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DISTRIBUTED STOCHASTIC SUBGRADIENT PROJECTION

ALGORITHMS FOR CONVEX OPTIMIZATION

S. SUNDHAR RAM, A. NEDIĆ, AND V. V. VEERAVALLI ∗

Abstract. We consider a distributed multi-agent network system where the goal is to minimize
a sum of convex objective functions of the agents subject to a common convex constraint set. Each
agent maintains an iterate sequence and communicates the iterates to its neighbors. Then, each agent
combines weighted averages of the received iterates with its own iterate, and adjusts the iterate by
using subgradient information (known with stochastic errors) of its own function and by projecting
onto the constraint set.

The goal of this paper is to explore the effects of stochastic subgradient errors on the convergence
of the algorithm. We first consider the behavior of the algorithm in mean, and then the convergence
with probability 1 and in mean square. We consider general stochastic errors that have uniformly
bounded second moments and obtain bounds on the limiting performance of the algorithm in mean
for diminishing and non-diminishing stepsizes. When the means of the errors diminish, we prove
that there is mean consensus between the agents and mean convergence to the optimum function
value for diminishing stepsizes. When the mean errors diminish sufficiently fast, we strengthen the
results to consensus and convergence of the iterates to an optimal solution with probability 1 and in
mean square.

Key words. Distributed algorithm, convex optimization, subgradient methods, stochastic ap-
proximation.
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1. Introduction. A number of problems that arise in the context of wired and
wireless networks can be posed as the minimization of a sum of functions, when each
component function is available only to a specific agent [23, 25, 26]. Often, it is not
efficient, or not possible, for the network agents to share their objective functions with
each other or with a central coordinator. In such scenarios, distributed algorithms
that only require the agents to locally exchange limited and high level information
are preferable. For example, in a large wireless network, energy is a scarce resource
and it might not be efficient for a central coordinator to learn the individual objective
functions from each and every agent [23]. In a network of databases from which
information is to be mined, privacy considerations may not allow the sharing of the
objective functions [34]. In a distributed network on a single chip, for the chip to
be fault tolerant, it is desirable to perform the processing in a distributed manner to
account for the statistical process variations [32].

We consider constrained minimization of a sum of convex functions, where each
component function is known partially (with stochastic errors) to a specific network
agent. The algorithm proposed builds on the distributed algorithm proposed in [19]
for the unconstrained minimization problem. Each agent maintains an iterate se-
quence and communicates the iterates to its neighbors. Then, each agent averages
the received iterates with its own iterate, and adjusts the iterate by using subgradi-
ent information (known with stochastic errors) of its own function and by projecting
onto the constraint set. The inter-agent information exchange model is a synchronous
and delayless version of the computational model proposed by Tsitsiklis [30]. The
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algorithm is distributed since there is no central coordinator. The algorithm is local
since each agent uses only locally available information (its objective function) and
communicates locally with its immediate neighbors.

Related to this work are the distributed incremental algorithms, where the net-
work agents sequentially update an iterate sequence in a cyclic or a random or-
der [5, 12, 16, 23, 25]. The effects of stochastic errors on these algorithms have been
investigated in [3, 9, 14, 17, 23, 25, 28]. In an incremental algorithm, there is a single
iterate sequence and only one agent updates the iterate at a given time. Thus, while
being distributed and local, incremental algorithms differ fundamentally from the al-
gorithm studied in this paper (where all agents update simultaneously). Also related
are the optimization algorithms in [2, 31]. However, these algorithms are not local as
the complete objective function information is available to each and every agent, with
the aim of distributing the processing.

The work in this paper is also related at a much broader level to the distributed
consensus algorithms [2,11,13,15,18,20,21,29–31,33]. In these algorithms, each agent
starts with a different value and through local information exchange, the agents even-
tually agree on a common value. The effect of random errors on consensus algorithms
have been investigated in [10, 13, 15, 33]. In addition, since we are interested in the
effect of stochastic errors, our paper is also related to the literature on stochastic
subgradient methods [6–8].

We consider general stochastic errors that have uniformly bounded second mo-
ments and obtain bounds on the limiting performance of the algorithm in mean for
diminishing and non-diminishing stepsizes. When the means of the errors diminish,
we prove that there is mean consensus between the agents and mean convergence to
the optimum function value for diminishing stepsizes. When the mean errors diminish
sufficiently fast, we strengthen the results to consensus and convergence of the iterates
to an optimal solution with probability 1 and in mean square.

Our work expands the multi-agent distributed optimization framework studied
in [19]. The new contributions are: 1) the study of the effects of stochastic errors
in subgradient evaluations; 2) the consideration of constrained optimization problem
within the distributed multi-agent setting. The presence of the constraint set com-
plicates the analysis as it introduces non-linearities in the system dynamics. The
non-linearity issues that we face have some similarities to those in the constrained
consensus problem investigated in [20], though the problems are fundamentally differ-
ent. The presence of subgradient stochastic errors adds another layer of complexity
to the analysis as the errors made by each agent propagate through the network to
every other agent and also across time, making the iterates statistically dependent
across time and agents.

The rest of the paper is organized as follows. In Section 2, we formulate the
problem, describe the algorithm and state our basic assumptions. In Section 3 we
state some results from literature that we use in the analysis, while in Section 4, we
derive two important lemmas that form the backbone of the analysis. In Section 5, we
study the convergence properties of the method in mean, and in Section 6 we focus on
the convergence properties with probability 1 and in mean square. Finally, we discuss
some implications and provide some concluding remarks in Sections 7 and 8.

2. Problem, algorithm and assumptions. In this section, we formulate the
problem of interest and describe the algorithm that we propose. We also state and
discuss our assumptions on the agent connectivity and information exchange.
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2.1. Problem. We consider a network ofm agents that are indexed by 1, . . . ,m.
Often, when convenient, we index the agents by using set V = {1, . . . ,m}. The
network objective is to solve the following constrained optimization problem:

minimize

m
∑

i=1

fi(x)

subject to x ∈ X, (2.1)

where X ⊆ ℜn is a constraint set and fi : X → ℜ for all i. Related to the problem
we use the following notation

f(x) =

m
∑

i=1

fi(x), f∗ = min
x∈X

f(x), X∗ = {x ∈ X : f(x) = f∗}.

We are interested in the case when the problem in (2.1) is convex. Specifically,
we assume that the following assumption holds.

Assumption 1. The functions fi and the set X are such that

(a) The set X is closed and convex.
(b) The functions fi, i ∈ V are defined and convex over an open set that contains

the set X.

The function fi is known only partially to agent i in the sense that the agent can
only obtain a noisy estimate of the function subgradient. The goal is to solve problem
(2.1) using an algorithm that is distributed and local.1

We make no assumption on the differentiability of the functions fi. At points
where the gradient does not exist, we use the notion of subgradients. A vector ∇fi is
a subgradient of fi at a point x ∈ dom f if the following relation holds

∇fi(x)T (y − x) ≤ fi(y)− fi(x) for all y ∈ dom f. (2.2)

Since the set X is contained in an open set over which the functions are defined and
convex, a subgradient of fi exists at any point of the set X (see [1] or [27]).

2.2. Algorithm. To solve the problem in (2.1) with its inherent decentralized
information access, we consider an iterative subgradient method. The iterations are
distributed accordingly among the agents, whereby each agent i is minimizing its con-
vex objective fi over the set X and locally exchanging the iterates with its neighbors.

Let wi,k be the iterate with agent i at the end of iteration k. At the beginning of
iteration k + 1, agent i receives the current iterate of a subset of the agents. Then,
agent i computes a weighted average of these iterates and adjusts this average along
the negative subgradient direction of fi, which is computed with stochastic errors.
The adjusted iterate is then projected onto the constraint set X. Mathematically,
each agent i generates its iterate sequence {wi,k} according to the following relation:

wi,k+1 = PX [vi,k − αk+1 (∇fi (vi,k) + ǫi,k+1)] , (2.3)

starting with some initial iterate wi,0 ∈ X. Here, ∇fi (vi,k) denotes the subgradient of
fi at vi,k and ǫi,k+1 is the stochastic error in the subgradient evaluation. The scalar

1See [25, 26] for wireless network applications that can be cast in this framework.
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αk+1 > 0 is the stepsize and PX denotes the Euclidean projection onto the set X.
The vector vi,k is the weighted average computed by agent i and is given by

vi,k =
∑

j∈Ni(k+1)

ai,j(k + 1)wj,k, (2.4)

where Ni(k+1) denotes the set of agents whose current iterates are available to agent
i in the (k + 1)-st iteration. We assume that i ∈ Ni(k + 1) for all agents and at all
times k. The scalars ai,j(k + 1) are the non-negative weights that agent i assigns to
agent j’s iterate. We will find it convenient to define ai,j(k+1) as 0 for j /∈ Ni(k+1)
and rewrite (2.4) as

vi,k =

m
∑

j=1

ai,j(k + 1)wj,k. (2.5)

This is a “consensus”-based step ensuring that, in a long run, the information of each
fi reaches every agent with the same frequency, directly or through a sequence of local
communications. Due to this, the iterates wj,k become eventually “the same” for all
j and for large enough k. The update step in (2.3) is just a subgradient iteration for
minimizing fi over X taken after the “consensus”-based step.

