )|µ̂|ψk (t )〉

)
.

For the parameter choice σ = 1 and τ = 0, the original Krotov method [21] is

obtained and, for σ = τ = 1, the algorithm corresponds to the one proposed by

Zhu et al. [28, 29].

We propose to restrict the space of possible pulses by Fourier transforming

and truncating the expansion. Additional constraints entail a global minimum

that is larger or equal the one of the original problem. Naturally, the minimum
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will be equal if all the frequencies that are included in the optimal pulse are

part of the Fourier-coefficient based formulation. Therefore, it is important to

carefully choose the wave numbers that should be included in the reformulated

problem. However, for a good choice of the frequencies, the optimal solution of

the new problem will not be considerably worse.

The memory efficient scheme for the gradient evaluation of Algorithm 4.1 can

also be applied to the original Krotov [9] [20] method (cf. [26]).

We expect the optimization framework described in this article to converge

faster than a Krotov-like method, since the BFGS algorithm converges superlin-

early thanks to an approximation of the Hessian, whereas the Krotov method is

entirely based on the first order optimality conditions. A numerical comparison

is provided in Sec. 5.1.

Remark. Zhu et al. [28] claim quadratic convergence of their implementation

of the Krotov method. However, the underlying definition of the convergence

rate does not comply with the standard definition (cf., e.g., [5, Chap. 2.5]).

5 Numerical Results

In this section, we consider two different configurations of the rubidium dimer

(Rb2). In both cases, we want to design a pulse that maximizes some cross-

correlation at final time. The first setting only considers a final-time objective

and the second problem additionally includes a time-dependent penalization

term.

5.1 Comparison with Krotov-like Method

We consider an example of the Rb2 molecule with three bounded states. The

data is taken from Ref. [4]. Fig. 1 illustrates the configuration of the problem.

In this case, we have the following form of the molecular Hamiltonian

H0 =




T +VX 0 0

0 T +VA X Ab

0 X Ab T +Vb



 ,

with VX , VA, and Vb being the potential energy surfaces (PES) for the ground

state 1
Σ
+
g , the 1

Σ
+
u excited state, and the 3

Πu excited state, respectively. The tran-

sition dipole moment for coupling the first and the second surface is given by

µ=




0 XX A 0

XX A 0 0

0 0 0



 .

The goal is to design a femtosecond laser pulse which maximizes the cross-

correlation with the lowest eigen state on the 3
Πu-surface by exciting the ground

state to the 1
Σ
+
u -state.
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Figure 1: Wavepacket evolution control for Rb2 in Sec. 5.1.

We design a pulse of length 100 fs using both the Krotov-like method by Zhu

and Rabitz [29] and our Fourier-based BFGS method. We use a step size of

∆t = 0.01 fs. Hence, we have 10,000 time steps but we only include the lowest 60

sine and cosine frequencies (i. e., we have 120 control parameters in the BFGS

method versus 10,000 for the Krotov scheme). The penalty parameter η is set to

0.7 which gives a reasonable pulse strength. To compare the performance of the

methods, we view the overlap with the target state as a function of the number

of (gradient) evaluations in Fig. 2. The results show that our method clearly out-

performs the Krotov-like method. The optimized pulses for both methods are

shown in Figs. 4 and 3. In both cases, the pulse is intense in the beginning, after

half the time, and in the end. However, the Krotov method gives a peak also after

about one quarter of the time.

5.2 Results for a time-dependent target

In this section, we consider the Rb2 molecule involving different electronic

states. We want to achieve a Raman-like transition from the lowest to the next-

lowest eigenstate of the first level via excitation to the 1
Σ
+
u -state, while excitation

to the 1
Πg -state should be avoided. The configuration is displayed in Fig. 5.

In our computations, we dismiss interactions with additional electronic states.

A similar problem was considered in Ref. [14] and tackled with a Krotov-like

method.

For our computations, we take a maximum time t f = 500 fs and a time step

size of ∆t = 0.01 fs. On this time grid, we include the wave numbers 101–420

(sine and cosine) and optimize the corresponding Fourier-coefficients.
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Figure 2: Comparison of the convergence properties of Krotov(– –) and BFGS(—).
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Figure 3: Pulse optimized with Fourier-coefficient based BFGS method.
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Figure 5: Configuration of optimization problem in Sec. 5.2.

13



100 150 200 250 300 350 400
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

wave number

F
ou

rie
r 

co
ef

fic
ie

nt

 

 

cosine
sine

Figure 6: Fourier coefficients of optimized pulse for time-dependent target.