2.3. Additional assumptions. In addition to Assumption 1, we make some
assumptions on the inter-agent exchange model and the weights. The first assump-
tion requires the agents to communicate sufficiently often so that all the component
functions, directly or indirectly, influence the iterate sequence of any agent. Recall
that we defined Ni(k + 1) as the set of agents that agent i communicates with in
iteration k + 1. Define (V,Ek+1) to be the graph with edges

Ek+1 = {(j, i) : j ∈ Ni(k + 1), i ∈ V }.

Assumption 2. There exists a scalar Q such that the graph (V,∪l=1,...,QEk+l) is
strongly connected for all k.

It is also important that the influence of the functions fi is “equal” in a long
run so that the sum of the component functions is minimized rather than a weighted
sum of them. The influence of a component fj on the iterates of agent i depends
on the weights that agent i uses. To ensure equal influence, we make the following
assumption on the weights.

Assumption 3. For i ∈ V and all k,
(a) ai,j(k + 1) ≥ 0, and ai,j(k + 1) = 0 when j /∈ Ni(k + 1),
(b)

∑m
j=1 ai,j(k + 1) = 1,

(c) There exists a scalar η, 0 < η < 1, such that ai,j(k+1) ≥ η when j ∈ Ni(k+1),
(d)

∑m
i=1 ai,j(k + 1) = 1.

Assumptions 3a and 3b state that each agent calculates a weighted average of
all the iterates it has access to. Assumption 3c ensures that each agent gives a
sufficient weight to its current iterate and all the iterates it receives.2 Assumption 3d,
together with Assumption 2, as we will see later, ensures that all the agents are equally
influential in the long run. In other words, Assumption 3d is crucial to ensure that
∑m

i=1 fi is minimized as opposed to a weighted sum of the functions fi with non-equal
weights. To satisfy Assumption 3d, the agents need to coordinate their weights. Some
coordination schemes are discussed in [19, 25].

2The agents need not be aware of the common bound η.
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3. Preliminaries. In this section, we state some results for future reference.

3.1. Euclidean norm inequalities. For any vectors v1, . . . , vM ∈ ℜn, we have

M
∑

i=1

∥

∥

∥

∥

∥

∥

vi −
1

M

M
∑

j=1

vj

∥

∥

∥

∥

∥

∥

2

≤
M
∑

i=1

‖vi − x‖2 for any x ∈ ℜn. (3.1)

The preceding relation states that the average of a finite set of vectors minimizes the
sum of distances between each vector and any vector in ℜn, which can be verified
using the first-order optimality conditions.

Both the Euclidean norm and its square are convex functions, i.e., for any vectors
v1, . . . , vM ∈ ℜn and nonnegative scalars β1, . . . , βM such that

∑M
i=1 βi = 1, we have

∥

∥

∥

∥

∥

M
∑

i=1

βivi

∥

∥

∥

∥

∥

≤
M
∑

i=1

βi‖vi‖, (3.2)

∥

∥

∥

∥

∥

M
∑

i=1

βivi

∥

∥

∥

∥

∥

2

≤
M
∑

i=1

βi‖vi‖2. (3.3)

The following inequality is the well-known3 non-expansive property of the Euclidean
projection onto a nonempty, closed and convex set X ,

‖PX [x]− PX [y]‖ ≤ ‖x− y‖ for all x, y ∈ ℜn. (3.4)

3.2. Scalar sequences. For a scalar β and a scalar sequence {γk}, we consider

the “convolution” sequence
∑k
ℓ=0 β

k−ℓγℓ = βkγ0 + βk−1γ1 + · · · + βγk−1 + γk. We
have the following result.

Lemma 3.1. Let {γk} be a scalar sequence.

(a) If limk→∞ γk = γ and 0 < β < 1, then limk→∞
∑k

ℓ=0 β
k−ℓγℓ =

γ
1−β .

(b) If γk ≥ 0 for all k,
∑

k γk <∞ and 0 < β < 1, then
∑∞
k=0

(

∑k
ℓ=0 β

k−ℓγℓ

)

< ∞.

(c) If limsupk→∞ γk = γ and {ζk} is a positive scalar sequence with
∑∞

k=1 ζk = ∞,

then limsupK→∞

P

K
k=0

γkζk
P

K
k=0

ζk
≤ γ. In addition, if liminfk→∞ γk = γ, then

limK→∞

PK
k=0

γkζk
P

K
k=0

ζk
= γ.

Proof. (a) Let ǫ > 0 be arbitrary. Since γk → γ and for all k, there is an index K
such that |γk − γ| ≤ ǫ for all k ≥ K. For all k ≥ K + 1, we have

k
∑

ℓ=0

βk−ℓγℓ =
K
∑

ℓ=0

βk−ℓγℓ +
k
∑

ℓ=K+1

βk−ℓγℓ ≤ max
0≤t≤K

γt

K
∑

ℓ=0

βk−ℓ + (γ + ǫ)
k
∑

ℓ=K+1

βk−ℓ.

Since
∑k
ℓ=K+1 β

k−ℓ ≤ 1
1−β and

K
∑

ℓ=0

βk−ℓ = βk + · · ·+ βk−K = βk−K(1 + · · ·+ βK) ≤ βk−K

1− β
,

3See for example [1], Proposition 2.2.1.
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it follows that for all k ≥ K + 1,

k
∑

ℓ=0

βk−ℓγℓ ≤
(

max
0≤t≤K

γt

)

βk−K

1− β
+
γ + ǫ

1− β
.

Therefore,

limsup
k→∞

k
∑

ℓ=0

βk−ℓγℓ ≤
γ + ǫ

1− β
.

Since ǫ is arbitrary, we conclude that limsupk→∞
∑k

ℓ=0 β
k−ℓγℓ ≤ γ

1−β .
Similarly, we have

k
∑

ℓ=0

βk−ℓγℓ ≥ min
0≤t≤K

γt

K
∑

ℓ=0

βk−ℓ + (γ − ǫ)

k
∑

ℓ=K+1

βk−ℓ.

Thus,

liminf
k→∞

k
∑

ℓ=0

βk−ℓγℓ ≥ liminf
k→∞

(

min
0≤t≤K

γt

K
∑

ℓ=0

βk−ℓ + (γ − ǫ)

k
∑

ℓ=K+1

βk−ℓ

)

.

Since
∑K
ℓ=0 β

k−ℓ ≥ βk−K and
∑k
ℓ=K+1 β

k−ℓ =
∑k−(K+1)
s=0 βs, which tends to 1/(1−β)

as k → ∞, it follows that

liminf
k→∞

k
∑

ℓ=0

βk−ℓγℓ ≥
(

min
0≤t≤K

γt

)

lim
k→∞

βk−K + (γ − ǫ) lim
k→∞

k−(K+1)
∑

s=0

βs =
γ − ǫ

1− β
.

Since ǫ is arbitrary, we have liminfk→∞
∑k

ℓ=0 β
k−ℓγℓ ≥ γ

1−β . This and the relation

limsupk→∞
∑k

ℓ=0 β
k−ℓγℓ ≤ γ

1−β , imply

lim
k→∞

k
∑

ℓ=0

βk−ℓγℓ =
γ

1− β
.

(b) Let
∑∞

k=0 γk <∞. For any integer M ≥ 1, we have

M
∑

k=0

(

k
∑

ℓ=0

βk−ℓγℓ

)

=

M
∑

ℓ=0

γℓ

M−ℓ
∑

t=0

βt ≤
M
∑

ℓ=0

γℓ
1

1− β
,

implying that

∞
∑

k=0

(

k
∑

ℓ=0

βk−ℓγℓ

)

≤ 1

1− β

∞
∑

ℓ=0

γℓ <∞.

(c) Since limsupk→∞ γk = γ, for every ǫ > 0 there is a large enough K such that
γk ≤ γ + ǫ for all k ≥ K. Thus, for any M > K,

∑M
k=0 γkζk
∑M
k=0 ζk

=

∑K
k=0 γkζk
∑M
k=0 ζk

+

∑M
k=K+1 γkζk
∑M

k=0 ζk
≤
∑K
k=0 γkζk
∑M

k=0 ζk
+ (γ + ǫ)

∑M
k=K+1 ζk
∑M

k=0 ζk
.
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By lettingM → ∞ and using
∑

k ζk = ∞, we see that limsupM→∞

PM
k=0

γkζk
P

M
k=0

ζk
≤ γ+ǫ,

and since ǫ is arbitrary, the result for the limit superior follows.
Analogously, if liminfk→∞ γk = γ, then for every ǫ > 0 there is a large enough K

such that γk ≥ γ − ǫ for all k ≥ K. Thus, for any M > K,

∑M
k=0 γkζk
∑M
k=0 ζk

=

∑K
k=0 γkζk
∑M
k=0 ζk

+

∑M
k=K+1 γkζk
∑M

k=0 ζk
≥
∑K
k=0 γkζk
∑M

k=0 ζk
+ (γ − ǫ)

∑M
k=K+1 ζk
∑M

k=0 ζk
.

Letting M → ∞ and using
∑

k ζk = ∞, we obtain liminfM→∞

P

M
k=0

γkζk
P

M
k=0

ζk
≥ γ − ǫ.

Since ǫ > 0 is arbitrary, we have liminfM→∞

PM
k=0

γkζk
P

M
k=0

ζk
≥ γ. This relation and the

relation for the limit superior yield limM→∞

P

M
k=0

γkζk
P

M
k=0

ζk
= γ when γk → γ.

3.3. Matrix convergence. Let A(k) be the matrix with (i, j)-th entry equal to
ai,j(k). As a consequence of Assumptions 3a, 3b and 3d, the matrix A(k) is doubly
stochastic4. Define, for all k, s with k ≥ s,

Φ(k, s) = A(k)A(k − 1) · · ·A(s+ 1). (3.5)

We next state a result from [18] (Corollary 1) on the convergence properties of the
matrix Φ(k, s). Let [Φ(k, s)]i,j denote the (i, j)-th entry of the matrix Φ(k, s), and let
e ∈ ℜm be the column vector with all entries equal to 1.

Lemma 3.2. Let Assumptions 2 and 3 hold. Then
1. limk→∞ Φ(k, s) = 1

m
eeT for all s.

2. Further, the convergence is geometric and the rate of convergence is given by
∣

∣

∣

∣

[Φ(k, s)]i,j −
1

m

∣

∣

∣

∣

≤ θβk−s,

where

θ =
(

1− η

4m2

)−2

β =
(

1− η

4m2

)
1
Q

.

3.4. Stochastic convergence. We next state some results that deal with the
convergence of a sequence of random vectors. The first result is the well known Fatou’s
lemma [4].

Lemma 3.3. Let {Xi} be a sequence of non-negative random variables. Then

E

[

liminf
n→∞

Xn

]

≤ liminf
n→∞

E[Xn] .

The next result is due to Robbins and Siegmund (Lemma 11, Chapter 2.2, [22]).
Theorem 3.4. Let {Bk}, {Dk}, and {Hk} be non-negative random sequences

and let {ζk} be a deterministic nonnegative scalar sequence. Let Gk be the σ−algebra
generated by B1, . . . , Bk, D1, . . . , Dk, H1, . . . , Hk. Suppose that

∑

k ζk <∞,

E[Bk+1 | Gk] ≤ (1 + ζk)Bk −Dk +Hk for all k, (3.6)

and
∑

kHk < ∞ with probability 1. Then, the sequence {Bk} converges to a non-
negative random variable and

∑

kDk <∞ with probability 1, and in mean.

4The sum of its entries in every row and in every column is equal to 1.
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4. Basic relations. In this section, we derive two basic relations that form the
basis for the analysis in this paper. The first of them deals with the disagreements
among the agents, and the second deals with the agent iterate sequences.

4.1. Disagreement Estimate. The agent disagreements are typically thought
of as the norms ‖wi,k − wj,k‖ of the differences between the iterates wi,k and wj,k
generated by different agents according to (2.3)–(2.4). Alternatively, the agent dis-
agreements can be measured with respect to a reference sequence, which we adopt
here. In particular, we study the behavior of ‖yk −wi,k‖, where {yk} is the auxiliary
vector sequence defined by

yk =
1

m

m
∑

i=1

wi,k for all k. (4.1)

In the next lemma, we provide a basic estimate for ‖yk−wj,k‖. The rate of convergence
result from Lemma 3.2 plays a crucial role in obtaining this estimate.

Lemma 4.1. Let Assumptions 1a, 2, and 3 hold. Assume that the subgradients
of fi are uniformly bounded over the set X, i.e., there are scalars Ci such that

‖∇fi(x)‖ ≤ Ci for all x ∈ X and all i ∈ V .

Then, for all j ∈ V and k ≥ 0,

‖yk+1 − wj,k+1‖ ≤mθβk+1 max
i∈V

‖wi,0‖+ θ

k
∑

ℓ=1

αℓβ
k+1−ℓ

m
∑

i=1

(Ci + ‖ǫi,ℓ‖)

+
αk+1

m

m
∑

i=1

(Ci + ‖ǫi,k+1‖) + αk+1(Cj + ‖ǫj,k+1‖).

Proof. Define for all i ∈ V and all k,

pi,k+1 = wi,k+1 −
m
∑

j=1

ai,j(k + 1)wj,k. (4.2)

Using the matrices Φ(k, s) defined in (3.5) we can write

wj,k+1 =

m
∑

i=1

[Φ(k + 1, 0)]j,iwi,0 + pj,k+1 +

k
∑

ℓ=1

(

m
∑

i=1

[Φ(k + 1, ℓ)]j,ipi,ℓ

)

. (4.3)

Using (4.2), we can also rewrite yk, defined in (4.1), as follows

yk+1 =
1

m





m
∑

i=1

m
∑

j=1

ai,j(k + 1)wj,k +
m
∑

i=1

pi,k+1





=
1

m





m
∑

j=1

(

m
∑

i=1

ai,j(k + 1)

)

wj,k +

m
∑

i=1

pi,k+1



 .

In the view of the doubly stochasticity of the weights, we have
∑m

i=1 ai,j(k + 1) = 1,
implying that

yk+1 =
1

m





m
∑

j=1

wj,k +
m
∑

i=1

pi,k+1



 = yk +
1

m

m
∑

i=1

pi,k+1.
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Therefore

yk+1 = y0 +
1

m

k+1
∑

ℓ=1

m
∑

i=1

pi,ℓ =
1

m

m
∑

i=1

wi,0 +
1

m

k+1
∑

ℓ=1

m
∑

i=1

pi,ℓ. (4.4)

Substituting for yk+1 from (4.4) and for wj,k+1 from (4.3), we obtain

‖yk+1 − wj,k+1‖ =

‚

‚

‚

‚

‚

1

m

m
X

i=1

wi,0 +
1

m

k+1
X

ℓ=1

m
X

i=1

pi,ℓ

−

 

m
X

i=1

[Φ(k + 1, 0)]j,iwi,0 + pj,k+1 +

k
X

ℓ=1

m
X

i=1

[Φ(k + 1, ℓ)]j,ipi,ℓ

!

‚

‚

‚

‚

‚

=

‚

‚

‚

‚

‚

m
X

i=1

„

1

m
− [Φ(k + 1, 0)]j,i

«

wi,0

+

k
X

ℓ=1

m
X

i=1

„

1

m
− [Φ(k + 1, ℓ)]j,i

«

pi,ℓ +

 

1

m

m
X

i=1

pi,k+1 − pj,k+1

!

‚

‚

‚

‚

‚

.

Therefore, for all j ∈ V and all k,

‖yk+1 −wj,k+1‖ ≤
m
X

i=1

˛

˛

˛

˛

1

m
− [Φ(k + 1, 0)]j,i

˛

˛

˛

˛

‖wi,0‖

+
k
X

ℓ=1

m
X

i=1

˛

˛

˛

˛

1

m
− [Φ(k + 1, ℓ)]j,i

˛

˛

˛

˛

‖pi,ℓ‖+
1

m

m
X

i=1

‖pi,k+1‖+ ‖pj,k+1‖ .

We can bound ‖wi,0‖ ≤ maxi∈V ‖wi,0‖. Further, we can use the rate of conver-
gence result from Lemma 3.2 to bound

∣

∣

1
m

− [Φ(k, ℓ)]j,i
∣

∣ . We obtain

‖yk+1 − wj,k+1‖ ≤mθβk+1 max
i∈V

‖wi,0‖+ θ

k
∑

ℓ=1

βk+1−ℓ
m
∑

i=1

‖pi,ℓ‖

+
1

m

m
∑

i=1

‖pi,k+1‖+ ‖pj,k+1‖ . (4.5)

We next estimate the norms of the vectors ‖pi,k‖ for any k. From the definition
of pi,k+1 in (4.2) and the definition of the vector vi,k in (2.4), we have pi,k+1 =
wi,k+1 − vi,k. Note that, being a convex combination of vectors wj,k in the convex set
X , the vector vi,k is in the set X . By the definition of the iterate wi,k+1 in (2.3) and
the non-expansive property of the Euclidean projection in (3.4), we have

‖pi,k+1‖ = ‖PX [vi,k − αk+1 (∇fi(vi,k) + ǫi,k+1)]− vi,k‖
≤ αk+1 ‖∇fi(vi,k) + ǫi,k+1‖
≤ αk+1 (Ci + ‖ǫi,k+1‖) .

In the last step we have used the subgradient boundedness. By substituting the
preceding relation in (4.5), we obtain the desired relation.