The BFGS algorithm stops after 161 iterations (172 function and gradient eval-

uations). The resulting Fourier coefficients are shown in Fig. 6 and the corre-

sponding pulse can be seen in Fig. 7. Employing this pulse the molecule is trans-

fered to the target state with a probability of 99.3%. During the simulation time

an average fraction of 3.3·10−4 of the wave packet is on the forbidden state (1
Πg ).

In order to study the effect of the time-dependent penalty term, we perform

the same experiment including only the final-time objective. In this case, the

optimization procedure stops after 248 iterations (317 evaluations). We then get

a transition probability of 99.5% and an average population of the 1
Πg state of

2.2·10−3. Thus, the penalty term indeed enforces a solution with less population

on the unwanted state.

Comparing our results with the ones obtained for a much longer time span in

Ref. [14], we see that we reach almost as high transfer probability. Comparing

the number of iterations required in the algorithm, our results are obtained with

less operations in the time-dependent but more in the time-independent target

case. Note however that the authors of Ref. [14] selected the initial value as well

as the weighting of the penalty term in a very specific way, employing advanced

knowledge about the system whereas our algorithm starts off from a random ini-

tial guess. It is obvious that the number of iterations needed can be drastically

reduced by choosing a sophisticated starting point. Therefore, it is difficult to

compare the two studies. In our computations, we intentionally choose a ran-

dom initial guess to demonstrate that good results can be obtained even with

very little prior knowledge.
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Figure 7: Optimized pulse for time-dependent target.

5.3 Automatic choice of frequencies

The computations discussed so far have been based on a certain choice of the

Fourier coefficients. In this section, we will demonstrate an ad hoc algorithm for

choosing these frequencies automatically.

Let us assume we are only able to include n/2 sine and cosine frequencies

due to memory restrictions. Suppose further we want to search for the most

important frequencies among m > n/2 different frequencies. For simplicity, let

a = 2m/n be an integer. Then, the following strategy can be used:

(i) For j from 1 to a

Solve the optimal control problem including the wave numbers ( j −1)n/2

to j n/2. Record fitness and optimized Fourier coefficients. Use a low tol-

erance or a restriction to a low number of frequencies.

(ii) Identify the n/2 most important frequencies. To do so, take the frequen-

cies with the (in modulus) highest coefficients from each interval. The

higher the fitness value in each interval the more frequency values should

be taken from the corresponding interval.

(iii) Solve the optimal control problem based on the frequencies identified in

(ii).

In order to demonstrate the performance of this frequency search, we apply it

to the Rb2 example discussed in Sec. 5.2, but now with a pulse of length t f = 1 ps.

We assume that n = 500 and consider the wave number span 1–1000. With the

procedure described above, 250 wave numbers within the range 501 to 894 are
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Figure 8: Optimized pulse with automatic frequency choice.

chosen. Based on these frequencies, the optimization routine stops for the pulse

shown in Fig. 8 after 88 iterations (95 gradient evaluations). This pulse yields a

transition to the prescribed state with a probability of 98.9 % and an average

population of 9.1 ·10−5 in the 1
Πg state.

The strategy for frequency identification discussed above is not very elabo-

rate. Nevertheless, it performs satisfactory in the numerical test. An important

parameter is the number of iteration or the tolerance that is set in the prelimi-

nary step (i). One observation is that the algorithm quickly stops for frequency

intervals that are unimportant, so that it is relatively easy to dismiss a whole fre-

quency band. Still, it is not clear how fast more and less important frequencies

can be separated within frequency bands that are of importance. Another short-

coming of the presented strategy is that effects that only appear when certain

frequencies (that belong to different problems in (i)) interact, are excluded.

6 Conclusions

We have discussed a reformulation of the quantum optimal control problem to

shape the Fourier coefficients of the pulse. In this way, we can narrow the fre-

quency band to physically and technically relevant wave numbers. By this pro-

cedure, one can make sure that the optimized pulse can be realized in an exper-

imental setup. Furthermore, a reduction of the dimensionality of the (discrete)

control variable is achieved, and it becomes feasible to tackle the optimization

problem using a quasi-Newton method, exploiting its favorable convergence

properties.

16



Our results show that we can reach our target with a high probability even

when starting with a random or zero initial guess. We have also seen that the

algorithm clearly outperforms a Krotov-like method, which is the standard ap-

proach within the field. Furthermore, we demonstrate how to identify the most

important frequencies numerically. The method described is not very elaborate

but exhibits good result in our experiments.

Directions of future work include an automation of the choice of the initial

value, possibly combined with a global optimization strategy. Furthermore, bet-

ter insight in the way different frequencies interact could be valuable for im-

provements in our strategy to identify the most important frequencies.
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