4.2. Iterate Relation. Here, we derive a relation for the distances ‖vi,k+1− z‖
and the function value differences f(yk) − f(z) for an arbitrary z ∈ X. This relation
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together with Lemma 4.1 provides the basis for our subsequent convergence analysis.
In what follows, recall that f =

∑m
i=1 fi.

Lemma 4.2. Let Assumptions 1, 2, and 3 hold. Assume that the subgradients of
fi are uniformly bounded over the set X, i.e., there are scalars Ci such that

‖∇fi(x)‖ ≤ Ci for all x ∈ X and all i ∈ V .

Then, for any z ∈ X and all k,

m
∑

i=1

‖vi,k+1 − z‖2 ≤
m
∑

i=1

‖vi,k − z‖2 − 2αk+1 (f(yk)− f(z))

+2αk+1

(

max
i∈V

Ci

) m
∑

j=1

‖yk − wj,k‖

−2αk+1

m
∑

i=1

ǫTi,k+1(vi,k − z) + α2
k+1

m
∑

i=1

(Ci + ‖ǫi,k+1‖)2 .

Proof. Using the Euclidean projection property in (3.4), from the definition of
the iterate wi,k+1 in (2.3), we have for any z ∈ X and all k,

‖wi,k+1 − z‖2 = ‖PX [vi,k − αk+1 (∇fi(vi,k) + ǫi,k+1)]− z‖2

≤‖vi,k − z‖2 − 2αk+1∇fi(vi,k)T (vi,k − z)− 2αk+1ǫ
T
i,k+1(vi,k − z)

+ α2
k+1 ‖∇fi(vi,k) + ǫi,k+1‖2 .

By using the subgradient inequality in (2.2) to bound the second term, we obtain

‖wi,k+1 − z‖2 ≤‖vi,k − z‖2 − 2αk+1 (fi(vi,k)− fi(z))

− 2αk+1ǫ
T
i,k+1(vi,k − z) + α2

k+1 ‖∇fi(vi,k) + ǫi,k+1‖2 . (4.6)

Note that by the convexity of the squared norm [cf. Eq. (3.3)], we have

m
∑

i=1

‖vi,k+1−z‖2 =
m
∑

i=1

∥

∥

∥

∥

∥

∥

m
∑

j=1

ai,j(k + 2)wj,k+1 − z

∥

∥

∥

∥

∥

∥

2

≤
m
∑

i=1

m
∑

j=1

ai,j(k+2)‖wj,k+1−z‖2.

In view of Assumption 3, we have
∑m

i=1 ai,j(k + 2) = 1 for all j and k, implying that

m
∑

i=1

‖vi,k+1 − z‖2 ≤
m
∑

j=1

‖wj,k+1 − z‖2.

By summing the relations in (4.6) over all i ∈ V and by using the preceding
relation, we obtain

m
∑

i=1

‖vi,k+1 − z‖2 ≤
m
∑

i=1

‖vi,k − z‖2 − 2αk+1

m
∑

i=1

(fi(vi,k)− fi(z))

−2αk+1

m
∑

i=1

ǫTi,k+1(vi,k − z) + α2
k+1

m
∑

i=1

‖∇fi(vi,k) + ǫi,k+1‖2 .(4.7)
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From (2.2) we have

fi(vi,k)− fi(z) ≥ (fi(vi,k)− fi(yk)) + (fi(yk)− fi(z))

≥− ‖∇fi(vi,k)‖‖yk − vi,k‖+ (fi(yk)− fi(z)) . (4.8)

Recall that vi,k =
∑m

j=1 ai,j(k + 1)wj,k [cf. (2.5)]. Substituting for vi,k and using the
convexity of the norm [cf. (3.2)], from (4.8) we obtain

m
∑

i=1

fi(vi,k)− fi(z) ≥−
m
∑

i=1

‖∇fi(vi,k)‖‖yk − vi,k‖+ (f(yk)− f(z))

≥−
m
∑

i=1

‖∇fi(vi,k)‖

∥

∥

∥

∥

∥

∥

yk −
m
∑

j=1

ai,j(k + 1)wj,k

∥

∥

∥

∥

∥

∥

+ (f(yk)− f(z))

≥−
m
∑

i=1

‖∇fi(vi,k)‖
m
∑

j=1

ai,j(k + 1)‖yk − wj,k‖+ (f(yk)− f(z))

≥−
(

max
i∈V

‖∇fi(vi,k)‖
) m
∑

j=1

(

m
∑

i=1

ai,j(k + 1)

)

‖yk − wj,k‖

+ (f(yk)− f(z))

=−
(

max
i∈V

‖∇fi(vi,k)‖
) m
∑

j=1

‖yk − wj,k‖+ (f(yk)− f(z)) .

By using the preceding estimate in relation (4.7), we have

m
∑

i=1

‖vi,k+1 − z‖2 ≤
m
∑

i=1

‖vi,k − z‖2 − 2αk+1 (f(yk)− f(z))

+ 2αk+1

(

max
i∈V

‖∇fi(vi,k)‖
) m
∑

j=1

‖yk − wj,k‖

− 2αk+1

m
∑

i=1

ǫTi,k+1(vi,k − z) + α2
k+1

m
∑

i=1

‖∇fi(vi,k) + ǫi,k+1‖2 .

The result follows by using the subgradient norm boundedness, ‖∇fi(vi,k)‖ ≤ Ci for
all k and i.

5. Convergence in mean. Here, we study the behavior of the iterates gener-
ated by the algorithm, under the assumption that the errors have bounded norms in
mean square. In particular, we assume the following.

Assumption 4. The subgradient errors are uniformly bounded in mean square,
i.e, there are scalars ν̄i such that

E
[

‖ǫi,k+1‖2
]

≤ ν̄2i for all i ∈ V and all k.

Using this assumption, we provide a bound on the expected disagreement E[‖wi,k − yk‖]
for nondiminishing stepsize. We later use this bound to provide an estimate for the
algorithm’s performance in mean. The bound is provided in the following theorem.

Theorem 5.1. Let Assumptions 1a, 2, 3 and 4 hold. Also, let the subgradients
of each fi be uniformly bounded over X, i.e., for each i ∈ V there is Ci such that

‖∇fi(x)‖ ≤ Ci for all x ∈ X.
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If the stepsize {αk} is such that limk→∞ αk = α for some α ≥ 0, then for all j ∈ V ,

limsup
k→∞

E[‖yk+1 − wj,k+1‖] ≤ αmax
i∈V

{Ci + ν̄i}
(

2 +
mθβ

1− β

)

.

Proof. The conditions of Lemma 4.1 are satisfied. Taking the expectation in the
relation of Lemma 4.1 and using the inequality E[‖ǫi,k‖] ≤

√

E[‖ǫi,k‖2] = ν̄i, we obtain
for all j ∈ V and all k,

E[‖yk+1 − wj,k+1‖] ≤mθβk+1 max
i∈V

‖wi,0‖+mθβmax
i∈V

{Ci + ν̄i}
k
∑

ℓ=1

βk−ℓαℓ

+ 2αk+1 max
i∈V

{Ci + ν̄i}. (5.1)

Since limk→∞ αk = α, by Lemma 3.1(a) we have limk→∞
∑k

ℓ=1 β
k−ℓαℓ =

α
1−β . Using

this relation and limk→∞ αk = α, we obtain the result by taking the limit superior in
(5.1) as k → ∞.

When the stepsize is diminishing (i.e., α = 0), the result of Theorem 5.1 implies
that the expected disagreements E[‖yk+1 − wj,k+1‖] converge to 0 for all j. Thus,
there is an asymptotic consensus in mean. We formally state this as a corollary.

Corollary 5.2. Let the conditions of Theorem 5.1 hold with α = 0. Then
limk→∞ E[‖wj,k − yk‖] = 0 for all j ∈ V.

We next obtain bounds on the performance of the algorithm. We make the
additional assumption that the set X is bounded. Thus, the subgradients of each fi
are also bounded (see [1], Proposition 4.2.3).

Note that, under Assumption 4, by Jensen’s inequality we have ‖E[ǫi,k+1] ‖ ≤ ν̄i.
Therefore, under Assumption 4,

limsup
k→∞

‖E[ǫi,k+1] ‖ ≤ ν̄i for all i ∈ V. (5.2)

We have used this relation in our analysis of the agent disagreements in Theorem 5.1.
Using this relation, we obtain special results for the cases when the errors are zero
mean or when their mean is diminishing, i.e., the cases E[ǫi,k+1] = 0 for all i, k, or
limsupk→∞ ‖E[ǫi,k+1] ‖ = 0 for all i.

Theorem 5.3. Let Assumptions 1, 2, 3 and 4 hold. Assume that the set X is
bounded. Let limk→∞ αk = α with α ≥ 0. If α = 0, also assume that

∑

k αk = ∞.
Then, for all j ∈ V ,

liminf
k→∞

E[f(wj,k)] ≤ f∗ + max
x,y∈X

‖x− y‖
m
∑

i=1

µ̄i +mα

(

max
i∈V

{Ci + ν̄i}
)2(

9

2
+

2mθβ

1− β

)

,

where µ̄i = limsupk→∞ ‖E[ǫi,k+1] ‖ and Ci is an upper-bound on the subgradient norms
of fi over the set X.

Proof. Under Assumption 4, the limit superiors µ̄i = limsupk→∞ ‖E[ǫi,k+1] ‖ are
finite [cf. Eq. (5.2)]. Since the set X is bounded the subgradients of fi over the set X
are also bounded for each i ∈ V ; hence, the bounds Ci, i ∈ V on subgradient norms
exist. Thus, the conditions of Lemma 4.2 are satisfied. Further, by Assumption 1,
the set X is contained in the interior of the domain of f , over which the function is
continuous (by convexity; see [27]). Thus, the set X is compact and f is continuous
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over X , implying that the optimal set X∗ is nonempty. Let x∗ ∈ X∗, and let y = x∗

in Lemma 4.2. We have, for all k,

m
∑

i=1

‖vi,k+1 − x∗‖2 ≤
m
∑

i=1

‖vi,k − x∗‖2 − 2αk+1 (f(yk)− f∗)

+2αk+1

(

max
i∈V

Ci

) m
∑

j=1

‖yk − wj,k‖

−2αk+1

m
∑

i=1

ǫTi,k+1(vi,k − x∗) + α2
k+1

m
∑

i=1

(Ci + ‖ǫi,k+1‖)2 .

Since X is bounded, by using ‖vi,k−x∗‖ ≤ maxx,y∈X ‖x− y‖, taking the expectation
and using the error bounds E

[

‖ǫi,k+1‖2
]

≤ ν̄2i we obtain

m
∑

i=1

E
[

‖vi,k+1 − x∗‖2
]

≤
m
∑

i=1

E
[

‖vi,k − x∗‖2
]

− 2αk+1 (E[f(yk)]− f∗)

+2αk+1

(

max
i∈V

Ci

) m
∑

j=1

E[‖yk − wj,k‖]

+2αk+1 max
x,y∈X

‖x− y‖
m
∑

i=1

‖E[ǫi,k+1]‖+ α2
k+1

m
∑

i=1

(Ci + ν̄i)
2 .(5.3)

By rearranging the terms and summing over k = 1, . . . ,K, for an arbitrary K, we
obtain

2

K
∑

k=1

αk+1



(E[f(yk)]− f∗)−
(

max
i∈V

Ci

) m
∑

j=1

E[‖yk − wj,k‖]

− max
x,y∈X

‖x− y‖
m
∑

i=1

‖E[ǫi,k+1]‖ −
mαk+1

2

(

max
i∈V

{Ci + ν̄i}
)2
)

≤
m
∑

i=1

E
[

‖vi,1 − x∗‖2
]

−
m
∑

i=1

E
[

‖vi,K+1 − x∗‖2
]

≤ m max
x,y∈X

‖x− y‖2.

Note that when αk+1 → α and α > 0, we have
∑

k αk = ∞. When α = 0, we have
assumed that

∑

k αk = ∞. Therefore, by letting K → ∞, we have

liminf
k→∞



E[f(yk)]−
(

max
i∈V

Ci

) m
∑

j=1

E[‖yk − wj,k‖]

− max
x,y∈X

‖x− y‖
m
∑

i=1

‖E[ǫi,k+1]‖ −
mαk+1

2

(

max
i∈V

{Ci + ν̄i}
)2
)

≤ f∗.

Using limsupk→∞ ‖E[ǫi,k+1]‖ = µ̄i [see Eq. (5.2)] and limk→∞ αk = α, we obtain

liminf
k→∞

E[f(yk)] ≤f∗ +
mα

2

(

max
i∈V

{Ci + ν̄i}
)2

+

(

max
i∈V

Ci

) m
∑

j=1

limsup
k→∞

E[‖yk − wj,k‖]

+ max
x,y∈X

‖x− y‖
m
∑

i=1

µ̄i.
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Next from the convexity inequality in (2.2) and the boundedness of the subgradients
it follows that for all k and j ∈ V ,

E[f(wj,k)− f(yk)] ≤
(

m
∑

i=1

Ci

)

E[‖yk − wj,k‖] ,

implying

liminf
k→∞

E[f(wj,k)] ≤ f∗ +
mα

2

(

max
i∈V

{Ci + ν̄i}
)2

+

(

max
i∈V

Ci

) m
∑

j=1

limsup
k→∞

E[‖yk − wj,k‖]

+

(

m
∑

i=1

Ci

)

limsup
k→∞

E[‖yk − wj,k‖] + max
x,y∈X

‖x− y‖
m
∑

i=1

µ̄i.

By Theorem 5.1, we have for all j ∈ V ,

limsup
k→∞

E[‖yk − wj,k‖] ≤ αmax
i∈V

{Ci + ν̄i}
(

2 +
mθβ

1− β

)

.

By using the preceding relation, we see that

liminf
k→∞

E[f(wj,k)] ≤f∗ +
mα

2

(

max
i∈V

{Ci + ν̄i}
)2

+ max
x,y∈X

‖x− y‖
m
∑

i=1

µ̄i

+mα

(

max
i∈V

Ci

)

max
i∈V

{Ci + ν̄i}
(

2 +
mθβ

1− β

)

+ α

(

m
∑

i=1

Ci

)

max
j∈V

{Cj + ν̄j}
(

2 +
mθβ

1− β

)

≤ f∗ + max
x,y∈X

‖x− y‖
m
∑

i=1

µ̄i +mα

(

max
i∈V

{Ci + ν̄i}
)2(

9

2
+

2mθβ

1− β

)

.

The network topology influences the error only through the term θβ
1−β and can

hence be used as a figure of merit for comparing different topologies. For a network
that is strongly connected at every time, [i.e., Q = 1 in Assumption 2] and when η
in Assumption 3 does not depend on the number m of agents, the term θβ

1−β is of the

order m2 and the error bound scales as m4.
We next show that stronger bounds can be obtained for a specific weighted time

averages of the iterates wi,k. In particular, we investigate the limiting behavior of

{f(zi,t)}, where zi,t =
Pt

k=1
αk+1wi,k

P

t
k=1

αk+1
. Note that agent i can locally and recursively

evaluate zi,t+1 from zi,t and wi,t+1.

Theorem 5.4. Consider the weighted time averages zj,t =
P

t
k=1

αk+1wj,k
P

t
k=1

αk+1
for j ∈ V

and t ≥ 1. Let the conditions of Theorem 5.3 hold. Then, we have for all j ∈ V,

limsup
t→∞

E[f (zj,t)] ≤ f∗ + max
x,y∈X

‖x− y‖
m
∑

i=1

µ̄i +mα

(

max
i∈V

{Ci + ν̄i}
)2(

9

2
+

2mθβ

1− β

)

.
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Proof. The relation in (5.3) of Theorem 5.3 is valid, and we have for any x∗ ∈ X∗,

m
∑

i=1

E
[

‖vi,k+1 − x∗‖2
]

≤
m
∑

i=1

E
[

‖vi,k − x∗‖2
]

− 2αk+1 (E[f(yk)]− f∗)

+2αk+1

(

max
i∈V

Ci

) m
∑

ℓ=1

E[‖yk − wℓ,k‖]

+2αk+1 max
x,y∈X

‖x− y‖
m
∑

i=1

‖E[ǫi,k+1] ‖+ α2
k+1

m
∑

i=1

(Ci + ν̄i)
2.

From the subgradient boundedness and the subgradient inequality in (2.2) we have
for any j,

E[f(yk)]− E[f(wj,k)] ≥ −
(

m
∑

i=1

Ci

)

E[‖yk − wj,k‖] ≥ −m
(

max
i∈V

Ci

)

E[‖yk − wj,k‖] .

Therefore, we obtain

m
∑

i=1

E
[

‖vi,k+1 − x∗‖2
]

≤
m
∑

i=1

E
[

‖vi,k − x∗‖2
]

− 2αk+1 (E[f(wj,k)]− f∗)

+2αk+1

(

max
i∈V

Ci

)

(

mE[‖yk − wj,k‖] +
m
∑

i=1

E[‖yk − wi,k‖]
)

+2αk+1 max
x,y∈X

‖x− y‖
m
∑

i=1

‖E[ǫi,k+1] ‖+ α2
k+1

m
∑

i=1

(Ci + ν̄i)
2.

By re-arranging these terms, summing over k = 1, . . . , t and dividing with 2
∑t
k=1 αk+1,

we further obtain
t
X

k=1

αk+1E[f(wj,k)]
Pt

k=1
αk+1

≤ f
∗ +

1

2
Pt

k=1
αk+1

m
X

i=1

E
ˆ

‖vi,1 − x
∗‖2
˜

+

t
X

k=1

αk+1 (maxi∈V Ci)
`

mE[‖yk − wj,k‖] +
Pm

i=1
E[‖yk −wi,k‖]

´

Pt

k=1
αk+1

+ max
x,y∈X

‖x− y‖

m
X

i=1

Pt

k=1
αk+1‖E[ǫi,k+1] ‖
Pt

k=1
αk+1

+

Pt

k=1
α2
k+1

2
Pt

k=1
αk+1

m
X

i=1

(Ci + ν̄i)
2
.

Next by the convexity of f note that

f(zj,t) = f

(

t
∑

k=1

αk+1wj,k
∑t

k=1 αk+1

)

≤
t
∑

k=1

αk+1f(wj,k)
∑t

k=1 αk+1

.

From the preceding two relations we obtain

E[f(zj,t)] ≤ f
∗ +

1

2
Pt

k=1
αk+1

m
X

i=1

E
ˆ

‖vi,1 − x
∗‖2
˜

+

t
X

k=1

αk+1 (maxi∈V Ci)
`

mE[‖yk −wj,k‖] +
Pm

i=1
E[‖yk − wi,k‖]

´

Pt

k=1
αk+1

+ max
x,y∈X

‖x− y‖

m
X

i=1

Pt

k=1
αk+1‖E[ǫi,k+1] ‖
Pt

k=1
αk+1

+

Pt

k=1
α2
k+1

2
Pt

k=1
αk+1

m
X

i=1

(Ci + ν̄i)
2
. (5.4)
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First note that in the limit as t → ∞, the second term in (5.4) converges to 0 since
∑t

k=1 αk+1 = ∞. By using the results of Lemma 3.1c, for the remaining terms, we
obtain

limsup
t→∞

E[f(zj,t)] ≤ f∗ +

(

max
i∈V

Ci

)

limsup
k→∞

(

mE[‖yk − wj,k‖] +
m
∑

i=1

E[‖yk − wi,k‖]
)

+ max
x,y∈X

‖x− y‖
m
∑

i=1

limsup
k→∞

‖E[ǫi,k+1] ‖+
α

2

m
∑

i=1

(Ci + ν̄i)
2.

By Theorem 5.1, we have for all j ∈ V ,

limsup
k→∞

E[‖yk − wj,k‖] ≤ αmax
i∈V

{Ci + ν̄i}
(

2 +
mθβ

1− β

)

,

which when substituted in the preceding relation, yields

limsup
t→∞

E[f(zj,t)] ≤ f∗ + 2mα

(

max
i∈V

Ci

)

max
i∈V

{Ci + ν̄i}
(

2 +
mθβ

1− β

)

+ max
x,y∈X

‖x− y‖
m
∑

i=1

limsup
k→∞

‖E[ǫi,k+1] ‖+
α

2

m
∑

i=1

(Ci + ν̄i)
2

≤ f∗ + max
x,y∈X

‖x− y‖
m
∑

i=1

limsup
k→∞

‖E[ǫi,k+1] ‖

+mα

(

max
i∈V

{Ci + ν̄i}
)2(

9

2
+

2mθβ

1− β

)

.

The error bounds in Theorems 5.3 and 5.4 have the same form, but they apply to
different sequences of function evaluations. Furthermore, in Theorem 5.4, the bound
is for all subsequences of E[f(zi,k)] for each agent i. In contrast, in Theorem 5.3, the
bound is only for a subsequence of E[f(zi,k)] for each agent i. Theorem 5.4 demon-
strates that, due to the convexity of the objective function f , there is an advantage
when agents are using the running averages of their iterates.

When the error5 moments ‖E[ǫi,k+1] ‖ converge to zero as k → ∞, and the stepsize
converges to zero [α = 0], Theorems 5.3 and 5.4 yield respectively

liminf
k→∞

E[f(wj,k)] = f∗ and lim
k→∞

E[f(zj,k)] = f∗.

When a constant stepsize α is used, the vector zj,t is simply the running average

of all the iterates of agent j until time t, i.e., zj,t =
1
t

∑t
k=1 wj,k. For this case, with

5 When the moments ‖E
ˆ

ǫi,k+1

˜

‖ are zero, it can be seen that the results of Theorems 5.3 and
5.4 hold when the boundedness of X is replaced by the weaker assumption that the subgradients of
each fi are bounded over X.
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zero mean errors, the relation in (5.4) reduces to

E[f(zj,t)] ≤ f∗ +
1

2tα

m
∑

i=1

E
[

‖vi,1 − x∗‖2
]

+

(

max
i∈V

Ci

)

1

t

t
∑

k=1

(

mE[‖yk − wj,k‖] +
m
∑

i=1

E[‖yk − wi,k‖]
)

+
α

2

m
∑

i=1

(Ci + ν̄i)
2. (5.5)

This can be used to derive an estimate per iteration, as seen in the following.
Corollary 5.5. Under the conditions of Theorem 5.3 with ‖E[ǫi,k+1] ‖ = 0 and

αk = 0 for all i and k, for the average sequences {zj,k} we have for all t and j,

E[f(zj,t)] ≤ f∗ +
1

2tα

m
∑

i=1

E
[

‖vi,1 − x∗‖2
]

+
2m2θβ2

t(1 − β)

(

max
i∈V

Ci

)(

max
i∈V

‖wi,0‖
)

+mα

(

max
i∈V

{Ci + ν̄i}
)2(

9

2
+

2mθβ

1 − β

)

.

Proof. Taking the expectation in the relation of Lemma 4.1, we obtain

E[‖yk+1 − wj,k+1‖] ≤mθβk+1 max
i∈V

‖wi,0‖+mαθβ

(

max
i∈V

{Ci + ν̄i}
) k
∑

ℓ=1

βk−ℓ

+ 2αmax
i∈V

{Ci + ν̄i}

≤mθβk+1 max
i∈V

‖wi,0‖+ α

(

max
i∈V

{Ci + ν̄i}
)(

2 +
mθβ

1− β

)

.

Combining the preceding relation with the inequality in (5.5), and using
∑t
k=1 β

k+1 ≤
β2

1−β , we obtain

E[f(zj,t)] ≤ f∗ +
1

2tα

m
∑

i=1

E
[

‖vi,1 − x∗‖2
]

+
2m2θβ2

t(1 − β)

(

max
i∈V

Ci

)(

max
i∈V

‖wi,0‖
)

+mα

(

max
i∈V

{Ci + ν̄i}
)2(

9

2
+

2mθβ

1 − β

)

.

The preceding equation provides a bound on the algorithm’s performance at each
iteration. The bound can be used in obtaining stopping rules for the algorithm. For
example, consider the error free case (ν̄i = 0) and suppose that the goal is to determine
the number of iterations required for agents to find a point in the ǫ-optimal set, i.e.,
in the set Xǫ = {x ∈ X : f(x) ≤ f∗ + ǫ}. Minimizing the bound in Corollary 5.5
over different stepsize values α, we can show that ǫ-optimality can be achieved in

Nǫ =
⌈

1
ψ2

ǫ

⌉

iterations with a stepsize αǫ =
√
Aψǫ√
C

, where ψǫ is the positive root of the

quadratic equation

Bx2 + 2
√
ACx− ǫ = 0,
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and A,B and C are

A =
1

2

m
∑

i=1

‖vi,1 − x∗‖2, B =
2m2θβ2

1− β

(

max
i∈V

Ci

)(

max
i∈V

‖wi,0‖
)

,

C = m

(

max
i∈V

{Ci + ν̄i}
)2(

9

2
+

2mθβ

1 − β

)

.

Since ψǫ scales as
√
ǫ, we can conclude that Nǫ scales as 1

ǫ2
. Equivalently, we can

say that the level ǫ of sub-optimality diminishes inversely with the square root of the
number of iterations.

6. Almost sure and mean square convergence. In this section, we impose
some additional assumptions on the subgradient errors to obtain almost sure consensus
among the agents and almost sure convergence of the iterates to an optimal solution of
(2.1). Towards this, define Fk to be the σ-algebra σ (ǫi,ℓ; i ∈ V, 0 ≤ ℓ ≤ k) generated
by the errors in the agent system up to time k. In other words, Fk captures the
history of the errors until the end of time k. We use the following assumption on the
subgradient errors ǫi,k.

Assumption 5. There are scalars νi such that E
[

‖ǫi,k+1‖2 | Fk
]

≤ ν2i for all k
with probability 1.

Note that Assumption 5 is stronger than Assumption 4. Furthermore, when the
errors are independent across iterations and across agents, Assumption 5 reduces to
Assumption 4.

We start by analyzing the agents’ disagreements measured in terms of distances
‖yk − wj,k‖. We have the following result.

Theorem 6.1. Let Assumptions 1a, 2, 3 and 5 hold. Suppose that the subgradi-
ents of each fi are uniformly bounded over X, i.e., for each i ∈ V there is Ci such
that

‖∇fi(x)‖ ≤ Ci for all x ∈ X.

If
∑∞

k=0 α
2
k+1 <∞, then with probability 1,

∞
∑

k=1

αk+2‖yk+1 − wj,k+1‖ <∞ for all j ∈ V .

Furthermore, for all j ∈ V , we have limk→∞ ‖yk+1 − wj,k+1‖ = 0 with probability 1
and in mean square.

Proof. By Lemma 4.1 and the subgradient boundedness, we have for all j ∈ V ,

‖yk+1 − wj,k+1‖ ≤mθβk+1 max
i∈V

‖wi,0‖+ θ
k
∑

ℓ=1

βk+1−ℓ
m
∑

i=1

αℓ (Ci + ‖ǫi,ℓ‖)

+
1

m

m
∑

i=1

αk+1 (Ci + ‖ǫi,k+1‖) + αk+1 (Cj + ‖ǫj,k+1‖) .

Using the inequalities

αk+2αℓ (Ci + ‖ǫi,ℓ‖) ≤
1

2

(

α2
k+2 + α2

ℓ (Ci + ‖ǫi,ℓ‖)2
)
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and (Ci + ‖ǫi,ℓ‖)2 ≤ 2C2
i + 2‖ǫi,ℓ‖2, we obtain

αk+2‖yk+1 − wj,k+1‖ ≤αk+2mθβ
k+1 max

i∈V
‖wi,0‖

+ θ
k
∑

ℓ=1

βk+1−ℓ
m
∑

i=1

(

1

2
α2
k+2 + α2

ℓ

(

C2
i + ‖ǫi,ℓ‖2

)

)

+
1

m

m
∑

i=1

(

1

2
α2
k+2 + α2

k+1

(

C2
i + ‖ǫi,k+1‖2

)

)

+
1

2
α2
k+2 + α2

k+1

(

C2
j + ‖ǫj,k+1‖2

)

.

By using the inequalities
∑k

ℓ=1 β
k+1−ℓ ≤ β

1−β for all k ≥ 1 and 1
2m + 1

2 ≤ 1, and by
grouping the terms accordingly, from the preceding relation we have

αk+2‖yk+1 − wj,k+1‖ ≤αk+2mθβ
k+1 max

i∈V
‖wi,0‖+

(

1 +
mθβ

2(1− β)

)

α2
k+2

+ θ

k
∑

ℓ=1

α2
ℓβ

k+1−ℓ
m
∑

i=1

(

C2
i + ‖ǫi,ℓ‖2

)

+
1

m
α2
k+1

m
∑

i=1

(

C2
i + ‖ǫi,k+1‖2

)

+ α2
k+1

(

C2
j + ‖ǫj,k+1‖2

)

.

Taking the conditional expectation and using E
[

‖ǫi,ℓ‖2 | Fℓ−1

]

≤ ν2i , and then taking
the expectation again, we obtain

E[αk+2‖yk+1 − wj,k+1‖] ≤αk+2mθβ
k+1 max

i∈V
‖wi,0‖+

(

1 +
mθβ

2(1− β)

)

α2
k+2

+ θ

(

m
∑

i=1

(

C2
i + ν2i

)

)

k
∑

ℓ=1

α2
ℓ β

k+1−ℓ

+
1

m
α2
k+1

m
∑

i=1

(

C2
i + ν2i

)

+ α2
k+1

(

C2
j + ν2j

)

.

Since
∑

k α
2
k < ∞ (and hence {αk} bounded), the first two terms and the last two

terms are summable. Furthermore, in view of Lemma 3.1 [part (b)], we have

∞
∑

k=1

k
∑

ℓ=1

βk+1−ℓα2
ℓ <∞.

Thus, the third term is also summable. Hence
∑∞

k=1 E[αk+2‖yk+1 − wj,k+1‖] < ∞.
From the monotone convergence theorem [4], it follows that

E

[ ∞
∑

k=1

αk+2‖yk+1 − wj,k+1‖
]

=
∞
∑

k=1

E[αk+2‖yk+1 − wj,k+1‖] ,

and it is hence finite for all j. If the expected value of a random variable is finite,
then the variable has to be finite with probability 1; thus, with probability 1,

∞
∑

k=1

αk+2‖yk+1 − wj,k+1‖ <∞ for all j ∈ V. (6.1)
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We now show that limk→∞ ‖yk −wj,k‖ = 0 with probability 1 for all j ∈ V. Note
that the conditions of Theorem 5.1 are satisfied with ν̄i = νi and α = 0. Therefore,
‖yk −wj,k‖ converges to 0 in the mean and from (Fatou’s) Lemma 3.3 it follows that

0 ≤ E

[

liminf
k→∞

‖yk − wj,k‖
]

≤ liminf
k→∞

E[‖yk − wj,k‖] = 0,

and hence E[liminfk→∞ ‖yk − wj,k‖] = 0. Therefore, with probability 1,

liminf
k→∞

‖yk − wj,k‖ = 0. (6.2)

To complete the proof, in view of (6.2) it suffices to show that ‖yk − wj,k‖ con-
verges with probability 1. To show this, we define

ri,k+1 =

m
∑

j=1

ai,j(k + 1)wj(k)− αk+1 (∇fi (vi,k) + ǫi,k+1) ,

and note that PX [ri,k+1] = wi,k+1 [see (2.3) and (2.4)]. Since yk = 1
m

∑m
i=1 wi,k and

the set X is convex, it follows that yk ∈ X for all k. Therefore, by the non-expansive
property of the Euclidean projection in (3.4), we have ‖wi,k+1−yk‖2 ≤ ‖ri,k+1−yk‖2
for all i ∈ V and all k. Summing these relations over all i, we obtain

m
∑

i=1

‖wi,k+1 − yk‖2 ≤
m
∑

i=1

‖ri,k+1 − yk‖2 for all k.

From yk+1 = 1
m

∑m
i=1 wi,k+1 and the fact that the average of vectors minimizes the

sum of distances between each vector and arbitrary vector in ℜn [cf. Eq (3.1)], we
further obtain

m
∑

i=1

‖wi,k+1 − yk+1‖2 ≤
m
∑

i=1

‖wi,k+1 − yk‖2.

Therefore, for all k,

m
∑

i=1

‖wi,k+1 − yk+1‖2 ≤
m
∑

i=1

‖ri,k+1 − yk‖2. (6.3)

We next relate
∑m

i=1 ‖ri,k+1 − yk‖2 to
∑m
i=1 ‖wi,k − yk‖2. From the definition of

ri,k+1 and the equality
∑m
j=1 ai,j(k + 1) = 1 [cf. Assumption 3b], we have

ri,k+1 − yk =

m
∑

j=1

ai,j(k + 1) (wj,k − yk)− αk+1 (∇fi(vi,k) + ǫi,k+1)

By Assumption 3a and 3b, we have that the weights ai,j(k + 1), j ∈ V yield a con-
vex combination. Thus, by the convexity of the norm [(3.2) and (3.3)] and by the
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subgradient boundedness, we have

‖ri,k+1 − yk‖2 ≤
m
∑

j=1

ai,j(k + 1) ‖wj,k − yk‖2 + α2
k+1 ‖∇fi(vi,k) + ǫi,k+1‖2

+ 2αk+1 ‖∇fi(vi,k) + ǫi,k+1‖
m
∑

j=1

ai,j(k + 1) ‖wj,k − yk‖

≤
m
∑

j=1

ai,j(k + 1) ‖wj,k − yk‖2 + 2α2
k+1

(

C2
i + ‖ǫi,k+1‖2

)

+ 2αk+1 (Ci + ‖ǫi,k+1‖)
m
∑

j=1

ai,j(k + 1) ‖wj,k − yk‖ .

Summing over all i and using
∑m

i=1 ai,j(k + 1) = 1 [cf. Assumption 3d], we obtain

m
∑

i=1

‖ri,k+1 − yk‖2 ≤
m
∑

j=1

‖wj,k − yk‖2 + 2α2
k+1

m
∑

i=1

(

C2
i + ‖ǫi,k+1‖2

)

+ 2αk+1

m
∑

i=1

(Ci + ‖ǫi,k+1‖)
m
∑

j=1

ai,j(k + 1) ‖wj,k − yk‖ .

Using this in (6.3) and taking the conditional expectation, we see that for all k, we
have with probability 1,

m
∑

i=1

E
[

‖wi,k+1 − yk+1‖2 | Fk
]

≤
m
∑

i=1

‖wi,k − yk‖2 + 2α2
k+1

m
∑

i=1

(

C2
i + ν2i

)

+ 2αk+1

m
∑

i=1

(Ci + νi)

m
∑

j=1

‖wj,k − yk‖ , (6.4)

where we use ai,j(k+1) ≤ 1 for all i, j and k, and the relations E
[

‖ǫi,k+1‖2 | Fk
]

≤ ν2i ,
E[‖ǫi,k+1‖ | Fk] ≤ νi holding with probability 1.

We now apply Theorem 3.4 to the relation in (6.4). To verify that the conditions of
Theorem 3.4 are satisfied, note that the stepsize satisfies

∑∞
k=1 α

2
k+1 <∞ for all i ∈ V.

We also have
∑∞

k=1 αk+1 ‖wj,k − yk‖ < ∞ with probability 1 [cf. (6.1)]. Therefore,
the relation in (6.4) satisfies the conditions of Theorem 3.4 with ζk = Dk = 0, thus
implying that ‖wj,k − yk‖ converges with probability 1 for every j ∈ V.

Let us compare Theorem 6.1 and Corollary 5.2. Corollary 5.2 provided suffi-
cient conditions for the different agents to have consensus in the mean. Theorem 6.1
strengthens this to consensus with probability 1 and in mean square sense, for a
smaller class of stepsize sequences under a stricter assumption.

We next show that the consensus vector is actually in the optimal set, provided
that the optimal set is nonempty and the conditional expectations ‖E[ǫi,k+1 | Fk] ‖
are diminishing.

Theorem 6.2. Let Assumptions 1, 2, 3 and 5 hold. Suppose that the subgradients
of each fi are uniformly bounded over X, i.e., for each i ∈ V there is Ci such that

‖∇fi(x)‖ ≤ Ci for all x ∈ X.

Also, assume that
∑∞
k=0 ‖E[ǫi,k+1 | Fk] ‖2 < ∞ for all i ∈ V. Further, let the stepsize

sequence {αk} be such that
∑∞

k=1 αk = ∞ and
∑∞

k=1 α
2
k < ∞. Then, if the optimal
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set X∗ is nonempty, the iterate sequence {wi,k} of each agent i ∈ V converges to the
same optimal point with probability 1 and in mean square.

Proof. Observe that the conditions of Lemma 4.2 are satisfied. Letting z = x∗

for some x∗ ∈ X∗, taking conditional expectations and using the bounds on the error
moments, we obtain for any x∗ ∈ X∗ and any k, with probability 1,

m
∑

i=1

E
[

‖vi,k+1 − x∗‖2 | Fk
]

≤
m
∑

i=1

‖vi,k − x∗‖2 − 2αk+1 (f(yk)− f∗)

+2αk+1

(

max
i∈V

Ci

) m
∑

j=1

‖yk − wj,k‖

+2αk+1

m
∑

i=1

µi,k+1‖vi,k − x∗‖+ α2
k+1

m
∑

i=1

(Ci + νi)
2
,

where f∗ = f(x∗), and we use the notation µi,k+1 = ‖E[ǫi,k+1 | Fk] ‖. Using the
inequality

2αk+1µi,k+1‖vi,k − x∗‖ ≤ α2
k+1‖vi,k − x∗‖2 + µ2

i,k+1,

we obtain with probability 1,

m
∑

i=1

E
[

‖vi,k+1 − x∗‖2 | Fk
]

≤
m
∑

i=1

(

1 + α2
k+1

)

‖vi,k − x∗‖2

− 2αk+1



(f(yk)− f∗)−
(

max
i∈V

Ci

) m
∑

j=1

‖yk − wj,k‖

+

m
∑

i=1

µ2
i,k+1 −

1

2
αk+1

m
∑

i=1

(Ci + νi)
2

)

. (6.5)

By Theorem 6.1, we have with probability 1,
∑

k

αk+1‖wj,k − yk‖ <∞.

Further, since
∑

k µ
2
i,k < ∞ and

∑

k α
2
k < ∞ with probability 1, the relation in (6.5)

satisfies the conditions of Theorem 3.4. We therefore have
∑

k

αk(f(yk)− f∗) <∞, (6.6)

and ‖vi,k − x∗‖ converges with probability 1 and in mean square. In addition, by
Theorem 6.1, we have limk→∞ ‖wi,k − yk‖ = 0 for all i, with probability 1. Hence,
limk→∞ ‖vi,k − yk‖ → 0 for all i, with probability 1. Therefore, ‖yk − x∗‖ converges
with probability 1 for any x∗ ∈ X∗. Moreover, from (6.6) and the fact that

∑

k αk =
∞, by continuity of f , it follows that yk, and hence wi,k, must converge to a vector
in X∗ with probability 1 and in mean square.

Note that the result of Theorem 6.2 holds without assuming compactness of the
constraint set X . This was possible due to the assumption that both the stepsize
αk and the norms ‖E[ǫi,k+1 | Fk] ‖ of the conditional errors are square summable.
In addition, note that the result of Theorem 6.2 remains valid when the condition
∑∞

k=0 ‖E[ǫi,k+1 | Fk] ‖2 <∞ for all i is replaced with
∑∞

k=0 αk+1‖E[ǫi,k+1 | Fk] ‖ <∞
for all i.
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7. Implications. The primary source of stochastic errors in the subgradient
evaluation is when the objective function is not completely known and has some
randomness in it. Such settings arise in sensor network applications that involve
distributed and recursive estimation [24].

Let the function fi(x) be given by fi(x) = E[gi(x,Ri)] , where Ri is a random
variable whose statistics are independent of x. The statistics of Ri are not available
to agent i and hence the function fi is not known to agent i. Instead, agent i ob-
serves samples of Ri in time. Thus, in a subgradient algorithm for minimizing the
function, the subgradient must be suitably approximated using the observed samples.
In the Robbins-Monro stochastic approximation [22], the subgradient ∇fi(x) is ap-
proximated by ∇gi(x, ri), where ri denotes a sample of Ri. The associated distributed
Robbins-Monro stochastic optimization algorithm is

wi,k+1 = PX [vi,k − αk+1∇gi (vi,k, ri,k+1)] , (7.1)

where ri,k+1 is a sample of Ri obtained at time k. The expression for the error is

ǫi,k+1 = ∇gi(vi,k, ri,k+1)− E[∇gi(vi,k, Ri)] .

If the samples obtained across iterations are independent then

E[ǫi,k+1 | Fk] = E[ǫi,k+1 | vi,k] = 0.

If in addition, Var[∇gi(x,Ri)] is bounded for all x ∈ X then the conditions of Theo-
rems 5.3, 5.4 and 6.2 are satisfied.

Let us next consider the case when fi(x) = E[gi(x,Ri(x))] , where Ri(x) is a
random variable that is parameterized by x. To keep the discussion simple, let us
assume that x ∈ ℜ. As in the preceding case, the statistics of Ri(x) are not known
to agent i, but the agent can obtain samples of Ri(x) for any value of x. In the
Kiefer-Wolfowitz approximation [22],

∇fi(x) ≈
gi (x, ri(x+ β))− gi (x, ri(x))

β
,

where ri(x) is a sample of the random variable Ri(x). The corresponding distributed
optimization algorithm is

wi,k+1 = PX

[

vi,k − αk+1
gi (vi,k, ri(vi,k + βi,k+1))− gi (vi,k, ri(vi,k))

βi,k+1

]

,

where βi,k+1 is a positive scalar. In this case, the error is

ǫi,k+1 =
gi (vi,k, ri(vi,k + βi,k+1))− gi (vi,k, ri(vi,k))

βi,k+1
−∇fi(vi,k).

If the function gi is differentiable then E[ǫi,k+1 | vi,k] is of the order βi,k+1. Thus, the
conditions on the mean value of the errors can be controlled through the sequence
{βi,k} and the conditions in Theorems 5.3, 5.4 and 6.2 can be met by suitably choosing
the sequence {βi,k}.
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8. Discussion. We studied the effects of stochastic subgradient errors on dis-
tributed algorithm for network of agents with time-varying connectivity. We first
considered very general errors with bounded second moments and obtained explicit
bounds on the agent disagreements and on the expected deviation of the limiting
function value from the optimal. The bounds are explicitly given as a function of
the network properties, objective function and the error moments. For networks that
are connected at all times and η is independent of the size of the network, the bound
scales as α (maxi∈V {Ci + νi})2m4, wherem is the number of agents in the network, α
is the stepsize limit, and Ci and ν

2
i are respectively the subgradient norm bound and

the bound on the second moment of the subgradient errors for agent i. For the con-
stant stepsize case, we obtained a bound on the performance of the algorithm after a
finite number of iterations. There, we showed that deviation from the “error-bound”
diminishes at rate 1

t
, where t is the number of iterations. Finally, we proved that

when the expected error and the stepsize converge to 0 sufficiently fast, the agents
reach a consensus and the iterate sequences of agents converge to a common optimal
point with probability 1 and in mean square.

We make the following remarks. First, it can be shown that the disagreement
results in Corollary 5.2 and Theorem 6.1 hold even when the agents use non-identical
stepsizes. However, with non-identical agent stepsizes there is no guarantee that the
sum of the objectives rather than a weighted sum, is minimized.

Future work includes several important extensions of the distributed model stud-
ied here. At first, we have assumed no communication delays between the agents and
synchronous processing. An important extension is to consider the properties of the
algorithm in asynchronous networks with communication delays, as in [30]. At sec-
ond, we assumed perfect communication scenario, i.e., noiseless communication links.
In wireless network applications, the links are typically noisy and this has to be taken
into consideration. At third, we have considered the class of convex functions. This
restricts the number of possible applications for the algorithm. Further research is to
develop distributed algorithms when the functions fi are not convex.
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